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Text S1 to S3

Introduction
This supporting information provides additional descriptions to support the conclusions of the
primary article. The theoretical description for Mp;,qr and Mkraus are first presented. Next,

the theoretical description for upper and lower tail dependences is demonstrated.
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Text S1. Description of Mp;,qr

The optimal bivariate copula is developed by selecting the minimum AIC values while

considering the five bivariate copulas (Gaussian, Student-t, Frank, Gumbel, and Clayton

copulas) described follows.

S1.1 Gaussian copula

The density of the Gaussian copula is given by

2 2 2\ _ 2
1 exp[—2 (q5+495)-2p LELEY Eq. (SI)

c(F1(q1). F2(q2)) = 7= 2(1-p?)

g

where F;(qq) and F5(q,) are the marginal distribution functions of streamflow at two sites

in the range [0, 1].

The h-function of the Gaussian copula is expressed as

Fo1 _pFs1
h(F1(41), F2(42), p) = F(*-0 2242 Eq. (52)

S1.2 Student-t copula

The density of the Student-t copula is given by
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Eq. (S3)

where ¢ and p are the parameters of the copula, dt(-, ¢) is the probability density for the

standard univariate Student-t distribution with ¢ degrees of freedom.

The h-function of the Student-t copula is formulated as

tu1(F1(q1)-ptyt (F2(q2)
R(F1(40), F2(q2), p, @) = tysq (20005 (Fa(a)
J((W%I(Fz(qz)) )(1—p2)

p+1

S1.3 Frank copula

The density of the Frank copula is given by

o(1-e~®)e~?(F1(a1)+F2(a2))
(1-e=9)—(1-e~F1(11))(1-e9F2(d2)y)2

C(F1(‘I1)»F2(‘I2)) =

where ¢ is the parameter of the copula

The h-function of the Frank copula is expressed as

Eq. (S4)

Eq. (S5)
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_ exp(—¢F2(q2))(exp(-¢F1(q1))-1)
h(F1(q0). F2(a2). 9) = ) oo tan) - Diew(-oran)n 24 (50)

S1.4 Clayton copula

The density of the Clayton copula is given by

c(Fi(q1), F2(q2)) = (1 + @) (Fi(q1) - Fz(qz))_l_(p(Fl(ql)—fﬂ + F,(qy)~% — 1) V-2

Eq. (S7)

where ¢ is the parameter of the copula

The h-function of the Clayton copula is expressed as

h(F1(q1), F2(92), @) = Fo(q2) " ? *(F1(q1) ™% + F2(q2) ™ — 1) Y/¢  Eq.(S8)

S1.5 Gumbel copula

The density of the Gumbel copula is given by

c(F1(q1),F2(q2)) = C(F1(q1), F2(q2))(F1(q4) - Fz(‘lz))_l X

(~logF1(q0)® + (—LogF(q2))?) 2" x (logF1(q1)10gF2(a2))*~* x (1 + (¢ —
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Eq. (S9)

where C(Fy(40), Fy(42)) = exp(=((=logF; (q))® + (~logF»(42))*)*)

|The h-function of the Gumbel copula is given by

h(F1(41), F2(d2), 9) = C(F1(a1), F2(02)) " s+ (~logFa(g)) ™" x

(~logFy(4))® + (~logFy(g;))?)* Eq. (S10)

Text S2. Description of Mk, aus
Miraus developed by Kraus and Czado (2017) are used to model the joint distribution of
q1, -, qr and calculate the conditional quantile function of g, given q, ..., qx_1 for ¢ €

(0,1) as the inverse of the conditional distribution function:

Qe (Dlq1s s Gr=1) = F " (Cipt,. o1 (®1F1 (1), oor, Fim1 (q-1))) Eq. (S11)

To easily estimate the conditional quantile function (i.e., C k_ﬁ,_”k_l), a D-vine copula is fitted

to (qk,q1, - qx—1), Where q, is fixed as the first node in the first tree. To reduce the
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dimension of the covariates, a sequential vine construction is modeled by adding covariates

while maximizing the conditional log-likelihood (cll):

cll(F,0) =3, Incr,qpir,w (F 0) Eq. (S12)

where F is the estimated pair-copula families and @ is corresponding copula parameters
given data.

The cll-based selection procedure provides an automatic forward covariate selection, leading
to parsimonious models. Also, two penalized conditional likelihood functions (the AIC- and
BIC-conditional log-likelihood) can also be considered to select the effective covariates in

MKraus .

Text S3. Upper and lower tail dependence

The dependence of streamflow between two sites is measured by common correlation
coefficients such as Pearson, Spearman or Kendall. However, these coefficients focus on the
dependence in the body of distribution (Bevacqua et al., 2017). Even though two streamflows
are uncorrelated according to such common correlation coefficients, there can be a significant

dependent in the tails of the distribution (i.e., a tail dependence) (Hobaek Haff et al., 2015).
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Mathematically, given two streamflows q; and g, they are upper tail dependent if the

following limit exists and is non-zero:

Aupper (1, 2) = lim P{q, > B (0)]az > Fr,' () Eq. (S13)

Similarly, the two streamflows are lower tail dependent if

Riower (1, 42) = lim P{qs < i, ()a2 < Fr,' (@)} Eq. (S14)

exists and is non-zero.
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