2	Supporting Information for
3	Streamflow estimation at partially gaged sites using multiple
4	dependence conditions via vine copulas
5	
6	Kuk-Hyun Ahn ¹
7	
8	
9	
10 11 12 13	1 Assistant Professor, Department of Civil and Environmental Engineering, Kongju National University, Cheon-an, South Korea; Corresponding author; e-mail: ahnkukhyun@gmail.com
14	Contents of this file
15 16	Text S1 to S3
17	Introduction
18	This supporting information provides additional descriptions to support the conclusions of the
19	primary article. The theoretical description for \mathcal{M}_{Bivar} and \mathcal{M}_{Kraus} are first presented. Next,
20	the theoretical description for upper and lower tail dependences is demonstrated.
21	

1 Text S1. Description of \mathcal{M}_{Bivar}

The optimal bivariate copula is developed by selecting the minimum AIC values while
considering the five bivariate copulas (Gaussian, Student-t, Frank, Gumbel, and Clayton
copulas) described follows.

5

6 S1.1 Gaussian copula

7 The density of the Gaussian copula is given by

8

9
$$c(F_1(q_1), F_2(q_2)) = \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{\rho^2(q_1^2+q_2^2)-2\rho^2 q_1 q_2}{2(1-\rho^2)}\right]$$
 Eq. (S1)

10

where F₁(q₁) and F₂(q₂) are the marginal distribution functions of streamflow at two sites
in the range [0, 1].
The h-function of the Gaussian copula is expressed as

14

15
$$h(F_1(q_1), F_2(q_2), \rho) = F(\frac{F_1^{-1}(q_1) - \rho F_2^{-1}(q_2)}{\sqrt{1 - \rho^2}})$$
 Eq. (S2)

16

18 The density of the Student-t copula is given by

1
$$c(F_1(q_1), F_2(q_2)) = \frac{\Gamma(\frac{\varphi+2}{2})/\Gamma(\frac{\varphi}{2})}{\varphi \pi dt(q_1, \varphi) dt(q_2, \varphi) \sqrt{1-\rho^2}} \times (1 + \frac{q_1^2 + q_2^2 - 2\rho^2 q_1 q_2}{\varphi(1-\rho^2)})^{-\frac{\varphi+1}{2}} \text{ Eq. (S3)}$$

2

where φ and ρ are the parameters of the copula, dt(·, φ) is the probability density for the
standard univariate Student-t distribution with φ degrees of freedom.

5 The h-function of the Student-t copula is formulated as

7
$$h(F_{1}(q_{1}), F_{2}(q_{2}), \rho, \varphi) = t_{\varphi+1} \left(\frac{t_{\varphi}^{-1}(F_{1}(q_{1})) - \rho t_{\varphi}^{-1}(F_{2}(q_{2}))}{\sqrt{\frac{\left(\left(\varphi + t_{\varphi}^{-1}(F_{2}(q_{2}))^{2}\right)(1 - \rho^{2})}{\varphi+1}}} \right)$$
Eq. (S4)

8

9 S1.3 Frank copula

10 The density of the Frank copula is given by

11

12
$$c(F_1(q_1), F_2(q_2)) = \frac{\varphi(1 - e^{-\varphi})e^{-\varphi(F_1(q_1) + F_2(q_2))}}{((1 - e^{-\varphi}) - (1 - e^{-\varphi F_1(q_1)})(1 - e^{-\varphi F_2(q_2)}))^2}$$
Eq. (S5)

13

14 where $\boldsymbol{\varphi}$ is the parameter of the copula

15 The h-function of the Frank copula is expressed as

1
$$h(F_1(q_1), F_2(q_2), \varphi) = \frac{\exp(-\varphi F_2(q_2))(\exp(-\varphi F_1(q_1)) - 1)}{(\exp(-\varphi) - 1) + (\exp(-\varphi F_2(q_2)) - 1)(\exp(-\varphi F_1(q_1)) - 1)}$$
Eq. (S6)

3 S1.4 Clayton copula

The density of the Clayton copula is given by $c(F_1(q_1), F_2(q_2)) = (1+\varphi)(F_1(q_1) \cdot F_2(q_2))^{-1-\varphi}(F_1(q_1)^{-\varphi} + F_2(q_2)^{-\varphi} - 1)^{-1/\varphi-2}$ Eq. (S7) where $\boldsymbol{\varphi}$ is the parameter of the copula The h-function of the Clayton copula is expressed as $h(F_1(q_1), F_2(q_2), \varphi) = F_2(q_2)^{-\varphi - 1} (F_1(q_1)^{-\varphi} + F_2(q_2)^{-\varphi} - 1)^{-1 - 1/\varphi}$ Eq. (S8) S1.5 Gumbel copula The density of the Gumbel copula is given by $c(F_1(q_1),F_2(q_2)) = C(F_1(q_1),F_2(q_2))(F_1(q_1)\cdot F_2(q_2))^{-1} \times$

1 1)
$$((-logF_1(q_1))^{\varphi} + (-logF_2(q_2))^{\varphi})^{\frac{1}{\varphi}}$$

2 Eq. (S9)
3
4 where $C(F_1(q_1), F_2(q_2)) = \exp(-((-logF_1(q_1))^{\varphi} + (-logF_2(q_2))^{\varphi})^{\frac{1}{\varphi}})$
5 |The h-function of the Gumbel copula is given by
6
7 $h(F_1(q_1), F_2(q_2), \varphi) = C(F_1(q_1), F_2(q_2)) \cdot \frac{1}{F_2(q_2)} \cdot (-logF_2(q_2))^{\varphi-1} \times$
8 $((-logF_1(q_1))^{\varphi} + (-logF_2(q_2))^{\varphi})^{\frac{1}{\varphi}-1}$ Eq. (S10)
9

10 Text S2. Description of \mathcal{M}_{Kraus}

11 *M*_{Kraus} developed by Kraus and Czado (2017) are used to model the joint distribution of
12 *q*₁,..., *q*_k and calculate the conditional quantile function of *q*_k, given *q*₁,..., *q*_{k-1} for φ ∈
13 (0, 1) as the inverse of the conditional distribution function:

14

15
$$q_k(\phi|q_1, \dots, q_{k-1}) := F_k^{-1}(C_{k|1,\dots,k-1}^{-1}(\phi|F_1(q_1), \dots, F_{k-1}(q_{k-1})))$$
 Eq. (S11)

16

To easily estimate the conditional quantile function (i.e., $C_{k|1,\dots,k-1}^{-1}$), a D-vine copula is fitted to $(q_k, q_1, \dots, q_{k-1})$, where q_k is fixed as the first node in the first tree. To reduce the

1	dimension of the covariates, a sequential vine construction is modeled by adding covariates
2	while maximizing the conditional log-likelihood (cll):
3	
4	$cll(\widehat{\mathcal{F}},\widehat{\boldsymbol{\theta}}) := \sum_{i=1}^{k} lnc_{F_{i}(q_{i}) F_{v}(v)}(\widehat{\mathcal{F}},\widehat{\boldsymbol{\theta}})$ Eq. (S12)
5	
6	
7	where $\widehat{\mathcal{F}}$ is the estimated pair-copula families and $\widehat{\boldsymbol{ heta}}$ is corresponding copula parameters
8	given data.
9	The cll-based selection procedure provides an automatic forward covariate selection, leading
10	to parsimonious models. Also, two penalized conditional likelihood functions (the AIC- and
11	BIC-conditional log-likelihood) can also be considered to select the effective covariates in
12	$\mathcal{M}_{\mathrm{Kraus}}.$
13	
14	Text S3. Upper and lower tail dependence
15	The dependence of streamflow between two sites is measured by common correlation
16	coefficients such as Pearson, Spearman or Kendall. However, these coefficients focus on the
17	dependence in the body of distribution (Bevacqua et al., 2017). Even though two streamflows
18	are uncorrelated according to such common correlation coefficients, there can be a significant
19	dependent in the tails of the distribution (i.e., a tail dependence) (Hobaek Haff et al., 2015).
	6

Mathematically, given two streamflows q₁ and q₂, they are upper tail dependent if the
 following limit exists and is non-zero:

3

4
$$\lambda_{upper}(q_1, q_2) = \lim_{p \to 1} P\{q_1 > F_{q_1}^{-1}(p) | q_2 > F_{q_2}^{-1}(p)\}$$
 Eq. (S13)

5

6 Similarly, the two streamflows are lower tail dependent if

7

8
$$\lambda_{lower}(q_1, q_2) = \lim_{p \to 0} P\{q_1 \le F_{q_1}^{-1}(p) | q_2 \le F_{q_2}^{-1}(p)\}$$
 Eq. (S14)

9 exists and is non-zero.

10

11 **Reference**

- Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., & Vrac, M. (2017). Multivariate
 statistical modelling of compound events via pair-copula constructions: analysis of
 floods in Ravenna (Italy). *Hydrology and Earth System Sciences*, *21*(6), 2701–2723.
- Hobaek Haff, I., Frigessi, A., & Maraun, D. (2015). How well do regional climate models
 simulate the spatial dependence of precipitation? An application of pair-copula
 constructions. *Journal of Geophysical Research: Atmospheres*, *120*(7), 2624–2646.
- 18 Kraus, D., & Czado, C. (2017). D-vine copula based quantile regression. *Computational* 19 *Statistics & Data Analysis*, 110, 1–18.