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Introduction

This Supplementary Material is structured in three sections. Section 1 covers relevant aspects of copula theory to better under-
stand how the 2D and 3D copulas are obtained in this study. Section 3 presents a theoretical example to illustrate the impact that
conditioning the predictors on the impact variable has on the correlation coefficient and dependence patterns. Finally, Section

5 3 includes supplementary figures (S1-S14) that were referred to in the manuscript.
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1 Copula theory

Sklar (1959) describes the connection between a Copula C' and a bivariate cumulative distribution function (CDF) Fxy (z,y)

of any pair of variables (z,y) as:
ny(l',y):C[Fx(l'),Fy(Y)] (D

where F'x () and Fy (y) are the univariate marginal distributions. The bivariate probability density function (PDF) has the

following form:

fxy(z,y) = ClFx(x), Fy (Y)]fx (z) fy (y) ()

where fx(z) and fx(z) represent the marginal PDFs. Let « and v be uniformly distributed random variables defined as
u = Fx(z) and v = Fy (y), then the function ¢(u,v) (sometimes referred to as the copula density function) is given by:

02C (u,v)
dudv

c(u,v) =

3)

from which sampling can be performed through a Monte Carlo procedure , obtaining synthetic sets that preserve the dependence
structure of the original data. In higher dimensions, a joint probability distribution is obtained via pair-copula constructions,
i.e., Vine Copulas (Aas et al., 2009; Schepsmeier et al., 2018). This construction is hierarchical in nature and provides higher
flexibility than other multivariate distribution functions since different dependence structures between pairs of variables can be
adopted. Assuming the joint CDF continuous with strictly increasing marginal CDFs, vine copulas allow for the decomposition
of an n-dimensional copula density into the product of n(n — 1)/2 bivariate copulas. A decomposition example of a three-

dimensional f(x1,z2,x3) is given as:

f(w1,22,23) = fypa(w3|re, 21) fopr (w2|21) f1(21) 4)

where:

faji(w2,71) = cr2(F1(21), Fo(x2)) fa(22) )]

fajz(@slze,21) = cigpp(Fijz(z1]22), F3j2(23]|22)) f3)2 (23] 22) (6)

f3j2(w3,72) = ca3(Fa(w2), F3(x3)) f3(23) @)
3

Therefore, f(x1,z2,x3) can be expressed as:

flz1,29,23) =f3(x3) fo(22) f1(21) (marginals) 9
-c12(Fi(21), Fo(22)) fa(22) * co3(F2(22), F3(23)) f3(23) (unconditional pairs) (10)
ez (Fuja(1]22), Fyp(23|z2)) f3)2(23]22) (conditional pair) an

12)
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2 Impact of predictors conditioning on correlation

Here we present a simple theoretical test to illustrate the impact that the predictors’ conditioning (on the impact variable) has
on the kendall’s coefficient (7) (Kendall, 1938). Let A and B be two variables with standard normal distribution representing
daily values of climate drivers. Let C' be the impact variable driven by A and B by means of this simple impact function
C = A+ B. The dependence pattern between A and B is modelled by a Gaussian copula with associated 7 ranging from -0.9
to 0.9. We define the predictand (impact variable) as the annual maximum of C, noted as Cyy.x, and the conditioned predictors
as the values of A and B, respectively, when Cyax occurs, noted as Ac, . and Bc, .. .

Figure S1 shows the scatter plots of randomly generated 50-year time series for each case and the corresponding conditioned
predictors (in red). The corresponding empirically estimated 7 are also indicated. We can observe that when we condition on
the impact variable (for which both drivers positively contribute) we extract a sub-sample of the drivers realizations for which
the correlation experiences a negative shift (as compared to the original sample). It can be observed, for instance, that for
independence drivers (7 between A and B equals to zero, framed case in Figure S1) we obtain a a negative 7 between the
and B¢

corresponding A¢ From the latter we could not conclude, therefore, that the drivers are negatively correlated

max max *

(i.e. the probability of concurrent large values of both A and B being lower than what we would randomly get by chance).
In that particular case, the drivers are actually independent. Only in the cases with very strong positive correlation between
and B¢

A and B, the associated 7 between A¢ remains positive (in the example of Figure S1 for 7 > 0.6 between A

and B¢

max max

and B). Therefore, a weak correlation between A¢ does not necessarily imply a weak correlation between the
and B¢

and B¢, as obtained from the corresponding independent case (A and B with the same marginal distributions but

max max

underlying drivers. In fact, we argue that, for a given case, if the 7 between A¢
Ac

being the dependence pattern between them removed), then the underlying drivers A and B have a positive dependence pattern

is larger than the 7 between

max max

max

(i.e. concurrent large values of A and B are more likely to happen than by chance).

3 Figures

Included here are additional Supplementary Figures S1-S12 that were referred to in the manuscript.



< < < <
o ~ A o
@ oA @ o P
o ~ o
) D b
tau=-0.9 £ tau=-0.8 e tau =-0.7 tau=-0.6
Y4 tau=-0.95 Y 4 tau=-094 Y { tau=-0.93 Y { tau=-0.85
T T T T i T T T T T T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
A A A A
< < < <
o I I A
@ oA o o @ o @ o
Nl Nl o ~
h D D h
tau=-0.5 tau=-0.4 tau=-03 : tau=-0.21
¥4 tau=-0.76 ¥4 tau=-078 T4 tau=-081 ¥4 tau=-059
T T T T T T T T T T T T T T T T T T T T
-4 -2 [ 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
A A A A
<~ 4 . < 4 . < 4 . <9
o i o ~
o o o o o o
N Nl ~
) ) )
tau =-0.11 tau=0.19
Y4 tau=-05 b | YA tau = -0.43
T T T T T T T T T T T
-4 -2 4 2 4 -4 -4 -2 0 2 4
A
<1 <1 N
o ~ A
@ oA @ o
o ~
) h
tau=06
¥4 ¥4 tau = 0.09
-4 -4 -2 0 2 4
A

tau =08
tau = 0.43 T4
T

T
0 2 4

Figure S1. Scatter plot and estimated kendall’s 7 correlation coefficient for simulated drivers (A and B) for different degrees of dependence

(in black), and for conditioned predictors (Ac,,,, and Bc,,,.) (in red). The independent case (7 = 0 between A and B) is highlighted with

a frame for reference.
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Figure S2. W Ly,ax obtained by RTC-Tools vs. W Ly, obtained using the following impact functions with Sig h,min ad P12d acum (2D
case): Multiple Linear Regression with bin-sampling (MLRyi,), Multiple Linear Regression (MLR), Random Forest (RF) and artificial
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Figure S3. W Lyyax obtained by RTC-Tools vs. W Lax obtained using the following impact functions with S72n, mean, 112h,min and
Pi124 acum (3D case): Multiple Linear Regression with bin-sampling (MLRy,,), Multiple Linear Regression (MLR), Random Forest (RF)
and artificial Neural Networks (NN).
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Figure S4. Inland return water level as generated from the RTC-Tools (green) and as obtained from the 2D case using the indicated impact
functions: Multiple Linear Regression with bin-sampling (MLR4;iy, ), Multiple Linear Regression (MLR), Random Forest (RF) and artificial
Neural Networks (NN). The red dashed line (NAP + 7 cm) represents the flood warning level.
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Figure SS5. Inland return water level as generated from the RTC-Tools (green) and as obtained from the 3D case using the indicated impact
functions: Multiple Linear Regression with bin-sampling (MLRy;i» ), Multiple Linear Regression (MLR), Random Forest (RF) and artificial
Neural Networks (NN). The red dashed line (NAP + 7 cm) represents the flood warning level.
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Figure S6. (a) Frequency of W Ly,ax events occurring at each month. (c-d) show, respectively, the monthly mean of W Ly ax, Sgﬁh,min and

Pi24,acum conditioned to W Ljax.
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Figure S7. (a) Monthly mean surge and precipitation, (b) Frequency of the (univariate) annual maximum surge and precipitation occurring
at each respective month, (c) monthly mean of the (univariate) annual maximum surge and precipitation. Note that that here neither surge

nor precipitation is conditioned to the annual maximum water level.



10

0
g - T<T10th
T10th<T<T90th
T>T90th
=}
]
(=}
0
—
> O
8]
o
[}
>
o
o
w o
-
<}
T}
o
S}
=}
S
(=}
I I I I I I
2 4 6 8 10 12

months

Figure S8. Monthly frequency of the tidal ranges indicated in the legend (shaded areas) relative to the total monthly frequency of W L ax

events occurring each month (thick black line).
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Figure S9. Variability of copula fitting for 50-year runs for original (a) and shuffled data (b-k). Red dots indicate the independence test is

rejected.
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Figure S10. Variability of marginal probability density function for 50-year runs (gray lines) and 800-year ensemble (black line) for the

following predictors (original data): (a) Sg;;h,min, (b) Pi2d,acum> (€) S72h,mean, (d) Ti2x,min-
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Figure S12. Inland water level return level against estimate return period using a trivariate copula model (3D case). Blue and red dotted lines
depict the dependence and independence case, respectively. Transparent red denotes confidence intervals, which account for the uncertainty

range between the 5" and 95" percentiles, as computed from all shuffles. Gray and black lines represent the curves empirically obtained.
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Figure S13. 800-year return water level as obtained by calibrating the proposed statistical framework with original and shuffled data, respec-

tively, and by simulating 800-yr(a) and 100,000-yr(b) records, respectively. Only the first 800-year permutation of the shuffled data is used

here for illustration purposes.
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Figure S14. Inland water level return level against estimated return period using a trivariate copula. Gray and black dots depict the return

level estimates obtained for the dependence and independence cases, respectively, using the proposed statistical framework. Blue and red

illustrate the uncertainty associated to internal climate variability, represented by bounds computed using the 5th and 95th percentiles from

all 50-year ensembles, and the median value (dots). Uncertainty is assessed for each component of the methodology: a) 50-year ensembles

are used for all components; b) same as a) but impact function is optimally trained with 800 years of data; c) 50-year runs are used for copula

fitting only; d) 50-year runs are used for total surge marginal fitting only; e) 50-year runs are used for tide marginal fitting only; and f) 50-year

runs are used for precipitation marginal fitting only.
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