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Abstract.

The co-occurrence of (not necessarily extreme) precipitation and surge can lead to extreme inland water levels in coastal

areas. In a previous work the positive dependence between the two meteorological drivers was demonstrated in a managed

water system in the Netherlands by empirically investigating an 800-year time series of water levels, which were simulated via

a physical-based hydrological model driven by a regional climate model large ensemble.5

In this study, we present an impact-focused multivariate statistical framework to model the dependence between these flood-

ing drivers and the resulting return periods of inland water levels. This framework is applied to the same managed water system

using the aforementioned large ensemble. Composite analysis is used to guide the selection of suitable predictors and to obtain

an impact function that optimally describes the relationship between high inland water levels (the impact) and the explanatory

predictors. This is complex due to the high degree of human management affecting the dynamics of the water level. Training10

the impact function with subsets of data uniformly distributed along the range of water levels plays a major role in obtaining

an unbiased performance.

The dependence structure between the defined predictors is modeled using two- and three-dimensional copulas. These are

used to generate paired synthetic precipitation and surge events, transformed into inland water levels via the impact function.

The compounding effects of surge and precipitation and the return water level estimates fairly well reproduce the earlier results15
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from the empirical analysis of the same regional climate model ensemble. Regarding the return levels this is quantified by

a root-mean-square deviation of 0.02 m. The proposed framework is able to produce robust estimates of compound extreme

water levels for a highly managed hydrological system. Even though the framework has only been applied and validated in one

study area, it shows great potential to be transferred to other areas.

In addition, we present a unique assessment of the uncertainty when using only 50 years of data (what is typically available20

from observations). Training the impact function with short records leads to a general underestimation of the return levels as

water level extremes are not well sampled. Also, the marginal distributions of the 50-year time series of the surge show high

variability. Moreover, compounding effects tend to be underestimated when using 50-year slices to estimate the dependence

pattern between predictors. Overall, the internal variability of the climate system is identified as a major source of uncertainty

in the multivariate statistical model.25

Copyright statement. COPYRIGHT

1 Introduction

Floods, wildfires, and heatwaves typically result from the combination of several physical processes (e.g., Baldwin et al.,

2019; Manning et al., 2019; AghaKouchak et al., 2020). The physical drivers of such processes are not necessarily extreme or

hazardous when occurring in isolation, but they can lead to significant impacts when occurring altogether, or in a narrow time30

range (Seneviratne et al., 2012). Extreme events resulting from the combinations of physical drivers are referred to as compound

events, and can be classified into different (not entirely exclusive) categories (Zscheischler et al., 2020). These compound

climate extremes are receiving increasing attention because of their disproportionate economic, societal, and environmental

impacts, and because traditional univariate approaches can lead to strongly biased estimates of the associated risks (Wahl et al.,

2015). However, many challenges still lay ahead in order to properly understand, and predict, the complex chain of drivers35

that leads to compound events. Estimating the dependencies among drivers is challenging mainly due to the limited amount of

data available, especially for rare events (Zscheischler et al., 2018). Moreover, the definition of multivariate extremes is not as

straightforward as in the univariate case. A paradigm shift from a classical top-down approach adopted in many climate studies

towards an impact-centric perspective is needed (Zscheischler et al., 2018).

Compound flooding in coastal settings often originates from a combination of storm-driven waves and surges, and blocked40

discharge of terrestrial water from e.g. intense precipitation or snow melt. Meteorological conditions can lead to a (nearly)

simultaneous occurrence of storm surge or waves and a discharge peak when the area that generates the discharge is located

close to the coast. These types of events have the potential to occur in many coastal regions across the globe (Ward et al., 2018;

Couasnon et al., 2020). Low-lying coastal regions are particularly susceptible to flooding caused by the interaction of different

hazards (i.e., compound flooding), including oceanographic, pluvial, and/or fluvial hazards (Hendry et al., 2019). Thus, the45

assessment of multivariate events has received increasing attention in the coastal engineering and management communities
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(e.g., Anderson et al., 2019; Serafin and Ruggiero, 2014; Rueda et al., 2016; Wahl et al., 2015). The associated impacts strongly

depend on the catchment features and the characteristics of the storms (Wahl et al., 2015). For discharge peaks originating from

remote precipitation or snow melt inputs (for instance in larger river systems) delays between the surge and discharge peaks

are usually due to the finite travel speed of the discharge wave (Khanal et al., 2019b; Klerk et al., 2015).50

With the aim to obtain methods computationally less expensive than numerical simulations, statistical models have been

used to model compound events and estimate their probability of occurrence. In some specific cases, bi- or multi-variate

distributions can be derived directly from physical properties (e.g. the joint distribution between wave height and wave periods

in wind-sea states as a function of wave steepness (de Waal and van Gelder, 2005)). However, these are often limited to

idealized or very specific settings and rely heavily on the selection of the marginal distributions. In contrast, copula-based55

methods (Sklar, 1959) have the advantage to capture the dependence between a set of variables independently from their

marginal distributions (Genest and Favre, 2007), which explains why they have become a widely used approach nowadays.

In recent years, several copula-based studies have been carried out to study compound flooding events in coastal areas at

different spatial scales(e.g. Couasnon et al., 2018; Moftakhari et al., 2019; Jane et al., 2020). For example, Bevacqua et al.

(2017) developed and implemented a conceptual statistical model to quantify the risk of compound floods that result from the60

combination of storm surge and high river runoff in Ravenna (Italy). At regional scale, Wahl et al. (2015) assessed the historical

changes in the compound flooding due to precipitation and storm surge in US cities and identified a significant increase in the

number of compound events over the past century in major coastal cities. Accounting for climate change projections, Bevacqua

et al. (2019) showed how global warming can increase the probability of compound coastal flooding in Northern Europe. At

a global scale, Couasnon et al. (2020) provided a perspective of the compound flood potential from riverine and coastal flood65

drivers, which highlighted the complexity and large regional variability of such dependence structures. Dependence between

ocean wave heights and storm surges was recently investigated by Marcos et al. (2019) at global scale, showing that 55% of

the world coastlines face compound storm surge wave extremes.

This study is motivated by a near flooding event in 2012 in the Lauwersmeer reservoir in the Netherlands that was classified

as a compound event (van den Hurk et al., 2015). This multivariate event was characterized by a high inland (reservoir)70

water level (IWL) exceeding predefined warning levels and resulted from the joint occurrence of heavy precipitation on an

already wet soil and a high storm surge impeding gravitational drainage over several consecutive tidal periods. In terms of

the categorization of Zscheischler et al. (2020), this event can be classified as multivariate, pre-conditioned and temporally

compounding, which illustrates the complexity of this near flooding event. van den Hurk et al. (2015) empirically assessed the

return periods associated to compound extreme water levels with a single model initial-condition large ensemble (SMILE) of75

regional climate model (RCM) simulations covering 800 years under present-day climate conditions. SMILEs are a physically

based approach to increase the size of the database and therefore increase the number of simulated extreme compound events.

Apart from van den Hurk et al. (2015), SMILEs have been applied as tool to investigate compound events by e.g. Zhou and Liu

(2018), Khanal et al. (2019a), and Poschlod et al. (2020). This methodology allowed van den Hurk et al. (2015) to demonstrate

a positive dependence between storm surge and heavy precipitation and showed that the probability of occurrence of these80

extreme water levels can be greatly underestimated if such dependence is omitted.
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Here, we develop a copula-based statistical framework to model the extreme water levels in the Lauwersmeer reservoir,

including the dependence among the underlying drivers. Using the same aforementioned 800-year climate ensemble, we repro-

duce the results empirically obtained by van den Hurk et al. (2015) and provide additional insights into the underlying physical

factors and modelling uncertainties in compound analysis. Although the study is site specific, we address two novel aspects85

that provide relevant insights for the field of compound analysis.

First, we propose an impact-focused approach guided by composite analysis to model the relationship between extreme

water levels and underlying drivers in a water system with strong human management. We investigate the strong impact of

the definition and selection of the predictors and discuss the interpretation of their dependence structures in the context of

this impact-focused approach (which differs from conventional driver-centric approaches). Flooding events in managed water90

systems have been rarely explored in the literature. Most flooding studies cover natural systems which typically exhibit a

simpler relationship between drivers and impact variables (e.g. Bevacqua et al., 2017). Therefore, this study provides a novel

insight for flood risk management, which is growing in relevance in many low-lying areas (Pörtner et al., 2019) where sea level

rise increases flood frequency (Moftakhari et al., 2017; Taherkhani et al., 2020a).

Second, we explore for the first time (to our knowledge) the effect of internal (natural) climate variability on copula-based95

compound event analysis. We investigate the effect of using a 50-year subset of data on the estimation of dependence structures

(and other elements involved in the compound event analysis), ultimately assessing the accuracy of the estimation of return

levels. This is particularly relevant as most compound climate extreme studies are based on observations or simulated time-

slices with lengths well under 50 years (e.g. Ganguli and Merz, 2019; Wahl et al., 2015; Zheng et al., 2013). The global study

of Ward et al. (2018) showed that most available datasets of overlapping discharge-surge have a median duration of 36 years,100

with shorter to no observed records in most of Africa, South America and Asia.

2 Study area and data

Water management in the Netherlands is administered by regional water boards, which are approximately aligned with hy-

drological units. The study area comprises the water board unit of Noorderzijlvest (1440 km2) situated in the north of the

Netherlands (Fig. 1), which has an average altitude close to mean sea level height. The Lauwersmeer reservoir stores excessive105

water before it drains into the North Sea by gravity during low tides. In January 2012, a combination of heavy and prolonged

rainfall on saturated soil during high sea level conditions (blocking the free drainage) led to extreme IWL accompanied by

precautionary implications such as evacuation. Both precipitation and storm surge associated to this event were mild extremes

(with return periods of about 10 years, respectively), but IWL reached unusually extreme levels.

In terms of the underlying meteorological patterns, extreme winds with long fetch leading to high surges typically occur in110

October-December as a result of deep and extensive low-pressure systems moving from the North Atlantic region to central or

Northern Scandinavia (van den Hurk et al., 2015). Most extreme precipitation events occur during the summer months linked

to slow-moving medium-sized low-pressure systems over northern Germany or southern Denmark (van den Hurk et al., 2015).

High IWLs are caused by the interaction between these two patterns, which mostly occur in July-October. Additionally, Ridder
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Figure 1. Overview of study site, including elevation around the area, approximate location of data collection sites, and extent of the

hydrological unit (HU) and water board the Lauwersmeer Reservoir belongs to. The station Lauwersoog (yellow dot) measures the surge,

and the IWL is observed at the gauge marked by the red dot. The bottom right-hand side panel shows where the study site is situated in the

Netherlands.

et al. (2018) found that the majority of these types of compound events are accompanied by the presence of an atmospheric115

river over the Netherlands.

In this study, we build our statistical framework on the same database that was developed and applied by van den Hurk et al.

(2015). van den Hurk et al. (2015) empirically estimated the return periods of IWL by applying a physically based modelling

chain. They used the climate simulations of the 16-member ensemble of the RCM KNMI RACMO2 (van Meijgaard et al.,

2008; Van Meijgaard et al., 2012) driven by the global climate model (GCM) EC-EARTH 2.3 (Hazeleger et al., 2012). Forced120

by historical emissions, the GCM was run from 1850 to 2000 with 16 different perturbations of initial atmospheric conditions.

This ensemble was dynamically downscaled by the RCM at 12 km horizontal resolution for transient runs from 1951 to 2000,
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resulting in 800 years of historic climate. As the 16 50-year simulations only differ by the initial atmospheric conditions of the

driving GCM, the variability of the 16 time series can be interpreted as model representations of the internal variability of the

climate system (Deser et al., 2012; Hawkins and Sutton, 2009).125

The bias of precipitation was adjusted for 5-day sums and the resulting rainfall intensities were spatially averaged for the

climate model grid cells enclosing the Noorderzijlvest area. After bias-adjustment of wind speed and calculating a spatial

average for the relevant area of the North Sea, a regression equation was applied to estimate the surge. The regression equation

was calibrated to local surge conditions at the station Lauwersoog (Fig. 1). The historical astronomical tide between 1951

and 2000 using all known current tidal constituents was added to the modelled storm surge data for the complete period of130

800 years. The sum of surge and tide results in a time series of still water levels (SWL) at the North Sea. These regional

simulations were then used to drive RTC-Tools, a hydrological management simulator (Schwanenberg et al., 2015) generating

the corresponding IWL time series at hourly resolution.

To assess compounding effects, van den Hurk et al. (2015) constructed a randomized ensemble of independent drivers by

shuffling the time series of model generated precipitation and storm surge in a way that preserved climatological characteristics135

but removed the correlation between surge and precipitation. After adding the tidal cycle to compute the SWL, the correspond-

ing IWLs were derived by forcing RTC-Tools with these shuffled time series of precipitation and SWL. van den Hurk et al.

(2015) concluded that the return period associated to the extreme 2012 IWL was almost three times larger for shuffled data

than for the original data, which indicated the presence of compounding processes between precipitation and SWL leading to

higher IWL. This is also shown by comparing the empirical joint probability density functions of the original and shuffled time140

series. However, the dependence of SWL and precipitation was weaker for the largest IWL events, which were dominated by

specific neap tide conditions with a low tidal range and consequently high values of the low tides (van den Hurk et al., 2015).

3 Methods

3.1 Conceptual model

The statistical model for estimating IWL has been developed following four consecutive steps:145

1. Characterization of the compound event with a predictand, representing the so-called "impact" (IWL), and a set of

predictors (conditioned to the impact variable) representing the underlying drivers (precipitation and SWL) of extreme

IWLs.

2. Development of an impact function that relates the predictand and predictors defined in step (1).

3. Modelling of the joint probability distribution of the predictors, which implies finding the probability distributions to150

model their marginal behavior, and identifying the best copula(s) to model their dependence structure.

6



Table 1. Selected predictors for the 2D and 3D cases.

2D case 3D case

P12d,acum: accumulated precipitation over 12 days prior to WLmax P12d,acum: accumulated precipitation over 12 days prior to WLmax

ST
36h,min: minimum SWL over 36 h prior to WLmax S72h,mean: mean surge over 72 h prior to WLmax

T12h,min: minimum tide over 12h prior to WLmax

4. Estimating the IWL return levels by randomly generating a large number of paired precipitation and SWL synthetic

events from the joint distribution obtained in step (3), which is converted IWLs with the impact function fitted in step

(2).

To reproduce the findings of van den Hurk et al. (2015), including the effect of the dependence between precipitation and155

SWL on return levels, this procedure is applied to both the original dataset and the shuffled data (see Section 2). We explored

statistical models of two and three dimensions (2D and 3D case, respectively) to account for multiple predictors: a bivariate

copula model accounting for the iteration of precipitation and SWL, and a trivariate (vine) copula model where we separate

SWL into the astronomical tide and the surge (or non-tidal residual). With this separation we investigate whether the difference

in controlling physical processes of tide and surge affects the depiction of the dependency structure causing compounding160

effects. The design of the analyses has followed an iterative process, with repeated feedback between the different steps.

The selection of the predictors plays a crucial role in the consecutive steps and the performance of the statistical modeling

framework. Specifically, the performance of the impact function is highly sensitive to the selection of the SWL (or surge in

the trivariate model) predictor and has been a strong driver for the final choice of predictors. The performance of the impact

function based on mean, minimum and maximum SWL for different temporal aggregations is given in the Supplementary165

Material (see Fig. S1) and highlights the sensitivity to the SWL predictor.

3.2 Selection of predictands and predictors

The series of annual maxima IWLs (WLmax) is chosen as predictand to represent the impact and used to reproduce the return

plots of van den Hurk et al. (2015). In the process of predictors selection, three aspects were taken into consideration: (1) the

underlying physically driving processes, including the proper representation of the compound nature of precipitation and SWL170

(or surge and tide in the 3D case); (2) the human management practices controlling IWL dynamics in RTC-tools (Section 2);

(3) the memory of the physical system, including lags in the occurrence of drivers that might potentially affect the magnitude

of the impact.

The iterative process to select the predictors is guided by the composite of all 800 WLmax and the underlying drivers

(Fig. 2). Peaks in precipitation and SWL are preceding the occurrence of the annual WLmax. Opening and closing the gates of175

the reservoir leads to periodic fluctuations of IWL. The gates are opened during the low tide to lower IWL. If the ocean water

level exceeds IWL, the gates stay closed and IWL rises due to collection of water from the surrounding watershed. For most

of the 800 annual maximum events, the gates stay closed for several subsequent tidal cycles (see Fig. 2).
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Figure 2. Composite of flooding drivers and associated IWL response for the 2D (a) and 3D (b) cases, computed using all 800 annual maxima

events. Solid lines represent the median of all values at a given time, whereas the shaded areas depict the values between the 5th and 95th

percentiles. Vertical lines indicate the time windows used for the selected predictors (see Table 1).

For the 2D case, we choose the following predictors: the accumulated precipitation over 12 days prior to WLmax, noted

as P12d,acum, and the minimum SWL over the 36 h prior to WLmax, noted as ST
36h,min. For the 3D case, the precipitation180

predictor is the same as in 2D case, but the SWL is separated into tide and surge. In particular, we consider the mean surge over

72 h prior to WLmax, noted as S72h,mean, and the minimum tide over 12 h prior to WLmax, noted as T12h,min (see Table 1).

The time periods of aggregation, as well as the choice of applying the arithmetic mean, minimum or the sum, were iteratively

optimized according to the performance of the impact function and its reproduction of the return period curves (see Section 3.3

and 3.4). We tested different temporal aggregations of the surge and tide predictors in 12-hourly time steps between 12 and 96185

hours, as this duration corresponds to the tidal cycle. The aggregation of precipitation was tested from one day to 20 days. All
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possible combinations of these predictors were used to drive the four impact function approaches (introduced in Section 3.3)

and were evaluated by the trade-off between the performance metrics of the impact function (see Section 3.3) and the ability

to reproduce extreme events exceeding the flood warning level (see Section 3.4).

The iterative process of predictor selection led to interesting insights about the physical processes behind these compound190

events. In terms of precipitation, Fig. 2 shows that the duration of the median peak of accumulated precipitation prior to

WLmax is about five days, which agrees with the relevant temporal range of precipitation directly affecting IWLs identified by

van den Hurk et al. (2015). Instantaneous contribution of precipitation to IWLs due to direct rainfall on the reservoir surface

is small and therefore a time lag is needed to capture the contributions from surface runoff, streamflow, and interflow caused

by rainfall over the whole catchment. However, the impact function performs better for a longer aggregation time period (12195

days). We argue that the precipitation prior to five days helps to better capture the system memory induced by soil moisture

storage, as early rainfall can affect WLmax by saturating the soil. Indeed, one of the factors contributing to the largest event in

2012 was soil saturation caused by above normal rain in the preceding weeks (van den Hurk et al., 2015). This is shown by the

95th percentile precipitation envelope in Fig. 2 that has a peak lasting more than 5 days and has a non-zero plateau for a time

lag above 9–10 days.200

For the 3D case, the level of the low tide during the antecedent 12-hourly cycle to WLmax is clearly identified as a potential

predictor. It varies over time due to astronomical cycles and thus contributes to the timing of the reservoir drainage. The

contribution from the surge is better captured by taking the average over the previous 72 h, which perfectly matches the duration

of the surge peak observed in Fig. 2b (for both mean and extreme percentiles). It is reasonable to obtain a representative time

lag of 72 h as three days is the mean duration of cyclones over East-central Europe (Bartoszek, 2017). When surge and tide are205

considered together (i.e., SWL; 2D case), a trade-off between the contribution of surge and tide is achieved by considering the

minimum SWL over an intermediate time period of 36 h. Figure 2a shows that for most of the 800 events the reservoir gates

were closed for at least three tidal cycles (equaling 36 h). Differing time periods (12 h, 24 h, 48 h, 60 h and 72 h) yield a worse

performance of the impact function (see Fig. S1). The minimum of the SWL is taken to account for the human management of

the system. In a natural system, the SWL would directly affect the maximum IWL (e.g., Bevacqua et al., 2017) leading to the210

mean or the maximum SWL as likely predictors. In the study area, the human management results in the reservoir gates being

opened at minimum SWL. This relationship is also reflected by the performance of the impact function for minimum, mean,

and maximum SWL of 36 hours as predictors (see Fig. S1).

Due to our impact-focused approach (see Section 3.1), the chosen predictors are conditioned to WLmax. This deviates from

other studies in which an n-way sampling approach is followed (i.e. conditioning to one of the (extreme) driving variables at215

a time) (e.g., Ward et al., 2018). The latter is usually followed when information about the impact variable is limited and/or

when the focus is on identifying the driver that contributes most to compounding effects. Conditioning the drivers on the impact

variable guarantees an optimal training of the impact function (Section 3.3) and all extreme IWLs leading to a significant impact

are captured, including those that might not result from the combination of extreme univariate events. Figure 3 compares the

distributions of P12d,acum, ST
36h,min and T12h,min to the distribution of the corresponding univariate annual maxima. The220

selected predictors have notably lower values than the corresponding annual maxima, especially for precipitation and tide
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Figure 3. Density histograms for precipitation (a), SWL (b), and low tide (c) associated to all hourly time series (blue), to selected predictors

(conditioned to WLmax) (pink), and to the corresponding univariate annual maxima (green).

variables. In contrast, the conditioned SWL distribution is closer to their corresponding annual maximum distribution, which

agrees with the dominant role of SWL as flooding driver leading to extreme IWLs (as seen in Section 3.3)

3.3 Impact function

The impact function is designed to reproduce WLmax given a set of predictors (see Section 3.2). We explored different ap-225

proaches, including multiple linear regression (MLR), random forests (RF) (Meinshausen, 2006) and artificial neural networks

with stochastic gradient descent for regression (NN) (He et al., 2015; Phan, 2015). The number of trees in the RF approach was

set to 50, after performing a sensitivity analysis assessing the overall performance of the approach (estimated as root-mean-

square error (RMSE) via k-fold validation) depending on the number of trees. We selected 50 trees, as larger values did not

lead to an increase in performance. The learning process of the NN used here is based on stochastic gradient descent, and the230

applied activation function is the sigmoid function. The architecture of the network is as follows: input layer with two (2D case)

or three (3D case) neurons; two hidden layers with eight neurons each, output layer with one neuron. The different regression

models are evaluated by means of the RMSE, the mean absolute error (MAE), the linear (Pearson’s) correlation coefficient r

and, the error associated to return level estimates. This procedure was carried out for different sets of predictors in order to

minimize the deviations between the WLmax simulated by the RTC-Tools and the WLmax estimated via the impact functions.235

For the 2D case (Table 1), all impact function approaches simulate WLmax with an RMSE of 9 cm or less, an MAE of 7 cm

or less and r greater than 0.7 (see Fig. S2 in the Supplementary Material (SM)). RF exhibits the best performance by means of r

=0.88, MAE = 4 cm and RMSE = 6 cm. However, none of these approaches reproduce well the extreme water levels exceeding

0 m, which have the largest impact (see Fig. S3). This is due to the optimization process of the regression models, which uses

a cost function penalizing the squared error of the estimated water level for each of the 800 annual maxima. The 800 annual240

maxima are not evenly distributed across the range of water levels between -0.5 m and 0.22 m. 82 % of the samples feature
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Figure 4. WLmax obtained by RTC-Tools vs. WLmax obtained using MLR with bin sampling approach for the 2D case (see Table 1).

water levels below -0.1 m and 94 % of the events show water levels below 0 m. Hence, the optimized regression models are

biased to reproducing WLmax between -0.5 m and -0.1 m.

To overcome the underestimation of the most extreme events, we apply a bin-sampling strategy to train the impact function,

optimizing the number of bins and samples per bin in an iterative manner. All 800 values are divided into 12 classes ("bins")245

according to their WLmax and distributed in 5 cm steps (see Table 2). From each of these bins, ten samples (nine for the

highest bin) are randomly drawn and the parameters of the impact function are optimized for the subset. To avoid any bias due

to the randomized selection, this procedure is bootstrapped 1000 times and the mean of the resulting parameters is taken for the

final impact function. For the regression models based on machine-learning (RF, NN), the implementation of this bin-sampling

approach is not easy as a simple combination of the bootstrapped parameters is not straightforward. For MLR a combination of250

the linear regression factors of the 1000 random runs can well be constructed by applying the arithmetic mean. Consequently,

we opt for MLR as the model of choice to define the impact function. This results in the final two-dimensional linear regression:

WLmax =−0.1639+0.3998 ·ST
36h,min +0.0027 ·P12d,acum (1)

The comparison of WLmax simulated by the RTC-Tools and WLmax estimated via Eq. 1 is shown in Fig. 4. After standard-

ization of the predictors by X̃ = (X −X)/Xsd, where X and Xsd are the corresponding mean and standard deviation, the255

dominant role of SWL compared to precipitation is evident:
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Table 2. Distribution of the bin-sampling classes.

bin WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12

WLmax [m] <-0.4 (-0.4,-0.35) (-0.35,-0.3) (-0.3,-0.25) (-0.25,-0.2) (-0.2,-0.15) (-0.15,-0.1) -(0.1,-0.05) (-0.05,0) (0 0.05) (0.05,0.1) >0.1

# samples 31 55 109 122 136 123 82 63 32 27 11 9

WLmax =−0.1932+0.1033 · S̃T
36h,min +0.0639 · P̃12d,acum (2)

For the 3D case (Table 1), we obtained:

WLmax =−0.2645+0.4652 ·S72h,mean +0.3434 ·T12h,min +0.0028 ·P12d,acum (3)

which has the following standardized version:260

WLmax =−0.1972+0.1110 · S̃72h,mean +0.0644 · T̃12h,min +0.0663 · P̃12d,acum (4)

The 3D impact function shows slightly better performance metrics than in the 2D case (r: 0.76, RMSE: 0.085 m, MAE:

0.066 m vs. r: 0.71, RMSE: 0.091 m, MAE: 0.071 m, see Fig. S4). However, the 2D model better reproduces the extreme

events over the flood warning level, which is 7 cm Normaal Amsterdams Peil (NAP). For these events, the RMSE of the 2D

model amounts to 0.034 m, whereas the RMSE of the 3D model amounts to 0.078 m. This agrees with the performance of the265

return level estimations: the 3D model performs slightly worse (generally more tendency to underestimate than the 2D model,

see Fig. S3 vs. Fig. S5).

3.4 Joint probability density function and return levels

The joint distribution of the selected predictors is modelled via a copula function (Sklar, 1959; Nelsen, 2007) (see Section 1 of

SM). The selection of the marginal distributions and the dependence structure of the predictors is crucial for a robust assessment270

of WLmax. The overall methodology to obtain the return plots is similar between the 2D and 3D cases (see Section 3.1) and

implemented as follows. 1) To separate marginal and dependence modelling, data are ranked and transformed to uniform in the

unit (hyper)-square using rank statistics; 2) copula family and parameters are fitted to these uniform data with the maximum

pseudo-likelihood estimator (Kojadinovic and Yan, 2010); 3) a total of 40 copula types are considered (VineCopula R package,

version 2.3.0) selecting the one leading to the lowest Akaike information criterion (AIC) (Schepsmeier et al., 2015). The275

adequacy of the selected copula model is assessed using a goodness-of-fit test based on Kendall’s processes (Genest et al.,

2009; Wang and Wells, 2000); 4) suitable marginal distributions for the (unranked) defined predictors are identified, testing a

wide range of distributions commonly used in hydrologic analysis and selecting the one with the best fit (lowest AIC; Sakamoto

et al., 1986); 5) the joint probability distribution of the considered predictors is obtained with the best fitted copula(s) and
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marginals; 6) assuming that the selected copula accurately represents the tails of the distribution (an inherent assumption of the280

majority of studies of this type), simulated events from this joint distribution are obtained by sampling uniform data from the

copulas; 7) sampled events are converted to real units with the previously fitted marginals; 8) Finally, the obtained synthetic

samples are used to estimate WLmax via the impact function explained in Section 3.3. Note that the fitted marginals are

intentionally not used for the copula fitting in order to make the choice of the copula(s) totally independent from the choice of

the marginal(s) (Genest and Favre, 2007).285

Once water levels have been calculated, the associated return periods are obtained using Weibull plotting positions (Makko-

nen, 2006). Compounding effects are assessed by comparing the return value/period curve obtained by fitting the copula model

and the marginals to the dependent and the shuffled (independent) data (Section 2). Copula models are used to generate many

synthetic events of paired precipitation and surge (up to 100.000) to produce stable return level estimates of WLmax up to a

10.000-year return period. Although producing a 10.000-year data set from 800 years of empirical data entails dealing with290

large uncertainties, especially for the highest return levels, we chose that number because it establishes the standard level of

protection in many places in the Netherlands, especially those exposed to severe flooding (Bouwer and Vellinga, 2007).

4 Results and discussion

The results of the statistical modelling framework are presented here. We find that the model with three predictors (3D case),

i.e., precipitation, surge, and tide, does not generally outperform the model with two predictors (2D case), i.e., precipitation295

and SWL, (see Table 1). Even though the impact function of the 3D model shows slightly better performance metrics than the

impact function of the 2D model, the 2D model shows a closer reproduction of the extreme events over the flood warning level

(see Section 3.3). Based on this evaluation and following the parsimony principle, results of the 2D case are presented in the

manuscript, leaving most of results of the 3D case in the SM.

4.1 Dependence structure between SWLs and precipitation300

In order to better understand the underlying factors leading to WLmax, this Section explores the dependence structure between

SWL and precipitation (2D case) using the Kendall’s rank correlation coefficient (τ ) (Kendall, 1938) and the joint PDF (prob-

ability density function) of ST
36h,min and P12d,acum. Different sources of variability are assessed, with a special focus on the

internal variability of the climate system.

4.1.1 Interpretation of τ : dependence vs. independence305

The τ estimate between the defined predictors, i.e., ST
36h,min and P12d,acum for the dependent data set amounts to -0.05,

differing from zero correlation at the 95 % significance level. To further investigate the compound nature of the two predictors,

the same correlation is calculated using the shuffled (independent) data. In this case, τ amounts to -0.15. The negative τ

between ST
36h,min and P12d,acum is arguably related to the positive contribution of both the SWL and precipitation to IWL

and therefore the negative slope of the WLmax isolines as a function of these predictors: lower values of one driver can be310
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compensated by higher values of the other driver to generate a given water level. This is illustrated with a simple theoretical

example in Section 2 of SM (and Fig. S6). This example highlights that when drivers positively contribute to increasing

the impact, then impact-focused predictors (i.e. predictors conditioned to the impact) can have a negative τ for positively

correlated drivers. This example also illustrates that comparing the τ between conditioned predictors with that obtained from

an independent dataset provides information about the dependence pattern among drivers. In our study, the τ obtained from315

the predictors of the dependent case exceeds that obtained from the independent case by +0.10, which arguably indicates a

positive dependence pattern between SWL and precipitation. Similarly, the corresponding joint PDFs (see Section 3.4) show

the increased probability of having both extreme ST
36h,min and P12d,acum (leading to extreme IWLs) as obtained from the

original data, in comparison to the independent case (see shaded orange area in Fig. 5). This agrees with the findings of

van den Hurk et al. (2015) obtained empirically.320

In summary, as a result of our impact-focused approach, the correlation between the defined predictors (the explanatory

variables of the impact function) does not duplicate the dependence between drivers (precipitation and SWLs) leading to

extreme IWLs. Such conditioning complicates the interpretation of the dependence structure and compound effects, but opti-

mizes the performance of the impact function and hence the performance of the statistical modelling of return level estimates.

It is therefore important to distinguish between the correlation/dependence between the selected predictors, and the correla-325

tion/dependence between the drivers (although the former informs the latter). There is certainly a number of ways one could

define the drivers to better portray such dependence but, regardless of that, when broadly speaking about positive depen-

dence/correlation between drivers one would refer to the increased likelihood of concurrent drivers that contribute to impactful

events, the so-called "compound effects". As illustrated by the example in the SM and shown in Fig. S6, positive compound

effects are not necessarily associated with positive values of τ between the corresponding conditioned predictors. Compound330

effects can still be investigated by comparison with estimates obtained from shuffled (independent) data, expressed by either

τ or the associated return level estimates (as shown in Section 4.2). For example, the positive dependence between surge and

precipitation is not depicted by the plain correlation between ST
36h,min and P12d,acum but by the positive shift between the

corresponding correlations obtained for the original and shuffled data. Moreover, although such dependence has an impact on

IWL return levels (Section 4.2), the fact that τ between ST
36h,min and P12d,acum is weak also indicates that the dependence335

between drivers is not very strong.

4.1.2 Seasonal variability

To increase process understanding and strengthen the link between the statistical framework and the physical processes, we

investigate the seasonal variability of the dependence structure between ST
36h,min and P12d,acum. τ is lowest during winter (DJF:

-0.13) and increases in spring (MAM: 0.01) and summer (JJA: 0.10) and drops again in the fall (SON: 0). This variability is340

caused by the underlying physical factors leading to extreme IWLs, which depend on the seasonality of surge and precipitation

in this area, as explained in Section 2 (see also Fig. S7). In general, SWL contributes more to WLmax than precipitation,

which is explained by the dominant role of surge (see Section 3.3). The monthly frequency of the annual maximum of the

minimum SWL over 36-h time windows (without being conditioned to WLmax) shows the highest values between September
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Figure 5. Scatter plot of ST
36h,min and P12d,acum and its joint PDF corresponding to original data (black) and shuffled data (red). Shaded

orange area highlights the increased probability of extreme ST
36h,min and P12d,acum for the original data.

and December (see Fig. S7(b)), which is similar to the seasonal course of the monthly frequency of WLmax events (see345

Fig. 6). In winter, the contribution of SWLs intensifies and it becomes the most predominant driver. This agrees with the lowest

seasonal correlation between ST
36h,min and P12d,acum obtained for this season. In summer, the likelihood of heavy precipitation

increases (see Fig. S7 (b)), which increases the chance of compound surge and precipitation leading to extreme IWLs, which

is reflected in a larger correlation between ST
36h,min and P12d,acum in this season.

We also investigated separating the WLmax events into seasonal clusters to build the impact function. It did not lead to an350

improved model representation of WLmax events in terms of RMSE (not shown) and led to increased uncertainty for large

return periods due to a smaller statistical sample. The latter was particularly critical for spring and summer, as the number

of annual maxima events is unevenly spread over the annual cycle and few of these events occur in the warmer seasons. The
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Figure 6. Frequency of WLmax events occurring each month (a), monthly mean of WLmax (b), ST
36h,min (b), and P12d,acum (d).

majority of WLmax occurs in the fall (Fig. 6(a)) for which IWL is also larger (Fig. 6). Therefore, we continue our analysis

with all-year results and ignore the seasonal signature of IWL return levels.355

4.1.3 Variability as a function of tides

The correlation between SWLs and precipitation varies as a function of the tide elevation, as shown in Table 3. There is a

tendency of intensified positive dependence between ST
36h,min and P12d,acum for higher T12h,min, i.e., for smaller tidal ranges

and higher low tides. This is apparent for both the surge predictor in the 3D case (S72h,mean) and the SWL predictor (ST
36h,min)

in the 2D case. This result is in contrast with findings of van den Hurk et al. (2015), who argued that surge and precipitation360

had a weaker correlation for most extreme WLmax which they attributed to low tidal range between high and low tides, as

extreme IWLs tend to occur in neap tide conditions.
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Table 3. τ estimate between ST
36h,min and P12d,acum, and S72h,mean and P12d,acum, as a function of T12h,min.

T12h,min range ST
36h,min S72h,mean

T12h,min<10th percentile -0.08 -0.13

T12h,min<50th percentile -0.06 -0.09

T12h,min>50th percentile -0.02 -0.02

T12h,min>90th percentile 0.08 0.15

Indeed, there is a positive dependence between T12h,min and WLmax (τ=0.10), which is reflected by a positive shift of the

low tides prior to WLmax with respect to the distribution of all low tides (see Fig. 3(c)). Also, the upper 10 % percentile of

T12h,min occurs in the fall season (Fig. S8), when the largest water level events tend to occur (Fig. 6). This is consistent with365

the lower amplitude in the major tidal constituents in September/October in the North Sea (Gräwe et al., 2014). However,

P12d,acum and particularly ST
36h,min have a greater impact on WLmax than T12h,min. This is reflected in their respective rank

correlation coefficients: τ = 0.23 (P12d,acum and WLmax) and τ = 0.42 (ST
36h,min and WLmax) (τ = 0.36 for S72h,mean and

WLmax).

Moreover, we argue that it is not evident whether the correlation between surge and precipitation is weaker for extreme IWL370

return levels. The tail of the return level plot is affected by sampling variability. As an example, we calculated the variation

of the range of uncertainty in estimating the 800-year return level by sampling 800 and 100,000 events, respectively, from

our statistical framework for both the independent and dependent cases. We empirically obtain that, with a single 800-year

realization, there is a probability of 12 % of the 800-year return level from original data to be smaller than the 800-year return

level based on the shuffled data. However, when sampling 100,000 events, the probability is virtually zero. A visualization of375

this example is given in Fig. S9. This indicates that estimates about the variability of the role of driver dependence on generating

high IWLs might be subject to sampling uncertainty for return periods of similar value as the length of sample size. In any

case, clustering by tides reveals that a weaker correlation between ST
36h,min and P12d,acum is more likely to happen with lower

T12h,min and therefore larger tidal ranges. Separating the statistical analysis into tidal clusters did not lead to improvement in

terms of RMSE (not shown), but we further investigate the tide effect in the 3D case (see Section 4.2).380

4.1.4 Climate variability

The internal climate variability can have profound effects in the evaluation of compound flooding hazards, as the dependence

structure and correlation of predictors is highly modulated by how climatic variables affect those predictors. To assess the

effect of the internal variability of the climate system on the estimation of the correlation between the selected predictors, the

correlation between ST
36h,min and P12d,acum is estimated for each individual member of the SMILE (50 years per member)385

(Fig. 7a). The correlation ranges between -0.18 and 0.04 and its mean is -0.05 (equal to the value obtained using 800 years

of data). However, none of these values are statistically significant different from zero, given that reducing the sample size

increases the chance of obtaining non-statistically significant correlation estimates at a given significance level (here 95 %).
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Figure 7. Variability of copula fitting among the 16 50-year runs for original (a) and shuffled data (b-k). Red dots indicate the independence

test is rejected.

The correlation difference between original and shuffled data (which indicates the positive dependence between surge and

precipitation, see Section 4.1.1), is largely affected by climate variability. Fig. 7b-k show the variability of τ and its statistical390

significance (at the 95% confidence level) for the shuffled data, which leads to a range of the correlation difference from -0.26

to 0.36 accounting for all ten shuffles. This indicates that internal climate variability has a pronounced impact on the estimation

of compound effects. Section 4.2 further investigates this matter in terms of the return levels estimates.
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4.2 Return water level estimates: compound effects and climate variability

In this subsection, the proposed statistical framework is evaluated in terms of the IWL return levels, using the empirical395

estimates provided by van den Hurk et al. (2015). We also describe the results from the marginal and dependence analysis,

as well as the sensitivity of the three methodological components (impact function, marginal distributions, and dependence

assessment) to internal climate variability represented by the inter-run variability across the 16 SMILE members.

4.2.1 Joint probability density function

To estimate WLmax based on the 2D model, the normal and the Weibull distributions are selected as the best-fit probability400

distributions to fit the marginals for SWL and precipitation, respectively. To represent the joint behavior of the two selected

predictors, the rotated Tawn type I copula is selected with associated negative τ (-0.05). As explained in Section 4.1.1, a

negative τ for the predictors is compatible with positive dependence between drivers due to the impact-focused approach.

The Tawn copula is an asymmetric extension of the Gumbel copula. This asymmetry feature agrees with the scatter plot in

Figure 5. When ST
36h,min is low, WLmax events occur for relatively high P12d,acum (compared to the other WLmax events),405

while ST
36h,min does not need to be particularly high when P12d,acum is low. This is due to the asymmetric contribution of

P12d,acum and ST
36h,min to WLmax with the surge predictor being the dominant predictor, as seen in Section 3.3.

Similarly, in the 3D case a normal distribution fits both tide and surge accurately, and precipitation is well described by a

Weibull distribution. The vine structure that most accurately describes the dependence between these three variables contains

the following bivariate copulas: rotated BB1 (270◦) (dependence betweenP12d,acum and T12h,min), Frank (dependence between410

T12h,min and ST
72h,mean), and rotated Clayton (90◦) (dependence between T12h,min given ST

72h,mean, and P12d,acum given

T12h,min). A visual representation of the structure of the regular vine is given in Fig. S10.

4.2.2 Compound effects

Generally, the calculation of return periods for independent drivers might be performed by forcing an independence copula

or by randomly sampling from the fitted marginals directly (Genest and Favre, 2007). However, we selected the predictors415

conditioned to WLmax in order to ensure a close reproduction of WLmax calculated by the impact function. This step affects

the correlation between the predictors (see Section 4.1.1 and Fig. S6), which is why zero correlation between SWL and pre-

cipitation does not equal to zero correlation between ST
36h,min and P12d,acum. In fact, τ associated to ST

36h,min and P12d,acum

obtained from the shuffled data (independent case) amounts to -0.15. Hence, our statistical framework cannot reproduce the

return period curves of the shuffled data when using an independent copula to describe the dependence structure between420

ST
36h,min and P12d,acum. Therefore, to quantify the compound nature of WLmax, we used the return levels estimated from the

independent drivers (shuffled data) as reference.

To assess the independent case, we use the predictors defined in Table 1 obtained from the shuffled data (see Section 2) and

we follow the same procedure as for the dependence case to obtain the corresponding IWL return levels. Results for both cases

are shown in Fig. 8 (2D case) and Fig. S11 (3D case), where return periods/levels are compared against the empirical estimates425
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Figure 8. IWL return level against estimated return period using a bivariate copula model (2D case). Blue and red dotted lines depict the

dependence and independence case, respectively. Transparent red denotes confidence intervals, which account for the uncertainty range

between the 5th and 95th percentiles, as computed from all shuffles. Light blue and orange dots represent the return values empirically

obtained by van den Hurk et al. (2015).

by van den Hurk et al. (2015). Both 2D (Fig. 8) and 3D (Fig. S11) approaches reproduce compounding effects with high skill,

as shown by a comparison between the empirical and simulated data for equivalent return periods via RMSE. The RMSEs of

the 2D case (dependence and shuffles) amount to 0.02 m, where the RMSEs of the 3D case (dependence and shuffles) amount

to 0.019 m. The small difference of 1 cm between the performance of the 2D and 3D cases shows that adding complexity to

our framework can only slightly improve the performance. The almost equivalent performance of both models led us to present430

the simpler model in the manuscript as a preferable choice, and leave the more complex model in the SM. In addition, as seen

later on in Section 4.2.3, the 3D model is more sensitive to climate variability uncertainty.

Despite overall good performance, both 2D and 3D approaches differ slightly from the empirical data for the highest return

periods. However, as noted in Section 4.1.3., the tail of the return plot is sensitive to the number of simulations used to obtain

such estimates (see Fig. S9). This explains the disagreement between the modelled and the empirical estimates for large return435

periods (modelled lines are more parallel than empirically estimated lines), as we obtained these curves by simulating larger

samples (100,000 events) than the empirical analysis (800 events).
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4.2.3 Climate variability

In Section 4.1.4 we showed the effect of the climate variability on the predictors’ dependence structure by exploring τ . Here,

we explore the effect of climate variability on each component of our statistical framework: the impact function, the marginal440

distribution, and the copula function. In particular, we investigate the impact on (1) the estimates of IWL return levels corre-

sponding to the dependence case (Fig. 9) and (2) the ratio of the estimated return periods from the shuffled predictors (RPs) to

those derived by accounting for dependence between predictors (RPd) (Fig. 10). This ratio indicates the bias in return period

calculation if dependence between drivers was ignored and is used as a proxy of the compound effects, i.e., the increased prob-

ability of extreme IWL due to the positive dependence between SWLs and precipitation. Table 4 specifies the settings used to445

produce Figs. 9 and 10.
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Figure 9. IWL return level against estimated return period using a bivariate copula. Blue dots depict the return level estimates obtained

using the proposed statistical framework (using 800 years of data). Transparent green illustrates the uncertainty associated to internal climate

variability, represented by bounds computed using the 5th and 95th percentiles from all 50-year ensembles, and the median value (opaque

green dots). This is assessed for each component of the methodology: a) 50-year ensembles are used for all components; b) same as a) but

MLR impact function with standard sampling is trained with 800 years of data; c) same as b) but using bin sampling approach; d) 50-year

runs are used for copula fitting only; e) 50-year runs are used for SWL marginal fitting only; and f) 50-year runs are used for precipitation

marginal fitting only (see Table 4).
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Figure 10. Compound effect (estimated as ratio between return periods as obtained from shuffled and original data) against IWL return level

using a bivariate copula. Blue dots depict the values obtained using the proposed statistical framework (using 800 years of data). Transparent

green illustrates the uncertainty associated to internal climate variability, represented by bounds computed using the 5th and 95th percentiles

from all 50-year ensembles, and the median value (opaque dots). This is assessed for each component of the methodology: a) 50-year

ensembles are used for all components; b) same as a) but MLR impact function with standard sampling is trained with 800 years of data;

c) same as b) but using bin sampling approach; d) 50-year runs are used for copula fitting only; e) 50-year runs are used for SWL marginal

fitting only; and f) 50-year runs are used for precipitation marginal fitting only (see Table 4).
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Table 4. Settings used in subpanels of Figures 9 and 10 to assess climate variability (green).

50-year runs 800 -year ensemble

Subpanels Impact function Copula SWL PDF Precipitation PDF Impact function Copula SWL PDF Precipitation PDF

a x x x x

b x x x x∗

c x x x x

d x x x x

e x x x x

f x x x x
∗ Impact function based on MLR with standard sampling, i.e. bin sampling approach is not implemented.

First, Fig. 9(a) shows IWL return period and level estimates for the bivariate case, and associated variability computed from

all subsets of 50 years for each component. Large uncertainty intervals surround the average of values based on these 50-year

subsets, and this average return period curve is shifted downwards compared to the 800 year reference curve approach. The

general tendency of the regression model to simulate lower return levels, especially for high return periods, is mainly caused450

by the fact that we cannot perform the bin-sampling approach with only 50 years of data. Indeed, not performing the bin-

sampling procedure when using the entire data set (800 years of data) leads to a very similar result (Fig. 9(b)). The training of

the impact function by means of bin sampling eliminates the tendency to simulate lower return levels, as shown in Fig. 9(c)

where the proposed function (Eq. 1) is applied while using 50-year ensembles for marginal and copula fitting. Yet, uncertainty

is not reduced when using the bin sampling approach with 800 years, which illustrates that most uncertainty related to internal455

climate variability is introduced by other framework components. Similar to Fig. 9(a) and (c), Fig. 10(a) and (c) show the

variability of the return period ratio when 50-year ensembles are used for all framework components and when the impact

function with bin sampling is applied, respectively. Return period ratios are likely to vary significantly when only 50 years of

data are available as noted by the large green intervals (Fig. 10(a) and (c)). Furthermore, there is a tendency to underestimate

compounding effects even when the impact function with bin sampling is used (Fig. 10(c)).460

Second, the effect of climate variability on copula fitting and its impact on inland IWL return level estimation are shown

in Fig. 9(d). Here, we apply the optimally trained impact function and use the entire data set to fit the marginals while using

50 years of data for the copula fitting. As expected, the copula fitting does not generate significant differences between the

50-year runs as τ becomes virtually zero for all 50-year runs (see Section 4.1.4, Fig. 7(a)). This low variability induced by

copula fitting, however, does not imply that bivariate copula models are generally unaffected by climate variability. In this465

study, copulas do not play a significant role in the estimation of IWL return period for the 2D dependence case. While there

is dependence among drivers, the Kendall’s τ for the 800 years of the selected (conditioned) predictors is very close to zero.

Hence, shortening the data set length does not affect the reliable estimation of IWL in terms of copula modelling for the

dependence 2D case. Nonetheless, climate variability does affect the estimation of IWL for the shuffled data (not shown) due

to the inherent variability in the corresponding τ and copula fitting (Fig. 7b-k)). This suggests that the use of short records470

probably affects the estimation of compound effects. Indeed, Fig. 10(d) clearly illustrates that the use of small samples to fit
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the copulas tends to lead to an underestimation of compound effects. Climate variability also causes a large uncertainty of

return period ratios when copulas are derived from 50-year time series.

Third, to explore the effect of climate variability on marginal fitting, we tested and fitted different suitable probability

distributions to the marginals of all 50-year ensembles, while using 800 years for copula fitting and the optimally trained impact475

function to transform simulations. A comparison between Fig. 9(e), Fig. 10(e), Fig. 9(f) and Fig. 10(f) shows the uncertainty

associated to SWL and precipitation data marginal fitting. We find that most uncertainty in estimating IWL return levels is

associated to the fitting of the SWL distribution (Fig. S12(a)). This uncertainty is reflected in the IWL estimates, since the

SWL is the predominant driver. Furthermore, comparing Fig. 10(d-f) reveals that the tendency to underestimate compounding

effects in Fig. 10(d) is mainly introduced by the copula fitting. Hence, short records might hinder a proper estimation of480

compound effects due to poor copula fitting.

An analogous uncertainty analysis was performed for the trivariate case (Fig. S13), examining the uncertainty associated

to each component of the proposed statistical framework. Although generally similar insights were obtained as for the bivari-

ate uncertainty assessment, some differences are worth mentioning. For instance, copula fitting (Fig. S13(c)) presents larger

uncertainty intervals than for the bivariate case. As the predictors are defined differently in the trivariate case, the correlation485

between them has also changed and has become crucial to reproduce IWL dependence curves. In addition, separating SWL

into surge and tidal range reveals that marginal fitting uncertainty is mostly caused by surge, followed by tides (see Fig. S12(c)

and (d)). Although tidal range is an important factor determining the occurrence of extreme IWL in our study case, the surge

is the most important variable explaining the behavior of IWL (as seen in Section 3.3, Eq. 4).

In sum, we find that the internal variability of the climate system represented by the variability between the 16 50-year490

members induces a large uncertainty range at every step of our statistical framework. The impact function cannot be properly

calibrated with 50-year data. Furthermore, compound effects tend to be underestimated when applying short records to fit the

copula.

5 Conclusions

In this study we developed an impact-focused copula-based multivariate statistical framework that produces robust estimates495

of compound extreme inland water return levels (IWL) for a highly managed reservoir in the Netherlands. This work was

motivated by a near-flooding event in 2012, which was empirically analyzed by van den Hurk et al. (2015) based on a single

model initial-condition large ensemble (SMILE) consisting of a set of 16 50-year simulations. Like in van den Hurk et al.

(2015), we used these 16 members as 800 years of current climate conditions that account for the internal variability of the

climate system. In particular, we defined simulations of the IWL as the impact variable, and still water level (SWL) and500

precipitation as the underlying drivers. To assess compounding effects, we used a randomized ensemble of independent drivers

which van den Hurk et al. (2015) obtained by shuffling the 50-year runs, thereby removing the correlation between surge and

precipitation but preserving their climatological characteristics.
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The high degree of human management in the system studied poses a challenge to select suitable predictors and subsequently

developing an impact function that is skillful at predicting IWLs as a function such predictors. We considered bivariate and505

trivariate models (which was implemented after separating SWL in surge and tidal ranges) resulting in similar performance

at reproducing the return levels by van den Hurk et al. (2015). Predictors were selected after an iterative process (guided by

composite analysis) to optimize the performance of the impact function and return level estimates. After testing several options,

we defined WLmax (annual maxima of IWL) as predictand, and the 12 day cumulative precipitation and 36 h minimum SWL

prior to WLmax as predictors. The resulting impact function is a multilinear regression model with a bin-sampling approach510

that gives more weight to the most extreme water level events in the calibration process. SWL, and in particular surge, is found

to be the predominant driver.

Our statistical model shows that, although not very strong, the dependence structure between drivers (SWL and precipitation)

contributes to increased IWL return levels, as was found empirically by van den Hurk et al. (2015). Due to the conditioning of

the proposed predictors on the impact variable, the positive dependence is implicitly assessed by comparing the joint probability515

distributions and return level estimates to results obtained from the shuffled (independent) data. Some extreme IWLs are

primarily driven by surge (especially those occurring in winter) but compound processes increase for other seasons. A copula-

based multivariate statistical framework is generally able to capture the complex compound nature of precipitation and SWL,

and to reproduce extreme IWL return levels at the local scale, also under conditions where the strong management of the

hydrological system was not explicitly represented in the underlying data.520

Furthermore, we performed a unique uncertainty assessment to explore the impact of internal climate variability on the

return water level estimates. The use of a subset of 50-years of data (which is the typical maximum record length available

from observational records) was tested for different components of our framework, namely the impact function, the copula

fitting, and the marginal fitting. Using an impact function with standard sampling leads to a consistent underestimation of

the return levels, as the bin sampling approach is not feasible for 50 years of data. The marginal fitting of surge is the factor525

that most contributes to uncertainty of the return level estimates. For the 2D case, copula fitting with small samples does

not lead to additional uncertainty in the return level estimates. However, low variability provided by copula models is due to

their insignificant role in the estimation of IWL return level for the dependence 2D case, as correlation between the selected

predictors (conditioned to IWL annual maxima) is close to zero. Indeed, the 2D case could be simplified with an independent

copula with no major impact on return level estimates. Yet, dependence models are still crucial to reproduce and understand530

compounding effects, as the dependence structure does play a significant role when modelling the shuffled data. The use

of 50-year subsets leads to a tendency to underestimate the increased probability of extreme IWL due to inherent positive

dependence between SWL and precipitation. For the 3D case, increased dependence between the predictors and a larger model

complexity leads to increased uncertainty induced by copula fitting when shorter records are used. We emphasize that these

findings are highly case-specific and dependent on the chosen statistical framework. However, this case study illustrates that535

internal variability can be a major source of uncertainty for estimation of extreme IWLs and the associated compound effects.

Although the results presented here are site specific, the general framework can be transferred to other locations, given the

availability of relatively long overlapping records of flooding drivers and impact variable. If the size of the database needs to be
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extended prior to developing a multivariate statistical framework, a regional climate model (RCM) SMILE and a hydrological

management simulator to derive empirical estimates could be used (e.g., van den Hurk et al., 2015). Depending on the size of the540

ensemble and spatial resolution of the RCM, large computational resources may be required. Defining appropriate predictors

leading to a satisfying performance of the impact function depends on the hydrological characteristics and management of a

given system. For systems with low or no management, we would expect a more straightforward construction of an impact

function, but appropriate lags between drivers and impacts should be accounted for. Characterizing probability distributions

that precisely describe the marginals and fitting copulas that accurately capture the dependence structure largely depend on545

data availability.

The proposed framework assumes waves are not an important driver of extreme IWLs, and only low-frequency sea-level

components are accounted for. This is reasonable considering the characteristics of the study area: 1) sheltering effects of

barrier islands protecting from extreme wave climate and 2) shallow waters inducing wave breaking for large wave heights. In

contrast, surge is a relevant driver of extreme SWLs in such shallow water environments. However, if our framework were to550

be implemented in areas exposed to extreme waves, ocean wave predictors would need to be included in the model. Yet the

proposed framework described in Section 3 would still be valid.

The surge is calculated from the meteorological forcing for all relevant time scales, from daily to multi-annual, using the

empirical relationship between surge and model generated wind. Apart from the astronomical tide, no other sources of vari-

ability are incorporated in the sea level records. Therefore, the main limitation of this study is the exclusion of long-term555

nonstationary sea-level processes, such as sea-level rise which plays a large role in increasing extreme SWLs (Taherkhani

et al., 2020b). However, since our focus is on the assessment of historical extreme sea-level climate with focus on the effect of

climate variability, this assumption is reasonable.

We conclude that larger sample sizes than what we would typically obtain from observational data are needed in order to

reproduce representative extreme IWL statistics. Furthermore, observations are one possible realization of the climate system560

within its boundaries of internal variability. Therefore, short records present challenges to properly estimate the relationship

between predictors and predictand, marginal distributions and dependence patterns. Large sample sizes made available from

the application of SMILEs are valuable to investigate compound events and quantify the associated uncertainties induced by

internal variability.

Data availability. The SMILE data are identical to the dataset used by van den Hurk et al. (2015), and are not made publicly accessible565

due to the large volume and associated cost for a (semi-)permanent repository. Any reasonable request for access to the SMILE data can be

addressed to B.vH. Post-processed quantities used for the analysis described in this paper are available at https://github.com/victor-malagon/

CF_theNetherlands_data, http://doi.org/10.5281/zenodo.4088763.
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Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang, S., Van den Hurk, B., et al.:

EC-Earth V2. 2: description and validation of a new seamless earth system prediction model, Climate dynamics, 39, 2611–2629, 2012.

He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,

2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 18, 1026–1034, https://doi.org/10.1109/ICCV.2015.123,

2015.625

Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and

drivers of compound flooding events around the UK coast, Hydrology and Earth System Sciences, 23, 3117–3139, 2019.

Jane, R., Cadavid, L., Obeysekera, J., and Wahl, T.: Multivariate statistical modelling of the drivers of compound flood events in South

Florida, Natural and Earth Systems Science, https://doi.org/10.5194/nhess-2020-82, 2020.

Kendall, M.: A new measure of rank correlation, Biometrika, 30, 81–93, 1938.630

Khanal, S., Lutz, A., Immerzeel, W., de Vries, H., Wanders, N., and van den Hurk, B.: The impact of meteorological and hydrological

memory on compound peak flows in the Rhine river basin, Atmosphere, 4, https://doi.org/10.3390/atmos10040171, 2019a.

Khanal, S., Ridder, N., de Vries, H., Terink, W., and van den Hurk, B.: Storm surge and extreme river discharge: a compound event analysis

using ensemble impact modelling, Frontiers in Earth Science, 7, 1–15, https://doi.org/10.3389/feart.2019.00224, 2019b.

Klerk, W., Winsemius, H., Verseveld, W., Bakker, A., and Diermanse, F.: The co-incidence of storm surges and extreme discharges within635

the Rhine–Meuse Delta, Environmental Research Letters, 10, 035 005, https://doi.org/10.1088/1748-9326/10/3/035005, 2015.

Kojadinovic, I. and Yan, J.: Modeling multivariate distributions with continuous margins using the copula R package, Journal of statistical

software, 34, 1–20, 2010.

Makkonen, L.: Plotting positions in extreme value analysis, Journal of Applied Meteorology and Climatology, 45, 334–340,

https://doi.org/10.1175/JAM2349.1, 2006.640

Manning, C., Widmann, M., Bevacqua, E., Van Loon, A., Maraun, D., and Vrac, M.: Increased probability of compound long-duration

dry and hot events in Europe during summer (1950-2013), Environmental Research Letters, 14, 094 006, https://doi.org/10.1088/1748-

9326/ab23bf, 2019.

Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Cozannet, G., and Amores, A.: Increased extreme coastal water levels due the

combined action of storm surges and wind waves, Geophysical Research Letters, 46, 4356–4364, https://doi.org/10.1029/2019GL082599,645

2019.

Meinshausen, N.: Quantile Regression Forests, Journal of Machine Learning Research, 7, 983–999, https://doi.org/10.1038/s41598-020-

62188-4, 2006.

Moftakhari, H., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R.: Compounding effects of sea level rise and fluvial flooding,

Proceedings of the National Academy of Sciences, 114, 9785–9790, 2017.650

Moftakhari, H., Schubert, J., AghaKouchak, A., Matthew, R., and Sanders, B.: Linking statistical and hydrodynamic mod-

eling for compound flood hazard assessment in tidal channels and estuaries, Advances in Water Resources, 128, 28–38,

https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.

Nelsen, R. B.: An introduction to copulas, Springer Science & Business Media, 2007.

Phan, R.: A MATLAB implementation of the TensorFlow Neural Network Playground, 2015.655

Pörtner, H., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J.,

et al.: IPCC, 2019: Summary for Policymakers, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 2019.

30

https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.5194/nhess-2020-82
https://doi.org/10.3390/atmos10040171
https://doi.org/10.3389/feart.2019.00224
https://doi.org/10.1088/1748-9326/10/3/035005
https://doi.org/10.1175/JAM2349.1
https://doi.org/10.1088/1748-9326/ab23bf
https://doi.org/10.1088/1748-9326/ab23bf
https://doi.org/10.1088/1748-9326/ab23bf
https://doi.org/10.1029/2019GL082599
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.1016/j.advwatres.2019.04.009


Poschlod, B., Zscheischler, J., Sillmann, J., Wood, R., and Ludwig, R.: Climate change effects on hydrometeorological compound events

over southern Norway, Weather and Climate Extremes, 28, https://doi.org/10.1016/j.wace.2020.100253, 2020.

Ridder, N., de Vries, H., and Drijfhout, S.: The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm660

surges along the Dutch coast, Natural Hazards and Earth System Sciences, 18, 3311–3326, https://doi.org/10.1038/s41598-020-62188-4,

2018.

Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F.: A multivariate extreme wave and storm surge climate emulator based on

weather patterns, Ocean Modelling, 104, 242–251, 2016.

Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Nagler, T., Erhardt, T., Almeida, C., Min, A., Czado, C., Hofmann, M., et al.:665

Package ‘VineCopula’, R package version, 2, 2015.

Schwanenberg, D., Becker, B., and Xu, M.: The open RTC-Tools Software framework for modeling real-time control in water resources

systems, Journal of Hydroinformatics, 17, 130–148, https://doi.org/10.2166/hydro.2014.046, 2015.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., et al.:

Changes in climate extremes and their impacts on the natural physical environment, 2012.670

Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using a time-dependent, extreme value approach, Journal of Geophys-

ical Research: Oceans, 119, 6305–6329, 2014.

Sklar, M.: Fonctions de repartition and dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8, 229—-231, 1959.

Taherkhani, M., Vitousek, S., Barnard, P., Frazer, N., Anderson, T., and Fletcher, C.: Sea-level rise exponentially increases coastal flood

frequency, Scientific Reports, 10, 6466, https://doi.org/10.1038/s41598-020-62188-4, 2020a.675

Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., and Fletcher, C. H.: Sea-level rise exponentially increases coastal

flood frequency, Scientific reports, 10, 1–17, 2020b.

van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K.-J., and Gooijer, J.: Analysis of a compounding surge and precipitation

event in the Netherlands, Environmental Research Letters, 10, 1–10, https://doi.org/10.1088/1748-9326/10/3/035001, 2015.

van Meijgaard, E., van Ulft, L., van de Berg, W., Bosveld, F., van den Hurk, B., and LenderinkGand, S. A.: The KNMI regional atmospheric680

climate model RACMO, version 2.1. KNMI Technical Report 302, Tech. rep., Royal Netherlands Meteorological Institute, 2008.

Van Meijgaard, E., Van Ulft, L.H.and Lenderink, G., De Roode, S., Wipfler, L., Boers, R., and Timmermans, R.: Refinement and application

of a regional atmospheric model for climate scenario calculations of Western Europe. Final Report, National Research Programme Climate

Changes Spatial Planning KvR 054/12 pp 1–44, Tech. rep., Royal Netherlands Meteorological Institute, 2012.

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major685

US cities, Nature Climate Change, 5, 1093–1097, 2015.

Wang, W. and Wells, M. T.: Model selection and semiparametric inference for bivariate failure-time data, Journal of the American Statistical

Association, 95, 62–72, https://doi.org/10.1080/01621459.2000.10473899, 2000.

Ward, P., Couasnon, A., Eilander, D., Haigh, I., Hendry, A., and Muis, S. e. a.: Dependence between high sea-level and high river dis-

charge increases flood hazard in global deltas and estuaries, Environmental Research Letters, 13, 084 012, https://doi.org/10.1088/1748-690

9326/aad400, 2018.

Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, Journal

of Hydrology, 505, 172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.

Zhou, P. and Liu, Z.: Likelihood of concurrent climate extremes and variations, Environmental Research Letters, 13, 094 023, 2018.

31

https://doi.org/10.1016/j.wace.2020.100253
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.2166/hydro.2014.046
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.1088/1748-9326/10/3/035001
https://doi.org/10.1080/01621459.2000.10473899
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1088/1748-9326/aad400
https://doi.org/10.1016/j.jhydrol.2013.09.054


Zscheischler, J., Westra, S., van den Hurk, B., Seneviratne, S., Ward, P., Pitman, A., AghaKouchak, A., Bresch, D., M., L., Wahl, T., and695

Zhang, X.: Future climate risks from compound events, Nature Climate Change, pp. 469–477, https://doi.org/10.1038/s41558-018-0156-3,

2018.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R., B., v., AghaKouchak, A., Jékéquel, A., Mahecha, M. D.,

Maraun, D., Ramos, A. M., Ridder, N. N. Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature

Reviews, https://doi.org/10.1038/s43017-020-0060-z, 2020.700

32

https://doi.org/10.1038/s41558-018-0156-3
https://doi.org/10.1038/s43017-020-0060-z

