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1. GENERAL COMMENTS 
The manuscript "Rainfall–Runoff Prediction at Multiple Timescales with a Single Long 
Short-Term Memory Network" (LSTM) by Martin Gauch et al. presents an extension of LSTM 
hydrological models to sub-daily time steps. In previous publications, LSTMs as hydrological 
models were used on a daily time step. The authors explore multiple approaches to achieve a 
’multi-timescale’ model, of which three (naive LSTM, sMTS LSTM, MTS-LSTM) are evaluated in 
more detail and less promising experiments are briefly explained in an Annexe. Similar to 
previous applications of LSTMs, the models are applied at the CAMELS dataset, encompassing 
516 basins across the contiguous USA, where hourly data is available. Results are compared to 
the NOAA National Water Model (NWM) and show that all LSTMs architectures outperform the 
NWM. The authors suggest that the MTS-LSTM provides most flexibility for future use.  

The manuscript is generally well written and structured, figures and tables support the results. 
Having a more process-based hydrological background, I nevertheless read the paper with 
interest and believe it fits well in the scope of HESS. I see the work as highly relevant, especially 
in the field of flood modelling and (eventually) forecasting, but also generally in the application 
of LSTMs at different temporal resolutions. However, especially regarding the latter, I think the 
authors should invest more work to improve the usefulness of the paper. Please find below 
more detailed comments, questions and suggestions that hopefully initiate a fruitful discussion 
and help in improving the paper.  

 
We would like to thank Jens Kiesel for his detailed and thoughtful review. Based on his 
comments, we have prepared a revised manuscript that (among other changes) provides a 
more accessible review of related work in machine learning and gives a more detailed 
description of the differences between our proposed multi-timescale LSTM variants. In the 
following, we address each comment individually. Our answers are colored in blue. 

https://editor.copernicus.org/index.php/hess-2020-540-RC1.pdf?_mdl=msover_md&_jrl=13&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=90391&c=194358&salt=357991431530431702


2. SPECIFIC COMMENTS  

2.1. ABSTRACT 
I suggest to mention the difficulties and challenges applying the models (parameter estimation) 
and discuss the work still to be done regarding different time scales (e.g. generalization of 
parameters)  

2.2. INTRODUCTION  
I think you are missing a research gap in your introduction which is important to apply the LSTM 
for different time steps, since there seems to be a time step dependency of model parameters / 
hyperparameters (e.g. hidden size, sequence length, batch size, forget gate bias, learning rate?, 
others?). Due to the computationally expensive training of LSTMs, knowing which ones need to 
be adjusted, in about which range and identifying ideal values is essential. I would like to see 
this topic included in the "contributions" you list at the end of the introduction (and therefore 
also more prominently in the respective chapters).  

2.2.1. p.2 l.29-41: I think this section is difficult to understand for a reader without firm neural 
networks background. Particularly phrases like: "partitions a recurrent neural network into 
layers with individual clock speeds", "process irregularly sampled inputs by means of a time 
gate that only attends to the input at steps of a learned frequency", "the approach depends 
on a binary decision that is only differentiable through a workaround". I acknowledge that 
your paper cannot serve as an introduction to the topic. I have no clear suggestion other 
than making this paragraph more accessible to readers with a hydrological background 
through using less specialized jargon, if possible.  
 
Thank you for the feedback. We agree with this analysis of the language. In the revised 
version, we will explain the related work and its connections to MTS-LSTM in terms that are 
more familiar to the intended audience as follows (formerly L29-41): 
 
“More recently, Koutnik et al. (2014) proposed an architecture that efficiently learns long- 
and short-term relationships in time series. They partition the internals of their neural 
network into different groups, where each group is updated on individual, pre-defined, 
intervals. However, the whole sequence is still processed on the highest frequency, which 
makes training slow. Chung et al. (2016) extended the idea of hierarchically processing the 
different timescales: In their setup, the model can adjust its updating rates to the current 
input, e.g., to align with words or handwriting strokes. Unfortunately, the binary decision 
whether to make an update complicates the procedure, since it can only be trained through 
a workaround. Neil at al. (2016) proposed an LSTM architecture with a gating mechanism 
that allows state and output updates only during time slots of learned frequencies. For time 
steps where the gate is closed, the old state and output are reused. This helps discriminate 
superimposed input signals, but is likely unsuited for rainfall--runoff prediction because no 



aggregation takes place while the time gate is closed. In a different research thread, Graves 
et al. (2007) proposed a multidimensional variant of LSTMs for problems with more than 
one temporal or spatial dimension. Framed in the context of multi-timescale prediction, one 
could define each timescale as one temporal dimension and process the inputs at all 
timescales simultaneously. Like the hierarchical approaches, however, this paradigm would 
process the full time series at all timescales and thus lead to slow training.” 

2.2.2. p.2 l.45 and 47: You write that Araya et al. predicted wind speed at "multiple timescales". 
Then you mention that your objective is "multiple outputs, one for each target timescale". I 
don’t understand the difference between that.  
 
Given our current formulation it is understandable that the difference was unclear. By “they 
predicted wind speed given input data at multiple timescales,” we meant that the input data 
to their model is at multiple timescales (e.g., hourly and daily input values). The output, 
however, is only at the hourly timescale. MTS-LSTM, in contrast, produces a distinct output 
for each timescale (e.g., discharge prediction at hourly and daily timescale). We will 
rephrase the sentence to clarify this. 

2.2.3. p.2 l.54ff: I see the capability to process input data in irregular intervals as an advantage. 
Think of satellite products that have different data gap length (e.g. soil moisture or altimetry 
products combining multiple sensors). You can discuss this further, but at least I suggest to 
write on p.3 l.77: "...LSTM can ingest individual and multiple sets of forcings each having 
regular time intervals for each target timescale. This closely resembles..."  
 
Thank you, we will adopt the suggestion.  

2.2.4. p.3 l.70-72, 74-75: I suggest not to mention the results of your study in the introduction  
 
We understand your suggestion. However, we believe that a brief description of the overall 
results in the introduction helps readers navigate the manuscript and emphasizes why the 
contributions are meaningful. Also, it serves people who only read the 
introduction/contributions and conclusion for a high-level overview on the paper. That said, 
if our view is strongly opposed by the editor or reviewers, we are open to revise the 
introduction accordingly. 

2.2.5. p.3 l.64-78: These three paragraphs reveal that your introduction could be structured a bit 
better, ideally introducing the reader to these three problems/research gaps that need to be 
solved for "Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term 
Memory Network". You have motivated the first paragraph, but the second and third 
’contribution’ that you list appears a bit unexpected since your previous introduction does 
not resemble that structure. For instance, instead of referring to sections later in the paper, I 
believe it would be better to introduce the reader to the problem of inconsistencies. You 
briefly mention this on p.2 l.27-28 for conventional hydrological models, but this can be 
extended, especially targeted on machine learning.  
 



Thank you for these suggestions. In the revised manuscript, we will introduce the problems 
of inconsistency and of per-timescale data products in the introduction, such that they 
appear less unexpectedly in the contributions. 

 

2.3. DATA AND METHODS 
2.3.1. p.4 l.92-94: The distinction into training, validation and test is not fully clear to me. You use 

the validation period to evaluate different architectures and to select model 
hyperparameters. Could you elaborate on the reason why the evaluation of architecture and 
the hyperparameter selection cannot/should not be done during the training period?  
 
Using a three-way data split is standard practice in machine learning. This is so that 
hyperparameters are not chosen based on the test set, which would be cheating.  
The purposes of the different periods are as follows: 

- The training period is used to fit the model, given a set of hyperparameters. 
- This model is then applied to the validation period to evaluate its accuracy on 

previously unseen data. The training and validation periods can be used to adjust 
the model. To find the “best” hyperparameters, this process is repeated a number 
of times (with different hyperparameters) and the model that achieves the best 
validation accuracy is selected.  

- Only once  a final model is selected, we apply it to the test period. This way, the 
model has never seen the test data before and we can be sure that we didn’t 
overfit our model to the benchmarked metric.  

If we had only a training and a test period and selected the hyperparameters on the training 
period, our model would likely not generalize to unseen data (such as the test period), 
because we only ever focused on modeling the training period. In the extreme, we would 
train our model to memorize every data point of the training period and get a perfect fit but 
terrible accuracy on any other data. 
 
We have extended the paragraph in the revised manuscript to explain the purposes of the 
training, validation, and test periods in more detail. 
 

2.3.2. p.4 l.101ff: Can you describe the datasets used in NWM and the basic characteristics (e.g. 
spatial application range, calibration strategy and performance) of the v2 reanalysis 
product?  
 
Unfortunately, this information is not fully public. We will add the following paragraph to the 
description of NWM: “For these predictions, NWM was calibrated on meteorological NLDAS 
forcings for around 1500 basins and then regionalized to around 2.7 million outflow points 
(source: personal communication with NOAA scientists).” 



2.3.3. p.5 Fig1: please also mention what "x" and "+" represent  
They represent element-wise multiplication (“x”) and addition (“+”). We will clarify this in the 
revised manuscript. 

2.3.4. p.6 l.127-130: I am particularly interested in how you tuned these parameters and how you 
decided which parameters to adjust and which ones not. As you mention, the LSTM 
application is computationally expensive and parameter selection and ranges are therefore 
important. Therefore, I would rather want to see Appendix D in the main text, and include 
information why certain parameters are time step dependent and others not. 
 
The decision which parameters to adjust and within which bounds to adjust them is 
unfortunately largely based on personal experience with LSTMs. To our knowledge, there 
exist no rules that are universally applicable and agreed upon for the hyperparameter tuning 
with these models (beyond basic principles like train-validation-test splits, see 2.3.1). 
 
As for timestep-dependent vs. -independent parameters: Are you referring to 
hyperparameters that are (or can be) different for each timescale? In theory, with 
MTS-LSTM, one could use different parameters for each LSTM branch (e.g., hourly and daily 
branch) with respect to almost all hyperparameters. The question therefore is for which 
hyperparameters it may make sense to use different values in the different branches. E.g., 
for hidden size, we do not see a reason to choose vastly different sizes for the different 
timescales, since each LSTM branch models a similar process. The only hyperparameter 
that we did choose per timescale is the sequence length, because it defines the point in 
time where the daily branch hands off to the hourly branch. 
For sMTS-LSTM, there are some additional restrictions: Since the daily and hourly LSTM 
branches use the same weights, they cannot have different hidden sizes (because that 
would entail different amounts of weights). 
 
Given these considerations, unless there is strong opposition from the editor or reviewers, 
we would prefer to keep Appendix D in the appendix. Since the concrete hyperparameter 
choices are very particular to our evaluated models and setup, we think keeping them in the 
appendix helps to avoid the impression that these may be universally applicable choices for 
LSTMs (even a dataset of different size may lead to other parameters being better suited). 
A detailed description of the possibilities, pitfalls, and empirical experience of 
hyperparameter tuning would be material for a publication in itself. 
 
Also, In Table D1, it seems you ended up with 336 hrs sequence length for both 
architectures. Would an even longer sequence length lead to better results? What is the 
tradeoff between higher sequence lengths and computational costs?  
 
Longer sequences do not necessarily lead to better results. The longer the hourly input 
sequence, the longer the overall input time series will be (because the transition from daily 
to hourly inputs will happen earlier). Such longer time series are harder for LSTMs to 



process, because they need to learn dependencies across many time steps. Further, the 
additional time steps will increase the computational demand of the model. In the extreme, 
if we’d use an hourly sequence length of 365*24, the hourly branch in the MTS-LSTM would 
require as much computation as the naive hourly LSTM.  
 
Conversely, shorter hourly input sequence lengths reduce computational complexity 
(because more of the input is processed at the daily resolution, leading to shorter time 
series). A too short hourly input sequence, however, will remove information from the inputs 
that is necessary to generate high-resolution hourly predictions. That said, in our 
experiments, we did not observe high sensitivity of the model accuracy with regards to the 
exact hourly input sequence length.  

2.3.5. p.6 l. 146-156: Could you explain why these two different LSTM architectures were 
developed? What are the expected advantages/disadvantages?  
 
sMTS-LSTM is a special case of MTS-LSTM where the different LSTM branches are actually 
the same LSTM (they have the same structure and weights, see answer to 2.3.6), and 
therefore they model the same input--output relationships. A-priori, it seems reasonable that 
some relationships that govern daily prediction hold, to some extent, for hourly predictions 
as well. Hence, it may be easier to learn these dynamics in a single LSTM branch that 
processes the different timescales (as done in sMTS-LSTM) than to learn them multiple 
times, once in each branch (as done in MTS-LSTM). On the other hand, however, there are 
also differences in how daily vs. hourly data are processed, and these may be easier to 
learn in a branch that focuses on one timescale (MTS-LSTM) than in a branch that’s shared 
across timescales (sMTS-LSTM).  
 
We agree that the current description does not motivate the two MTS-LSTM variants, and 
we will include this reasoning in the revised manuscript (formerly L136-156). The following 
revised text also clarifies the differences between MTS-LSTM and sMTS-LSTM (see 
questions 2.3.6, 2.3.7): 
 
“The first model, shared multi-timescale LSTM (sMTS-LSTM), is a simple extension of the 
naive approach. Intuitively, it seems reasonable that the relationships that govern daily 
predictions hold, to some extent, for hourly predictions as well. Hence, it may be possible to 
learn these dynamics in a single LSTM that processes the time series twice: Once at a daily 
resolution and again at an hourly resolution. Since we model a damped system, where the 
resolution of long-past time steps is less important, we can simplify the second (hourly) 
pass by reusing the first part of the daily time series. This way, we only need to use hourly 
inputs for the more recent time steps, which yields shorter time series that are easier to 
process. From a more technical point of view, we first generate a daily prediction as 
usual---the LSTM ingests an input sequence of T_D time steps at daily resolution and 
outputs a prediction at the last time step (i.e., sequence-to-one prediction). Next, we reset 
the hidden and cell states to their values from time step T_D-T_H/24 and ingest the hourly 



input sequence of length T_H to generate 24 hourly predictions that correspond to the last 
daily prediction. In other words, we reuse the initial daily time steps and use hourly inputs 
only for the remaining time steps. 
In summary, we perform two forward passes through the same LSTM at each prediction 
step: one that generates a daily prediction and one that generates 24 corresponding hourly 
predictions. Since the same LSTM processes input data at multiple timescales, it needs a 
way to identify the current input timescale and distinguish daily from hourly inputs. For this, 
we add a one-hot timescale encoding to the input sequence. The key insight with this model 
is that the hourly forward pass starts with LSTM states from the daily forward pass, which 
act as a summary of long-term information up to that point. In effect, the LSTM has access 
to a large look-back window but, unlike the naive hourly LSTM, it does not suffer from the 
performance impact of extremely long input sequences. 
 
The second architecture, illustrated in Fig. 2, is a more general variant of the sMTS-LSTM 
that is specifically built for multi-timescale predictions, hence, we call it the multi-timescale 
LSTM (MTS-LSTM). Its architecture stems from the idea that the daily and hourly 
predictions may behave so differently that it is challenging for one LSTM to learn both 
dynamics, as the sMTS-LSTM would have to. Instead, it may be easier to process the inputs 
in individual LSTMs per timescale. To reuse daily processing steps towards hourly 
predictions, MTS-LSTM does not perform two forward passes (as sMTS-LSTM 
does).Instead, it splits an individual hourly LSTM branch off of the daily LSTM after the 
initial daily time steps (see Fig. 2). Expressed more technically: we first generate a 
prediction with an LSTM acting at the coarsest timescale (here: daily) using a full input 
sequence of length T_D (e.g., 365 days). Next, we reuse the daily hidden and cell states 
from step T_D-T_H/24 as the initial states for an LSTM at a finer timescale (here: hourly), 
which generates the corresponding 24 hourly predictions. Since the two LSTM branches 
may have different hidden sizes, we feed the states through a linear state transfer layer 
(FC_h, FC_c) before reusing them as initial hourly states. In this setup, each LSTM branch 
only receives inputs of its respective timescale, hence, we do not need to one-hot encode 
the timescale. This architecture makes it clear why we call the other variant "shared" 
MTS-LSTM. 
 
Effectively, the sMTS-LSTM is an ablation of the MTS-LSTM: One can see the sMTS-LSTM 
as an MTS-LSTM where the different LSTM branches all share the same set of weights and 
the states are transferred without any additional computation (i.e., the transfer layers are 
identity functions). Conversely, the MTS-LSTM is a generalization of sMTS-LSTM: Consider 
an MTS-LSTM that uses the same hidden size in all branches. In theory, this model could 
learn to use identity matrices as transfer layers and to use equal weights in all LSTM 
branches. Save for the one-hot encoding, this would make it an sMTS-LSTM.” 
 
The last sentence is crucial for the understanding of the differences, I believe "weights of 
the sMTS-LSTM are shared across all per-timescale branches and its state transfer layers 



are identity operations." What is an identity operation? 
 
An identity operation is a function that outputs the input value(s). We will rephrase this to 
“states are transferred without any additional computation (i.e., the transfer layers are 
identity functions)“ which we hope to be clearer. For more on the difference between 
MTS-LSTM and sMTS-LSTM, see our answers to questions 2.3.6/2.3.7. 
 

2.3.6. p7. Figure 2: I understood from the text that both the sMTS-LSTM and MTS-LSTM are 
branching out at each day into hourly predictions. The MTS-LSTM predicts 24 hours, using 
72hrs sequence length. Is this the same for the sMTS-LSTM?  
 
It is correct that both MTS-LSTM and sMTS-LSTM predict 24 hours using 72 hours of hourly 
input sequence length. The first part of the statement (“both the sMTS-LSTM and 
MTS-LSTM are branching out at each day into hourly predictions”) could be misunderstood: 
For the prediction of any given day, the hourly LSTM branches off of the daily LSTM only 
once (72h before the last time step). But, if we predict subsequent days to obtain a time 
series of predictions, the branching point will shift by one day as the predicted day moves 
forward. All of this holds for both MTS-LSTM and sMTS-LSTM . 
 
The difference between sMTS-LSTM and MTS-LSTM is difficult to understand from just the 
figure caption. I think it would help to construct the illustration for both architectures to 
visualize the differences, if possible including the different weights for the MTS-LSTM and 
the similar weights for the sMTS-LSTM in the diagram.  
 
Unfortunately, we could not find a good way to illustrate the difference between MTS-LSTM 
and sMTS-LSTM. The basic idea of shared weights is that the daily LSTM branch will 
behave identical to the hourly branch (if applied to the same inputs). Since the LSTM blocks 
have a complex internal structure (depicted in Figure 1), it is hard to explicitly show the 
model weights. 
 
Maybe an alternative perspective on sMTS-LSTM can clarify the setup: 
 
Another way to think of sMTS-LSTM is a single LSTM without any branches. The model 
works as follows: 
1) First, we add timescale flags to the input data:  
- We concatenate each timestep of the daily inputs with a one-hot encoding of “daily 
timescale” (e.g., a vector (1, 0)^T). 
- We concatenate each timestep of the hourly inputs with a one-hot encoding of “hourly 
timescale” (e.g., a vector (0, 1)^T). 
2) Then, we ingest the full daily input sequence into the LSTM. This gives us a daily 
prediction. 
3) Next, we re-initialize the LSTM with the hidden and cell state from 3 days ago. 



4) Finally, we ingest the last 72 steps of hourly data into the LSTM. This gives us 24 hourly 
predictions. 
Described from this angle, the differences to MTS-LSTM are: 
- MTS-LSTM does not need step (1), since there is no need for timescale flags. 
- With MTS-LSTM, steps (3) and (4) operate on a different LSTM than step (2). 
 
Our rephrased descriptions of MTS-LSTM and sMTS-LSTM (see 2.3.5) should be clearer on 
these differences. 
 

2.3.7. p.7 l.158: I don’t understand why the MTS-LSTM is more flexible in terms of input data than 
the sMTS-LSTM. In the sMTS-LSTM section you write (p.6 l.139): "we....ingest the hourly 
input sequence of length TH to generate 24 hourly predictions that correspond to the last 
daily prediction." Looking at Fig 2, to me this is similar in the MTS-LSTM, where the daily 
forcings have an effect until the hourly branch starts and then no update using the daily 
forcings/predictions seems to be made in the hourly branch. Therefore, effectively, you use 
the daily data until the model branches out and then you use the hourly forcings only? 
Again, I think it would help to show both architectures in Fig 2.  
 
Our explanation to questions 2.3.5 and 2.3.6 probably clarify this. The reason why 
sMTS-LSTM cannot use different data products (or even different amounts of data 
products) for different timescales is that steps (2) and (4) use the same LSTM. A single 
LSTM has a fixed input dimensionality and is therefore unable to process input vectors of 
varying size. Different meteorological data products may have different numbers of 
variables, so they cannot be processed by the same LSTM. Since missing explanations 
from our side seem to inhibit understanding of this point, we include a better description of 
the differences as outlined in our answers to 2.3.5/2.3.6.   

2.3.8. p.8 l.170-184: If I understand it correctly, adding the term into the loss function ’encourages’ 
the model to minimize the difference between daily and sub-daily simulation. But similar to 
the NSE, this ideal value may not be reached, ending up with a model that is not consistent - 
even if you put  an exceptionally high weight on the mean squared difference? 
 
Yes, this is exactly how the loss works (though the higher you weigh the difference, the 
more likely will the model learn to generate consistent predictions---but this will come at the 
cost of poor predictions: e.g., predicting constant 0 is consistent but not useful). 

Is there a reason why you don’t ’force’ consistency across timescales? E.g. when looking at 
Figure 2 I imagine you could add a function (e.g. simple multiplication of a term) that scales 
either the daily or the sub-daily prediction (or the average between the two) so that both 
match the consistency criteria (I now notice that may be similar to what you did in "B1 Delta 
Prediction")?  
 
Enforcing consistency is in principle possible. And as you note, we tried a number of 



approaches to achieve this in Appendix B. However, in our experiments, these approaches 
yielded worse predictions than MTS-LSTM, so we did not further pursue them. 

2.3.9. p.9 Table 2: it is a bit confusing to have these different sequence lengths. In the previous 
section it is 72hrs, here 168hrs, in Table D1 it is 336hrs. Can you harmonize this or explain 
why there are these differences?  
 
We will clarify this in the revised manuscript.The reasons for the differences are the 
following:  

The 72h in Figure 2 are just for the purpose of illustration: In order to keep the figure tidy, we 
did not want to show too many “LSTM boxes” after the split into daily and hourly LSTM, so 
we decided on three days, which translates to 72 hours. 

The 336h in Table D1 is what we use in most experiments. This is the outcome of our 
hyperparameter search for daily--hourly prediction. 

The 168h in Table 2 are part of a model that demonstrates how MTS-LSTM can be used 
beyond daily--hourly modeling and also predict other timescales. The concrete input 
sequence lengths in Table 2 are somewhat arbitrary (and not hyperparameter-tuned), since 
our point in this section is less to achieve the best possible NSE but rather to show the 
flexibility of MTS-LSTM.  

We will clarify this by adding “we chose this value for the sake of a tidy illustration; the 
benchmarked model uses $T^H=336$” to the caption of Fig. 2 and “The specific input 
sequence lengths are chosen somewhat arbitrarily, as our intention is to demonstrate the 
general capability rather than to achieve the best possible NSE.” to the caption of Table 2. 

 

2.4. RESULTS 
 

2.4.1. p.9 l.210: that means running ten seeds based on the parameterization in bold in Table D1? 
If so, I’d add this here. 
Correct. We will add this in the revised manuscript. 

2.4.2. p.9 l.219: I find this particularly interesting when thinking about hydrological processes. The 
model parameter values (hidden and cell states) of the last coarse time step (Td - Th/24) 
are basically your boundary condition/initial state for the hourly model. It seems a bit 
counterintuitive that the sMTS-LSTM performs better than the naively trained full hourly 
LSTM. So the ’error’ you introduce through the daily average initial state must be 
insignificant (due to a sufficiently long sequence length?).  
 
Yes. This is a nice way to think about the modelling system and  relates to our motivation of 
the MTS-LSTM architecture.  The idea is that in a damped system, early time steps do not 
need to be processed at the high target resolution. 



 
Particularly in small basins and for flood peak prediction, this may not always be the case. 
A plot showing the spatial differences in performance between the naively trained LSTM, 
the sMTS-LSTM and MTS-LSTM (e.g. similar to Fig 4) could reveal if/where these 
differences exist. I’d however not be surprised if this plot will show no pattern due to input 
data uncertainty and randomness in the LSTM and the small performance difference 
between the LSTM types.  
 
Figure 1 below shows the spatial patterns of the difference between the NSE of 
sMTS-LSTM and Naive (hourly) predictions together with basin size (indicated by the 
marker size). As predicted by the reviewer, we cannot see any outstanding patterns that 
would indicate relationships between basin size and NSE difference. 

 
Figure 1: NSE differences between sMTS-LSTM and Naive (hourly). Marker size encodes 
basin size. 
 

2.4.3. p.14 l.237-250: Interestingly, the Naive LSTM deviates most - probably because the 
sMTS-LSTM and the MTS-LSTM use recent states from the daily model and are therefore 
’closer’ to the daily model’s flow (volume) prediction?  
 
Yes, this is a plausible assumption, since the shared states will likely make it easier for the 
model to minimize the consistency term (in some sense one might see the shared states as 
an inductive bias towards consistency). Unfortunately, we do not see a way to prove it. 

 
The beneficial influence on the NSE could arise because you are introducing a ’physically 
plausible’ constraint in the model which ’helps’ adapting the network to the processes? (see 



also my comment to p8. l.170-184). That is an interesting prospect and if true, could mean 
adding more of such physical constraints (e.g. global water balance closure) could improve 
the LSTM even further?  
 
We agree with this line of reasoning and will include it in the revised manuscript. The 
physically plausible architecture might benefit the predictions. In machine learning, this is 
sometimes referred to as “inductive bias”. There is indeed ongoing work in hydrology to 
add such constraints in the form of physical constraints or adaptations into ML/LSTM 
models (for water balance, we’d like to refer to [1]). However, to our knowledge, so far no 
modification has improved the overall model performance w.r.t. the NSE. 

2.5. CONCLUSIONS 
2.5.1. p.16 l.292: it depends on how the NWM was calibrated and what the main purpose is (see 

also comment to p.4 l.101ff)  
 
We refer to our answer to question 2.3.2 on details of the calibration procedure. Unlike the 
LSTM-based models, NWM was calibrated only for hourly and not for daily predictions, 
which may affect the accuracy. This, however, only corroborates our point: Had NWM been 
explicitly calibrated for daily predictions, we’d expect equal or better daily NSEs---and 
therefore the gap between daily and hourly quality would only grow. Further, since the 
model was calibrated w.r.t. NSE (like the LSTM-based models) by people who are experts in 
its usage (NOAA scientists), we would argue that our performance comparison is valid. 

2.5.2. p.17 l.293: I understand and agree. But given that LSTMs perform so well for hydrological 
modelling, efforts should be made to generalize the hyperparameter values for different 
time steps. I believe you were not sufficiently confident with your tests to deduce general 
rules for the hyperparameter settings (and that may be a reason why this analysis ended up 
in the Annexe). But I think it would help the future application of LSTMs if you could give a 
summary of your experience: e.g. which parameters are time-step dependent, should a 
parameter increase or decrease with increasing/decreasing time steps, what if someone 
applies an even coarser time step (monthly)?  
 
First, we would like to reiterate our comment from 2.3.4: We are unaware of any non-trivial 
universal rules on hyperparameter selection, and would therefore like to avoid the 
impression that our final parameters are ideal for other tasks and datasets. That said, 
researchers who work on a similar task and dataset could certainly take our parameters as 
a starting point for their own tuning procedure.  
More specifically to the point of dependence on timescales, only hidden size and sequence 
length seem meaningful to choose per timescale (though one could maybe come up with 
scenarios where different learning rates make sense, but we didn’t explore this). As stated 
in the answer to question 2.3.4, we did not see strong sensitivity with regards to the choice 
of sequence length (but, again, to achieve the best possible NSE, one will have to 



hyperparameter-tune the model to the specifics of the application). For hidden size, we do 
not see a reason to choose vastly different sizes for the different timescales, since each 
LSTM branch models a similar process. 

2.5.3. p.17 l.296-298: I know the differences are not statistically significant, but can you speculate 
on why the models are ranked in that order? Somehow the naive hourly LSTM seems not to 
be able to use this additional information content, or the half year sequence length is not 
sufficient to depict all states (e.g. groundwater storages may need longer sequence length 
in some catchments)?  
 
Unfortunately, we cannot make any conclusive statements. One plausible explanation could 
be that the long input sequences make it harder for the naive LSTM to learn all relationships 
that exist in the data, while sMTS-LSTM only needs to derive relationships from shorter time 
series (and the lower resolution doesn’t matter much, since it’s only low for time steps far in 
the past). A theoretical explanation could be given by the vanishing gradient phenomen, 
which is the reason why it is hard for LSTMs to learn dependencies over very long 
sequences (e.g., more than 1000 time steps). 

2.5.4. p.17 l.299-305: Can you speculate why the daily forcings to the hourly MTS-LSTM improve 
the performance?  
 
We believe that this has essentially the same reason why multiple daily forcings improve 
daily predictions (already known from previous publications, [2]): Each data product has its 
individual errors, and given multiple products, the LSTM can intelligently combine the 
information to counteract these errors.The fact that in this case we use daily data for hourly 
predictions might reduce this impact, but clearly it does not fully remove it. This may be 
supported by some degree of smoothness across time: If the daily product says there is low 
temperature, most (if not all) hours will have had low temperatures, too. 

2.5.5. I believe there is more research to be done that you can mention here? E.g. a thorough 
investigation of time step-dependency of hyperparameters, find measures to use physical 
constraints in the LSTM (e.g. the regularization)  
 
We agree that there is more research to be done, and we’ll add a sentence on physical 
constraints in the revised paper. Other areas of future research include exploring the 
potential of uncertainty estimation at multiple frequencies (as opposed to point estimates) 
and the exploration of architectures that pass information not just from coarse to fine 
timescales, but also vice versa (similar to our preliminary ResNet experiments that we 
report in the appendix). 
 



3. TECHNICAL CORRECTIONS  
3.1. once introduced, you can stick to the abbreviations (e.g. NWM, MTS-LSTM)  

We’ll change the revised manuscript to consistently use the abbreviations after their 

introduction. 

3.2. p.3 l.58-60: I think you can refer to Appendix C here  

We’ll add the reference in the revised submission. 

3.3. p.5 l.118: ...half a year...  

Yes, we’ll change this. 

3.4. p.8 l.191-192: it is uncommon to mention results in the methods  

Agreed, we’ll remove the sentence on results. 

3.5. p.8 l.199: this link is supplied here for the third time. Not sure if this is how HESS 

wants to have references to URLs.  

Agreed, the repeated footnote is not necessary. We’ll remove it and change the 

footnotes to citations as per HESS standards.  

3.6. p.9 l.215: ’even the naive ones’ - the naive LSTM acts as a benchmark, so it is 

expected it performs better than (s)MTS?  

Yes and no: Yes, it is a benchmark (in the sense of being the most straight-forward 

way of achieving hourly predictions with LSTMs). But, as explained in the Methods 

section, we expected the hourly naive LSTM to be problematic since it has to work 

better or worse than MTS-LSTM. 

3.7. p.9 l.216: I think it is fair to add that this worse performance on hourly is much more 

visible at the NWM  

We’ll add this in the revised manuscript. 

3.8. p.17 l.311-312: I find this first sentence difficult to understand. If possible, split in 

two  

We’ll split the sentence and slightly rephrase to clarify. 
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