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Dear Editors and Reviewers: Thanks for your kind comments about our manuscript.
Your comments are not only helpful but also inspiring. The comments provide new per-
spectives to understand the application of fractal theory in hydrological modeling. We
have studied the reviewers’ comments carefully and made responses in the following
texts. We are looking forward for further advice from you.

Kind regards, Zhixu Bai, Yao Wu, Di Ma, Zixia Wang
Responses to the reviewers’ comments:

Reviewer #1:
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COMMENT 1 The metric E which the authors are using in their strategy is known to
have a number of issues in its application for assessing “goodness-of-fits”. Eventually,
the need to modify E has been on the radar of hydrologist for decades. In other words,
several variants of E exist to address the issues related to the use and interpretation
of the original version from Nash and Sutcliffe (1970) which is still widely applied in
hydrology. The question to answer is: why did the authors adopt the original version of
E but not any of the existing variants?

RESPONSE 1 Thanks for your kind comment. As far as we know, although the different
modification versions of E have been studied for decades, there are still no dominant
dimensionless coefficients to measure the performance of hydrological models. When
only one metric should be used with RD in our study (else the calibration and selection
of parameter sets could be too complex to understand the effects of introducing RD),
there are not many choices. We finally chose E rather than KGE or other variants of
E because the pros and cons of E are more familiar for hydrologists, and this original
version is still most often used in hydrological model calibration.

This concept will be included in Section 2.4 E-RD strategy of our final manuscript:
“Another reason to choose E in our study is that the pros and cons of E are more
familiar for hydrologists than other metrics, and this original version is still mostly often
used in hydrological model calibration.”

COMMENT 2

RD varies from zero to positive infinity (see line 155 of the discussion paper). However,
E varies from negative infinity to zero. The point is that both E and RD are relative error
measures. For relative error measure, we focus on the “standard” range in which values
vary from zero and one with association to imperfect and perfect model, respectively.
Therefore, how can a modeler interpret E and RD in a combined way yet the range of
the values from each of these metrics is wider than the “standard” one?

RESPONSE 2
Cc2



Thanks for your kind comment. RD varies from zero to positive infinity, but the RD value
of a perfect model should be equal to 1 because the simulated streamflow series and
the observed streamflow series have the same Hausdorff dimensions. We found that
a small range of E near the best E in certain cases corresponds to a relatively large
range of RD. Besides, there is always a set of parameters makes RD=1 and E close to
the best E. Therefore, we applied a genetic algorithm to find individuals with smallest
value of objectives. The flow chart is below (Figure 2 in our manuscript).

Figure 2: Flow chart of E-RD strategy. In the multi-objective optimization, we made
some adjustments. The objectives used in the multi-objective optimization are 1-E and
|1-RD| (see Line 255).

COMMENT 3

There is a possibility in modelling that the larger the number of calibration runs, the
better the value of the objective function (especially if the parameter spaces are not
small). However, the modeler needs to compute both E and RD in each calibration run
as a requirement for the strategy being introduced. Thus, application of the introduced
strategy brings about the problem of computation time required to reach optimum dur-
ing calibration of a hydrological model. How can this problem be addressed to ensure
application of the introduced strategy is not at the expense of calibration time (espe-
cially if the modeler is making use of long-term hydrological series)?

RESPONSE 3

We made an experiment to show the effects of introducing two objectives into an auto-
matic calibration to the computation time.

We made an experiment to compare the runs needed for finding the best E (single-
objective calibration) and the Pareto optimum of E and RD of HBV model used in this
study. The calibration algorithm and parameters are the same with those in our original
manuscript.
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The results show that the multi-objective calibration took 2160 seconds to run 106 gen-
erations (63600 individuals) while the single-objective calibration took 1170 seconds to
run 51 generations (31150 individuals).

Besides, to overcome the problem of computation time in multi-objective calibration of
hydrological models, hydrologists have adopted several different types of methods. In
our study, we have adopted NSGA Il genetic algorithm and parallel computing tech-
nique to accelerate the calibration.

Allin all, the introduction of a new strategy will increase the time required, and several
methods were adopted. The calibration time has been controlled to a reasonable range
in our study. When the E-RD strategy is used with distributed models, more techniques
such as parameters’ sensitivity analysis could be applied to reduce the number of
parameters to be calibrated.

COMMENT 4

The best RD does not guarantee that E will be at its highest value. Furthermore, E
reduces as the modeler searches for the best RD (see lines 330-331 of the discussion
paper). This brings about (i) the issue of subjectivity in determining which values of E
and RD should be used to select the set of optimal model parameters, (ii) the complica-
tion in dealing with the trade-off regarding the decision on which study objective should
be preferred to others. To explain (ii), the authors need to note that a modeler may be
aiming at reproducing extreme hydrological extremes especially peak high flows, and
low flows. Applying the E-RD strategy means, the modeler should also aim at ensuring
Ds and Do are the same or very close to one another. The question that the authors
need to answer is: How can a modeler deal with the issues (i) and (i) in application of
the calibration strategy being introduced?

RESPONSE 4

Thanks for your kind comment. We would like to respond from two aspects. Firstly, in
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multi-objective calibration, the objectives, generally, cannot be at their highest values
at the same time. And if they can, the introduction of multiple objectives becomes
worthless because a single-objective calibration is able to achieve the same results.
Secondly, we believe that RD could help modelers find the best fractality of simulated
series. The improved performance (of low flows in our study) is the by-products of
the improvement of fractality. We believe the issue (ii) proposed by the reviewer is
not a drawback of our strategy because our strategy improves the simulation of low
flows and has little effects on high flows. In other words, our strategy provides a better
metric. Based on above, our answer is: a modeler may make gentle adjustments of
our strategy to make it more suitable for his/her own cases. But the introduction of RD,
by making the Hausdorff dimensions of simulated series and observed series closer,
could improve the performance and the internal rationality (components of streamflow
in our study) of hydrological models.

COMMENT 5

Sub-flows’ separation procedure adopted for this study (incorporated in the tool named
WESTPRO) makes use of a number of parameters. The authors never mentioned
any values of such parameter in their discussion paper. Examples of such parameters
(among others) include recession constants, and the filter parameter. At least two pa-
rameter values are required to extract base flow. Again, not less than two parameters
are required to filter interflow. Thus, for each river flow time series one requires not less
than four parameters to obtain the various sub-flows. The problem is that the choice
of this parameters can be largely subjective (even if one takes into account his or her
expert judgment in deciding on the parameter values to use for sub-flow filtering of a
given streamflow). Moreover, sets of parameters required to separate subflows vary
from one catchment to another. Finally, there are several methods available for separa-
tion of flows (what we also call the baseflow separation techniques). All these problems
compound the challenge of using E-RD to judge model performance (or select which
calibration run is the best). Furthermore, the overall problems that the authors need to
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take into account, here, are with respect to the uncertainty (i) due to the choice of the
baseflow separation technique (whether manual approach as the authors adopted or
automated technique), (ii) the subjectivity of selecting which parameter values to use in
filtering the observed and modeled streamflow. Here, the fact that the same set of pa-
rameter values are required to be applied to both observed and modeled streamflows
should be considered basic and they need to go beyond it in addressing this comment.
Finally, given the above background on sub-flow separation and unanswered question,
statements made by the authors in the manuscript citing that the use of RD improves
simulations of sub-flows remain claims (or are vague) unless they prove otherwise.

RESPONSE 5

Thanks for your kind comment. We put the parameters of WETSPRO here. And we
are pleased to provide the value of parameters into the revised manuscript. Notably,
the WETSPRO tool could separate the streamflow into fast flow and slow flow first,
and then separate the fast flow into overland flow and interflow. In our study, only the
first step is applied and only the first-step-related parameters of WETSPRO are listed
in the table below. We selected the parameters by following the procedure. In WET-
SPRO’s procedure, the parameters are selected one by one. For each parameter/step,
there is a corresponding criterion. Thus, the separated streamflow components are
relatively objective. Fig. R1-5 is an example of the objective procedure of selection.
In this step, the user selects the w-parameter filter, which represents the case-specific
average fraction of the quick flow volumes over the total flow volumes. According to the
literature, the filtered baseflow should be close to the total streamflow in dry periods
(Willems, 2009). The selection can be considered relatively objective.

Fig. R1-5 An example of the objective procedure of selection.
Table R1-5 Parameters of WETSPRO

The description of Table R1-5 is as follows: “Table R1-5 lists the parameters of WET-
SPRO in three cases. The recession constants are close to each other. The w-
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parameter filter, representing the case-specific average fraction of the quick flow vol-
umes over the total flow volumes, shows the difference. The w-parameter filter of Dong
catchment is 0.14, smaller than the other catchments, meaning that less proportion of
total flow in Dong is baseflow, showing the catchment features of small area and high
slope.”

COMMENT 6

The authors attempted to relate optimal values of the model parameters to obtained
RD’s. In a number of cases (see, for instance, lines 436 and 505) the authors pointed
that the selected model lacked capacity to simulate certain hydrological processes.
The question to answer is: Why did the authors not take into account the uncertainty
in their results due model selection? Models differ with respect to their structures (or
underlying assumption and equations). It becomes imperative that the authors need
to select at least two models and apply them to various catchments. In doing so, |
suggest the authors focus on clear objectives of modeling so as to allow them compre-
hensively judge the influence of application of RD on the model results. Such objectives
may include reproducing (i) extreme peak high flows, (ii) low flows, (iii) fractality in the
observed streamflow. Furthermore, results on comparison of RD with model param-
eter should be put as supplementary material (if they cannot be discarded from the
manuscript).

RESPONSE 6

Thanks for your kind comment. In our study, we analyzed the parameters’ behavior
when RD is taken into consideration instead. Besides, we trust that our performance
of models is good enough for our cases. We would like to add the analysis about the
objectives suggested by the reviewer. We agree that more objectives could make our
study of E-RD strategy more comprehensive. Table 2 now becomes:

“The high-flow percentiles (Q_5) and low-flow percentiles (Q_75) are reasonable in
three cases for all typical models. However, the high-flow percentiles and low-flow
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percentiles of best RD models are still closest to the observation.”
COMMENT 7

Instead of only selecting catchments from China, the authors need to take into ac-
count the influence from the differences in climatic conditions on the use of the E-RD
strategy. This is because the difficulty in reproducing fractality in observed streamflow
from catchments selected across various climatic regions may not be comparable. Fur-
thermore, to guard against manipulations of model inputs, the catchments should be
selected in such a way that their datasets for modeling should be from sources which
readers can easily access. There are a number of catchments with complete informa-
tion such as, hydro-meteorological data, which can be used for rainfall-runoff modelling.
To mention, but one example, is the Rainfall-Runoff Library data which can be obtained
via https://toolkit.ewater.org.au/Tools/RRL (accessed: 8th December, 2020).

RESPONSE 7

Thanks for your kind comment. We agree that the selection of catchments across
various climatic regions leads to a more convincing result. However, in our manuscript,
the three catchments are located in very different climatic regions (see Section 3.1).
Dong is a small catchment with continental plateau climate. Xiang is a large catchment
dominated by Dominated by subtropical monsoon climate. Jinhua is subject to Asian
monsoon climate and effected by typhoon in summer. And we are glad to use open-
source data and models in our following studies.

MINOR COMMENTS
RESPONSE

We’ll make the corrections as suggested.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-
543, 2020.
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Parameter Dong Jinhua Xiang
Recession constant
90 80 90
(days)
w-parameter filter 0.14 0.43 0.38
Fig. 3. Table R1-5
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Observation  Best RD BestE Largest RD
Dong 097 0.99 1.00 1.00
Auto X
X Jinhua 0.76 0.76 0.76 0.75
correlation
Xiang 094 0.95 0.94 0.94
A Dong 053 0.56 0.58 0.57
Relative
i Jinhua  1.87 1.87 1.87 1.89
variance X
Xiang  0.99 0.82 0.92 0.92
Maximum Dong 1.54 1.40 1.42 1.39
monthly flow Jinhua  531.19 497.40 503.68 496.77
(m3/s) Xiang  4210.01 3956.24 4027.68 4042.94
Minimum Dong  0.44 0.30 0.27 0.26
monthly flow Jinhua  60.64 58.85 50.45 60.19
(m3/s) Xiang  961.00 975.07 812.02 840.02
High flow Dong 1.93 1.44 1.49 1.38
percentiles Jinhua  752.00 745.02 734.12 740.28
(@s) .
Xiang  6048.50 5817.06 5586.92 5817.08
(m*/s)
low flow Dong  0.50 0.39 0.40 0.38
percentiles Jinhua  37.77 38.55 37.80 37.31
(@7s) .
Xiang  803.75 790.95 845.76 744.52
(m?*/s)
Fig. 4. Table 2
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