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Abstract. Endmember mixing analysis (EMMA) is often used by hydrogeochemists to interpret the sources of 

stream solutes, but variations in stream concentrations and discharges remain difficult to explain. We discovered that 

machine learning can be used to highlight patterns in stream chemistry that reveal information about sources of 

solutes and subsurface groundwater flowpaths. The investigation has implications, in turn, for the balance of CO2 in 15 

the atmosphere. For example, CO2-driven weathering of silicate minerals removes carbon from the atmosphere over 

~106-yr timescales. Weathering of another common mineral, pyrite, releases sulfuric acid that in turn causes 

dissolution of carbonates. In that process, however, CO2 is released instead of sequestered from the atmosphere. 

Thus, to understand long-term global CO2 sequestration by weathering requires quantification of CO2- versus H2SO4-

driven reactions. Most researchers estimate such weathering fluxes from stream chemistry but interpreting the 20 

reactant minerals and acids dissolved in streams has been fraught with difficulty. We apply a machine learning 

technique to EMMA in three watersheds to determine the extent of mineral dissolution by each acid, without pre-

defining the endmembers. The results show that the watersheds continuously or intermittently sequester CO2 but the 

extent of CO2 drawdown is diminished in areas heavily affected by acid rain. Prior to applying the new algorithm, 

CO2 drawdown was overestimated. The new technique, which elucidates the importance of different subsurface 25 

flowpaths and long-timescale changes in the watersheds, should have utility as a new EMMA for investigating water 

resources worldwide.  

 

1 Introduction 

We need to understand the long-term controls on atmospheric CO2 because of the impact of this greenhouse gas on 30 

global climate. This is important because humans are increasingly burning fossil fuels and releasing long-sequestered 

carbon to the atmosphere (Kasting and Walker, 1992). This new C flux upsets the natural long-term balance in the 

atmosphere between volcanic degassing and weathering-induced drawdown of CO2 over millennial timescales. 

Chemical weathering of the most common rock-forming minerals, silicates and carbonates, removes CO2 from the 

atmosphere by forming dissolved inorganic carbon that is carried in rivers to the ocean (DIC; Fig. 1). Over 105– 106 35 

yr timescales, this DIC is precipitated as marine calcite, releasing half or all of the atmospherically derived CO2 back 

to the atmosphere for silicates and carbonates, respectively (Fig. 1). Thus, over this timescale, CO2-driven weathering 

(CO2-weathering) of silicates sequesters CO2 out of the atmosphere while CO2-weathering of carbonates neither 

removes nor releases CO2 to the atmosphere (Fig. 1). Some researchers also emphasize that this simple picture 
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neglects weathering of another ubiquitous mineral, pyrite (Lerman et al., 2007). When pyrite weathers, it produces 40 

sulfuric acid that also dissolves silicates and carbonates, i.e., H2SO4-weathering. When DIC generated through 

H2SO4-weathering of carbonates is carried to the ocean, marine calcite precipitates and releases CO2, increasing 

atmosphere concentrations (Spence and Telmer, 2005; Calmels et al., 2011; Torres et al., 2014; Kölling et al., 2019). 

Thus, determination of the weathering contributions of silicates, carbonates, and pyrite is essential toward 

understanding long-term dynamics of CO2. In this paper we describe a powerful machine learning technique to 45 

interpret the sources of stream solutes to understand problems such as weathering. While we show the importance of 

applying this machine learning technique to the weathering question, we also emphasize how machine learning can 

teach hydrogeochemists about subsurface flow paths and other characteristics of stream systems.   

The most common way hydrogeochemists interpret the fluxes of weathering are to investigate stream and 

river chemistry. Determining the endmembers for streams is important because streams integrate the byproducts of 50 

weathering reactions over drainage basins, allowing assessment of regional to global understanding of fluxes – but 

only if minerals weathered by different acid sources can be deconvoluted (Li et al., 2008; Calmels et al., 2011; Torres 

et al., 2016; Winnick et al., 2017; Burke et al., 2018; Killingsworth et al., 2018). In small-scale studies in the 

laboratory or soil profiles, mineral reactions can be documented, but this information cannot be scaled up easily 

(Navarre-Sitchler and Brantley 2007). Here we show that machine learning can decipher the balance of fluxes of 55 

CO2- versus H2SO4-weathering as recorded in stream chemistry. We discovered that catchments partition water into 

subsurface flowpaths that can be i) deciphered with respect to the extent of pyrite, silicate, and carbonate weathering 

in different lithologies, and ii) interpreted with respect to whether weathering is driven by CO2 or H2SO4. We 

emphasize the long-term effects (over 10 5 -106 yr) on the CO2 balance in the atmosphere.  

Although geochemists commonly use stream chemistry to determine mineral sources of solutes via 60 

weathering reactions over large aerial extents (Gaillardet et al., 1999) and hydrologists commonly use endmember 

mixing analysis (EMMA) to determine the sources of solutes in a stream (Christophersen et al., 1990), stream 

datasets remain difficult to interpret because of spatial and temporal variations in endmember composition. For 

example, sulfur isotopes in stream solutes can distinguish pyrite-derived from rain-derived sulfate because pyrite 

typically is depleted in 34S (Burke et al., 2018; Killingsworth et al., 2018). But this attribution is difficult, more 65 

expensive, and often ambiguous because pyrite d34S varies between formations (Gautier, 1986) or within a single 

catchment (Bailey et al., 2004). Likewise, inputs of sulfate to watersheds, such as acid rain, can swamp out the signal 

from mineral reactions, and can change significantly over time (e.g., because of changing acid rain deposition) 

(Lynch et al., 2000; Lehmann et al., 2007). These factors make it difficult to determine sources releasing sulfate to 

varying stream chemistries over time. 70 

 Several so-called “inverse models” have been used successfully to partition sulfate into endmember sources 

for streams and rivers. These include the two prominent modeling approaches by Torres et al. (2016) and Burke et al. 

(2018).  However, because the chemistry of acid rain has varied over the past decades, utilizing the full range of rain 

chemistry in those models results in unrealistic contributions of acid rain (i.e., > 100%) or models that fail to 

converge. This is at least partly because the chemistry of acid rain has been so variable that it spans the entire 75 

measured range of stream samples. Additionally, utilizing the approach of Burke et al. (2018), based on the approach 
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of Gaillardet et al. (1999), requires a priori assignment of accurate endmember chemistries. Often, the researcher 

must rely on a few samples to characterize endmembers, resulting in large uncertainties in endmember chemistry and 

in source apportioning. Since the inception of EMMA, many researchers have aimed to improve analysis through a 

more accurate determination of unknown or under-constrained endmember chemistries (Hooper, 2003; Carrera et al., 80 

2004; Valder et al., 2012). But these efforts all use some a priori determination of endmembers. Our machine 

learning model adds to the growing effort to improve EMMA by applying blind source separation. The machine-

learning approach we describe here de-convolves sources of stream chemistry without pre-defining the endmembers. 

We demonstrate this first with a synthetic dataset and then with data from three well-studied watersheds with 

different characteristics. The new method discovers the endmember chemistries and, as a result, documents new 85 

findings of importance previously undiscovered with the other methods.  

For the target watersheds, we focus first on Shale Hills, an acid rain-impacted shale watershed in central 

Pennsylvania, USA with extensive data for water/rock chemistry (Jin et al., 2010; Brantley et al., 2013a; Sullivan et 

al., 2016). This watershed allows the most complete understanding of solute sources. Although we do not show this 

here, if we use either of the two previously used models for source attribution, stream chemistry data for Shale Hills 90 

either does not separate acid rain and pyrite as a sulfate source (if we use the model of Torres et al., 2016) or yields a 

proportion for acid rain which is larger than 100% (if we use the model of Burke et al., 2018). As shown below, the 

Non-negative Matrix Factorization (NMF) model easily defines endmembers and proportions.  

We then show the utility of the machine learning method for watersheds where less water/rock chemistry has 

been published: we investigate East River and Hubbard Brook catchments. Like Shale Hills, East River is shale-95 

hosted, but it receives little acid rain (Winnick et al., 2017). In contrast, Hubbard Brook has been extensively 

impacted by acid rain but is underlain by glacial till over schist (Likens et al., 2002). In both cases, NMF successfully 

determines endmembers and source proportions. 
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Figure 1. Schematic summarizing the reactions, timescales, and net CO2 release to or uptake from the atmosphere accompanying 100 
weathering of silicate and carbonate minerals. Uptake or release depends upon timescale, as shown, and as discussed in text. CaSiO3 is 

used as a generic silicate mineral.   

 
2 Methods 

2.1 Study Sites 105 

Where previous deconvolutions of stream chemistry into endmembers were generally based on assumptions of the 

chemistry of dissolving minerals alone, data for watersheds show that the flowpath of the water also affects this 

chemistry (e.g., Brantley et al 2017).  We demonstrate this with data from three well-studied watersheds with 

different characteristics. We focus first on Shale Hills, a small (0.08 km2), acid-rain impacted forested watershed 

underlain by Rose Hill shale located in central Pennsylvania, USA (Brantley et al., 2018). The Rose Hill Formation 110 

shale contains ~0.14 wt% S as pyrite (FeS2) (Gu et al., 2020a).  

We then show utility of the method in East River (shale-hosted but it receives little acid rain) and Hubbard 

Brook (extensively impacted by acid rain but is underlain by schist and glacial till) catchments. Specifically, East 

River is a large (85 km2), mountainous watershed underlain by Mancos Shale that is located near Gothic, Colorado 

USA within the Gunnison River basin (Winnick et al., 2017). The Mancos is a black shale that contains ~1.6 wt% S 115 
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as pyrite (Wan et al., 2019). Both of these shale-hosted watersheds contain carbonate minerals that vary in 

composition and abundance in the subsurface. Lastly, Hubbard Brook (Nezat et al., 2004), located in the White 

Mountains of New Hampshire USA, consists of a series of nine small (0.14-0.77 km2), forested watersheds underlain 

by Rangeley Formation metamorphosed shale and sandstone (schist) generally covered by glacial till derived mostly 

from the Kinsman granodiorite. The schist bedrock contains ~0.2-0.9 wt% S and till contains ~0.1-0.2 wt% S. Again, 120 

almost all S is present as iron sulfide (pyrite or pyrrhotite). Both bedrock and till are largely carbonate-free.  

 

2.2 Data Acquisition  

For Shale Hills, daily stream chemistry has been reported from 2008-2010 (Brantley et al., 2013b; Brantley et al., 

2013c; Brantley et al., 2013d). Additional samples were measured in other time intervals for sulfur isotopes and 125 

alkalinity (Jin et al., 2014). All samples were filtered through a 0.45 µm Nylon filter and aliquots for cation analysis 

were acidified with nitric acid. Cations were measured on a Leeman Labs PS3000UV (Teledyne Leeman Labs, 

Hudson, NH) inductively coupled plasma–optical emission spectrometer (ICP-OES), and anions were measured on a 

Dionex Ion Chromatograph (Sunnyvale, CA). Alkalinity was measured by titration with 0.16 M H2SO4. Discharge 

data are available online (http://www.czo.psu.edu/data_time_series.html). 130 

All published data from East River were used in analysis (Winnick et al., 2017), except for two samples with 

extremely high values of chloride (246 and 854 µM) because they differed significantly from the remaining sample 

chemistry (average Cl concentration = 21µM). Hubbard Brook weekly chemistry from 2000-2017 was downloaded 

for the sub-catchments (3, 6, 7, 8, 9) that were not experimentally manipulated (Bernhardt et al., 2019). Stream 

discharge data for each sub-catchment are from USDA Forest Service (USDA, 2019). 135 

 

2.3 Machine Learning Model 

To assign the proportion of sulfate in streams to sources, we first bootstrapped measurements to increase data volume 

and then used a method of blind source separation (Alexandrov and Vesselinov, 2014; Vesselinov et al., 2018) called 

non-negative matrix factorization (NMF). NMF is unique from previously used methods in that it allows calculation 140 

of endmember compositions and mixing proportions simultaneously and does not rely on measurements or 

assumptions of endmembers a priori (Fig. 2A; see SM section 1). Specifically, NMF decomposes the n x m matrix, V, 

into two matrices W and H:  

 V = WH,             (1) 

Here, cell entries of V are molar solute concentration ratios, [X]/[Y], for stream samples. Indicator n refers to the 145 

sampling date, m refers to different solutes X (= Ca2+, Mg2+, Na+, K+, Cl-), and brackets refer to concentrations. W is 

the n x p matrix whose cell entries are proportions, a, for each endmember in each stream sample. Again, n refers to 

sampling dates, but p is the number of sources of solutes (referred to as endmembers). The proportions refer to the 

fractions of sulfate in each sample that derive from an individual endmember, where the sum of proportions must 

equal 1 ± 0.05 for each sample. To derive the mixing proportions of sulfate specifically, we set up the NMF approach 150 

by normalizing each analyte concentration by sulfate concentration (Y = SO4
2-), the target solute. After running the 
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algorithm for each of the three watersheds, we then inferred by inspection (see discussion below) that the 

endmembers represent different flowpaths in the subsurface. Therefore, these proportions of sulfate are referred to 

here as shallow, moderately shallow, and deep flowpaths, i.e. ashallow, amoderate, and adeep respectively (only one of our 

target watersheds revealed the moderate-depth flowpath). H is the p x m matrix whose cell entries are the 155 

concentration ratios that define the chemical signature of each of the p endmembers. The key to NMF is that these 

concentration ratios are not determined prior to apportionment but rather are determined from the data itself. In 

addition, the chemical signatures of each endmember can vary temporally around central tendencies. Because the 

solution to eq. 1 is non-unique, we run the model 20,000 times, apply a filter to the models, and then calculate the 

mean and standard deviation of the remaining models for trend and error analysis (see SM section 1; Eq. S1).  160 

The only hyperparameter that must be defined to run NMF a priori is the number of endmembers, p. We used 

principal component analysis (PCA) to determine the minimum number of components needed to explain >90% of 

the variance in stream solute ratios, and trained NMF to the bootstrapped data while assuming that number of 

endmembers. Machine learning determined the compositions defining the endmembers and the mixing proportions of 

each endmember in each sample. After running NMF, we interpreted each endmember composition based on 165 

geological and watershed knowledge. 

 Based on the outputs of the NMF model, we calculated the weathering rates of sulfide, carbonate, and silicate 

minerals in the watersheds. Additionally, we calculated the relative contributions of sulfuric and carbonic acid 

driving those weathering reactions. For details on the weathering calculations see SM section 2. 

 170 

2.4 Synthetic Dataset 

NMF is an algorithm that has been used for many applications (e.g., spectral analysis, email surveillance, cluster 

analysis; Berry et al., 2007) but has only recently been applied to stream chemistry (e.g., Xu and Harman, 2020). To 

exemplify the validity of our modeling approach, we generated a dataset of synthetic stream chemistry versus time 

and ran it through our NMF model. First, we defined two known endmember compositions, which are shown in 175 

Table S1. Next, we randomly generated 300 synthetic stream samples that were each calculated as a mixture of the 

two endmembers. Lastly, we ran NMF on the synthetic stream chemistry to determine the mixing proportions (a) and 

endmember compositions ([X]/[SO4
2-]), for all X.  
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Figure 2. Schematic diagram showing the differences between a traditional mixing model and our machine learning mixing model (A). 180 
Notably, in the machine learning mixing model, endmember chemistry is not assigned a priori, but rather derived from patterns in the 

data. Results from using our machine learning mixing model (i.e., NMF) on a synthetic dataset of known endmember chemistry and 

mixing proportions (i.e., a) are shown in B and C. Using only the synthesized stream sample chemistries, the model adequately 

recovered the correct mixing proportions (B) and endmember chemistries (C). The axes in (C) are the true concentration ratios of the 

endmembers and the NMF-derived concentration ratios of the endmembers. 185 

 
3 Results and Discussion 

3.1 Synthetic Data Model 

After generating the synthetic dataset of stream samples, we utilized NMF to determine the mixing proportions and 

endmember compositions. We then filtered out the poor fitting models (see SM eq. S1). As described more fully in 190 

the SM, this left an average number of valid models of 62 (range: 42-77). The average variance between valid models 

was <10%. Without any prior information about the system, NMF accurately determined the correct mixing 

proportions (RMSE = 0.04; R2 = 0.98; p < 0.001; Fig. 2B) and endmember compositions (RMSE = 0.21; R2 = 0.99; p 
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< 0.001; Fig. 2C). In effect, the model was able to use patterns in the data to deconvolve sample chemistry into 

endmembers and proportions.  195 

 

3.2 Application to Shale Hills 

While clay minerals in shale-underlain watersheds in rainy climates are found at all depths because of their low 

chemical reactivity, pyrite and carbonate minerals are often chemically removed from upper layers and only found in 

unweathered shale at depth (Fig. 3; Brantley et al., 2013a; Wan et al., 2019; Gu et al., 2020a). For example, at Shale 200 

Hills, pyrite and carbonate minerals are only observed deeper than at least 15 meters below land surface (mbls) under 

the ridges and 2 mbls under the valley. In these deeper zones, calcite (CaCO3), ankerite 

(Ca(Fe0.34Mg0.62Mn0.04)(CO3)2), and pyrite (FeS2) dissolve in regional groundwaters that flow to the stream (Brantley 

et al., 2013a; Gu et al., 2020a). These groundwaters thus contribute DIC, Ca2+, Mg2+, and SO4
2- into the stream.  

Like many catchments, water also flows to the stream in Shale Hills along a much shallower near-surface 205 

flowpath, which we call interflow (Fig. 3). Interflow is thought to occur along a transiently perched water table that 

lies within the upper 5-8 mbls. The most abundant mineral, illite 

(K0.69(Si3.24Al0.76)(Al1.69Fe3+
0.10Fe2+

0.16Mg0.19)O10(OH)2), dissolves in interflow where it flows through the soil, with 

minimal illite dissolution in underlying weathered rock. Illite dissolution releases DIC and Mg2+ and K+ to interflow 

waters and causes precipitation of clays and iron oxides. Interflow derives ultimately from local precipitation that 210 

also contains Na+, Cl-, and SO4
2-. Interflow and deep groundwater flowlines converge under the catchment outlet 

where the stream, on average, is 90% interflow and 10% deep groundwater (Sullivan et al., 2016; Li et al., 2017).  

Only one mineral, chlorite ((Fe2+
0.40Mg0.15Al0.35)6(Si0.76Al0.24)4O10(OH)8), is observed to begin to weather in 

the deep groundwater and continue weathering all the way to the surface (Fig. 3; Gu et al., 2020a). Chlorite thus 

dissolves to release Mg2+ to both interflow and deep groundwater. While most water entering the catchment leaves as 215 

interflow without entering deep groundwater, the wide reaction zone observed for chlorite is consistent with a small 

fraction of water infiltrating vertically to the deeper zone (Brantley et al., 2017). 
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Figure 3. Schematic cross section of Shale Hills showing the depths (labelled lines) where oxidation of pyrite, and dissolution of 

carbonate, chlorite, and illite initiate (modified after Brantley et al., 2013a). Illite and chlorite dissolve at all depths above the labelled 220 
lines, but reactions of carbonate minerals and pyrite only occur in a narrow one-meter wide depth zone under the ridge that widens to 

several meters toward the valley. Specifically, pyrite oxidation is complete under both ridge and valley at the depths where chlorite 

dissolution initiates. Carbonate dissolution is complete at the depth where pyrite oxidation is complete under the ridge but at ~4 m 

above the pyrite front under the valley. These reaction fronts are estimated and extrapolated from bulk chemistry measured in 

samples from boreholes located at the ridge and valley (Jin et al., 2010; Brantley et al., 2013a; Gu et al., 2020b).  225 
 

PCA for stream chemistry (2008-2010) at Shale Hills revealed two sources of sulfate, and this was used to 

set up NMF, i.e., p = 2 (Table S2). By comparing the compositions from matrix H (Table S2) determined by NMF to 

our knowledge of the subsurface (Fig. 3), we interpreted the two endmembers as deep and shallow weathering along 

the two flowpaths, i.e. groundwater and interflow (Fig. 3), respectively (Jin et al., 2014; Sullivan et al., 2016). The 230 

endmember with high [Ca2+]/[SO4
2-] and [Mg2+]/[SO4

2-] was attributed to deep weathering because Ca- and Mg-

containing minerals (i.e., calcite and ankerite) only dissolve at depth (Fig. 3; Jin et al., 2014; Gu et al., 2020a). The 

high [Cl-]/[SO4
2-] endmember was attributed to shallow interflow because it is dominated by Cl-containing acid rain. 

This attribution revealed, consistent with other studies of the acid rain-impacted northeastern United States, that 

precipitation accounts for the majority of sulfate flux (i.e., 77%) at Shale Hills between 2008 and 2010. 235 

Many lines of evidence back up these endmember attributions. The sulfate in the shallow endmember derives 

from interflow well above the pyrite oxidation front through pyrite-depleted rock and is thus attributed to acid rain, 

while the sulfate in the deep endmember is attributed mostly to pyrite oxidation. Some sulfate from acid rain may 

infiltrate to the regional groundwater, but the fraction is small. At Shale Hills, acid rain always contains Cl- and 

pyrite oxidation always preferentially dissolves carbonate minerals, giving each flowpath endmember a unique 240 

signature. 

To test the NMF deconvolution, we compared these attributions to isotopic data. The value of d34S in 

dissolved sulfate is observed to correlate with increasing concentrations of pyrite-derived sulfate determined by NMF 

(Fig. 4A), consistent with depleted d34S signatures in pyrite (e.g., -20‰; Killingsworth et al., 2018).  In contrast, acid 

rain shows d34S values around +3-5‰ (Bailey et al., 2004), and low sulfate concentrations in stream samples are 245 

characterized by d34S values within this range. Also, as pyrite oxidizes, the concentration of sulfate increases and the 

d34S values decrease to reflect the inferred composition of pyrite, -9.5‰ to -7.2‰ (Fig. 4A). Finally, Gu et al. 

(2020b) showed that pyrite oxidation drives the carbonate dissolution at Shale Hills. NMF results show that stream 

water was near calcite equilibrium (i.e., Wcalcite  = 1; log Wcalcite = 0) and had the highest pyrite-derived sulfate 

concentrations when the stream was fed by groundwater (Fig. 4B).  250 

 However, the annual flux of acid rain-derived sulfate from 2008-2010 in the shallow endmember determined 

from NMF at Shale Hills (Table 1) far exceeds the wet deposition of sulfate during the sampling period (Fig. 4C). 

Such inconsistencies have been noted elsewhere and attributed to travel-time delays over decades between acid rain 

input and stream output (Cosby et al., 1985; Prechtel et al., 2001; Mörth et al., 2005; Rice et al., 2014). Fig. 4C thus 
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allows us to estimate a ~19-31-year lag time between input and export of sulfate from the temporally changing acid 255 

rain (see SM section 2.4).  

Weathering profiles at Shale Hills, the chemistry of the composition (H) matrix, sulfur isotopes, calcite 

saturation, and lag in acid rain export all support our interpretation that the two components in the NMF model are 

shallow and deep flowpaths and that sulfate largely derives from acid rain and pyrite respectively. The dissolution of 

different minerals along these flowpaths lead to patterns in stream chemistry that our NMF model discerns and 260 

separates. If mineral reaction fronts are not separated in the subsurface, different flowpaths might not be separated by 

NMF; however, Brantley et al. (2017) and Gu et al. (2020a) have shown that separation of reaction fronts is common.  

 

 
Figure 4. (A) Sulfur isotope composition plotted versus concentration for sulfate in the subset of stream or groundwater samples at 265 
Shale Hills where S isotopes were measured (symbols; Jin et al., 2014). Dot-dashed lines represent the average sulfur isotope range for 

acid rain in USA (3-5‰; Bailey et al., 2004) and dashed lines represent the average sulfur isotope range of pyrite calculated from NMF 

results (-9.5‰ to -7.2‰). Sulfur isotopes in pyrite at Shale Hills were previously constrained to lie in the range of -1‰ to -15‰ (Jin et 

al., 2014). (B) Plot showing the calcite saturation index (log Wcalcite) vs. concentration of pyrite-derived sulfate (calculated through 

NMF) in surface and groundwater samples at Shale Hills where alkalinity was measured. Here Wcalcite (= ion activity product / 270 
equilibrium constant for calcite dissolution) is <1 the water is undersaturated with respect to calcite, and when Wcalcite is >1, the water is 

oversaturated. Black line represents water-calcite equilibrium. Some samples in B differ from those in A because more samples were 

collected for alkalinity than sulfur isotopes. In both A and B, color shading represents the fraction of total sulfate derived from pyrite 

calculated by NMF (i.e., adeep). (C) Time series plot showing the flux of sulfate in Pennsylvania NADP site PA42 (2.8 km from Shale 

Hills) from wet and dry deposition (see SM section 2.4). Black bar shows the NMF results for the export flux of sulfate derived from 275 
acid rain for Shale Hills during our sampling period, and the rationale for the inferred 19 y lag between input and output.  
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3.3 Rates of Weathering and CO2 Sequestration at Shale Hills 

With these calculations we can use NMF results to elucidate the effect of sequestration or release of CO2 at Shale 280 

Hills. We emphasize fluxes of importance over 105– 106 yr timescales. CO2-driven weathering of the silicate minerals 

chlorite and illite removes carbon from the atmosphere and carries it as DIC in rivers to the ocean where it is buried 

as carbonate minerals (akin to reaction 2 in Figure 1, Table S3).  In contrast, calcite and ankerite weathering coupled 

to pyrite oxidation instead releases CO2 to the atmosphere over those timescales (reaction 7 in Figure 1) and 

carbonate mineral weathering is neutral over those timescales (reaction 4 in Figure 1). Additionally, acid rain can 285 

interact with silicate minerals but not carbonate minerals at Shale Hills (because these are not present in the shallow 

subsurface (Fig. 3)). Thus H2SO4-dissolution caused by acid rain competes with CO2-dissolution for silicates. This 

competition lowers the CO2 consumption from silicate weathering, which been observed in other watersheds (e.g., 

Suchet et al., 1995). 

To summarize the effect of weathering on CO2 considered at the timescale of 105– 106 yr as shown in Figure 290 

1, we propose a new parameter, the stream CO2 sequestration coefficient, kstream (see SM section 2.2 for full 

derivation). This coefficient is defined as mol CO2/[Σ!]"#"$% where [Σ!]"#"$% is the sum of the equivalents of base 

cations in a sample. Here, equivalents refer to molar concentration multiplied by charge for an ion. Positive kstream 

implies the stream acts as a source and negative implies it acts as net sink of CO2 and the values are calculated for an 

individual sample or integrated over some time period of stream sampling. The product of kstream times [Σ!]"#"$% 	in a 295 

sample equals the moles of CO2 sequestered or released during weathering as represented in that sample (but the 

accounting is calculated for the reactions considered for the 105-106 y timescale in Figure 1). Quantitatively this 

parameter reveals the moles of CO2 sequestered or released during weathering per cation equivalent in a given stream 

sample: 

𝜅&"'($) = *
+
(−1 + 𝛾&"'($) + 𝜁&"'($)),          (2) 300 

Here, gstream is the proportion of cation equivalents in the stream derived from carbonate weathering per [Σ!]"#"$%, and 

zstream is the ratio of sulfate equivalents from sulfuric acid per total base cation equivalents. We calculate gstream for a 

sample by multiplying the pyrite-derived sulfate concentration (i.e., adeep multiplied by total sulfate concentration) by 

the [Ca2+]/[SO4
2-] and [Mg2+]/[SO4

2-] ratios in the sample calculated by NMF to have derived from the deep 

weathering endmember and then dividing by [Σ!]"#"$%. Likewise, zstream is calculated by multiplying the fraction of 305 

sulfate from pyrite + acid rain (e.g., adeep + ashallow) by the total sulfate concentration and dividing that by [Σ!]"#"$%. 

This calculation shows that seasonally, Shale Hills switches between net source and net sink of CO2 (Fig. 5D). Using 

the weathering reactions described in SM section 2.2, we also calculated the actual associated CO2 fluxes; annual 

CO2 dynamics are net-neutral at Shale Hills when considered over timescales of 105– 106 yr (Table 1; Fig. S4).  

The switch in systems from operating as a source or a sink is attributed to seasonality in the dominant 310 

flowpath: CO2-weathering of silicates occurs year-round, but H2SO4-weathering is more important in the wet season 

and is dominated by acid from rain. Specifically, in the dry season when water tables are low, the stream water is 
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often dominated by deeper groundwater flow that interacts with the deep pyrite reaction front and has little 

contribution of acid rain. However, even though this dry season is characterized by higher proportions of pyrite-

derived sulfate, the watershed acts predominantly as a sink of CO2 during this time of the year because the drawdown 315 

of CO2 from CO2-weathering of silicates is larger than the efflux of CO2 from pyrite-driven H2SO4-weathering of 

carbonate (Fig. 5D). In the wet season when water tables are high, however, the stream is dominated by shallow 

interflow that does not interact with pyrite but has a large contribution of H2SO4 from rain. Kanzaki et al. (2020) also 

previously showed that the separation of reaction fronts (Fig. 3) can cause such important effects on CO2 fluxes, 

although that previous treatment focused strictly on simple model systems unaffected by acid rain. 320 

To test the accuracy of these inferences based on NMF, we compare to previous results for Shale Hills. 

Based on soil pore-water chemistry and rain fluxes at Shale Hills, Jin et al. (2014) estimated the CO2 drawdown from 

silicate weathering to be 44 mmol m-2 yr-1. We find that if we assume all silicate weathering is CO2-driven, then the 

silicate weathering drawdown is 38 mmol m-2 yr-1, which is consistent with the estimate of Jin et al (2014). But 44 

mmol m-2 yr-1 is an overestimate because it does not consider H2SO4-weathering of silicates or carbonates.  325 

 
Table 1. Fluxes of SO4

2-, Cations, and CO2  

         Shale Hills        East River         Hubbard Brook 

 Base Cation Fluxes (meq m-2 yr-1)a 

Total base cation flux 336 ± 13 1540 ± 30 84.6 ± 0.8 
Base cation flux from CO2-weathering of silicates  12.6 ± 21.1 315 ± 58 24.1 ± 0.8 

Base cation flux from CO2-weathering of carbonates 216 ± 16 587 ± 48 NAc 

Base cation flux from H2SO4-weathering of silicates  62.4 ± 1.0 152 ± 4 60.5 ± 0.2 

Base cation flux from H2SO4-weathering of carbonates 44.8 ± 1.9 488 ± 9 NAc 

 Fluxes (mmol m-2 yr-1)b 

Total sulfate flux 50.3 ± 0.3 198 ± 1 30.3 ± 0.1 
Sulfide-derived sulfate flux 11.2 ± 0.9  122 ± 4 9.1 ± 0.1 
Rain-derived sulfate flux 38.9 ± 1.0 76.0 ± 4.2 21.2± 0.6 

CO2 sequestration or release   4.9 ± 10.7 -35.6 ± 30.4 -12.1 ± 0.4 

 CO2 Sequestration Coefficients 

kstreamd,e 0.01 ± 0.03 -0.02 ± 0.02 -0.14 ± 0.01 

krock -0.08 ± 0.11 0.08 ± 0.17 -0.19 ± 0.11 
aWeathering fluxes calculated following procedure in SM section 2.2 
bNegative CO2 flux indicates sequestration and positive indicates release to atmosphere as considered over 105– 106 yr timescales (see Fig. 1) 
cNo carbonate cation fluxes reported because the bedrock contains no carbonate 330 
dStream CO2 sequestration coefficient integrated over the period of record for each site  
eRock and stream CO2 sequestration coefficients show that Shale Hills and East River are within error of net-neutral with respect to CO2 and 
Hubbard Brook sequesters CO2.  
 

3.4 East River  335 

Shale Hills is unique in that it is a monolithologic catchment and the data volume to constrain endmember 

apportionment is large. But NMF also works well for watersheds in which the subsurface flow and reactions are less 

constrained partly due to the more complex subsurface geology. The weathering profile at East River (underlain by 
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black shale) shows that pyrite and carbonate are depleted in upper layers but start dissolving at ~2-4mbls (Wan et al., 

2019). PCA shows that the number of components is 2. The composition of the endmembers for East River are 340 

similar to Shale Hills (Table S2); however, the endmember composition indicates a higher proportion of H2SO4-

weathering of carbonates (see SM section 2).  

Based on NMF for East River, pyrite contributes 62% of the annual sulfate flux (Table 1). Sulfuric acid 

drives 29% to 69% of carbonate dissolution depending on the season, and this compares well with previous estimates 

of 35-75% (Winnick et al., 2017). Unlike Shale Hills, pyrite oxidation at East River is the dominant source of sulfate 345 

because acid rain is less important, and the black shale is pyrite-rich (Fig. 5B).  

Although East River is like Shale Hills in that it intermittently switches between acting as a source or sink of 

CO2 (Fig. 5), the seasonality of the switch between Shale Hills and East River is reversed. During baseflow (i.e., 

between periods of precipitation), Shale Hills is predominantly a sink of CO2, and it sometimes switches to a source 

of CO2 in the wet season because acid rain competes with CO2 and reduces CO2 consumption from silicate 350 

weathering. Without the large acid rain influx, East River instead acts as a sink of CO2 during the wet season of 

snowmelt and then switches to a source during baseflow. Our results are consistent with previous interpretations 

(Winnick et al., 2017) suggesting CO2 efflux rates are highest in baseflow-dominated and lowest in snowmelt-

dominated flow regimes.  

 355 

3.5. Hubbard Brook 

Monolithologic shale watersheds are not the only target chemistries that can be deconvoluted with NMF: we now 

consider Hubbard Brook, a catchment on crystalline rock. Large variations in the d34S composition of the bedrock at 

Hubbard Brook (Bailey et al., 2004) mean that sulfur isotopes in stream water cannot be used to unambiguously 

apportion sulfate sources. Weathering fluxes from sulfide minerals are therefore difficult to constrained (Mitchell et 360 

al., 2001). 

At Hubbard Brook, PCA shows three endmember sources of sulfate. As described below, we attribute these 

to three inferred flow lines, two in till and one at depth: waters flowing through i) shallow soil developed from till, ii) 

moderately-deep, less-weathered till, and iii) weathering bedrock. A three-layered weathering profile has been 

observed in other till-covered areas of New Hampshire as well (Goldthwait and Kruger, 1938). We used these ideas 365 

to identify endmembers as described below.  

Concentrations of sulfate in acid rain have declined over time in northeastern USA (Lynch et al., 2000; 

Lehmann et al., 2007). Of the three NMF-determined endmembers at Hubbard Brook, two of them show declining 

sulfate concentrations with time. We therefore attributed the first and second endmembers to acid rain (Fig. S1).  

Only one endmember showed little to no decline in sulfate concentration over time, and we therefore 370 

attributed that endmember to deep weathering in water interacting with the underlying bedrock. The composition of 

the deep weathering endmember shows a strong correlation between [Mg2+]/[SO4
2-] and [K+]/[SO4

2-].  This chemical 

signature is similar to previous observations of weathering of metasedimentary rock piles where silicates (biotite and 

chlorite) are the first minerals to dissolve when sulfides oxidize (Moncur et al., 2009). Specifically, biotite 

(K(Si3Al)Mg2FeO10(OH)2) is known to release Mg2+ and K+ while chlorite releases Mg2+ upon weathering.  375 
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Moreover, the metamorphic conditions that produce pyrrhotite also produce biotite and chlorite, and those three 

minerals tend to be located together in schist foliations (Carpenter, 1974). We thus infer that pyrrhotite oxidation at 

Hubbard Brook apparently causes dissolution of biotite + chlorite because these are the most susceptible minerals in 

close proximity to the sulfide. Thus, several lines of evidence underlie our interpretation that component 3 is the deep 

weathering source of sulfate.  380 

From the NMF results summarized in Table 1, pyrrhotite can account for 30% of the total sulfate flux at 

Hubbard Brook. The schist and till contain essentially no carbonate; therefore, weathering is always a net sink for 

CO2. In this watershed, however, the story is complicated by the dissolution of silicate minerals by sulfuric acid from 

pyrrhotite oxidation and acid rain. If we had assumed all of the base cations detected in Hubbard Brook were caused 

by CO2-weathering, we would have overestimated the net drawdown of CO2 out of the atmosphere (Fig. 1).  385 

 

 
Figure 5. Concentration of total sulfate (black line), rain-derived sulfate (NMF-calculated; gray) and sulfide-derived sulfate (NMF-

calculated; yellow) in stream water plotted versus time at Shale Hills (A), East River (B), and Hubbard Brook (W-3 sub-catchment) 

(C). Shale Hills and East River temporally switch between being a source and sink of CO2, while Hubbard Brook is always a sink over 390 
the timescales studied, as shown by the CO2 sequestration coefficient (kstream) for Shale Hills (D), East River, (E), and Hubbard Brook 

(F). Gray error bars in D, E and F represent 1s.d. from the calculated kstream for that sample. The range (mean + 1s.d.) indicated in red 

to the right of D, E, and F represent krock, the time integrated CO2 sequestration coefficient calculated from the rock chemistry (see 

text). Here, kstream > 0 or <0 indicates stream is a source or sink of CO2 respectively when considering weathering reactions over 105 to 
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106 yr timescales (see Fig. 1).  The long record at Hubbard Brook shows that kstream is approaching krock as the watershed recovers from 395 
acid rain. Gaps in the time series for Shale Hills occur when the autosampler tubing or stream froze. 

 
3.6 Predicting CO2 release or drawdown from rock chemistry 

From the stream chemistry, we found that Shale Hills and East River are net neutral with respect to CO2, and 

Hubbard Brook is a net sink (Table 1; Figure 5). In Table 1, the weathering fluxes are summarized as CO2 fluxes (see 400 

SM section 2.2; Fig. S4), but the NMF results can also be used to calculate weathering losses for each mineral as 

described in SM 2.5 (Table S5). Although we do not explicitly discuss each of these mineral-related fluxes learned 

from NMF, they have resulted in differences in composition of soil versus protolith and we can use soil chemistry 

therefore as an additional test of kstream: specifically, we compare kstream to the CO2 flux recorded in the weathered 

profile as solid-phase chemistry. To do this, we calculate a CO2 sequestration coefficient analogous to kstream but 405 

instead based on rock chemistry, krock, by assessing soil and taking into account the fraction of base cations 

weathered, the fraction of base cations from carbonates, and the capacity of the bedrock to produce H2SO4:  

𝜅'#,- =
*
+
(𝜏 + 𝛾'#,- + 𝜁'#,-),            (3) 

In effect, krock is the time-integrated CO2 sequestration coefficient recorded as the solid phase weathering products in 

units of mol CO2/eq base cation. In eq. 3, t is the mass transfer coefficient for base cations at the land surface (where 410 

1-t equals the fraction of total base cations originally present in parent rock that remain in topsoil at land surface), 

grock is the proportion of base cations in the bedrock associated with carbonate minerals, and zrock is the acid 

generation capacity of the rock. The derivation of eq. 3 and description of each variable is more fully summarized in 

SM section 2.3. Briefly, grock expresses the proportion of base cations in the parent rock that are associated with 

carbonate minerals (varies from 0 to 1 for 100% silicate protolith to 100% carbonate protolith). zrock expresses the 415 

relative amount of (acid-generating) pyrite to base cations in the protolith (varies from 0 to 1.5 for catchments where 

100% of weathering is CO2-driven to catchments where 100% of weathering is H2SO4-driven, respectively). t 

expresses the fraction of cations that have not dissolved away upon exposure at the land surface (varies from -1 to 0 

for 0% cations remaining at land surface to 100% cations remaining, respectively). Negative krock describes a 

lithology that has been net sequestering CO2 over the duration of weathering, whereas positive krock has been net 420 

releasing CO2. Based on the chemistry of the bedrock and topsoil at each watershed, krock is -0.08 ± 0.11, 0.08 ± 0.17, 

and -0.19± 0.11 for Shale Hills, East River, and Hubbard Brook, respectively (Tables 1, S4). Based on these values 

from observations of the solid weathering phases, Shale Hills and East River on net are CO2 neutral (i.e., within error 

of 0), but Hubbard Brook has acted as a long-term CO2 sink.   

If the streams at each site today are acting just like the weathering recorded over the last tens of thousands of 425 

years in the solid-phase material and our assumptions about CO2- versus H2SO4-weathering are correct, krock should 

equal kstream. Here, we find that kstream (discharge-weighted average) for Shale Hills, East River, and Hubbard Brook 

are 0.01 ± 0.03, -0.02 ± 0.02, and -0.14 ± 0.01 respectively (Table 1, Fig. 5). For all sites, the stream chemistry shows 

similar values of CO2 sequestration coefficient for the modern (stream timescale) compared to the time-integrated 
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(soil timescale), i.e., kstream » krock, consistent with Shale Hills and East River acting as CO2 net neutral but Hubbard 430 

Brook as a CO2 sink.  In addition, at Hubbard Brook, it can be seen that acid rain has competed with CO2 in 

weathering minerals, lowering the capacity of the rock to sequester atmospheric CO2. Because our calculation of krock 

does not include acid rain, we would expect acid rain would increase kstream relative to krock, which is what we observe 

at Hubbard Brook. Hubbard Brook has only moved back to equivalency between the rock and stream record in recent 

years (2013-2016; Fig. 5F) as the system has recovered from acid rain. These comparisons also suggest that rock 435 

chemistry, which is much easier to analyze, can sometimes predict stream fluxes adequately. 

 

4 Conclusions 

By not requiring a priori assignments of endmembers, our machine learning model not only successfully reproduced 

source apportionments made in more traditional endmember analysis for streams, but also revealed new information 440 

about how watersheds work.  At the same time, the method also solved some issues related to source apportionment 

for streams with time variations of large acid rain inputs. The approach documented that two carbonate-containing 

shale watersheds (Shale Hills, East River) are intermittent sources or sinks of CO2 to the atmosphere but on net are 

neutral with respect to CO2. In contrast, because it has no carbonate minerals, Hubbard Brook is a constant sink for 

CO2 (Figs. 5 and S5). These observations were compared and confirmed by comparing stream chemistry to rock 445 

chemistry.  

NMF also emphasized the importance of different water flowpaths in determining endmembers: the 

endmembers were not strictly defined by mineralogy but by patterns of subsurface flow that can be related to 

subsurface reaction zones. These flowpaths lead to patterns in stream water chemistry that were easily deciphered by 

our newly developed machine learning-based mixing model. In particular, for three streams, signals in the chemical 450 

variations were observed to reveal dissolution of the most reactive mineral in proximity to sulfide oxidation. Many 

watersheds have flowpaths distinguished by geochemical signatures from mineral reactions (Brantley et al., 2017) 

but we do not know these paths a priori when we investigate stream chemistry. Machine learning will be useful to 

model mineral reactions on broader spatial scales and will help constrain global weathering-related CO2 dynamics 

because it can delineate endmembers without a priori assumptions.  455 

Beyond these attributes, the machine learning approach also revealed other new attributes of weathering. In 

Shale Hills, we discovered that sulfate inputs from acid rain may not be exported completely for two decades, which 

impacts mass balance and weathering-related CO2 dynamics. Although not discussed explicitly here, this decadal 

time-lag was also observed at Hubbard Brook. NMF also showed that Hubbard Brook, recovering from the impacts 

of acid rain, is only recently returning to its full potential as a CO2-sequestering rock system. In other words, prior to 460 

acid rain, Hubbard Brook sequestered more CO2 per mole of weathered bedrock than it does today. But acid rain 

dissolved some of the silicates with H2SO4, lowering the CO2 sequestration capability of the watershed. NMF led us 

to discover this new attribute of acid rain, namely that it diminishes the capacity of a rock to sequester CO2 at 

millennial timescales (Figure 1) by replacement of CO2 by H2SO4 as a weathering agent. Regardless of the net CO2 
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dynamic, we discovered that without considering sulfide oxidation or acid rain, the CO2 weathering sink considered 465 

over 105 to 106 yr timescales is always overestimated.  
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