
Dear HESS Editor Jim Freer, 

Thank you for your effort with our manuscript. We have now addressed the issues raised by the 

reviewers and included most of their comments and suggestions. Below we provided a point-by-point 

reply to each of the comments as well as an explanation on how we included them in the text (blue 

text). 

In addition to addressing the comments by the reviewers, we have also updated most of the figures to 

adapt them to HESS guidelines make them more consistent. Additionally, we have slightly modified 

the list of catchments used in the analysis so that the inclusion of trans-boundary catchments is more 

consistent (in the previous version of the manuscript, there were a handful of these catchments 

missing). This modification does not impact the results in any significant way but nonetheless, all 

figures, values, and tables have been updated accordingly. 

With the aforementioned modifications and additions to the original manuscript we hope that this 

contribution meets the quality requirements to be published at Hydrology and Earth System Sciences. 

Kind regards, 

Marc Girons Lopez, Louise Crochemore and Ilias Pechlivanidis 

  



Authors’ response to interactive comment by Dr Louise Arnal 

In this paper, the authors evaluate the performance of an ensemble streamflow prediction (ESP) 

hindcast dataset for seasonal streamflow forecasting in Sweden, produced with the S-HYPE 

hydrological model driven by resampled historical meteorological forcings. They look at the ESP 

hindcast skill against a benchmark, historical streamflow climatology, for 39,493 Swedish catchments. 

They overall found that the ESP is skilful up to 3 months ahead in Sweden, but that the skill varies in 

space and time, depending on: the aggregation period selected, the catchment’s hydro-climatic 

characteristics and regulation. They analyzed the skill against hydrological signatures, clustering basins 

in 7 geographical clusters in Sweden, and found that higher skill values are associated with baseflow-

driven catchments. This manuscript is overall well-written and the sound methodology leads to 

valuable findings both for research and for operational streamflow forecasting in Sweden. Since the 

focus of this manuscript is on operational forecasting to guide decision-making, further context and 

discussion around the potential impacts of these findings on operational decision-making is crucial. 

Below, please find specific comments which I hope will be helpful in shaping this manuscript further 

for publication. 

We thank Dr Louise Arnal for her valuable comments and suggestions that will undoubtedly help us 

improve our manuscript. Below we reply to each of the comments and explain how we will incorporate 

them into the manuscript. 

Specific comments 

Section 1: 

- P1 L27: “Even if most day-to-day decisions on water-related issues are based on short- and medium-

range forecasts, some activities, such as water reservoir operation and optimisation or strategic 

planning, benefit from long-term forecasts.” Do you have any quote or public material you could share 

about needs of reservoir operators in Sweden? It would help emphasize the user-oriented aspect of 

your paper. 

We referenced the works by Foster et al. (2018), which refers to the Swedish hydropower needs, 

Giuliani et al. (2020), which quantifies the added economic value from incorporating seasonal forecasts 

in a regulated reservoir for the agriculture sector as well as for flood prevention, and finally the public 

deliverable D2.2 from the S2S4E project (S2S4E, 2018), which highlights the user needs from various 

users in the energy sector. 

- P1 L29: “Despite their inherent uncertainties”. I wonder if you could very briefly here cite a few 

examples of the uncertainties you refer to, for readers less familiar with forecasting on longer 

timescales? 

We included some examples of these uncertainties, such as hydro-meteorological model errors, future 

atmospheric states and past hydro-meteorological water storage, in the revised version of the 

manuscript. 

- P2 L34: I think it is important to cite Day 1985 here (Day, G. N., 1985: Extended streamflow forecasting 

using NWSRFS. J. Water Resour. Plann. Manage., 111, 157–170, doi: 

https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)). 

https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)


We included this reference in the revised version of the manuscript. 

- P3 L63: “The Swedish Meteorological and Hydrological Institute (SMHI) has long been operationally 

providing streamflow forecasts and hydrological warnings to relevant actors in hydrological risk 

management (municipalities, county boards, Swedish Civil Contingencies Agency), as well as to the 

general public.” Please clarify that this is for Sweden. 

We clarified this in the revised version of the manuscript. 

- P3 L69: “ESP seasonal forecasts are produced but not generally spread to other actors due to 

uncertainties in their skill and interpretation by external parties.” This is an interesting comment and I 

wonder what system actors currently use for prediction on such timescales in Sweden? Please consider 

mentioning this in the introduction to provide some further context. 

Both actors and the general public have access to the current hydrological situation and streamflow 

climatology through the open access Vattenwebb portal (available at https://vattenwebb.smhi.se), 

which they can use to get information on the latest observed streamflow values as well as to get an 

estimate of the most likely discharge for any given season based on historical discharges. On top of 

that, SMHI’s consultancy services provide tailored forecasts to relevant actors. These forecasts are 

however not included in the public service and, as of today, are limited to individual river systems. We 

included this information in the revised manuscript. 

- P3 L72: “In terms of regionalisation, four main hydro-climatic regions based on hydro-climatic 

patterns (Lindström and Alexandersson, 2004; Pechlivanidis et al., 2018) have typically been used for 

water management in Sweden. However, these regions were not put forward with consideration to 

seasonal streamflow predictability over Sweden and might therefore be of limited use for this 

purpose.” This appears a bit out of context here, please consider moving to the Methods section 

instead. 

The original thought was to present this as background information to the clustering analysis, hence 

its placement in the introduction. However, we agree with the reviewer in that it would fit better in 

the methods section. We moved it there in the revised version of the manuscript. 

Section 2: 

- P3 L86: When you say “measured values from all available stations” do you mean station 

observations? Please clarify here. Same for discharge and water level data. Please clarify that these 

are observations. 

The reviewer is correct, we refer to observations here. We revised the manuscript to ensure that the 

correct term is used throughout the text. 

- P3 L91: Is HYPE distributed, lumped or semi-distributed? And how were the meteorological inputs 

prepared (e.g. interpolated) for the model to ingest? 

We note here the HYPE refers to the model, while S-HYPE refers to the Swedish implementation of the 

HYPE model. In previous investigations, the HYPE model has been used in lumped, semi-distributed 

and distributed modes. That being said, the S-HYPE model setup is semi-distributed, so gridded 

meteorological inputs need to be averaged for each model catchment in order to be used. In this case, 

we follow the same methodology as in the operational service. This way, the meteorological inputs are 

https://vattenwebb.smhi.se/


processed using a weighted average method based on the area fraction of a given S-HYPE catchment 

covered by each cell of the gridded dataset (only cells which partially or totally overlap the area of the 

given catchment are assigned weights). We clarified this in the revised version of the manuscript. 

- P3 L93: It is unclear to me at this stage how an “analysis of model outputs” was performed for 39,493 

catchments if you only have 539 observation stations? Please clarify here. 

The reference used in the evaluation is based on a combination of observations and perfect forecasts, 

and can therefore cover all 39,493 catchments. This hybrid reference was chosen because it 

corresponds to SMHI’s operational setup. This is actually a common setup of operational services, 

which includes assimilation of available observations in order to improve the representation of local 

initial conditions. Therefore, the analysis is performed on all 39,493 catchments, most of them being 

analysed against perfect forecasts. For those catchments associated with one of the 539 observation 

stations, the model outputs are instead assessed against those observations (the model outputs 

themselves are corrected with existing observations before initialising the forecasts and AR-updating 

is used when observations are no longer available). Catchments located downstream observation 

stations partially benefit from the model corrections made upstream, and the reference thus becomes 

a mix of observed discharges flowing into downstream modelled catchments. We clarified this in the 

revised version of the manuscript. 

 - P4 L96: Please provide the lowest and highest score possible for the KGE for readers not familiar with 

this performance metric. Out of curiosity, has a S-HYPE model evaluation been published that you 

could refer readers to? 

We added the KGE ranges in the revised manuscript, as suggested by the reviewer. In this investigation 

we used the S-HYPE 2016 version which is the latest operational model version. Since the S-HYPE model 

is subject to continuous efforts, the performance of the current version of the model performance has 

not yet been published; hence we are here firstly reporting the evaluation results. 

- P4 L100: I suggest putting figures 1a-c in the same order as they are mentioned in the text. I was 

slightly confused and thought I had missed explanations about 1b, which in fact come after 1c. 

We modified the order of the subplots in Fig 1. following the suggestion from the reviewer. 

- P4 L108: “Nevertheless, since dam operation is continuously adapted (within certain bounds) to the 

present and most probable future meteorological and hydrological conditions, these general 

regulation regimes are expected to be of little benefit for seasonal forecasting purposes.” This is a big 

statement which warrants further investigation (not necessarily in this paper though!). 

What we tried to convey here is that, since dam operation needs to be continuously adjusted to the 

changing hydro-meteorological conditions, in addition to consider other factors such as optimising the 

economic benefit and ensuring safe operation, long-range hydrological forecasts based on models with 

only a limited description of such complex decisions on regulation patterns will most likely be 

conditioned by these simplifications. We agree with the reviewer that further investigation would be 

needed to justify a clear statement on this. We clarified this in the revised version of the manuscript 

to avoid any misunderstandings on this matter. 

- P5 L111: It may be worth explaining further how the ESP hindcasts are produced – i.e. how initial 

hydrological states are produced to initialize the model for each forecast start date, each 



meteorological forcing year corresponds to a streamflow hindcast ensemble member, etc. Perhaps a 

schematic would help make this clear to readers not familiar with the ESP. I also wonder what the lead 

time of these hindcasts is? 

We included a schematic of how ESP hindcasts and benchmark forecasts are produced in the revised 

manuscript. Regarding the lead time of the hindcasts, we used 190 days (~6 months). We specified this 

in the revised manuscript. 

- P5 L129: “as a station-corrected simulation approach was used to achieve the best possible initial 

conditions.” I am not sure to understand how a station-corrected simulation approach was used for 

catchments without station observations? Please clarify. 

This was, of course, only possible for catchments where observations were available. Nevertheless, 

even catchments downstream from observations were partially benefited from this station-correction 

approach. Elsewhere, model outputs were simply simulation results. We clarified this in the revised 

manuscript. Additionally, we also included this step (i.e. station correction) in the new schematic 

showing ensemble generation (see previous comment). 

- P5 L130: Do you know if users in Sweden indeed use “ensemble forecast based on historical 

streamflow”? 

As explained in an earlier comment, this information, together with the latest observations, is openly 

available through SMHI’s Vattenwebb portal (available at https://vattenwebb.smhi.se). The general 

public and other actors are encouraged to use this information to (i) get an estimation of expected 

discharge at any given season and, (ii) to see whether the latest observations are lower or higher than 

normal. That being said, it is difficult to quantify the actual use of ensemble forecasts in Sweden. From 

general discussions, we can say that advanced users from the hydropower sector are used to ensemble 

forecasts based on historical streamflow (some of them also use forecasts based on ESP and NWP 

techniques), while other sectors may be more familiar with deterministic information. Other tailored 

SMHI services using ensemble forecasts based on historical records such as the Aqua service 

(https://europa.eu/!bB63kr) are set up for the water supply authorities. 

- P6 L151: Could you please provide some more information about the k-means clustering method, or 

refer the readers to publicly available material further explaining this method? 

In the revised manuscript we referred to Jin & Han (2011), which nicely summarizes the concept of k-

means clustering. 

Section 3.1: 

- P7 L156: Please introduce Figure 2 prior to commenting on the results. What do the plots show and 

what is the highest/lowest score possible for the CRPSS? Same for subsequent figures. 

Here we think that the figures are adequately introduced in the captions and that, therefore, including 

an additional introduction in the main text would lead only to redundant information in the 

manuscript. Nevertheless, in the revised version of the manuscript will made an additional effort to 

ensure that the necessary information for understanding all figures (e.g. highest/lowest possible 

CRPSS) is available to the reader in an intuitive way. 

https://vattenwebb.smhi.se/
https://europa.eu/!bB63kr


- P7 L156: By lead time, do you mean the aggregation periods mentioned on P5 L142? Or are the results 

in Figure 2 from daily outputs, and up to what lead time? Please clarify here and in the Figure caption. 

We produced daily forecasts up to 190 days into the future and then calculated weekly averages. So, 

on Figure 2a, “0 Mn” refers to the first forecast week, “1 Mn” to the fifth forecast week, and so on. 

The aggregation periods mentioned on P5 L142 refer to Section 3.2. In the revised manuscript we 

clarified this both in the text and in Figure 2. Note that we are using “lead time” and “forecast time” 

definitions from the Copernicus Climate Change Service, i.e. for weekly aggregations, lead week 0 is 

the same as forecast week 1. 

- P7 L162: I am not sure to understand what you mean by “the common monthly initialisation 

frequency of climate prediction systems”. Could you please further explain or reword? 

By this we meant that, even though we now see more frequent forecast initialisations in some systems, 

many seasonal climate forecasts are initialised and produced once a month. We rephrased this in the 

revised version of the manuscript. 

- P7 L163: “By increasing the frequency of forecast initialisation (e.g. from once a month to once a 

week), and hence frequently updating the initial hydrological states, it is possible to maintain a high 

streamflow forecast skill for extended forecast horizons”. This is a very interesting finding and I wonder 

if you could comment in the Discussion on how it could be translated into operational decision-

making? E.g. Would decision-makers be willing to alter their decisions regularly with each forecast 

initialization/update? 

This is a good point which we addressed in the Discussion section of the revised manuscript. 

Here we state that the way a seasonal forecasting service is used in decision-making depends on the 

sector, user, and service properties. It is therefore important to evaluate a comprehensive range of 

possibilities in terms of seasonal information statistics (e.g. forecast aggregation, time horizons) that 

can technically be offered to individual decision-makers to allow flexibility in the decision process. It is 

also important to point out that here we can only hypothesize on the impacts of our findings on 

decision contexts, which are very much sector and location-dependent. 

Our findings show that a frequent (i.e. weekly) initialisation can significantly improve the streamflow 

forecast skill, and this is expected to add value to decision-making. This is of particular high importance 

for periods in which decisions are subjected to hydrological responses that alter in a short time 

window. For instance, in Sweden it is important to be able to predict the onset of the spring flood due 

to a combination of snow melting and precipitation, and adjust the reservoir regulation accordingly to 

optimize the power production for the coming months. 

- P8 L184: I am not sure where these lakes are in Sweden. Perhaps it would be helpful to add a map of 

Sweden with a few key geographical indicators (e.g. elevation, lakes – with legends for the lakes you 

refer to –). 

In the revised version of the manuscript we included an additional figure in the appending showing the 

elevation, and hydrography of Sweden. Additionally, we located the main Swedish rivers and lakes that 

are named throughout the manuscript in this new figure as well. 



- P8 L188: While I can see lower skill for the regulated rivers, it is hard to identify which rivers you refer 

to on L191-192. Another plot, such as a zoomed in plot, might be necessary to show these results more 

clearly. 

As mentioned in the previous comment, we included a figure with the main Swedish rivers and lakes. 

This should allow a clearer identification of the river systems we refer to. 

- P8 L191: “future trends in streamflow”. This sounds like you are looking at events (e.g. high/low 

flows). It is perhaps better to rephrase to “future streamflow”. 

We reformulated this following the reviewer’s suggestion, as it may indeed be clearer for readers. 

- It is clever to aggregate forecasts for different periods (Figure 3). This enables to retain some skill for 

longer lead times than otherwise possible when looking at Figure 2. I wonder if users are interested in 

such time aggregations, or if they would prefer weekly/monthly aggregations instead? Could you 

perhaps comment on that in the Discussion, as this is important for the user-oriented analysis you are 

trying to achieve. 

As mentioned earlier, the temporal aggregations depend on the sector and user. For instance, for the 

energy sector, the hydropower companies tend to be interested in a fixed 3-month aggregation over 

the period May-July. Alternatively, crop water needs can be assessed over the entire summer season 

to get estimates of required water volumes for irrigation. The produced matrix (Figure 4) for different 

aggregations, initializations, and lead times allows communication of skill to various users depending 

on their needs. We included these considerations in the revised version of the manuscript. 

Section 3.2: 

- Figure 4: 

- Before looking at this figure, it wasn’t clear to me that the analysis was performed for different 

aggregation periods as well as lead times. Could you please clarify this in the Methods section? 

We explained briefly the analysis using different aggregation periods in P5 L139-143. In the revised 

manuscript we reformulated this so it is clearer for the reader that we also perform this type of 

analysis. 

- Could you please add ticks (and perhaps tick labels where possible) to all subplots of this figure as it 

is difficult to follow the results clearly without. 

As suggested by the reviewer, we added ticks for all subplots in this figure in the revised manuscript. 

Additionally, we added labels to the y-axes of the subplots for January, April, July, and October, and to 

the x-axes of the subplots for October, November, and December. 

- Do you have an explanation for the sudden increase in skill for hindcasts initialized on 1 March, with 

a 8- vs 12-week aggregation period? Is it because you are predicting streamflow for the summer with 

the 12-week aggregation period, which is “easier” to predict as levels are generally low during this 

season? Please consider reflecting on this briefly in the paper. 

This increase in skill, which is particularly obvious in March, can in fact be observed for hindcasts 

initialised between 1 February to 1 May when looking at the 4-week aggregation period, and 



corresponds roughly to the month of May. Many catchments and rivers, especially in the northern half 

of the country, see the peak of the spring flood during this month. With shorter aggregation periods, 

the focus is more influenced on the start/end of the event, while longer aggregations put more 

emphasis on having a correct total volume, regardless of the exact start/end dates. Since this total 

volume linked to the accumulated snowpack is easier to model than the timing of the event, which is 

conditioned by meteorological variables, longer aggregations perform better. In the southern parts of 

the country, in the month of May the spring flood has already passed and low flow conditions start to 

dominate. We included these considerations in the revised version of the manuscript. 

- P10 L198: Could you please remind us here which aggregation periods were used for this analysis? 

We followed the reviewer’s suggestion and added the aggregation periods we used in the analysis 

here. 

- P10 L203: “Even if, as expected, forecast skill decreases when forecasts are aggregated over long 

periods, a comparatively higher skill is maintained over longer time horizons than when forecasts are 

aggregated over short periods.” It would be interesting if you could add an indication of the lead time 

at which the skill is 0 for shorter aggregation periods (results from Figure 2) on this figure. 

The bottom row of each subplot in Figure 4 contains already the same information as Figure 2b, as the 

aggregation period (i.e. 1 week) is exactly the same. So, the first grey box in the bottom line of each 

subplot already shows this information. So, after discussion with the co-authors, we decided to avoid 

making this figure heavier than it is, as the objective here is to depict how the skill changes as a function 

of the aggregation window, and not only when this drops below 0. 

Section 3.3: 

- I would argue that results for longer forecast horizons would be good to show as well as the focus of 

this paper is on seasonal forecasting. Perhaps correlations could be stronger when calculated against 

another performance metric which might not weaken so much over time (e.g. CRPS instead of its skill 

score)? 

The results presented in Section 3.3 correspond to an exploratory investigation connecting the first 

part of the analysis (i.e. temporal and spatial variability of ESP forecast skill) with the second part (i.e. 

attribution of skill to hydrological behaviour). By focusing on the CRPSS, we look at the "added value" 

of the ESP with respect to streamflow climatology, which is in line with the idea of 

evaluating/understanding the use of ESP for decision making (against an alternative system). Looking 

at the CRPS or any score without a benchmark would be a different analysis completely which would 

undoubtedly be very interesting but which is outside the scope of this study. In the revised version of 

the manuscript we addressed this comment by adding the results for a further lead time in light grey 

in the same figure. 

- To what extent do you think these results are dependent on your hydrological model? Please consider 

commenting on this in the Discussion section. 

Different aspects of the S-HYPE modelling and forecasting chain in this study, such as the model setup 

and data, the model structure, and its parameters may convey uncertainty to the forecast results (see 

also the discussion in Pechlivanidis et al., 2020). However, the impact of model errors for our particular 

setup is especially complex as we used a combination of observations and perfect forecasts as 



reference. While we can expect model errors to be minimal for those catchments in which forecasts 

are purely evaluated against perfect forecasts, they become relevant for catchments at or downstream 

of observations, especially due to the interplay between correction of model outputs with 

observations and streamflow regulation. 

While model outputs are corrected with all available observations, not all watercourses with 

observations are regulated, and even those that are regulated do not have all observations at dams or 

other river regulation structures. The correction of model outputs with observations and, when these 

are no longer available (e.g. at forecast initialization), with an exponentially decreasing factor based 

on the last known model error (i.e. AR correction) effectively minimises model uncertainties, especially 

at forecast initialisation and during the first time steps of the forecast. Nevertheless, any model errors 

will tend to become more significant for further lead times. The downstream distance of a given 

catchment with respect to an observation is also relevant in this case, as the model correction would 

only affect a fraction of the simulated/forecasted streamflow at that location. 

The most important model errors, though, can be expected for heavy regulated catchments with or 

downstream of observations. Complex river regulation routines which depend on factors external to 

hydrological models cannot be adequately reproduced by these models. In these cases, even if the 

correction of model outputs with observations may minimise model errors at forecast initialisation, 

these errors will rapidly spread due to the inability of the model to reproduce the modified hydrological 

regime. 

We included these considerations in the revised version of the manuscript. 

- Could you please increase the font size of the correlation coefficient on each subplot of Figure 5? It 

took me a bit of time to notice them. 

Following the reviewer’s advice, we increased the font size of the text of Figure 5 to make it more 

readable. 

Section 3.4: 

- Table 2: It would be good to show the range of elevation, annual precipitation, etc. instead of just the 

mean values, to show the catchments variability within each cluster region. This might become a bit 

messy and could be clearer in a figure rather than a table. 

In the revised version of the manuscript we included the interquartile ranges (Q25 - Q75) in addition 

to the mean values for each of the variables. Following a comment by another reviewer, we also 

removed potential evapotranspiration from the table, which gives more space for the additional 

information. 

- P14 L241-254: It may be easier to follow by having these observations as bullet points in Table 2. It 

might also make it easier to link the results presented in Figure 7 with the cluster characteristics. 

The text in L241-254 refers to the dominant hydrological processes and topographic characteristics, 

while Table 2 summarizes the streamflow signatures which define the clusters. We chose not to add 

similar information in Table 2 and hence introduce redundancy in the manuscript. Nevertheless, we 

made an effort to make this paragraph easier to follow by the reader in the revised version of the 

manuscript. 



- Could the large/small spread in forecast skill shown in Figure 7 be caused by large/small basin 

differences within these clusters? E.g. spread in the topographic, climatological or hydrological 

characteristics (from Table 2) within each cluster. It would be interesting to hear your thoughts on this 

here on in the Discussion. For example, cluster 5 catchments appear more spread out throughout 

Sweden (Figure 6b) compared to cluster 6 catchments. 

The hydrological characteristics are the end-product of climatological and physiographic properties 

and can therefore not be assessed together. Some combinations of climatological and physiographic 

properties can be found in very specific areas of the country, while others are more widespread. For 

instance, from a physiographic perspective, cluster 6 consists mainly of agricultural and coastal 

catchments, in addition to big lakes, which are quite limited geographically in Sweden. Conversely, 

cluster 5 contains mostly slowly-responding forested catchments, which can be found throughout the 

country. 

Focusing on the hydrological characteristics, results from cluster 5 are indeed interesting. The forecasts 

in the catchments clustered here generally show the highest skill (for all lead times) among all cluster 

groups, yet results are widely spread. In this paper we conclude that forecast skill is strongly linked to 

the various hydrological regimes (see also a more detailed investigation in Pechlivanidis et al. 2020), 

and hence we argue that the reason for this spread lies in a deeper understanding of the hydrological 

signatures in cluster 5. As we state in P14 L241-242, the catchments in cluster 5 are characterized by a 

high baseflow contribution (BFI), a slow response to precipitation (Flash) and a generally small intra-

annual variability (DPar). In Figure 6a we observe that, although the mean values for RLD (rising limb 

density) are below the 33rd percentile of this signature (which represent ‘below normal’ signature 

values), the variability among the 4355 catchments composing this cluster is high (as indicated by the 

boxplot), with some catchments experiencing ‘normal’ RLD values and yet some others with values 

even higher than the 66th percentile of this signature. Consequently, this indicates that, despite their 

high baseflow contribution, some catchments in cluster 5 experience sharp increases in their 

hydrographs, which is an indication of low skill as seen in Figure 5 (CRPSS and RLD are strongly, but 

negatively, correlated). We explained the above argument for the large spread in cluster 5 in the 

revised manuscript. 

Section 4: 

- P18 L306: “forecast initialisations are not expected to provide an added value to the forecast service.” 

I would argue the opposite. You have shown in your paper that more frequent forecast initializations 

could substantially increase the forecast skill. The added value is potentially immense for decision-

makers. The challenge remains to translate this into actionable outputs for the users, as you mention 

it briefly. Please consider rephrasing and elaborating on this. 

Frequent initialization as seen in this manuscript (i.e. weekly with respect to monthly), does provide 

added skill. However, we argue that daily initialization (when compared to weekly initialization) is 

unlikely to convey any further useful information for decision making at seasonal horizons, since long-

term decisions are also not taken daily. In such services, due to high uncertainty, results are aggregated 

into weekly values, which further smooth the potentially high streamflow dynamics. We clarified this 

in the revised version of the manuscript. 

- P19 L332: Would you be able to add a figure to the paper to support these very interesting findings? 



Here we want to clarify that the sentence in P19 L332 does not correspond to actual findings presented 

in this manuscript, which build on an analysis of the operational forecasting setup from the perspective 

of public service, thus focusing on catchment outflows. Instead, this statement is based on the 

assumption that, since forecast skill is shown to be consistently lower in highly regulated catchments 

than elsewhere, the fraction of the inflows to a given reservoir that are not affected by other regulation 

upstream may be more predictable and therefore convey higher forecast skill when compared to the 

outflows, which would be very relevant for the hydropower sector. This is indeed a very interesting 

analysis that we plan to investigate further in the future. We clarified this in the revised version of the 

manuscript. 

- P19 L344: “Skilful ESP seasonal forecasts for these rivers should allow for early planning and allocation 

of resources that could greatly contribute to mitigate potentially severe ice break-ups.” To evaluate 

this, a different performance metric, such as the brier or ROC score for high flow events, might be 

better adapted than the CRPS. Do you plan to look at this in the future? 

The severity of ice break-ups is determined by the interplay of different factors and processes over a 

long period, usually starting in late autumn. The main drivers are meteorological (defining the ice build-

up during the winter months and meltdown during spring) and hydrological (regarding the timing of 

the streamflow increase marking the start of the spring flood). So, here we argue that scores which 

evaluate the overall performance, including biases in volume, such as the CRPS are also suitable for 

decision-making on the allocation of resources. We plan to explore this further into the future, 

including looking at the metrics suggested by the reviewer. 
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Authors’ response to interactive comment by Anonymous Reviewer #2 

This manuscript presents a large scale study (39 493 catchments) that aims at gaining a better 

understanding of the main factors that drive the skill of ensemble streamflow forecasts in Sweden. 

Most similar studies in seasonal forecasting aim at distinguishing the contribution of initial conditions 

and that of meteorological forcings. In this manuscript, the authors rather want to distinguish the 

hydrological processes that drive the skill of seasonal forecasts across space and time. They also study 

the influence of aggregating the forecasts at different timescale (2 weeks, 1 months, 2 months, etc.) 

affects the skill, which I find very interesting. The authors show that forecasts are mostly skillful when 

initialized during the winter months, and for base flow dominated catchments. They also propose a 

classification of catchments into clusters with similar characteristics and behavior relative to seasonal 

forecasts. I think this is an interesting study that can bring new information to better understand where 

we should concentrate our efforts to improve the skill of seasonal forecasts in hydrology. I only have 

very minor comments that relate to methodological choices that I would like the authors to explain in 

greater detail. 

We thank the reviewer for his/her valuable comments and suggestions that will undoubtedly help us 

improve our manuscript. Below we reply to each of these and explain how we will incorporate them 

into the manuscript. 

Detailed comments: 

• Line 34: I am always bothered when people change the original name of a technique. The authors 

here define ESP as "Ensemble Streamflow Predictions", but this is not exactly what ESP originally stands 

for. In Day (1985), who originally proposed the technique, ESP refers to "Extended Streamflow 

Prediction". This may seem like a small detail, but 1) I think it is only fair to use the exact name that 

Day proposed for his own technique and 2) "Ensemble" prediction is very general and could very well 

be obtained using a dynamical meteorological model rather than past climatological scenarios. 

Therefore, designating ESP as "Ensemble" streamflow prediction can be confusing to some readers 

(I’m thinking especially about people who are unfamiliar with ensemble forecasting in general). ESP 

should refer to a very specific technique, but I have also heard people using it to refer to ensemble 

forecasts obtained using dynamical meteorological forecasts. Also, I think that Day (1985) should be 

cited, as it is the original reference for ESP. 

We agree with the reviewer in that terminology should be used in a restrictive sense and that original 

ideas and their naming should be respected and used. That being said, the term Ensemble Streamflow 

Prediction referring to Day’s 1985 technique has been widely adopted by the community and has 

nowadays almost replaced the original term (Extended Streamflow Prediction), which is why we use it 

even here. Nonetheless, the reviewer makes a good point here, and following his/her reflection we 

also included a reference to the original name of the ESP technique and publication in the revised 

manuscript. 

• Lines 34-50 and lines 291-299: Speaking of dynamical forecasts: ESP is quite an old technique. And I 

agree that it is still what is used operationally for long-term hydrological forecasting by many 

operational agencies, and that it works well. However, long-term dynamical meteorological forecasts 

also exist and some studies focus on assessing their skill for hydrology, often using ESP as a reference 

for comparison (e.g. MeiBner et al. 2017; Baker et al. 2019, Slater et al. 2019, Bazile et al. 2017 and 

others). I don’t have any problem with the authors using ESP instead of dynamical forecasts, but I think 



the use of dynamical meteorological for seasonal hydrological forecasting should also be included in 

the literature review. There is a good discussion about NWP later in the paper (291-299), but I think it 

appears much too late. I strongly suggest including examples of NWP-based hydrological seasonal 

forecasting systems in the introduction, and possibly moving some elements from the discussion (a 

portion of lines 291-299) also in the introduction. I think it is important to explain why you chose to 

use ESP rather than NWP based forecasts, and to do so before the discussion! 

In the revised manuscript, we included a short description of NWP-based techniques in the 

introduction and further clarified the reasons behind the choice of ESP in this study. These reasons 

include the fact that the objective of this manuscript was to assess the existing system at SMHI’s 

operational service, which uses ESP forecasts, and that the ESP method offers the best study object to 

focus on the role of initial hydrologic conditions alone (best explained through catchment 

characteristics than the role NWP forcings). 

• Page 4 lines 101-110: I’m not sure I understand why it is relevant to include regulated rivers in the 

study. They all end up in the same cluster (7), which unsurprisingly has a negative median skill. It would 

certainly be interesting to forecasts long-term inflows to reservoirs, as it could be useful for long term 

water management/hydropower production planning, but if I understand those lines correctly, this 

doesn’t seem to be the case here (I understand that there are forecast points downstream from 

reservoirs, correct?). I think the rationale for including regulated catchment in the study needs to be 

better explained. 

In our view, a clear explanation to this is provided in the discussion section of the manuscript, as the 

reviewer states in a later comment. The rationale behind this is an operational one: since the 

operational service we are trying to evaluate here includes regulated rivers (which are, additionally, of 

special interest for such a system), they should be taken into the account in the analysis as well. It 

should be noted though, that the degree of regulation is not explicitly considered as one of the 

indicators for the clustering analysis. Nevertheless, since the regulation scheme affects the 

hydrological response, it is plausible that regulated catchments become clustered together. 

Regarding the evaluation of inflows to reservoirs, we agree with the reviewer in that this would be 

very relevant for long term water management and hydropower production planning. However, in this 

manuscript we focused on the operational forecasting setup from the perspective of public service, 

which provides information based on catchment outflows. Nevertheless, even if this analysis is out of 

the scope of the present manuscript, it is something we plan to investigate further in the future for the 

exact same reasons the reviewer stated here. 

Overall, we understand the reviewer’s comment and therefore we included the reasoning earlier in 

the text so as to make the purpose more understandable to readers. 

• Page 14 lines 240-253 and Figure 6: I would find it helpful if the abbreviations from Table 1 were used 

in this paragraph, which analyses Figure 6 (even though a sort of synthesis is presented in Table 2). I 

find it difficult to remember acronyms and abbreviations, so I had to go back and forth between the 

figure, the text and Table 1. 

We agree with the reviewer. Initially, we tried to avoid repetition and including yet more information 

in this already dense paragraph. However, we followed the reviewer’s advice and added relevant 

abbreviations there. 



• Table 2: How are potential and actual evapotranspiration obtained? Is it really important to include 

both in the table? 

Both potential and actual evapotranspiration are S-HYPE model outputs. In our case, potential 

evapotranspiration is calculated based on mean temperature and a land use dependent rate 

parameter. An additional parameter adjusts the potential evaporation rate depending on the season. 

Regarding actual evapotranspiration, it is calculated by a linear function depending on soil moisture 

and it ranges between 0 and the potential evaporation value (when water content exceeds field 

capacity). 

We included both in the table since, originally, we had the intention to include a short analysis based 

on the Budyko framework. However, since most catchments in Sweden are energy limited, it did not 

have much explanatory power. 

We agree with the reviewer that it is not necessary here to present both parameters and we therefore 

removed the potential evapotranspiration column in the revised manuscript. 

• Page 16 line 268: Do you have any possible explanation why the cluster (5) with the highest general 

skill also have the largest spread? Is it possible that those two things (skill and spread) are related? 

What I mean is that if the skill is assessed by the CRPS and the CRPS is very sensitive to spread, then 

maybe the high skill is (at least in part) a consequence of this high spread? In any case, I think it would 

be interesting if the authors could provide a possible explanation. 

Results from cluster 5 are indeed interesting. The forecasts in the cluster 5 catchments generally show 

the highest skill (for all lead times) among all cluster groups, yet results are widely spread. In this paper 

we conclude that the forecast skill is strongly linked to the various hydrological regimes (see also a 

more detailed investigation in Pechlivanidis et al. 2020), and hence we argue that the answer is within 

a deeper understanding of the hydrological signatures in cluster 5. As we state in P14 L241-242, the 

catchments in cluster 5 are characterized by a high baseflow contribution (BFI), a slow response to 

precipitation (Flash) and a generally small intra-annual variability (DPar). In Figure 6a we observe that 

although the mean values for RLD (rising limb density) are below the 33rd percentile of this signature 

(which represent ‘below normal’ signature values); however the boxplot for RLD driven by all 4355 

catchments in cluster 5 indicates high variability, with some catchments experience ‘normal’ RLD 

values and yet some others even higher than the 66th percentile of this signature. Consequently this 

indicates that some catchments in cluster 5 despite their high baseflow contribution experience sharp 

increases in their hydrographs, which is an indication of low skill as seen in Figure 5 (CRPSS and RLD 

are strongly, but negatively, correlated). We explained the above argument for the large spread in 

cluster 5 in the revised manuscript. 

• Page 18 lines 316-326: You mention the idea of using more sophisticated data assimilation 

techniques, such as the EnKF, but I think it would also be worth mentioning the possibility of 

assimilating other observations than streamflow, for instance soil moisture and/or snow water 

equivalent. This has been done in some studies (e.g. Huan et al. 2017), but there are still not that many 

in direct relation to seasonal forecasting. 

In the revised manuscript we acknowledged the possibility of assimilating other observations and 

referred to relevant studies such as Huan et al. 2017 or Musuuza et al. 2020, which was already cited 

in the manuscript. 



• Page 19 lines 335-337: "This exercise shows that the regulation routines in . . ." There I finally found 

the justification for including regulated rivers in the study. I think this should be expressed earlier in 

the manuscript, around lines 105-120. At the moment, the explanations provided in lines 105-120 

remain too general and it is hard to understand what it is that you want to test by including regulated 

rivers. At lines 335-337 it becomes clear, but it is too late. 

Please see the previous comment on the same issue for a description on the reasoning behind this as 

well as the modifications performed to the revised manuscript. 
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Authors’ response to interactive comment by Reviewer #3 Shawn 

Harrigan 

Girons Lopez et al. evaluate the forecast skill of theEnsemble Streamflow Prediction (ESP) method 

using the SMHI operational configuration of the S-HYPE hydrological model for providing seasonal 

streamflow forecasts across Sweden. They generate a set of ESP reforecasts at 25 ensemble members 

each for 39,493 catchments, initialised 4 times per month over the 36-year period from 1981-2016. 

The hydrological model, and reforecasts, are run at a daily time-step and are primarily aggregated to 

weekly averaged streamflow, out to a 6-month forecast horizon; a number of different temporal 

averages are also tested, from weekly to 24 weeks. For the 539 catchments with streamflow and water 

lever observations, an additional simple autoregressive algorithm was applied to correct raw modelled 

streamflow output prior to generation of the reforecasts. The probabilistic skill of ESP reforecasts was 

benchmarked using the Continuous Ranked Probability Skill Score (CRPSS) against a probabilistic (25 

ensemble member) streamflow climatology (called “historical streamflow”in the paper) with modelled 

streamflow simulations as proxy observations (called “modelled reality” in the paper), or where 

available (i.e. 539 stations) in situ streamflow observations (called “observed reality” in the paper), as 

reference. Results show that ESP is skilful up to 3 months ahead for the most of Sweden. The strength 

of skill varies widely across the country in space and time and has shown to be linked to a number of 

key hydrological signatures (15 explored in total). Similar to previous work, ESP skill was highest in 

slowly responding baseflow-dominated (or high BFI) catchments and least skilful for flashy catchments. 

Seven unique clusters of similar hydrological behaviour were identified using k-means clustering and 

ESP skill summarised for catchments within each cluster. 

I found this paper very interesting with a comprehensive ESP reforecast experimental design (i.e. long 

reforecast period, many forecast start dates, large sample of catchments, and cross validation used). 

It has the clear purpose of providing the scientific foundation for when and where the ESP forecast 

method is, and importantly is not, appropriate to use in operational seasonal forecasting across 

Sweden. The paper goes on to explore the potential sources of ESP skill based on correlation with 

hydrological signatures, while it’s arguably a stretch to call correlation a formal attribution, the analysis 

nonetheless reveals interesting drivers and patterns of skill across the country, including the poor skill 

from catchments with high human disturbance (e.g. reservoirs). The paper is well structured and 

written with very good Figures. The analysis presented in Figure 7 is particularly insightful, and an 

innovative way of presenting forecast skill by clusters of similarly responding catchments. I offer below 

suggestions on areas where the paper could be expanded and highlight where clarifications are 

necessary, but these are all minor. 

Therefore, I strongly recommend Girons Lopez et al. to be published in HESS. It adds to the growing 

literature benchmarking the skill of the ESP method with a clear application within operational 

seasonal forecasting at the national scale in Sweden. 

We thank Dr Shawn Harrigan for his valuable comments and suggestions that will undoubtedly help us 

improve our manuscript. Below we reply to each of these and explain how we will incorporate them 

into the manuscript. 

Main comments  

1.) It would be useful to have these parts of the methods expanded/clarified: 



a. Pg 3 L89-90: While there is a link to the general website to download the streamflow observations 

in the “Data availability” section, there is little detail for the reader on if all 539 stations are available 

in near-real time, which would be necessary to understand the transferability of forecast skill results 

to operational forecasts in future. Also, are all stations available for the full 1981 to 2016 period for 

calculation of KGE in Fig. 1 and for calculating the historical streamflow benchmark forecast? Were 

most of all these stations used for calibrating the configuration of S-HYPE used in the study? 

The reviewer raises a valid point here, as hydrological observations are seldom available for long, 

overlapping periods across a large number of stations. The stations we used in this study are the ones 

being used operationally (and therefore collecting and sending data in real or near-real time) by the 

SMHI’s service at the time of performing the analysis. 

New stations are regularly added and some of the existing ones may be dismantled, but the sample is 

fairly similar to the one used for model calibration, as a recalibration effort for the most recent version 

of the model (the one we are using in this analysis) was performed recently. 

Station availability and data quality is actually quite complex as, even if a large percentage of stations 

belong to SMHI, a significant part are external stations. Nevertheless, SMHI performs quality controls 

on all observations. 

In short, because of the reasons listed above, data availability varies greatly among different stations. 

Nevertheless, most of them have over 20 years of data. Nonetheless, as the reviewer points out, the 

transferability of forecast skill results to operational forecasts in the future may need to be carefully 

assessed if there are significant changes in station availability. 

In the revised version of the manuscript we included a figure showing the periods with available 

observations for all stations (in the appendix). Additionally, we included a sentence in Section 2.1 

stating that data are assimilated from different stations at different times since data availability is not 

the same throughout the different stations for the 1981-2016 period. 

b. Pg 5 L116-123: I find the AR correction interesting, but there is very little detail on how it was applied 

within the current experimental design, and perhaps even if it was implemented in such a way that is 

as consistent as feasibly possible to the configuration that is/will be implemented operationally? 

The implementation of the AR correction in this reanalysis is indeed as close as possible to the 

operational setup. For instance, let us consider the case of a catchment which has observations 

throughout the analysis period. For each ESP initialisation, the model outputs are corrected up to the 

day before forecast initialisation. Then, as observations are theoretically no longer available, the model 

output correction starts from the latest correction value and exponentially decreases with time until 

the model outputs become clean simulation results (the rate of decrease is controlled by a model 

parameter). In the revised version of the manuscript, we included this paradigmatic detailed 

description of the AR method. 

c. Pg 5 Sect.2.3: The exact reforecast size is mixed between Sect. 2.2 and Sect. 2.3 and the reader has 

to try piece it together, it would be good if summarised. My understanding is that the reforecast 

dataset used has the following size: 39,493 catchments; 1728 start dates (4 start dates per month x 12 

months x 36-year reforecast period (1981-2016)); weekly averaged streamflow out to 6 month forecast 

horizon at 25 ensemble members each? 



That is correct. In the revised version of the manuscript we reworked the methods section to ensure 

that the description of how forecasts are generated is contained in a single section (Section 2.2). 

Consequently, we also renamed this section to “Hydrological modelling and forecasting”. 

d. Pg 5 L130-134: I think it could be confusing to refer to the probabilistic streamflow climatology 

benchmark forecast as “historical streamflow” because historical streamflow could more generally be 

interpreted by readers as the reference observations. I think it’s more informative to be explicit about 

the type of benchmark forecast used for benchmarking skill (here, you indeed choose climatology 

which is the most appropriate given the seasonal forecast horizon). 

We agree with the reviewer in that terminology should be used in a restrictive sense, as otherwise it 

could lead to misinterpretations. We made sure that the appropriate term (streamflow climatology) is 

used throughout the text in the revised manuscript. 

2.) Pg 7 L172-173: I’m not sure this is the correct conclusion from my interpretation of Fig. 2b and Fig. 

3. It looks like skill initialised at the start of March (light green in Fig. 2b) is higher than any of the winter 

months, at least for the 1 week forecast horizon. This is confirmed in the map for 1 March in Fig. 3 for 

1 week. Can you please clarify? 

That is correct. The highest skill is indeed achieved for reforecasts initialised on 1 March (CRPSS above 

0.8). The period with highest skill for forecast week 1 is actually between 8 December and 1 March, 

which we simplified in the text as “for forecasts initialised in winter” (Line 172). After 1 March the skill 

already decreases noticeably. This may be explained by the hydrological regimes of a large part of 

Swedish catchments, which generally start to increase in April-May, in addition to the general lack of 

precipitation in winter and early March. We modified these lines to be more accurate. 

3.) One of the key advantages of benchmarking ESP over Sweden is the opportunity to explore the role 

snow accumulation and melting has on controlling ESP skill. I can’t help but think there’s an additional 

piece of the puzzle missing in attributing ESP skill. While hydrological signatures are useful, e.g. 

baseflow index (BFI), there is not much discussion in the paper on the hydrological processes within 

those catchments that are the source of ESP skill, based on information content and hence memory in 

the initial hydrological conditions. For example, a key question missing from the analysis is do 

catchments with a large contribution of streamflow from snow melt provide high skill when initialised 

around the snowmelt season? In practice, a catchment can have a high BFI due to several slowly 

responding processes (e.g. large groundwater/soil storage, snow, lakes, or a combination). I do not 

request this analysis is done, but it would be good to hear the authors’ opinion and perhaps it could 

be worked into the discussion on the (initial hydrological condition) sources of ESP skill in Sweden. 

We thank the reviewer for this interesting point. Unfortunately we did not calculate the contribution 

of streamflow from snow melt, and hence we cannot explicitly explore the role of snow 

accumulation/melting on ESP skill. Only in a case study investigation over the Umeälven river basin 

(snow dominated and heavily regulated system for hydropower production), we recently showed that 

assimilation of a snow water equivalent satellite-based product, particularly over the winter and spring 

seasons, significantly increased the streamflow forecasting skill. Note that this is still unpublished, 

whilst a manuscript is under preparation with an expected submission in early 2021.   

Moreover, we agree with the reviewer that the definition of river memory can be a combination of 

processes, such as groundwater/baseflow contribution, snow accumulation/melting, and hydrograph 

dampening from lakes. Snow processes tend to define the river memory only seasonally (for example, 



precipitation in the form of snow in early December will be accumulated and further released as 

melting during the spring flood period), and hence the role of snow on ESP skill is expected to have a 

seasonal pattern too. This view was mentioned in the last paragraph of Section 4.1 (Discussion). 

Technical comments 

4.) Pg 3 L69: Not sure “spread to other actors” is clear. A suggestion is: “ESP seasonal forecasts are 

produced operationally but have not been used widely in real-world applications due to lack of 

information on their skill...“, or something to that effect? 

We thank the reviewer for his suggestion. We changed this passage in the revised manuscript 

accordingly. 

5.) Pg 4 L96-98: Can you please confirm the time scale the KGE was calculated, I presume it was 

calculated at daily time step from 1981-2016? 

That is correct, the KGE values were calculated based on a forward run at a daily time step for the 

entire analysis period (1981-2016) using the S-HYPE model without station correction. We clarified this 

in the revised version of the manuscript. 

6.) Pg 4 Fig.1: Could you please add into the caption or text what exactly is shown in Fig. 1b and c in 

the coloured shapes, I presume it’s the river network, or is it the river network downstream from an 

observed gauge only? 

The coloured shapes in Fig. 1 correspond to those catchments that are being significantly corrected by 

observations over the entire analysis period (Fig. 1b) and that have a significant degree of regulation 

(Fig. 1c). Even if they do not show the river network directly, they correspond quite well with it, since 

most stations and dams are located along watercourses. One can actually see the difference between 

both at the border with Finland (north-eastern part of the country): even if the Torne river there is not 

regulated (it is not shown in Fig. 1c), model outputs are still corrected - yet to a small degree - using 

the observations gathered from the stations along the river (which can be seen in Fig. 2b). We clarified 

this in the text. 

7.) Pg 20 L365: Suggest changing “reliable” to “skilful”, as reliability was not explicitly evaluated. 

We thank the reviewer for pointing this out. This is correct and we therefore ensured that the 

appropriate term (i.e. skilful) is used throughout the revised version of the manuscript. 

8.) Pg 21 L396-399: “sys”, “bench” and “pft”more typically subscript, not superscript (i.e. CRPSsys should 

be CRPSsys). Also, CRPSS values can range from 1 to -∞, not “low negative values”. 

We included the proposed modifications to the revised version of the manuscript. 


