
Response to reviewer 1: Jens Kiesel
Link to review

Comments/Text of reviewer posted in black; our answers are posted in blue.

1. GENERAL COMMENTS
The manuscript "Rainfall–Runoff Prediction at Multiple Timescales with a Single Long
Short-Term Memory Network" (LSTM) by Martin Gauch et al. presents an extension of LSTM
hydrological models to sub-daily time steps. In previous publications, LSTMs as hydrological
models were used on a daily time step. The authors explore multiple approaches to achieve a
’multi-timescale’ model, of which three (naive LSTM, sMTS LSTM, MTS-LSTM) are evaluated in
more detail and less promising experiments are briefly explained in an Annexe. Similar to
previous applications of LSTMs, the models are applied at the CAMELS dataset, encompassing
516 basins across the contiguous USA, where hourly data is available. Results are compared to
the NOAA National Water Model (NWM) and show that all LSTMs architectures outperform the
NWM. The authors suggest that the MTS-LSTM provides most flexibility for future use.

The manuscript is generally well written and structured, figures and tables support the results.
Having a more process-based hydrological background, I nevertheless read the paper with
interest and believe it fits well in the scope of HESS. I see the work as highly relevant, especially
in the field of flood modelling and (eventually) forecasting, but also generally in the application
of LSTMs at different temporal resolutions. However, especially regarding the latter, I think the
authors should invest more work to improve the usefulness of the paper. Please find below
more detailed comments, questions and suggestions that hopefully initiate a fruitful discussion
and help in improving the paper.

We would like to thank Jens Kiesel for his detailed and thoughtful review. Based on his
comments, we have prepared a revised manuscript that (among other changes) provides a
more accessible review of related work in machine learning and gives a more detailed
description of the differences between our proposed multi-timescale LSTM variants. In the
following, we address each comment individually. Our answers are colored in blue.

https://editor.copernicus.org/index.php/hess-2020-540-RC1.pdf?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=90391&c=194358&salt=357991431530431702

2. SPECIFIC COMMENTS

2.1. ABSTRACT
I suggest to mention the difficulties and challenges applying the models (parameter estimation)
and discuss the work still to be done regarding different time scales (e.g. generalization of
parameters)

2.2. INTRODUCTION
I think you are missing a research gap in your introduction which is important to apply the LSTM
for different time steps, since there seems to be a time step dependency of model parameters /
hyperparameters (e.g. hidden size, sequence length, batch size, forget gate bias, learning rate?,
others?). Due to the computationally expensive training of LSTMs, knowing which ones need to
be adjusted, in about which range and identifying ideal values is essential. I would like to see
this topic included in the "contributions" you list at the end of the introduction (and therefore
also more prominently in the respective chapters).

2.2.1. p.2 l.29-41: I think this section is difficult to understand for a reader without firm neural
networks background. Particularly phrases like: "partitions a recurrent neural network into
layers with individual clock speeds", "process irregularly sampled inputs by means of a time
gate that only attends to the input at steps of a learned frequency", "the approach depends
on a binary decision that is only differentiable through a workaround". I acknowledge that
your paper cannot serve as an introduction to the topic. I have no clear suggestion other
than making this paragraph more accessible to readers with a hydrological background
through using less specialized jargon, if possible.

Thank you for the feedback. We agree with this analysis of the language. In the revised
version, we will explain the related work and its connections to MTS-LSTM in terms that are
more familiar to the intended audience as follows (formerly L29-41):

“More recently, Koutnik et al. (2014) proposed an architecture that efficiently learns long-
and short-term relationships in time series. They partition the internals of their neural
network into different groups, where each group is updated on individual, pre-defined,
intervals. However, the whole sequence is still processed on the highest frequency, which
makes training slow. Chung et al. (2016) extended the idea of hierarchically processing the
different timescales: In their setup, the model can adjust its updating rates to the current
input, e.g., to align with words or handwriting strokes. Unfortunately, the binary decision
whether to make an update complicates the procedure, since it can only be trained through
a workaround. Neil at al. (2016) proposed an LSTM architecture with a gating mechanism
that allows state and output updates only during time slots of learned frequencies. For time
steps where the gate is closed, the old state and output are reused. This helps discriminate
superimposed input signals, but is likely unsuited for rainfall--runoff prediction because no

aggregation takes place while the time gate is closed. In a different research thread, Graves
et al. (2007) proposed a multidimensional variant of LSTMs for problems with more than
one temporal or spatial dimension. Framed in the context of multi-timescale prediction, one
could define each timescale as one temporal dimension and process the inputs at all
timescales simultaneously. Like the hierarchical approaches, however, this paradigm would
process the full time series at all timescales and thus lead to slow training.”

2.2.2. p.2 l.45 and 47: You write that Araya et al. predicted wind speed at "multiple timescales".
Then you mention that your objective is "multiple outputs, one for each target timescale". I
don’t understand the difference between that.

Given our current formulation it is understandable that the difference was unclear. By “they
predicted wind speed given input data at multiple timescales,” we meant that the input data
to their model is at multiple timescales (e.g., hourly and daily input values). The output,
however, is only at the hourly timescale. MTS-LSTM, in contrast, produces a distinct output
for each timescale (e.g., discharge prediction at hourly and daily timescale). We will
rephrase the sentence to clarify this.

2.2.3. p.2 l.54ff: I see the capability to process input data in irregular intervals as an advantage.
Think of satellite products that have different data gap length (e.g. soil moisture or altimetry
products combining multiple sensors). You can discuss this further, but at least I suggest to
write on p.3 l.77: "...LSTM can ingest individual and multiple sets of forcings each having
regular time intervals for each target timescale. This closely resembles..."

Thank you, we will adopt the suggestion.

2.2.4. p.3 l.70-72, 74-75: I suggest not to mention the results of your study in the introduction

We understand your suggestion. However, we believe that a brief description of the overall
results in the introduction helps readers navigate the manuscript and emphasizes why the
contributions are meaningful. Also, it serves people who only read the
introduction/contributions and conclusion for a high-level overview on the paper. That said,
if our view is strongly opposed by the editor or reviewers, we are open to revise the
introduction accordingly.

2.2.5. p.3 l.64-78: These three paragraphs reveal that your introduction could be structured a bit
better, ideally introducing the reader to these three problems/research gaps that need to be
solved for "Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term
Memory Network". You have motivated the first paragraph, but the second and third
’contribution’ that you list appears a bit unexpected since your previous introduction does
not resemble that structure. For instance, instead of referring to sections later in the paper, I
believe it would be better to introduce the reader to the problem of inconsistencies. You
briefly mention this on p.2 l.27-28 for conventional hydrological models, but this can be
extended, especially targeted on machine learning.

Thank you for these suggestions. In the revised manuscript, we will introduce the problems
of inconsistency and of per-timescale data products in the introduction, such that they
appear less unexpectedly in the contributions.

2.3. DATA AND METHODS
2.3.1. p.4 l.92-94: The distinction into training, validation and test is not fully clear to me. You use

the validation period to evaluate different architectures and to select model
hyperparameters. Could you elaborate on the reason why the evaluation of architecture and
the hyperparameter selection cannot/should not be done during the training period?

Using a three-way data split is standard practice in machine learning. This is so that
hyperparameters are not chosen based on the test set, which would be cheating.
The purposes of the different periods are as follows:

- The training period is used to fit the model, given a set of hyperparameters.
- This model is then applied to the validation period to evaluate its accuracy on

previously unseen data. The training and validation periods can be used to adjust
the model. To find the “best” hyperparameters, this process is repeated a number
of times (with different hyperparameters) and the model that achieves the best
validation accuracy is selected.

- Only once a final model is selected, we apply it to the test period. This way, the
model has never seen the test data before and we can be sure that we didn’t
overfit our model to the benchmarked metric.

If we had only a training and a test period and selected the hyperparameters on the training
period, our model would likely not generalize to unseen data (such as the test period),
because we only ever focused on modeling the training period. In the extreme, we would
train our model to memorize every data point of the training period and get a perfect fit but
terrible accuracy on any other data.

We have extended the paragraph in the revised manuscript to explain the purposes of the
training, validation, and test periods in more detail.

2.3.2. p.4 l.101ff: Can you describe the datasets used in NWM and the basic characteristics (e.g.
spatial application range, calibration strategy and performance) of the v2 reanalysis
product?

Unfortunately, this information is not fully public. We will add the following paragraph to the
description of NWM: “For these predictions, NWM was calibrated on meteorological NLDAS
forcings for around 1500 basins and then regionalized to around 2.7 million outflow points
(source: personal communication with NOAA scientists).”

2.3.3. p.5 Fig1: please also mention what "x" and "+" represent
They represent element-wise multiplication (“x”) and addition (“+”). We will clarify this in the
revised manuscript.

2.3.4. p.6 l.127-130: I am particularly interested in how you tuned these parameters and how you
decided which parameters to adjust and which ones not. As you mention, the LSTM
application is computationally expensive and parameter selection and ranges are therefore
important. Therefore, I would rather want to see Appendix D in the main text, and include
information why certain parameters are time step dependent and others not.

The decision which parameters to adjust and within which bounds to adjust them is
unfortunately largely based on personal experience with LSTMs. To our knowledge, there
exist no rules that are universally applicable and agreed upon for the hyperparameter tuning
with these models (beyond basic principles like train-validation-test splits, see 2.3.1).

As for timestep-dependent vs. -independent parameters: Are you referring to
hyperparameters that are (or can be) different for each timescale? In theory, with
MTS-LSTM, one could use different parameters for each LSTM branch (e.g., hourly and daily
branch) with respect to almost all hyperparameters. The question therefore is for which
hyperparameters it may make sense to use different values in the different branches. E.g.,
for hidden size, we do not see a reason to choose vastly different sizes for the different
timescales, since each LSTM branch models a similar process. The only hyperparameter
that we did choose per timescale is the sequence length, because it defines the point in
time where the daily branch hands off to the hourly branch.
For sMTS-LSTM, there are some additional restrictions: Since the daily and hourly LSTM
branches use the same weights, they cannot have different hidden sizes (because that
would entail different amounts of weights).

Given these considerations, unless there is strong opposition from the editor or reviewers,
we would prefer to keep Appendix D in the appendix. Since the concrete hyperparameter
choices are very particular to our evaluated models and setup, we think keeping them in the
appendix helps to avoid the impression that these may be universally applicable choices for
LSTMs (even a dataset of different size may lead to other parameters being better suited).
A detailed description of the possibilities, pitfalls, and empirical experience of
hyperparameter tuning would be material for a publication in itself.

Also, In Table D1, it seems you ended up with 336 hrs sequence length for both
architectures. Would an even longer sequence length lead to better results? What is the
tradeoff between higher sequence lengths and computational costs?

Longer sequences do not necessarily lead to better results. The longer the hourly input
sequence, the longer the overall input time series will be (because the transition from daily
to hourly inputs will happen earlier). Such longer time series are harder for LSTMs to

process, because they need to learn dependencies across many time steps. Further, the
additional time steps will increase the computational demand of the model. In the extreme,
if we’d use an hourly sequence length of 365*24, the hourly branch in the MTS-LSTM would
require as much computation as the naive hourly LSTM.

Conversely, shorter hourly input sequence lengths reduce computational complexity
(because more of the input is processed at the daily resolution, leading to shorter time
series). A too short hourly input sequence, however, will remove information from the inputs
that is necessary to generate high-resolution hourly predictions. That said, in our
experiments, we did not observe high sensitivity of the model accuracy with regards to the
exact hourly input sequence length.

2.3.5. p.6 l. 146-156: Could you explain why these two different LSTM architectures were
developed? What are the expected advantages/disadvantages?

sMTS-LSTM is a special case of MTS-LSTM where the different LSTM branches are actually
the same LSTM (they have the same structure and weights, see answer to 2.3.6), and
therefore they model the same input--output relationships. A-priori, it seems reasonable that
some relationships that govern daily prediction hold, to some extent, for hourly predictions
as well. Hence, it may be easier to learn these dynamics in a single LSTM branch that
processes the different timescales (as done in sMTS-LSTM) than to learn them multiple
times, once in each branch (as done in MTS-LSTM). On the other hand, however, there are
also differences in how daily vs. hourly data are processed, and these may be easier to
learn in a branch that focuses on one timescale (MTS-LSTM) than in a branch that’s shared
across timescales (sMTS-LSTM).

We agree that the current description does not motivate the two MTS-LSTM variants, and
we will include this reasoning in the revised manuscript (formerly L136-156). The following
revised text also clarifies the differences between MTS-LSTM and sMTS-LSTM (see
questions 2.3.6, 2.3.7):

“The first model, shared multi-timescale LSTM (sMTS-LSTM), is a simple extension of the
naive approach. Intuitively, it seems reasonable that the relationships that govern daily
predictions hold, to some extent, for hourly predictions as well. Hence, it may be possible to
learn these dynamics in a single LSTM that processes the time series twice: Once at a daily
resolution and again at an hourly resolution. Since we model a damped system, where the
resolution of long-past time steps is less important, we can simplify the second (hourly)
pass by reusing the first part of the daily time series. This way, we only need to use hourly
inputs for the more recent time steps, which yields shorter time series that are easier to
process. From a more technical point of view, we first generate a daily prediction as
usual---the LSTM ingests an input sequence of T_D time steps at daily resolution and
outputs a prediction at the last time step (i.e., sequence-to-one prediction). Next, we reset
the hidden and cell states to their values from time step T_D-T_H/24 and ingest the hourly

input sequence of length T_H to generate 24 hourly predictions that correspond to the last
daily prediction. In other words, we reuse the initial daily time steps and use hourly inputs
only for the remaining time steps.
In summary, we perform two forward passes through the same LSTM at each prediction
step: one that generates a daily prediction and one that generates 24 corresponding hourly
predictions. Since the same LSTM processes input data at multiple timescales, it needs a
way to identify the current input timescale and distinguish daily from hourly inputs. For this,
we add a one-hot timescale encoding to the input sequence. The key insight with this model
is that the hourly forward pass starts with LSTM states from the daily forward pass, which
act as a summary of long-term information up to that point. In effect, the LSTM has access
to a large look-back window but, unlike the naive hourly LSTM, it does not suffer from the
performance impact of extremely long input sequences.

The second architecture, illustrated in Fig. 2, is a more general variant of the sMTS-LSTM
that is specifically built for multi-timescale predictions, hence, we call it the multi-timescale
LSTM (MTS-LSTM). Its architecture stems from the idea that the daily and hourly
predictions may behave so differently that it is challenging for one LSTM to learn both
dynamics, as the sMTS-LSTM would have to. Instead, it may be easier to process the inputs
in individual LSTMs per timescale. To reuse daily processing steps towards hourly
predictions, MTS-LSTM does not perform two forward passes (as sMTS-LSTM
does).Instead, it splits an individual hourly LSTM branch off of the daily LSTM after the
initial daily time steps (see Fig. 2). Expressed more technically: we first generate a
prediction with an LSTM acting at the coarsest timescale (here: daily) using a full input
sequence of length T_D (e.g., 365 days). Next, we reuse the daily hidden and cell states
from step T_D-T_H/24 as the initial states for an LSTM at a finer timescale (here: hourly),
which generates the corresponding 24 hourly predictions. Since the two LSTM branches
may have different hidden sizes, we feed the states through a linear state transfer layer
(FC_h, FC_c) before reusing them as initial hourly states. In this setup, each LSTM branch
only receives inputs of its respective timescale, hence, we do not need to one-hot encode
the timescale. This architecture makes it clear why we call the other variant "shared"
MTS-LSTM.

Effectively, the sMTS-LSTM is an ablation of the MTS-LSTM: One can see the sMTS-LSTM
as an MTS-LSTM where the different LSTM branches all share the same set of weights and
the states are transferred without any additional computation (i.e., the transfer layers are
identity functions). Conversely, the MTS-LSTM is a generalization of sMTS-LSTM: Consider
an MTS-LSTM that uses the same hidden size in all branches. In theory, this model could
learn to use identity matrices as transfer layers and to use equal weights in all LSTM
branches. Save for the one-hot encoding, this would make it an sMTS-LSTM.”

The last sentence is crucial for the understanding of the differences, I believe "weights of
the sMTS-LSTM are shared across all per-timescale branches and its state transfer layers

are identity operations." What is an identity operation?

An identity operation is a function that outputs the input value(s). We will rephrase this to
“states are transferred without any additional computation (i.e., the transfer layers are
identity functions)“ which we hope to be clearer. For more on the difference between
MTS-LSTM and sMTS-LSTM, see our answers to questions 2.3.6/2.3.7.

2.3.6. p7. Figure 2: I understood from the text that both the sMTS-LSTM and MTS-LSTM are
branching out at each day into hourly predictions. The MTS-LSTM predicts 24 hours, using
72hrs sequence length. Is this the same for the sMTS-LSTM?

It is correct that both MTS-LSTM and sMTS-LSTM predict 24 hours using 72 hours of hourly
input sequence length. The first part of the statement (“both the sMTS-LSTM and
MTS-LSTM are branching out at each day into hourly predictions”) could be misunderstood:
For the prediction of any given day, the hourly LSTM branches off of the daily LSTM only
once (72h before the last time step). But, if we predict subsequent days to obtain a time
series of predictions, the branching point will shift by one day as the predicted day moves
forward. All of this holds for both MTS-LSTM and sMTS-LSTM .

The difference between sMTS-LSTM and MTS-LSTM is difficult to understand from just the
figure caption. I think it would help to construct the illustration for both architectures to
visualize the differences, if possible including the different weights for the MTS-LSTM and
the similar weights for the sMTS-LSTM in the diagram.

Unfortunately, we could not find a good way to illustrate the difference between MTS-LSTM
and sMTS-LSTM. The basic idea of shared weights is that the daily LSTM branch will
behave identical to the hourly branch (if applied to the same inputs). Since the LSTM blocks
have a complex internal structure (depicted in Figure 1), it is hard to explicitly show the
model weights.

Maybe an alternative perspective on sMTS-LSTM can clarify the setup:

Another way to think of sMTS-LSTM is a single LSTM without any branches. The model
works as follows:
1) First, we add timescale flags to the input data:
- We concatenate each timestep of the daily inputs with a one-hot encoding of “daily
timescale” (e.g., a vector (1, 0)^T).
- We concatenate each timestep of the hourly inputs with a one-hot encoding of “hourly
timescale” (e.g., a vector (0, 1)^T).
2) Then, we ingest the full daily input sequence into the LSTM. This gives us a daily
prediction.
3) Next, we re-initialize the LSTM with the hidden and cell state from 3 days ago.

4) Finally, we ingest the last 72 steps of hourly data into the LSTM. This gives us 24 hourly
predictions.
Described from this angle, the differences to MTS-LSTM are:
- MTS-LSTM does not need step (1), since there is no need for timescale flags.
- With MTS-LSTM, steps (3) and (4) operate on a different LSTM than step (2).

Our rephrased descriptions of MTS-LSTM and sMTS-LSTM (see 2.3.5) should be clearer on
these differences.

2.3.7. p.7 l.158: I don’t understand why the MTS-LSTM is more flexible in terms of input data than
the sMTS-LSTM. In the sMTS-LSTM section you write (p.6 l.139): "we....ingest the hourly
input sequence of length TH to generate 24 hourly predictions that correspond to the last
daily prediction." Looking at Fig 2, to me this is similar in the MTS-LSTM, where the daily
forcings have an effect until the hourly branch starts and then no update using the daily
forcings/predictions seems to be made in the hourly branch. Therefore, effectively, you use
the daily data until the model branches out and then you use the hourly forcings only?
Again, I think it would help to show both architectures in Fig 2.

Our explanation to questions 2.3.5 and 2.3.6 probably clarify this. The reason why
sMTS-LSTM cannot use different data products (or even different amounts of data
products) for different timescales is that steps (2) and (4) use the same LSTM. A single
LSTM has a fixed input dimensionality and is therefore unable to process input vectors of
varying size. Different meteorological data products may have different numbers of
variables, so they cannot be processed by the same LSTM. Since missing explanations
from our side seem to inhibit understanding of this point, we include a better description of
the differences as outlined in our answers to 2.3.5/2.3.6.

2.3.8. p.8 l.170-184: If I understand it correctly, adding the term into the loss function ’encourages’
the model to minimize the difference between daily and sub-daily simulation. But similar to
the NSE, this ideal value may not be reached, ending up with a model that is not consistent -
even if you put an exceptionally high weight on the mean squared difference?

Yes, this is exactly how the loss works (though the higher you weigh the difference, the
more likely will the model learn to generate consistent predictions---but this will come at the
cost of poor predictions: e.g., predicting constant 0 is consistent but not useful).

Is there a reason why you don’t ’force’ consistency across timescales? E.g. when looking at
Figure 2 I imagine you could add a function (e.g. simple multiplication of a term) that scales
either the daily or the sub-daily prediction (or the average between the two) so that both
match the consistency criteria (I now notice that may be similar to what you did in "B1 Delta
Prediction")?

Enforcing consistency is in principle possible. And as you note, we tried a number of

approaches to achieve this in Appendix B. However, in our experiments, these approaches
yielded worse predictions than MTS-LSTM, so we did not further pursue them.

2.3.9. p.9 Table 2: it is a bit confusing to have these different sequence lengths. In the previous
section it is 72hrs, here 168hrs, in Table D1 it is 336hrs. Can you harmonize this or explain
why there are these differences?

We will clarify this in the revised manuscript.The reasons for the differences are the
following:

The 72h in Figure 2 are just for the purpose of illustration: In order to keep the figure tidy, we
did not want to show too many “LSTM boxes” after the split into daily and hourly LSTM, so
we decided on three days, which translates to 72 hours.

The 336h in Table D1 is what we use in most experiments. This is the outcome of our
hyperparameter search for daily--hourly prediction.

The 168h in Table 2 are part of a model that demonstrates how MTS-LSTM can be used
beyond daily--hourly modeling and also predict other timescales. The concrete input
sequence lengths in Table 2 are somewhat arbitrary (and not hyperparameter-tuned), since
our point in this section is less to achieve the best possible NSE but rather to show the
flexibility of MTS-LSTM.

We will clarify this by adding “we chose this value for the sake of a tidy illustration; the
benchmarked model uses $T^H=336$” to the caption of Fig. 2 and “The specific input
sequence lengths are chosen somewhat arbitrarily, as our intention is to demonstrate the
general capability rather than to achieve the best possible NSE.” to the caption of Table 2.

2.4. RESULTS

2.4.1. p.9 l.210: that means running ten seeds based on the parameterization in bold in Table D1?
If so, I’d add this here.
Correct. We will add this in the revised manuscript.

2.4.2. p.9 l.219: I find this particularly interesting when thinking about hydrological processes. The
model parameter values (hidden and cell states) of the last coarse time step (Td - Th/24)
are basically your boundary condition/initial state for the hourly model. It seems a bit
counterintuitive that the sMTS-LSTM performs better than the naively trained full hourly
LSTM. So the ’error’ you introduce through the daily average initial state must be
insignificant (due to a sufficiently long sequence length?).

Yes. This is a nice way to think about the modelling system and relates to our motivation of
the MTS-LSTM architecture. The idea is that in a damped system, early time steps do not
need to be processed at the high target resolution.

Particularly in small basins and for flood peak prediction, this may not always be the case.
A plot showing the spatial differences in performance between the naively trained LSTM,
the sMTS-LSTM and MTS-LSTM (e.g. similar to Fig 4) could reveal if/where these
differences exist. I’d however not be surprised if this plot will show no pattern due to input
data uncertainty and randomness in the LSTM and the small performance difference
between the LSTM types.

Figure 1 below shows the spatial patterns of the difference between the NSE of
sMTS-LSTM and Naive (hourly) predictions together with basin size (indicated by the
marker size). As predicted by the reviewer, we cannot see any outstanding patterns that
would indicate relationships between basin size and NSE difference.

Figure 1: NSE differences between sMTS-LSTM and Naive (hourly). Marker size encodes
basin size.

2.4.3. p.14 l.237-250: Interestingly, the Naive LSTM deviates most - probably because the
sMTS-LSTM and the MTS-LSTM use recent states from the daily model and are therefore
’closer’ to the daily model’s flow (volume) prediction?

Yes, this is a plausible assumption, since the shared states will likely make it easier for the
model to minimize the consistency term (in some sense one might see the shared states as
an inductive bias towards consistency). Unfortunately, we do not see a way to prove it.

The beneficial influence on the NSE could arise because you are introducing a ’physically
plausible’ constraint in the model which ’helps’ adapting the network to the processes? (see

also my comment to p8. l.170-184). That is an interesting prospect and if true, could mean
adding more of such physical constraints (e.g. global water balance closure) could improve
the LSTM even further?

We agree with this line of reasoning and will include it in the revised manuscript. The
physically plausible architecture might benefit the predictions. In machine learning, this is
sometimes referred to as “inductive bias”. There is indeed ongoing work in hydrology to
add such constraints in the form of physical constraints or adaptations into ML/LSTM
models (for water balance, we’d like to refer to [1]). However, to our knowledge, so far no
modification has improved the overall model performance w.r.t. the NSE.

2.5. CONCLUSIONS
2.5.1. p.16 l.292: it depends on how the NWM was calibrated and what the main purpose is (see

also comment to p.4 l.101ff)

We refer to our answer to question 2.3.2 on details of the calibration procedure. Unlike the
LSTM-based models, NWM was calibrated only for hourly and not for daily predictions,
which may affect the accuracy. This, however, only corroborates our point: Had NWM been
explicitly calibrated for daily predictions, we’d expect equal or better daily NSEs---and
therefore the gap between daily and hourly quality would only grow. Further, since the
model was calibrated w.r.t. NSE (like the LSTM-based models) by people who are experts in
its usage (NOAA scientists), we would argue that our performance comparison is valid.

2.5.2. p.17 l.293: I understand and agree. But given that LSTMs perform so well for hydrological
modelling, efforts should be made to generalize the hyperparameter values for different
time steps. I believe you were not sufficiently confident with your tests to deduce general
rules for the hyperparameter settings (and that may be a reason why this analysis ended up
in the Annexe). But I think it would help the future application of LSTMs if you could give a
summary of your experience: e.g. which parameters are time-step dependent, should a
parameter increase or decrease with increasing/decreasing time steps, what if someone
applies an even coarser time step (monthly)?

First, we would like to reiterate our comment from 2.3.4: We are unaware of any non-trivial
universal rules on hyperparameter selection, and would therefore like to avoid the
impression that our final parameters are ideal for other tasks and datasets. That said,
researchers who work on a similar task and dataset could certainly take our parameters as
a starting point for their own tuning procedure.
More specifically to the point of dependence on timescales, only hidden size and sequence
length seem meaningful to choose per timescale (though one could maybe come up with
scenarios where different learning rates make sense, but we didn’t explore this). As stated
in the answer to question 2.3.4, we did not see strong sensitivity with regards to the choice
of sequence length (but, again, to achieve the best possible NSE, one will have to

hyperparameter-tune the model to the specifics of the application). For hidden size, we do
not see a reason to choose vastly different sizes for the different timescales, since each
LSTM branch models a similar process.

2.5.3. p.17 l.296-298: I know the differences are not statistically significant, but can you speculate
on why the models are ranked in that order? Somehow the naive hourly LSTM seems not to
be able to use this additional information content, or the half year sequence length is not
sufficient to depict all states (e.g. groundwater storages may need longer sequence length
in some catchments)?

Unfortunately, we cannot make any conclusive statements. One plausible explanation could
be that the long input sequences make it harder for the naive LSTM to learn all relationships
that exist in the data, while sMTS-LSTM only needs to derive relationships from shorter time
series (and the lower resolution doesn’t matter much, since it’s only low for time steps far in
the past). A theoretical explanation could be given by the vanishing gradient phenomen,
which is the reason why it is hard for LSTMs to learn dependencies over very long
sequences (e.g., more than 1000 time steps).

2.5.4. p.17 l.299-305: Can you speculate why the daily forcings to the hourly MTS-LSTM improve
the performance?

We believe that this has essentially the same reason why multiple daily forcings improve
daily predictions (already known from previous publications, [2]): Each data product has its
individual errors, and given multiple products, the LSTM can intelligently combine the
information to counteract these errors.The fact that in this case we use daily data for hourly
predictions might reduce this impact, but clearly it does not fully remove it. This may be
supported by some degree of smoothness across time: If the daily product says there is low
temperature, most (if not all) hours will have had low temperatures, too.

2.5.5. I believe there is more research to be done that you can mention here? E.g. a thorough
investigation of time step-dependency of hyperparameters, find measures to use physical
constraints in the LSTM (e.g. the regularization)

We agree that there is more research to be done, and we’ll add a sentence on physical
constraints in the revised paper. Other areas of future research include exploring the
potential of uncertainty estimation at multiple frequencies (as opposed to point estimates)
and the exploration of architectures that pass information not just from coarse to fine
timescales, but also vice versa (similar to our preliminary ResNet experiments that we
report in the appendix).

3. TECHNICAL CORRECTIONS
3.1. once introduced, you can stick to the abbreviations (e.g. NWM, MTS-LSTM)

We’ll change the revised manuscript to consistently use the abbreviations after their

introduction.

3.2. p.3 l.58-60: I think you can refer to Appendix C here

We’ll add the reference in the revised submission.

3.3. p.5 l.118: ...half a year...

Yes, we’ll change this.

3.4. p.8 l.191-192: it is uncommon to mention results in the methods

Agreed, we’ll remove the sentence on results.

3.5. p.8 l.199: this link is supplied here for the third time. Not sure if this is how HESS

wants to have references to URLs.

Agreed, the repeated footnote is not necessary. We’ll remove it and change the

footnotes to citations as per HESS standards.

3.6. p.9 l.215: ’even the naive ones’ - the naive LSTM acts as a benchmark, so it is

expected it performs better than (s)MTS?

Yes and no: Yes, it is a benchmark (in the sense of being the most straight-forward

way of achieving hourly predictions with LSTMs). But, as explained in the Methods

section, we expected the hourly naive LSTM to be problematic since it has to work

better or worse than MTS-LSTM.

3.7. p.9 l.216: I think it is fair to add that this worse performance on hourly is much more

visible at the NWM

We’ll add this in the revised manuscript.

3.8. p.17 l.311-312: I find this first sentence difficult to understand. If possible, split in

two

We’ll split the sentence and slightly rephrase to clarify.

4. REFERENCES
[1] Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S.,
Klambauer, G.: MC-LSTM: Mass-conserving LSTM, https://arxiv.org/abs/2101.05186, arXiv,
2021.

[2] Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in
multiple meteorological datasets with deep learning for rainfall-runoff modeling, Hydrol. Earth
Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-221, in review, 2020.

https://arxiv.org/abs/2101.05186
https://doi.org/10.5194/hess-2020-221

