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ABSTRACT 25 

 26 

Reliable estimates of missing streamflow values are relevant for water resources planning and 27 

management. This study proposes a multiple dependence condition model via vine copulas for 28 

the purpose of estimating streamflow at partially gaged sites. The proposed model is attractive 29 

in modeling the high dimensional joint distribution by building a hierarchy of conditional 30 

bivariate copulas when provided a complex streamflow gage network. The usefulness of the 31 

proposed model is firstly highlighted using a synthetic streamflow scenario. In this analysis, 32 

the bivariate copula model and a variant of the vine copulas are also employed to show the 33 

ability of the multiple dependence structure adopted in the proposed model. Furthermore, the 34 

evaluations are extended to a case study of 54 gages located within the Yadkin-Pee Dee River 35 

Basin, the eastern U. S. Both results inform that the proposed model is better suited for infilling 36 

missing values. To be specific, the proposed multiple dependence model shows the 37 

improvement of 9.2 % on average compared to the bivariate model from the historical case 38 

study. The performance of the vine copula is further compared with six other infilling 39 

approaches to confirm its applicability. Results demonstrate that the proposed model produces 40 

more reliable streamflow estimates than the other approaches. In particular, when applied to 41 

partially gaged sites with sufficient available data, the proposed model clearly outperforms the 42 

other models. Even though the model is illustrated by a specific case, it can be extended to 43 

other regions with diverse hydro-climatological variables for the objective of infilling.  44 

 45 

Keywords: vine copulas, multiple dependence condition model, infilling approach, and 46 

streamflow estimation at partially gaged site 47 

 48 
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1. Introduction 49 

Hydrological observation records covering long-term periods are instrumental in water 50 

resources planning and management including the design of flood defense systems and 51 

irrigation water management (Aissia et al., 2017; Beguería et al., 2019). However, available 52 

streamflow data is often limited due to several situations like equipment failures, budgetary 53 

cuts, and natural hazards (Kalteh and Hjorth, 2009). Missing data is particularly observed in 54 

remote catchments where equipment failures are repaired only after significant delays 55 

following extreme events, which can be crucial for hydrological frequency analysis. Hence, 56 

hydrologists often rely on simulated sequences to infill missing data in partially gaged 57 

catchments (Booker and Snelder, 2012) by using two primary modeling approaches such as: 58 

(1) process-based models (i.e., estimating streamflow based on a conceptual understanding of 59 

hydrological processes), and (2) transfer-based statistical models (i.e., transferring information 60 

from gaged to ungagged catchments) (Farmer and Vogel, 2016). This paper focuses on the latter, 61 

which estimates historical daily streamflow at inadequately and partially gaged sites by the 62 

means of a statistical relationship.   63 

 64 

Over the past few decades, a variety of statistical models including simple drainage area scaling 65 

(Croley and Hartmann, 1986), spatial interpolation technique (Pugliese et al., 2014), regression 66 

model (Beauchamp et al., 1989) and flow duration curves (FDCs; Hughes and Smakhtin, 1996), 67 

have been developed. In particular, the flow duration curve method has been regarded as one 68 

of the most trustworthy regionalization approaches (Archfield and Vogel, 2010; Boscarello et 69 

al., 2016; Castellarin et al., 2004; Li et al., 2010; Mendicino and Senatore, 2013). If the target 70 

watershed is completely ungaged, FDCs can be established using regression models to 71 
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regionalize the parameter sets of defined distributions (e.g., Ahn and Palmer, 2016a; Blum et 72 

al., 2017) or to regionalize a set of primary quantiles (Cunderlik and Ouarda, 2006; Schnier 73 

and Cai, 2014; Zaman et al., 2012). On the other hand, if the target watershed is poorly or 74 

partially gaged, FDC models are built using the following four steps: (1) estimating non-75 

exceedance probability for recorded streamflow from the target watershed of interest; (2) 76 

selecting one or multiple donor watersheds for the target watershed; (3) transferring the time-77 

series of non-exceedance probability from the donor watersheds for missing streamflow values; 78 

and (4) converting corresponding streamflow values back from the transferred non-exceedance 79 

probability. When FDCs are utilized for partially gaged watersheds, how the donor watersheds 80 

are selected (step 2) and how the probabilities are transferred from the donor watersheds (step 81 

3) are fairly crucial in the FDC framework. 82 

 83 

Many studies have developed diverse approaches for steps 2 and 3 in FDC modelling. While 84 

the basic formulation is that non-exceedance probabilities of the target site are transferred by 85 

those at the single donor site, a weighted average of non-exceedance probability from the 86 

selected donor sites has been suggested by Smakhtin (1999) instead. In addition, Farmer (2015) 87 

adopted a kriging model to regionalized daily standard (i.e., z-scored) probabilities based on 88 

non-exceedance probabilities from many donors in a region, using the quantile function of a 89 

standard normal distribution. Although these studies are promising, the joint distribution of 90 

non-exceedance probability between the target and donor watersheds is modeled based on a 91 

Gaussian assumption which cannot properly permit different percentile values such as extremes 92 

that have different spatial dependence structures from donor sites. To circumvent this limitation, 93 

Worland et al. (2019) suggested the copula theory after showing that a unifying framework of 94 

copulas is equivalent to that of FDC (i.e., estimations of the conditional probabilities at the 95 
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target watershed given known values at the donors).  96 

 97 

Increasing attention has been received to copulas in the field of hydrology, with applications in 98 

flood frequency analysis, drought risk analysis, and multi-site streamflow generations (Ahn 99 

and Palmer, 2016b; Ariff et al., 2012; Chen et al., 2015; Daneshkhah et al., 2016; Fu and Butler, 100 

2014). Copulas are effective mathematical functions that are capable of combining univariate 101 

marginal distribution functions of random variables into their joint cumulative distribution 102 

function and allow representation of diverse dependence structures between these random 103 

variables corresponding to their family members (Sklar, A., 1959). For example, Fu and Butler 104 

(2014) showed that the Gumbel copula performs well in representing multiple flooding 105 

characteristics as compared to the other copulas from the Archimedean family, namely the 106 

Clayton and Frank copulas. To estimate streamflow (i.e., infilling missing data) at poorly and 107 

partially gaged sites, Worland et al. (2019) have developed bivariate copulas with an 108 

Archimedean copula, but limited their application to a single donor. Albeit the limitation, their 109 

bivariate copulas may be acceptable since the higher dimension of copulas is not rich enough 110 

to model all possible mutual dependencies among multisite donors (see Karmakar and 111 

Simonovic, 2009 for details). Hao and Singh (2013) also describe that multivariate copulas are 112 

incapable of modeling multisite data exhibiting complex patterns of dependence.  113 

 114 

However, if the theoretical limitation of a multivariate copula is mitigated, dependency 115 

information from multiple donor sites may allow more reliable predictions of regionalized 116 

streamflow. Vine copulas, also known as pair copulas, offer a far efficient way to construct 117 

higher dimensional dependence (Bedford et al., 2002; Joe, 2014). They have hierarchical 118 



6 

 

structures that sequentially apply bivariate copulas as the building local blocks for constructing 119 

a higher dimensional copula. The high flexibility of vine copulas enables modeling a wide 120 

range of complex data dependencies. In particular, Aas et al. (2009) have popularized two 121 

classes of vine copulas, canonical vines (C-vines) and drawable vines (D-vines) by allowing 122 

diverse pair-copula families such as the bivariate Student-t copula and bivariate Clayton copula. 123 

After the seminal paper, those two vines have been used in many fields including economics 124 

(Arreola Hernandez et al., 2017; Zimmer, 2015), finance (Dissmann et al., 2013; Lu, 2013), 125 

and engineering (Bhatti and Do, 2019; Erhardt et al., 2015; Xu et al., 2017). Similarly, a few 126 

studies have used vine copulas in hydrologic applications with diverse purposes (Daneshkhah 127 

et al., 2016; Liu et al., 2015; Vernieuwe et al., 2015; Shafaei et al., 2017) although they have 128 

not been introduced to infill missing data. 129 

 130 

Based on the usefulness of vine copulas, Kraus and Czado (2017) have developed a promising 131 

algorithm that sequentially fits such a D-vine copula model (ℳKraus ). The algorithm adds 132 

covariates to the model with the objective of maximizing a conditional likelihood and stops 133 

adding covariates to the model when none of the remaining covariates can significantly 134 

increase the model’s conditional likelihood. While it is promising, one challenge that can arise 135 

but has not been previously discussed is overfitting when covariates are correlated with each 136 

other. In this situation, the model may adopt ineffective covariates and eventually leads to poor 137 

predictions. In particular, for the purpose of infilling, streamflow values at the target site are 138 

often correlated by those of many donors. Although the structure of ℳKraus  is potentially 139 

favorable to estimate streamflow, modified model procedure is required to determine the most 140 

influential covariates. 141 
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 142 

This study forwards two novel contributions to infill missing data in the field of hydrology: (1) 143 

a D-vine copula-based model is introduced to estimate streamflow for poorly and partially 144 

gaged watersheds and (2) the existing model (ℳKraus) is further improved by incorporating a 145 

new procedure to determine the optimal number of donor sites (namely ℳDvine ). First, 146 

synthetic data are generated to compare ℳKraus  and ℳDvine . In this analysis, bivariate 147 

copulas (namely ℳBicop ) is also employed to demonstrate the usefulness of a high 148 

dimensional joint dependence structure. Afterwards, a real infilling example is utilized to 149 

compare the proposed vine-based model with six other streamflow-transfer models adopted in 150 

literatures. 151 

 152 

2. Methodology 153 

2.1 D-vine copulas 154 

A copula 𝐶 is 𝑘-variate cumulative distribution function on [0, 1]𝑘 with all uniform margins. 155 

The 𝐶  can be understood as a function that links the marginal cumulative distributions 156 

(𝐹1, … , 𝐹𝑘)  to form a joint distribution 𝐹 . The 𝐶  associated with joint distribution 𝐹  is a 157 

distribution function 𝐶: [0, 1]𝑘  → [0, 1]  such that, for all streamflow vector 𝒒 =158 

(𝑞1, … , 𝑞𝑘)𝑇, the 𝐶 satisfies: 159 

 160 

 𝐹(𝑞1, … , 𝑞𝑘) = 𝐶(𝐹1(𝑞1), … , 𝐹𝑘(𝑞𝑘))      Eq. (1) 161 

 162 
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where 𝐶 is unique if 𝐹1, … , 𝐹𝑘 are continuous. 163 

Based on Sklar’s theorem (Sklar, A., 1959), a multivariate distribution function is a 164 

composition of a set of marginal distributions; thus, equation (1) can be expressed in terms of 165 

densities, 166 

 167 

 𝑓(𝑞1, … , 𝑞𝑘) = [∏ 𝑓𝑖(𝑞𝑖)
𝑘
𝑖=1 ]𝑐(𝐹1(𝑞1), … , 𝐹𝑘(𝑞𝑘))     Eq. (2) 168 

  169 

where 𝑐 is a 𝑘-dimensional copula density acquired by partial differentiation of the copula 𝐶 170 

(i.e., 𝑐(𝐹1(𝑞1), … , 𝐹𝑘(𝑞𝑘)) ∶=
𝜕𝑘

𝜕1⋯𝜕𝑘
𝐶(𝐹1(𝑞1), … , 𝐹𝑘(𝑞𝑘))) and 𝑓𝑖(∙) is the marginal density 171 

corresponding to 𝐹𝑖(∙). 172 

 173 

Following Bedford and Cooke (2001), any copula density 𝑐(𝐹1(𝑞1), … , 𝐹𝑘(𝑞𝑘))  can be 174 

decomposed into a product of 𝑘(𝑘 − 1)/2 pair copula densities. Aas et al. (2009) adopted this 175 

idea and introduced the copula class of pair copula constructions (PCCs) known as vine copulas. 176 

These copulas are suitable to model various dependency structures. Vine structures established 177 

by 𝑘(𝑘 − 1)/2 pair copulas are arranged in 𝑘 − 1 trees (Brechmann et al., 2013) and can be 178 

categorized as C-vines and D-vines (Liu et al., 2015). This study focuses on D-vines since they 179 

are more widely used in practice (Daneshkhah et al., 2016). 180 

 181 

A D-vine is characterized by the ordering of its variables (see Figure 1). In the first tree, the 182 
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dependence of the first and second variables, of the second and third, of the third and fourth, 183 

and so on, is modeled using pair-copulas. In the second tree, conditional dependence of the first 184 

and third given the second variable (i.e., 𝑐1,3|2(𝐹(𝑞1|𝑞2), 𝐹(𝑞3|𝑞2))), the second and fourth 185 

given the third (i.e., 𝑐2,4|3(𝐹(𝑞2|𝑞3), 𝐹(𝑞4|𝑞3))), and so on, is modeled. Similarly, pairwise 186 

dependencies of two variables are modeled in subsequent trees conditioned on those variables 187 

which lie between the two variables in the first tree (e.g., 188 

𝑐1,5|2,3,4(𝐹(𝑞1|𝑞2, 𝑞3, 𝑞4), 𝐹(𝑞5|𝑞2, 𝑞3, 𝑞4))). The density of the 𝑘-dimensional D-vine can be 189 

computed as follows (Aas et al., 2009): 190 

 191 

 𝑓(𝑞1, … , 𝑞𝑘) = [∏ 𝑓𝑖(𝑞𝑖)
𝑘
𝑖=1 ] ×192 

∏ ∏ 𝑐𝑗,𝑗+𝒿|(𝒿+1):(𝑗+𝒿−1)(𝐹(𝑞𝒿|𝑞𝒿+1, … , 𝑞𝒿+𝑗−1,), 𝐹(𝑞𝒿+𝑗|𝑞𝒿+1, … , 𝑞𝒿+𝑗−1,))
𝑘−𝑗
𝒿=1

𝑘−1
𝑗=1    Eq. (3)  193 

 194 

where 𝑐𝑗,𝑗+𝒿|(𝒿+1):(𝑗+𝒿−1) indicates the bivariate copula densities. 195 

For the five-dimensional D-vine copula as an example in Figure 1, the corresponding vine 196 

distribution has the joint density as follows: 197 

 198 

𝑓(𝑞1, … , 𝑞5) =  [∏ 𝑓𝑖(𝑞𝑖)
5
𝑖=1 ]𝑐12 ∙ 𝑐23 ∙ 𝑐34 ∙ 𝑐45 ∙ 𝑐13|2 ∙ 𝑐24|3 ∙ 𝑐24|3 ∙ 𝑐35|4 ∙ 𝑐14|23 ∙ 𝑐25|34 ∙199 

𝑐15|234           Eq. (4)  200 

 201 

where 𝑐1,2(𝐹1(𝑞1), 𝐹2(𝑞2)) is simply denoted as 𝑐1,2.  202 
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 203 

As presented in equation (4), the conditional distribution functions and conditional bivariate 204 

copulas are required in vine copula modeling. The conditional distribution functions 205 

𝐹(𝑞𝒿|𝑞𝒿+1, … , 𝑞𝒿+𝑗−1), also known as h-functions, in equation (4) can be addressed using the 206 

pair-copulas from lower trees by using equation (5). Let 𝑞𝑖  be a conditional value of 207 

𝑞𝒿+1, … , 𝑞𝒿+𝑗−1 and 𝝊 = {𝑞𝒿+1, … , 𝑞𝒿+𝑗−1}\𝑞𝑖 the streamflow vector without 𝑞𝑖 used in the 208 

following recursive relationship (Aas et al., 2009): 209 

 210 

 ℎ(𝑞𝒿|𝝊) ∶= 𝐹(𝑞𝒿|𝝊) =  
𝜕𝐶𝒿𝑖|𝝊(𝐹(𝑞𝒿|𝝊),𝐹(𝑞𝑖|𝝊))

𝜕𝐹(𝑞𝑖|𝝊)
     Eq. (5) 211 

 212 

where the h-function is associated with the pair-copula 𝐶𝒿𝑖|𝝊. 213 

More details about D-vines can be found in Bedford et al., (2002) and Czado (2010, 2019). 214 

 215 

2.2 Algorithm of D-vine copula-based estimation (ℳDvine) 216 

Following Kraus and Czado (2017), a two-step estimation procedure is utilized for the 217 

prediction of the streamflow value at the target watershed. The algorithm ( ℳDvine ) is 218 

developed using two library packages in the R programming language (Bevacqua, 2017; 219 

Schepsmeier et al., 2015). 220 

 221 
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Let 𝑞𝑘  be the quantile of streamflow at the target watershed given the streamflow values 222 

𝑞1, … , 𝑞𝑘−1  from the donor sites. In the first step, the marginal cumulative probabilities 223 

𝐹𝑘(𝑞𝑘) and 𝐹𝑗(𝑞𝑗), 𝑗 = 1, … , 𝑘 − 1, are estimated using the semiparametric approach. To be 224 

specific, this study uses the continuous kernel smoothing estimator (Geenens, 2014), which is, 225 

given observed streamflow 𝑞𝑖
𝜁
, 𝜁 = 1, … , 𝜉, at 𝑖th site, defined as 𝐹�̂�(𝑞𝑖) =

1

𝑛ℎ
∑ Ω(

𝑞𝑖−𝑞𝑖
𝜁

ℎ
)

𝜉
𝜁=1 . 226 

Here, Ω(𝑞𝑖)  is the “kernel” function with ω(∙)  being a symmetric probability density 227 

function and ℎ is the parameter controlling the smoothness of the final estimate. In this study, 228 

a Gaussian kernel is used for all ω(∙) . The estimated cumulative probabilities are then 229 

employed to model the D-vine copula in the second step. 230 

 231 

Next, to easily estimate conditional streamflow values at the target site, the D-vine copula is 232 

fitted with fixed order 𝐹𝑘(𝑞𝑘) − 𝐹Ι1
(𝑞Ι1

) − 𝐹Ι2
(𝑞Ι2

) −…−𝐹Ι𝑘−1
(𝑞Ι𝑘−1

), such that 𝐹𝑘(𝑞𝑘) is 233 

the first node in the first tree and the other orders of donors (Ι1, …, Ι𝑘−1) are decided based 234 

on their correlations to the target site (i.e., 𝐹Ι1
(𝑞Ι1

)  showing the greatest correlations to 235 

𝐹𝑘(𝑞𝑘)). To build the D-vine copula model, five bivariate copulas (Gaussian, Student-t, Frank, 236 

Gumbel, and Clayton copulas) are considered as potential pair copulas (building blocks) 237 

although more families of Copulas such as extreme value copulas (EVC) are desirable. The 238 

five candidates may be sufficient to represent diverse dependence structures. For example, a 239 

Gaussian copula is proper when the non-exceedance probabilities between two watersheds are 240 

associated in the body of their distribution but are not asymptotically dependent in the both 241 

tails. On the other hand, a Gumbel copula may be appropriate for the situation wherein the non-242 

exceedance probabilities exhibit tail dependence, where high flows are connected by same 243 

rainfall events but low flows are not related (e.g., due to regulation) (Salvadori and De Michele, 244 
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2004). Details of the five bivariate copulas are presented in the Supporting Information. 245 

Parameters for the five bivariate copulas are estimated based on Kendall rank-based correlation 246 

(𝜌𝜏) between sites. The optimal bivariate copula for each pair copula is determined based on 247 

the penalized likelihood function (i.e., AIC). 248 

 249 

The final number (χ𝑘) of donor sites is further optimized under a cross-validation approach. In 250 

this approach, 80 % of the regional data are employed for model fitting; the other 20 %, for 251 

testing. Again, this procedure is conducted 5 times, each time using a different set of data for 252 

testing. As a measure for the model’s fit, the root mean squared error (RMSE; equation (6)) 253 

from observed streamflow at the target site is utilized. 254 

 255 

𝑅𝑀𝑆𝐸χ𝑘
=  √

1

𝜉
∑ (𝑞𝑘 − �̂�𝑘

χ
)2𝜉

𝜁=1       Eq. (6) 256 

 257 

Finally, conditional streamflow values at the target site can be estimated using the inverse form 258 

of the conditional distribution function (i.e., Eq. 5). To depict the ideas, a trivariate case (i.e., 259 

χ = 2) is considered here. Based on the streamflow values at the donor sites (𝑞2, 𝑞3), 𝑞1̂ can 260 

be obtained using the conditional distribution function ℎ(𝑞1|𝑞2, 𝑞3) . For some fixed 261 

probabilities 𝜙  (e.g., 𝜙 = 0.1, … , 0.9 ), 𝐹1(𝑞1̂)  is derived from 𝐶1|2,3  using an explicit 262 

function: 263 

 264 
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𝐶1|2,3
−1 (𝜙|𝐹2(𝑞2), 𝐹3(𝑞3)) = ℎ1|2

−1 (ℎ1|32
−1 (𝜙|ℎ2|1(𝐹2(𝑞2)|𝐹1(𝑞1)))|𝐹1(𝑞1))    Eq. (7)  265 

 266 

where 𝐶1|2,3
−1  is the inverse of the copula function given the 𝜙 quantile curve of the copula 267 

(Liu et al., 2015; Xu and Childs, 2013). Therefore, the 𝜙th copula-based conditional quantile 268 

function of streamflow at the target site can be calculated as follows: 269 

 270 

 𝑞1(𝜙|𝑞2𝑞3) = 𝐹1
−1(𝐶1|2,3

−1 (𝜙|𝐹2(𝑞2), 𝐹3(𝑞3))) =271 

𝐹1
−1(ℎ1|2

−1 (ℎ1|32
−1 (𝜙|ℎ2|1(𝐹2(𝑞2)|𝐹1(𝑞1)))|𝐹1(𝑞1)))     Eq. (8) 272 

 273 

Similarly, for the 𝑘-dimensional case, the 𝜙th copula-based conditional quantile function can 274 

be calculated along with streamflow at the 𝑘-1 donor sites. To acquire an estimate at the target 275 

site, 1000 samples from uniform distribution over the interval [0, 1] are generated using Monte 276 

Carlo simulations. In this study, the mean value of these generations is regarded as the best 277 

estimate. 278 

 279 

3. Application  280 

This study first explores the performance of ℳDvine under synthetic example. In this analysis, 281 

ℳBicop and ℳKraus are also employed to show the usefulness of ℳDvine. For ℳBicop, the 282 

optimal bivariate copula is selected based on the AIC while the five bivariate copulas (Gaussian, 283 

Student-t, Frank, Gumbel, and Clayton copulas) are considered as its potential candidates. A 284 
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brief description of two additional models are presented in the supporting information. After 285 

that, those three models are used for a real application to 54 stream gages located in a region 286 

of the eastern United States by estimating streamflow in partially gaged locations. Finally, 287 

seven infilling approaches (Table 1) are also utilized and evaluated in a cross-validated 288 

framework to evaluate the performance of the proposed model. 289 

 290 

3.1 Synthetic simulation  291 

Synthetic streamflow data are generated using controlled Monte Carlo experiment to explore 292 

how well the three copula-based models (ℳBicop , ℳKraus , ℳDvine ) provide streamflow 293 

predictions at the target site given a complex streamflow data in a pseudo gage network. In this 294 

analysis, a six-dimensional streamflow set ( 𝑞1
𝜁
 , 𝑞2

𝜁
 , 𝑞3

𝜁
 , 𝑞4

𝜁
 , 𝑞5

𝜁
 , 𝑞6

𝜁
 ), 𝜁 = 1, … , 𝜉 =295 

2190 (i. e.  
2190

365
  = 6 years), is modelled using four bivariate copulas (Gaussian, Student-t, 296 

Flank, and Clayton copulas) and lognormal distributions for margins (see Figure 2).  297 

 298 

The performance of each model is evaluated in a calibration-validation framework. First, 299 

synthetic streamflow data are generated for six-dimensional gage network. Then, 𝜑 years of 300 

data are randomly selected to be assumed known at the target gage, and the streamflow for the 301 

remaining 6-𝜑 years of data is then estimated as missing values (𝜑 = 4 in this analysis). This 302 

process is repeated 20 times to build an ensemble prediction. In particular, this study assumes 303 

the fifth streamflow data (i.e., 𝑞5) to be predicted. In this assessment, two characteristics are 304 

considered to compare the three models: model prediction reliability and uncertainty 305 

quantification skill. Model prediction reliability is tested using the root mean squared error 306 
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(RMSE; Eq. 6) and Nash-Sutcliffe efficiency (NSE), which are further described in Section 3.4. 307 

Uncertainty quantification skill is judged by the ability of each model to build prediction 308 

intervals (PIs) that correctly bound predictions (see Section 3.4). Here, coverage probabilities, 309 

defined as the proportion of the time that true values occur into these PIs, are employed to show 310 

the usefulness of the proposed model. 311 

 312 

3.2 Application to the Yadkin-Pee Dee River   313 

The Yadkin-Pee Dee River Basin (Figure 3), covering around 18,700 km2 and one of the largest 314 

river basins in North Carolina and South Carolina (Fisk, 2010), is used as real data to evaluate 315 

infilling ability. The basin flows from the northwestern corner of North Carolina near Blowing 316 

Rock and extends south by southeast, crossing the south-central border of North Carolina into 317 

South Carolina, with slightly more than half of its watershed in North Carolina. Most of the 318 

land covered within the basin is forested or used for agriculture although urban areas of the 319 

basin are expanding. 320 

 321 

Daily streamflow data at 54 gages are gathered throughout the study region from web interface 322 

of the U.S. Geological Survey (USGS) National Water Information System (NWIS) (U.S. 323 

Geological Survey, 2018). The 54 gages are selected based on the following criteria: (1) all 324 

gages are recorded continuously for 15 years of daily streamflow over the period from January 325 

2004 to December 2018, and (2) gages have non-zero daily values for the period in the first 326 

criterion since gages with streamflow values equal to zero require a more flexible modeling 327 

structure. Thus, it is common to model zero flows separately in regionalization studies. Based 328 
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on the second criterion, this study discards 10 gage stations (not shown). 329 

 330 

3.3 Intermodel comparison framework 331 

A set of seven infilling approaches is used in the final assessment (see Table 1): (1) ℳFDC−IDW, 332 

(2) ℳIDW−streamflow, (3) ℳRho−streamflow, (4) ℳFDC−highestrho, (5) ℳDAR−streamflow, (6) 333 

ℳKriging−streamflow, and (7) ℳDvine. This set of seven models is tested in a cross-validation 334 

framework under two different cases. The two cases consider situations wherein 𝜑  have 335 

values of 2 and 8 to represent relatively deficit- and sufficient-records for the target site. Similar 336 

to the comparative assessment to show the usefulness of the proposed copula-based model (see 337 

Section 3.1), each case is repeated 20 times by randomly selecting 𝜑 years over the applied 338 

period. The reliability of each model is evaluated using RMSE and NSE metrics over the 339 

validated four-year period randomly selected in the remaining data (i.e., 4 years in 15-𝜑 years).  340 

 341 

3.4 Error metrics and error decomposition 342 

As presented in Sections 3.1 and 3.3, the root mean squared error (RMSE; Eq. 6) and Nash-343 

Sutcliffe efficiency (NSE) are employed to evaluate prediction skills: 344 

 345 

 𝑁𝑆𝐸 =  1 −
∑ (𝑞�̂�−𝑞𝜁)2𝜉

𝜁=1

∑ (𝑞𝜁−𝑞𝜁̅̅̅̅ )2𝜉
𝜁=1

      Eq. (9) 346 

 347 
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The NSE (RMSE) can range from −∞ to 1 (0 to ∞), with higher NSE (lower RMSE) implying 348 

better performance. Both metrics have been commonly used in hydrology analysis (Boyle et 349 

al., 2000). 350 

 351 

Following derivations suggested in Gupta et al. (2009), the RMSE can be further decomposed 352 

into three components: 353 

 354 

 𝑅𝑀𝑆𝐸2 = 𝑀𝑆𝐸 = (�̂� − 𝜇)2 + (�̂� − 𝜎)2 + 2𝜎�̂�(1 − 𝑟)    Eq. (10) 355 

 356 

where 𝜇  ( �̂� ) and 𝜎  ( �̂� ) represent the average and standard deviation for the observed 357 

(estimated) streamflow, respectively, and 𝑟  indicates the estimated correlation coefficient. 358 

The first component (�̂� − 𝜇)2  is a measure of how well the average of the observed 359 

streamflow represents the average of the estimated streamflow; the second component 360 

(�̂� − 𝜎)2 is a measure of how well the variance of the prediction represents the variance of the 361 

observed streamflow; and the third component 2𝜎�̂�(1 − 𝑟) is dominated by the correlation 362 

and is defined as the “timing” component (Worland et al., 2019). Using these three defined 363 

components, their absolute contributions are explored in this study. 364 

 365 

In addition, the accuracy of the uncertainty quantification skill is also evaluated for the copula-366 

based models (ℳBicop, ℳKraus, ℳDvine). To be specific, this study utilizes the PI coverage 367 

probability (PICP), which a common metric for this purpose (He et al., 2017; Niemierko et al., 368 
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2019). It provides the relative number of data points that fall between the defined bounds as 369 

expressed follows: 370 

 371 

 PICP =
1

𝜉
∑ Θ𝜁

𝜉
𝜁=1  with  Θ𝜁 = {

1,    𝑖𝑓  𝑞𝜁 ∈ [𝐿𝜁 , 𝑈𝜁]
0,           else    

   Eq. (11) 372 

 373 

where Θ𝜁 is the indicator variable if 𝑞𝜁 is covered by the 𝜁th PI defined by the lower bound 374 

𝐿𝜁  and upper bound 𝑈𝜁 . This study examines the prediction accuracy of single quantiles. 375 

Therefore, the lower bound is defined as 𝐿𝜁 = −∞  and 𝑈𝜁 = 𝑞𝜁,�̂�  where 𝜛  is the 376 

estimated quantile at time 𝜁. Accordingly, the upper bound is not a constant, but is re-assigned. 377 

By subtracting the nominal confidence 𝜛 from PICP, the average coverage error (ACE) is 378 

obtained as follows: 379 

 380 

ACE = PICP − 𝜛        Eq. (12) 381 

 382 

The metric clearly indicates if the predicted quantile is underestimated (ACE < 0) or 383 

overestimated (ACE > 0) while taking small values around 0 for ideal case. 384 

 385 

4. Results 386 

4.1 Results for synthetic experiment 387 
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Prediction results from out-of-samples for the RMSE and NSE metrics are presented for the 388 

three copula-based models (ℳBicop, ℳKraus, ℳDvine) in Table 2. The ACE scores are also 389 

described for 𝜛 ∈ {0.05, 0.10, 0.50, 0.90, 0.95}  in Table 3. When compared to the other 390 

models, ℳBicop achieves lower RMSE values in the right tail of the RMSE distribution over 391 

the validation periods, but severely underperforms the majority of the designed experiment, 392 

suggesting this model formulation relying on a single donor leads to poor predictions. ℳKraus 393 

provides higher RMSE values for all the RMSE distribution, particularly for the right tail of 394 

the RMSE distribution. The model utilizes streamflow data from all donors (i.e., five donor 395 

sites) although the first two gages (Gages 1 and 2) show insignificant associations to the target 396 

site (𝑟1,5 = 0.11  and 𝑟2,5 = 0.14 ). ℳDvine  unequivocally produces the best predictions. 397 

ℳDvine adopts streamflow data from two or three donors (Gages 3, 4 and 6) without utilizing 398 

streamflow data from the first two donors when a multiple dependence structure is established 399 

to build an ensemble prediction. It outperforms ℳBicop  and ℳKraus  across all validation 400 

periods, besides a few with the worst performance. Even in this case, the maximum RMSE of 401 

ℳDvine is fairly less than the maximum RMSE of ℳKraus.  402 

 403 

In addition, the ACE results present how the three models characterize prediction uncertainty. 404 

ℳDvine is capable of properly covering the predications across the entire distribution while 405 

slight overestimation occurs for the smallest two quantiles. The remaining upper quantiles also 406 

tend to slightly overestimate the true values but the overestimations are less than the other 407 

models (ℳBicop, ℳKraus). Taken together, the results of the synthetic experiment suggest that 408 

ℳDvine yields the best predictions among the copula-based models tested. 409 

 410 
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4.2 Performance of the copula-based models in the Yadkin-Pee Dee River 411 

Using the insights developed from the synthetic experiment above, the three copula-based 412 

models are applied to the streamflow data for the Yadkin-Pee Dee River. At first, upper and 413 

lower tail dependences (𝜆𝑢𝑝𝑝𝑒𝑟 and 𝜆𝑙𝑜𝑤𝑒𝑟) are examined for all two pairs of sites (see Figure 414 

4) using the approach of Schmid and Schmidt (2007). Theoretical background is described in 415 

the Supporting Information (Text S3). Note that in this analysis, the dependences become more 416 

obvious as the values approach unity. Two major insights emerge from this figure. First, many 417 

site-pairs exhibit strong upper tail dependence, suggesting that streamflow variability has a 418 

tendency to be more correlated under high-flow conditions compared to under low-flow 419 

conditions (i.e., asymmetric dependence). The lack of lower-tail dependence may be due to 420 

contributions governing low streamflow such as river regulation. Next, even under high- or 421 

low-flow conditions, there is a wide range of tail dependence across the study basin (i.e., 422 

heterogeneous dependence). To sum up, a wide range of complex dependencies is observed in 423 

the streamflow data over the study basin. The complex dependences suggest, when streamflow 424 

is estimated from multiple donors, the potential usefulness of considering a multiple 425 

dependence structure, which is one of the main features of vine copulas. 426 

 427 

Figure 5 shows the RMSE and NSE results for the three copula-based models under a “leave-428 

one-out” cross validation framework. This process is repeated 20 times to build an ensemble 429 

prediction by using test periods randomly defined. For this analysis, five years of data are 430 

selected to be assumed as the observed period at the target gage, and another four years are 431 

randomly selected in the remaining data for the test period. Similar to the results from the 432 

synthetic experiment, ℳKraus performs poorly in both the RMSE and NSE metrics (median 433 
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RMSE  = 1.549 and NSE  = 0.652). The bivariate copula performs well (median RMSE  = 434 

1.496), indicating that this approach efficiently leverages available information even though 435 

the information is limited to single donor. Particularly, ℳBicop achieves lowest RMSE values 436 

in the upper side of the RMSE box (e.g., third quartile), providing a strong uncertainty 437 

quantification skill for the upper bound. However, ℳDvine yields the best median RMSE and 438 

NSE values (= 1.359 and 0.719). Given the heterogeneous dependence conditions (see Figure 439 

4), the high dimensional structures are effective in modeling a complex streamflow gage 440 

network. This feature can substantially improve prediction of target site flows. 441 

 442 

Figure 6a presents the ACE scores described for principal quantiles, 𝜛 ∈443 

{0.05, 0.10, 0.20, … , 0.90, 0.95}, across all target sites under the cross validation framework. 444 

Figure 6b presents 95% PIs for each model for an example time period (1 May 2018 to 31 July 445 

2018) for one target site (USGS site ID: 02143500). Note that the ACE would ideally take zero 446 

value, regardless of the quantiles. The ACE scores for the three models (ℳBicop , ℳKraus , 447 

ℳDvine) range from 0.004 to 0.0007 when considering all the quantiles together. However, the 448 

scores vary depending on the quantiles. For instance, the ACE score for ℳKraus is noticeably 449 

positive but is almost zero around the median streamflow, indicating that the model properly 450 

represent uncertainty of the median streamflow. ℳBicop and ℳDvine result in very similar 451 

ACE scores although ℳDvine  performs slightly better than ℳBicop . The differences in 452 

characterization of prediction uncertainty can be confirmed from a particular target site (Figure 453 

6b). 454 

 455 
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Based on the results in Figures 5 and 6, ℳDvine  outperforms the other copula models (as 456 

judged by model prediction reliability and uncertainty quantification skill) and is thus selected 457 

as an appropriate copula model to infill missing data in partially gaged. Figure 7 shows an 458 

example application of ℳDvine including the optimal donor sites, proper bivariate copulas 459 

and their parameters for one target site (USGS site number #214645022) when the model is 460 

calibrated using the full 15-year record.  461 

 462 

4.3 Intermodel comparison for streamflow estimation 463 

To assess the predictive skill of the proposed vine copula model, it is compared with six other 464 

statistical models (see Table 1). Figure 8 shows RMSE and NSE for the seven models where 465 

the streamflow values are estimated based on the available data defined by the two different 466 

cases, labeled “deficit record” and “sufficient record” (see Section 3.3). Under all cases, the 467 

vine copula approach outperforms the other infilling approaches. For example, for the 468 

“sufficient record” case, median NSE for ℳDvine  is 0.673 whereas those for 469 

ℳIDW−streamflow and ℳrho−streamflow are 0.462 and 0.649, respectively. In this analysis, the 470 

approaches, which are based on streamflow values of the donor sites without utilizing non-471 

exceedance probability including DAR-streamflow and Kriging-streamflow, yield relatively 472 

increased bias in their predictions. On the other hand, an application of FDC models offers 473 

reliable predictions. For instance, for the “sufficient record” case, median RMSE for 474 

ℳFDC−highestrho is 1.603 compared to that of a direct of using streamflow (e.g., median RMSE 475 

of ℳFDC−streamflow = 3.422 for the sufficient record). Similar interpretation can be found in 476 

the comparison between ℳFDC−IDW and ℳIDW-streamflow. The results from these approaches 477 

suggest that utilizing FDC process leads to a reliable estimation, which is a primary structure 478 
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in the vine copula. The other noticeable feature is that available data length provides a 479 

significant influence on performance of some infilling methods. In particular, this is quite 480 

evident for the vine copula model (median RMSEs: 1.598 and 1.379 for deficit and sufficient 481 

records, respectively).  482 

 483 

4.4 Prediction error decomposition 484 

The RMSE is decomposed into their components (bias, variance, and timing components) for 485 

both the “deficit record” and “sufficient record” predictions (Figure 9). For the both cases, 486 

timing components primarily bring about the majority of prediction errors for all seven models. 487 

In particular, models estimating directly streamflow values (IDW-streamflow, DAR-488 

streamflow, Kriging-streamflow) produce a somewhat biased component, which increases 489 

when a shorter record is employed in the model. For instance, the timing component for 490 

ℳIDW−streamflow is 4.11 and 3.75 for the “deficit record” and “sufficient record”, respectively. 491 

Moreover, timing components dominate the error metric for all cases. However, the importance 492 

of variance component is increased, especially in three models (FDC-IDW, DAR-streamflow, 493 

Kriging-streamflow). Lastly, the results inform that if the proposed vine copulas approach is 494 

adapted, variance and timing components are better captured, leading to better streamflow 495 

estimations, which is beneficial in the practical applications of water resources management. 496 

 497 

Finally, two predictions are further produced using two additional experiments: (1) the 498 

observed marginal cumulative probabilities (i.e., using all 15 years) and conditional streamflow 499 

values constructed from the partial record (i.e., based on 𝜑  years), and (2) the estimated 500 
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marginal cumulative probabilities (i.e., based on 𝜑 years) and conditional streamflow values 501 

constructed from the full record (i.e., all 15 years). Their prediction abilities are evaluated over 502 

the validated four-year period randomly selected in the remaining data. Similar to the previous 503 

analysis, each analysis is tested 20 times. The results from these experiments provide an 504 

inference to better isolate how error components from the two-step procedure (see section 2.2) 505 

influence prediction skill.  506 

 507 

Figure 10 shows the ACE scores from the out-of-sampled predictions using the proposed Dvine 508 

model under the two scenarios. When considering all the quantiles together, the ACE scores 509 

for the two scenarios are 0.003 (scenario #1) and 0.006 (scenario #2) on average under the 510 

“deficit record” prediction. Also, the scores under the “sufficient record” prediction are all 511 

nearly 0.003. Those results of the scores are sufficiently closed to zero, implying that both 512 

predictions are reliable. Yet, compared to the predictions estimated by the cumulative 513 

probabilities estimated by the partial record, and conditional models constructed by full records 514 

(i.e., scenario #2), the ACE scores are achieved better, if the cumulative probabilities are 515 

determined by the full record, except for some of the low and high quantiles. Similar 516 

interpretation can be found in the NSE performance of two scenarios (see insets of Figure 10). 517 

It may suggest that the first procedure (i.e., how to determine the cumulative probabilities for 518 

the target site and its donors) is needed to pay careful attention when ℳDvine  is utilized. 519 

Nevertheless, the procedure to construct the conditional model in a streamflow gage network 520 

is obviosuly crucial since the over or under-estimations are observed in many quantiles when 521 

the insufficient sampling is employed in this process. 522 

 523 
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5. Conclusion  524 

This study introduces a multiple dependence conditional model (i.e., vine copulas) to produce 525 

streamflow estimates at partially gaged sites. The model includes a flexible high dimensional 526 

joint dependence structure and conditional bivariate copula simulations. In order to confirm the 527 

usefulness of a multiple dependence structure and the procedure for an appropriate number of 528 

donor sites in the final vine copula model, the bivariate copula model and two types of vine 529 

copulas with their unique procedure to determine the optimal number of donor sites are first 530 

investigated using the generated data. These analyses were further extended in a case study of 531 

the Yadkin-Pee Dee River Basin, the eastern United States by estimating streamflow in partially 532 

gaged locations. In this analysis, six statistical infilling approaches were also employed to 533 

represent applicability of the proposed model. 534 

 535 

Results of the synthetic experiment and application to the Yadkin-Pee Dee River Basin 536 

demonstrate that the propose model has benefits in some aspects. First, a multiple dependence 537 

structure adopted in the proposed model is beneficial. From the massive evaluation experiments, 538 

this study shows that multiple dependence structure clearly outperforms a single dependence 539 

structure although there is the risk of overfitting when too many dependence structures are 540 

employed. For example, the proposed model shows the improvement of 9.2 % on average 541 

compared to the bivariate model from the evaluation experiment over the historical case study. 542 

Moreover, this study confirms that the proposed multiple dependence structure model with 543 

their optimum number of donor sites produces more reliable streamflow estimation than other 544 

common infilling models. To be specific, for the “sufficient record” case, the proposed model 545 

shows the improvement of 13.9 % on average compared to the FDC-highestrho model. Next, 546 
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the proposed model allows the development of confidence intervals to consider prediction 547 

uncertainty, which is fairly attractive compared to other models. For example, Bárdossy and 548 

Pegram (2013) argue that confidence intervals obtained using an ordinary kriging model do not 549 

reflect the prediction uncertainty well particularly on a daily scale. Overall, this study exhibits 550 

that a vine copula is potentially an effective tool to support water resource management 551 

planners for objectives like gap-filling or extending missing streamflow records. 552 

 553 

While the results of the proposed model are favorable, there are possible limitations worthy of 554 

further discussion. First, the proposed method is computationally expensive, even after 555 

adopting the multicore processing to reduce the computational burden. This becomes more 556 

problematic when the method is applied to a larger, more complex streamflow gaging network. 557 

Nevertheless, because local water managers do not need to build the model repeatedly 558 

whenever they face missing values once the model is calibrated for a specific site, this 559 

computational burden may be a minor issue. Second, the assessment illustrated in this study 560 

focuses on model performance under cross-validation at partially gaged basins, but additional 561 

work is needed to extend the proposed model to ungagged basins. One possible way is to build 562 

a regression based model with spatial proximity and physical basin characteristics to define 563 

associations between the target and donor sites (e.g., Ahn and Steinschneider, 2019). Lastly, 564 

this study does not consider potential nonstationarity in FDCs and correlations caused by the 565 

influence of anthropogenic activity and change in land use. Nonstationarity may not be 566 

problematic in this analysis since the assessment is limited to 15 years across the gaging 567 

network. However, if longer records were used, it would be beneficial to consider the potential 568 

nonstationarity. This exploration is left for future work. 569 
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 570 

There are several opportunities to improve the model structure. For instance, a vine copula is 571 

able to incorporate more additional conditioning variables. One feasible approach is to add a 572 

time series of climate data (e.g., precipitation) or to decompose a time series of streamflow 573 

from the donor sites into a number of periodic components at different frequency levels through 574 

the wavelet decomposition approach (Kisi and Cimen, 2011). Moreover, although the proposed 575 

model providing a more flexible way to model multivariate dependences, it can be further 576 

improved by not adopting the standard assumption (i.e., simplifying assumption) that the 577 

conditional pair-copulas depend on the conditioning variables through the conditional margins 578 

(Acar et al., 2012). One possible alternative is the use of the semi-parametric estimation of a 579 

conditional copula (Acar et al., 2012; Vatter and Chavez-Demoulin, 2015). This semi-580 

parametric approach enables an estimate of the dependence parameters which do not rely on 581 

the simplifying assumption, eventually leading to more reliable infilling estimations. I believe 582 

this provides an interesting avenue for future research. 583 

 584 

Lastly, the results presented here are specific to a study basin used in a case study. The proposed 585 

model has not restricted to other watersheds around the world and its application is further 586 

required towards drawing more generalized conclusions. In addition, the model could be used 587 

for the purpose of infilling missing values of other hydrometeorological variables besides 588 

streamflow (e.g., precipitation and soil moisture). For this application, the implementation of a 589 

vine copula with combined discrete and continuous margins (i.e., to account for no rainfall 590 

days) should be explored (e.g., Stoeber et al., 2013). 591 

 592 
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Figure 2 Structure of the 6-Dimensional vine model and marginal for the synthetic simulation. 890 

𝐿𝑁(𝜋, 𝜎2) denotes the log normal distribution with its mean (𝜋) and variance (𝜎2). The target 891 

gage is highlighted. 892 
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Figure 3 Map of the Yadkin-Pee Dee Basin with 54 stream gage stations 913 
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Figure 4 Pairwise upper and lower tail dependence for watersheds in the Yadkin-Pee Dee River 932 

Basin. The upper triangular matrix shows values for the upper-tail dependence and the lower 933 

triangular matrix presents values for the lower-tail dependence. The metrics can range from 0 934 

to 1, with higher values suggesting greater interdependence of two streamflows for each upper- 935 

and lower-tail. 936 
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Figure 5 Model performance for the Yadkin-Pee Dee river under a cross-validation framework 955 

based on RMSE (dark squares) and NSE (light squares). Here, the RMSE (NSE) can range 956 

from 0 to ∞ (−∞ to 1), with lower RMSE (higher NSE) implying better performance. 957 
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Figure 6 (a) Average coverage error from three copula-based models for the Yadkin-Pee Dee 988 

River Basin across exemplarily quantiles, and (b) 95% PIs for three models for an example 989 

period (1 May 2018 to 31 July 2018) for a specific target gauge (USGS site ID: 02143500). 990 

Observed streamflow (black solid line) is also presented in each figure. 991 
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Figure 7 Structure of the Dvine copula applied for a particular target site (USGS site ID: 1016 

214645022) with the defined bivariate copulas and their parameters.  1017 
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Figure 8 Inter-model comparison using cross-validation experiments based on RMSE (upper) 1037 

and NSE (lower). Here, lower RMSE suggests more accurate estimations for infilling missing 1038 

values. 1039 
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Figure 9 Three contributions from the decomposed mean squared error (MSE) for the cross-1061 

validation experiment with (a) the deficit record and (b) sufficient record scenarios. 1062 
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 1093 
Figure 10 Average coverage error of the Dvine model for two scenarios under (a) the “deficit” 1094 

and (b) “sufficient” cases. In each case, the dark line represents the scenario by the marginal 1095 

cumulative probabilities using all years and conditional streamflow values constructed from 1096 

the partial record. On the other hand, the light line illustrates the scenario by the marginal 1097 

cumulative probabilities estimated by the partial record and conditional streamflow values 1098 

constructed from the full record. Inset: NSE performance of the Dvine model for the two 1099 

scenarios in each case. 1100 
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Table 1 Seven infilling approaches discussed in the study 1121 

No. Method Description 

1 FDC-IDW 
Inverse distance-weighted estimate of non-

exceedance probability from those of all donors. 

2 IDW-streamflow 
Inverse distance-weighted estimate using 

streamflow from all donors. 

3 Rho-streamflow 

Correlation-weighted streamflow estimate from the 

selected donors for each time step. The optimal 

number of donors is determined in a cross-validation 

framework. 

4 FDC-highestrho 
Estimate non-exceedance probability from the gage 

with the highest correlation. 

5 DAR-streamflow 
Drainage-area (DA) ratio for streamflow using the 

DA from the nearest neighbor gage. 

6 Kriging-streamflow Geostatistical interpolation method to estimate 

streamflow from all donors for each time step. 

7 DVine Vine copula-based estimate from the selected donors  
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Table 2 RMSE and NSE results over the validation periods under synthetic experiment for 1146 

comparing copula-based model formulations. Best metric values for each quantile are 1147 

italicized and bolded. 1148 

Metric 
Model 

formulation 
Min 

First 

quantile 
Median 

Third 

quantile 
Max 

Root mean 

squared error 

(RMSE) 

ℳBicop 0.912 1.119 1.258 1.363 3.353 

ℳKraus 0.990 1.140 1.386 1.660 4.273 

ℳDvine 0.895 1.046 1.112 1.391 4.119 

Nash-Sutcliffe 

efficiency 

(NSE) 

ℳBicop 0.464 0.779 0.826 0.856 0.902 

ℳKraus 0.198 0.724 0.782 0.825 0.885 

ℳDvine 0.248 0.805 0.838 0.869 0.905 
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Table 3 Results of average coverage error (ACE) over the validation periods under synthetic 1175 

experiment for comparing copula-based model formulations. Best metric values for 1176 

each quantile are italicized and bolded. 1177 

Model formulation 

Estimated quantile (𝜛) 

0.05 0.10 0.50 0.90 0.95 

ℳBicop 0.027 0.063 0.079 0.014 0.002 

ℳKraus 0.003 0.011 0.055 0.024 0.001 

ℳDvine 0.029 0.048 0.042 0.001 0.000 
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