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Text S1. Description of 𝓜𝑩𝒊𝒗𝒂𝒓 1 

The optimal bivariate copula is developed by selecting the minimum AIC values while 2 

considering the five bivariate copulas (Gaussian, Student-t, Frank, Gumbel, and Clayton 3 

copulas) described follows. 4 

 5 

S1.1 Gaussian copula  6 

The density of the Gaussian copula is given by 7 

 8 

𝒄(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐)) =
𝟏

√𝟏−𝝆𝟐
 𝐞𝐱𝐩 [−

𝝆𝟐(𝒒𝟏
𝟐+𝒒𝟐

𝟐)−𝟐𝝆𝟐𝒒𝟏𝒒𝟐

𝟐(𝟏−𝝆𝟐)
]    Eq. (S1) 9 

 10 

where 𝑭𝟏(𝒒𝟏) and 𝑭𝟐(𝒒𝟐) are the marginal distribution functions of streamflow at two sites 11 

in the range [0, 1]. 12 

The h-function of the Gaussian copula is expressed as 13 

 14 

 𝒉(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐), 𝝆) = 𝑭(
𝑭𝟏

−𝟏(𝒒𝟏)−𝝆𝑭𝟐
−𝟏(𝒒𝟐)

√𝟏−𝝆𝟐
)    Eq. (S2) 15 

 16 

S1.2 Student-t copula  17 

The density of the Student-t copula is given by 18 

 19 
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 𝒄(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐)) =  
𝚪(

𝝋+𝟐

𝟐
)/𝚪(

𝝋

𝟐
)

𝝋𝝅𝒅𝒕(𝒒𝟏,𝝋)𝒅𝒕(𝒒𝟐,𝝋)√𝟏−𝝆𝟐
× (𝟏 +

𝒒𝟏
𝟐+𝒒𝟐

𝟐−𝟐𝝆𝟐𝒒𝟏𝒒𝟐

𝝋(𝟏−𝝆𝟐)
)−

𝝋+𝟏

𝟐  Eq. (S3) 1 

 2 

where 𝝋 and 𝝆 are the parameters of the copula, 𝒅𝒕(∙, 𝝋) is the probability density for the 3 

standard univariate Student-t distribution with 𝝋 degrees of freedom. 4 

The h-function of the Student-t copula is formulated as 5 

 6 

 𝒉(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐), 𝝆, 𝝋) = 𝒕𝝋+𝟏(
𝒕𝝋

−𝟏(𝑭𝟏(𝒒𝟏))−𝝆𝒕𝝋
−𝟏(𝑭𝟐(𝒒𝟐))

√
((𝝋+𝒕𝝋

−𝟏(𝑭𝟐(𝒒𝟐))
𝟐

)(𝟏−𝝆𝟐)

𝝋+𝟏

)   Eq. (S4) 7 

 8 

S1.3 Frank copula  9 

The density of the Frank copula is given by 10 

 11 

 𝒄(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐)) =
𝝋(𝟏−𝒆−𝝋)𝒆−𝝋(𝑭𝟏(𝒒𝟏)+𝑭𝟐(𝒒𝟐))

((𝟏−𝒆−𝝋)−(𝟏−𝒆−𝝋𝑭𝟏(𝒒𝟏))(𝟏−𝒆−𝝋𝑭𝟐(𝒒𝟐)))𝟐
   Eq. (S5) 12 

 13 

where 𝝋 is the parameter of the copula 14 

The h-function of the Frank copula is expressed as 15 

 16 
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 𝒉(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐), 𝝋) =
𝐞𝐱𝐩 (−𝝋𝑭𝟐(𝒒𝟐))(𝐞𝐱𝐩(−𝝋𝑭𝟏(𝒒𝟏))−𝟏)

(𝐞𝐱𝐩(−𝝋)−𝟏)+(𝐞𝐱𝐩(−𝝋𝑭𝟐(𝒒𝟐))−𝟏)(𝐞𝐱𝐩(−𝝋𝑭𝟏(𝒒𝟏))−𝟏)
 Eq. (S6) 1 

 2 

S1.4 Clayton copula  3 

The density of the Clayton copula is given by 4 

 5 

𝑐(𝐹1(𝑞1), 𝐹2(𝑞2)) = (1 + 𝜑)(𝐹1(𝑞1) ∙ 𝐹2(𝑞2))
−1−𝜑

(𝐹1(𝑞1)−𝜑 + 𝐹2(𝑞2)−𝜑 − 1)−1/𝜑−2 6 

Eq. (S7) 7 

 8 

where 𝝋 is the parameter of the copula 9 

The h-function of the Clayton copula is expressed as 10 

 11 

ℎ(𝐹1(𝑞1), 𝐹2(𝑞2), 𝜑) = 𝐹2(𝑞2)−𝜑−1(𝐹1(𝑞1)−𝜑 + 𝐹2(𝑞2)−𝜑 − 1)−1−1/𝜑  Eq. (S8) 12 

 13 

S1.5 Gumbel copula  14 

The density of the Gumbel copula is given by 15 

 16 

𝒄(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐)) = 𝑪(𝑭𝟏(𝒒𝟏), 𝑭𝟐(𝒒𝟐))(𝑭𝟏(𝒒𝟏) ∙ 𝑭𝟐(𝒒𝟐))
−𝟏

×17 

((−𝒍𝒐𝒈𝑭𝟏(𝒒𝟏))𝝋 + (−𝒍𝒐𝒈𝑭𝟐(𝒒𝟐))𝝋)
−𝟐+

𝟐

𝝋 × (𝒍𝒐𝒈𝑭𝟏(𝒒𝟏)𝒍𝒐𝒈𝑭𝟐(𝒒𝟐))𝝋−𝟏 × (𝟏 + (𝝋 −18 
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𝟏)((−𝒍𝒐𝒈𝑭𝟏(𝒒𝟏))𝝋 + (−𝒍𝒐𝒈𝑭𝟐(𝒒𝟐))𝝋)
𝟏

𝝋)       1 

  Eq. (S9) 2 

 3 

where 𝐶(𝐹1(𝑞1), 𝐹2(𝑞2)) = exp (−((−𝑙𝑜𝑔𝐹1(𝑞1))𝜑 + (−𝑙𝑜𝑔𝐹2(𝑞2))𝜑)
1

𝜑) 4 

4.4 The h-function of the Gumbel copula is given by 5 

 6 

ℎ(𝐹1(𝑞1), 𝐹2(𝑞2), 𝜑) = 𝐶(𝐹1(𝑞1), 𝐹2(𝑞2)) ∙
1

𝐹2(𝑞2)
∙ (−𝑙𝑜𝑔𝐹2(𝑞2))𝜑−1 ×7 

((−𝑙𝑜𝑔𝐹1(𝑞1))𝜑 + (−𝑙𝑜𝑔𝐹2(𝑞2))𝜑)
1

𝜑
−1

      Eq. (S10) 8 

 9 

Text S2. Description of 𝓜𝐊𝐫𝐚𝐮𝐬 10 

ℳKraus  developed by Kraus and Czado (2017) are used to model the joint distribution of 11 

𝑞1, … , 𝑞𝑘 and calculate the conditional quantile function of 𝑞𝑘, given 𝑞1, … , 𝑞𝑘−1 for 𝜙 ∈12 

(0, 1) as the inverse of the conditional distribution function: 13 

 14 

𝑞𝑘(𝜙|𝑞1, … , 𝑞𝑘−1)  ∶= 𝐹𝑘
−1(𝐶𝑘|1,…,𝑘−1

−1 (𝜙|𝐹1(𝑞1), … , 𝐹𝑘−1(𝑞𝑘−1)))  Eq. (S11) 15 

 16 

To easily estimate the conditional quantile function (i.e., 𝐶𝑘|1,…,𝑘−1
−1 ), a D-vine copula is fitted 17 

to (𝑞𝑘, 𝑞1, … , 𝑞𝑘−1) , where 𝑞𝑘  is fixed as the first node in the first tree. To reduce the 18 
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dimension of the covariates, a sequential vine construction is modeled by adding covariates 1 

while maximizing the conditional log-likelihood (cll): 2 

 3 

𝑐𝑙𝑙(�̂�, �̂�)  ∶= ∑ 𝑙𝑛𝑐𝐹𝑖(𝑞𝑖)|𝐹𝜐(𝜐)(𝓕,̂ �̂�)𝑘
𝑖=1       Eq. (S12) 4 

 5 

 6 

where �̂�  is the estimated pair-copula families and �̂�  is corresponding copula parameters 7 

given data. 8 

The cll-based selection procedure provides an automatic forward covariate selection, leading 9 

to parsimonious models. Also, two penalized conditional likelihood functions (the AIC- and 10 

BIC-conditional log-likelihood) can also be considered to select the effective covariates in 11 

ℳKraus. 12 

 13 

Text S3. Upper and lower tail dependence 14 

The dependence of streamflow between two sites is measured by common correlation 15 

coefficients such as Pearson, Spearman or Kendall. However, these coefficients focus on the 16 

dependence in the body of distribution (Bevacqua et al., 2017). Even though two streamflows 17 

are uncorrelated according to such common correlation coefficients, there can be a significant 18 

dependent in the tails of the distribution (i.e., a tail dependence) (Hobaek Haff et al., 2015). 19 
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Mathematically, given two streamflows 𝑞1  and 𝑞2 , they are upper tail dependent if the 1 

following limit exists and is non-zero: 2 

 3 

𝜆𝑢𝑝𝑝𝑒𝑟(𝑞1, 𝑞2) = lim
𝑝→1

𝑃{𝑞1 > 𝐹𝑞1
−1(𝑝)|𝑞2 > 𝐹𝑞2

−1(𝑝)}     Eq. (S13) 4 

 5 

Similarly, the two streamflows are lower tail dependent if  6 

 7 

𝜆𝑙𝑜𝑤𝑒𝑟(𝑞1, 𝑞2) = lim
𝑝→0

𝑃{𝑞1 ≤ 𝐹𝑞1
−1(𝑝)|𝑞2 ≤ 𝐹𝑞2

−1(𝑝)}     Eq. (S14) 8 

exists and is non-zero. 9 

 10 
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