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Abstract.

The co-occurrence of (not necessarily extreme) precipitation and surge can lead to extreme inland water levels in coastal

areas. In a previous work the positive dependence between the two meteorological drivers was demonstrated in a case study

:::::::
managed

:::::
water

:::::::
system in the Netherlands by empirically investigating an 800-year time series of water levels, which were

simulated via a physical-based hydrological model driven by a regional climate model large ensemble.5

In this study, we present and test a
::
an

::::::::::::::
impact-focused multivariate statistical framework to replicate the demonstrated

dependence
:::::
model

:::
the

:::::::::::
dependence

:::::::
between

:::::
these

:::::::
flooding

:::::::
drivers and the resulting return periods of inland water levels.

We use the same 800-year data series to develop
::::
This

:::::::::
framework

::
is
:::::::
applied

::
to

:::
the

:::::
same

::::::::
managed

:::::
water

::::::
system

::::::
using

:::
the

:::::::::::::
aforementioned

::::
large

:::::::::
ensemble.

:::::::::
Composite

:::::::
analysis

::
is

::::
used

::
to

:::::
guide

:::
the

::::::::
selection

::
of

:::::::
suitable

:::::::::
predictors

:::
and

::
to

::::::
obtain an im-

pact function , which is able to empirically describe
:::
that

::::::::
optimally

::::::::
describes

:
the relationship between high inland water levels10

(the impact) and its driving variables (precipitation and surge). In our study area, this relationship is complex because of
:::
the

:::::::::
explanatory

:::::::::
predictors.

::::
This

::
is

:::::::
complex

::::
due

::
to the high degree of human management affecting the dynamics of the water level.

By event sampling and conditioning the drivers, an impact function was created that can reproduce the water levels maintaining
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:::::::
Training

:::
the

::::::
impact

:::::::
function

::::
with

:::::::
subsets

::
of

::::
data

:::::::::
uniformly

:::::::::
distributed

:::::
along

:::
the

:::::
range

::
of

:::::
water

:::::
levels

:::::
plays

::
a

:::::
major

::::
role

::
in

::::::::
obtaining an unbiased performanceat the full range of simulated water levels.

:
.15

The dependence structure between the driving variables
::::::
defined

:::::::::
predictors

:
is modeled using two- and three-dimensional

copulas. These are used to generate paired synthetic precipitation and surge events, transformed into inland water levels via the

impact function. The compounding effects of surge and precipitation and the return water level estimates fairly well reproduce

the earlier results from the empirical analysis of the same regional climate model ensemble.
::::::::
Regarding

:::
the

:::::
return

:::::
levels

::::
this

::
is

::::::::
quantified

::
by

::
a
::::::::::::::
root-mean-square

::::::::
deviation

::
of

:::::::
0.02 m. The proposed framework is therefore able to produce robust estimates of20

compound extreme water levels for a highly managed hydrological system.
::::
Even

::::::
though

:::
the

:::::::::
framework

:::
has

::::
only

::::
been

:::::::
applied

:::
and

::::::::
validated

::
in

:::
one

:::::
study

::::
area,

::
it

:::::
shows

:::::
great

:::::::
potential

::
to
:::
be

:::::::::
transferred

::
to

:::::
other

:::::
areas.

In addition, we present a unique assessment of the uncertainty when using only 50 years of data (what is typically available

from observations). Training the impact function with short records leads to a general underestimation of the return levels

as water level extremes are not well sampled. Also, the marginal distributions of the 50-year time series of the surge show25

high variability. Moreover, compounding effects tend to be underestimated when using 50 year
::::::
50-year

:
slices to estimate the

dependence pattern between predictors. Overall, the internal variability of the climate system is identified as a major source of

uncertainty in the multivariate statistical model.

Copyright statement. COPYRIGHT

1 Introduction30

Floods, wildfires, and heatwaves typically result from the combination of several physical processes (e.g., Baldwin et al., 2019; Manning et al., 2019)

. Such
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Baldwin et al., 2019; Manning et al., 2019; AghaKouchak et al., 2020)

:
.
:::
The

::::::::
physical

:::::
drivers

:::
of

::::
such processes are

not necessarily extreme or hazardous when occurring in isolation, but they can lead to significant impacts when occurring

altogether, or in a narrow time range (Pörtner et al., 2019; Zscheischler et al., 2018)
::::::::::::::::::::
(Seneviratne et al., 2012). Extreme events

resulting from the combinations of physical drivers are referred to as compound events, and can be classified into different (not35

entirely exclusive) categories (Zscheischler et al., 2020). These compound climate extremes are receiving increasing attention

because of their disproportionate economic, societal, and environmental impacts, and because traditional univariate approaches

can lead to strongly biased estimates of the associated risks (Zscheischler and Seneviratne, 2017)
:::::::::::::::
(Wahl et al., 2015). However,

many challenges still lay ahead in order to properly understand, and predict, the complex chain of drivers that leads to com-

pound events. Estimating the dependencies among drivers is challenging mainly due to the limited amount of data available,40

especially for rare events (Zscheischler et al., 2018). Moreover, the definition of multivariate extremes is not as straightforward

as in the univariate case. A paradigm shift from a classical top-down approach adopted in many climate studies towards an

impact-centric perspective is needed (Zscheischler et al., 2018).
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This study is motivated by a near flooding event in 2012 in Lauwersmeer in the Netherlands that clearly can be classified

as a compound event (van den Hurk et al., 2015). This multivariate event was characterized by a high inland water level45

exceeding predefined warning levels and resulted from the joint occurrence of heavy precipitation on an already wet soil

and a high storm surge impeding gravitational drainage over several consecutive tidal periods. In terms of the categorization

of Zscheischler et al. (2020), this event can be classified as multivariate, pre-conditioned and temporally compounding, which

illustrates the complexity of this near flooding event.van den Hurk et al. (2015) empirically assessed the return periods associated

to compound extreme water levels with a single model initial-condition large ensemble (SMILE) of regional climate model50

(RCM) simulations covering 800 years under present-day climate conditions. They demonstrated a positive dependence between

storm surge and heavy precipitation and showed that
:::::::::
Compound

:::::::
flooding

::
in

:::::
coastal

:::::::
settings

::::
often

:::::::::
originates

::::
from

:
a
:::::::::::
combination

::
of

:::::::::::
storm-driven

:::::
waves

::::
and

::::::
surges,

::::
and

:::::::
blocked

::::::::
discharge

:::
of

::::::::
terrestrial

:::::
water

:::::
from

:::
e.g.

:::::::
intense

:::::::::::
precipitation

::
or

:::::
snow

:::::
melt.

::::::::::::
Meteorological

:::::::::
conditions

:::
can

::::
lead

::
to

::
a
:::::::
(nearly)

:::::::::::
simultaneous

:::::::::
occurrence

::
of

:::::
storm

:::::
surge

::
or

::::::
waves

:::
and

:
a
:::::::::
discharge

::::
peak

:::::
when

::
the

::::
area

::::
that

::::::::
generates

::::
the

::::::::
discharge

::
is

::::::
located

:::::
close

::
to
:

the probability of occurrence of these extreme water levels can be55

greatly underestimated if such dependence is omitted.
::::
coast.

::::::
These

::::
types

::
of

::::::
events

::::
have

:::
the

::::::::
potential

::
to

:::::
occur

::
in

:::::
many

::::::
coastal

::::::
regions

::::::
across

:::
the

:::::
globe

::::::::::::::::::::::::::::::::::
(Ward et al., 2018; Couasnon et al., 2020).

:::::::::
Low-lying

:::::::
coastal

::::::
regions

:::
are

::::::::::
particularly

::::::::::
susceptible

::
to

:::::::
flooding

::::::
caused

:::
by

:::
the

:::::::::
interaction

::
of

::::::::
different

:::::::
hazards

::::
(i.e.,

:::::::::
compound

:::::::::
flooding),

::::::::
including

:::::::::::::
oceanographic,

:::::::
pluvial,

::::::
and/or

:::::
fluvial

:::::::
hazards

:::::::::::::::::
(Hendry et al., 2019).

:::::
Thus,

:::
the

:::::::::
assessment

::
of

::::::::::
multivariate

::::::
events

:::
has

:::::::
received

:::::::::
increasing

:::::::
attention

::
in

:::
the

::::::
coastal

:::::::::
engineering

::::
and

::::::::::
management

:::::::::::
communities

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Anderson et al., 2019; Serafin and Ruggiero, 2014; Rueda et al., 2016; Wahl et al., 2015)60

:
.
:::
The

:::::::::
associated

::::::
impacts

:::::::
strongly

::::::
depend

:::
on

:::
the

::::::::
catchment

:::::::
features

:::
and

:::
the

::::::::::::
characteristics

::
of

:::
the

::::::
storms

:::::::::::::::
(Wahl et al., 2015)

:
.
:::
For

::::::::
discharge

:::::
peaks

:::::::::
originating

::::
from

::::::
remote

:::::::::::
precipitation

::
or

:::::
snow

::::
melt

:::::
inputs

:::
(for

:::::::
instance

::
in

:::::
larger

:::::
river

:::::::
systems)

::::::
delays

:::::::
between

::
the

:::::
surge

::::
and

::::::::
discharge

:::::
peaks

:::
are

::::::
usually

::::
due

::
to

::
the

:::::
finite

:::::
travel

:::::
speed

::
of

::
the

:::::::::
discharge

::::
wave

:::::::::::::::::::::::::::::::::
(Khanal et al., 2019b; Klerk et al., 2015)

:
.

SMILEs are a physically based approach to increase the size of the database and therefore increase the number of simulated65

extreme compound events. Apart from van den Hurk et al. (2015), SMILEs have been applied as tool to investigate compound

events by e.g. Zhou and Liu (2018), Khanal et al. (2019a) and Poschlod et al. (2020). With the aim to obtain methods compu-

tationally less expensive than numerical simulations, statistical models have been used to model compound events and estimate

their probability of occurrence. In some specific cases, bi- or multi-variate distributions can be derived directly from physical

properties (e.g. the joint distribution between wave height and wave periods in wind-sea states as a function of wave steepness70

(de Waal and van Gelder, 2005)). However, these are often limited to idealized or very specific settings and rely heavily on the

selection of the marginal distributions. In contrast, copula-based methods (Sklar, 1959) have the advantage to capture the de-

pendence between a set of variables independently from their marginal distributions (Genest and Favre, 2007), which explains

why they have become a widely used approach nowadays.

Compound flooding in coastal settings often originates from a combination of storm-driven waves and surges, and blocked75

discharge of terrestrial water from e.g. intense precipitation or snow melt. Meteorological conditions can lead to a (nearly)

simultaneous occurrence of storm surge or waves and a discharge peak when the area that generates the discharge is located

close to the coast. These types of events occur in many coastal regions across the globe (Ward et al., 2018; Couasnon et al., 2020)
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and their associated impacts strongly depend on the catchment features and the characteristics of the storms (Wahl et al., 2015)

. For discharge peaks originating from remote precipitation or snow melt inputs (for instance in larger river systems) delays80

between the surge and discharge peaks are usually due to the finite travel speed of the discharge wave (Khanal et al., 2019b; Klerk et al., 2015)

. In recent years, several copula-based studies have been carried out to study compound flooding events in coastal areas at dif-

ferent spatial scales(e.g. Couasnon et al., 2018; Moftakhari et al., 2019; Jane et al., 2020). For example, Bevacqua et al. (2017)

developed and implemented a conceptual statistical model to quantify the risk of compound floods that result from the com-

bination of storm surge and high river runoff in Ravenna (Italy). At regional scale, Wahl et al. (2015) assessed the historical85

changes in the compound flooding due to precipitation and storm surge in US cities and identified a significant increase in the

number of compound events over the past century in major coastal cities. Accounting for climate change projections, Bevacqua

et al. (2019) showed how global warming can increase the probability of compound coastal flooding in Northern Europe. At

a global scale, Couasnon et al. (2020) provided a perspective of the compound flood potential from riverine and coastal flood

drivers, which highlighted the complexity and large regional variability of such dependence structures. Dependence between90

ocean wave heights and storm surges was recently investigated by Marcos et al. (2019) at global scale, showing that 55% of

the world coastlines face compound storm surge wave extremes.

This study explores whether a copula-based model can reproduce the findings in van den Hurk et al. (2015) for
:
is
:::::::::
motivated

::
by

::
a

::::
near

:::::::
flooding

:::::
event

::
in

:::::
2012

::
in

:::
the

::::::::::::
Lauwersmeer

::::::::
reservoir

::
in

:::
the

::::::::::
Netherlands

::::
that

::::
was

::::::::
classified

::
as

::
a

:::::::::
compound

:::::
event

::::::::::::::::::::::
(van den Hurk et al., 2015).

::::
This

::::::::::
multivariate

:::::
event

:::
was

:::::::::::
characterized

:::
by

:
a
::::
high

::::::
inland

:::::::::
(reservoir)

::::
water

:::::
level

:::::
(IWL)

:::::::::
exceeding95

::::::::
predefined

:::::::
warning

:::::
levels

::::
and

:::::::
resulted

::::
from

:::
the

::::
joint

:::::::::
occurrence

::
of

::::::
heavy

::::::::::
precipitation

:::
on

::
an

::::::
already

::::
wet

:::
soil

:::
and

::
a
::::
high

:::::
storm

::::
surge

::::::::
impeding

:::::::::::
gravitational

:::::::
drainage

::::
over

::::::
several

::::::::::
consecutive

:::
tidal

:::::::
periods.

::
In

:::::
terms

::
of

:::
the

::::::::::::
categorization

::
of

::::::::::::::::::::
Zscheischler et al. (2020)

:
,
:::
this

:::::
event

:::
can

:::
be

::::::::
classified

::
as

:::::::::::
multivariate,

:::::::::::::
pre-conditioned

::::
and

:::::::::
temporally

::::::::::::
compounding,

::::::
which

::::::::
illustrates

:::
the

::::::::::
complexity

::
of

:::
this

::::
near

:::::::
flooding

:::::
event.

::::::::::::::::::::::
van den Hurk et al. (2015)

:::::::::
empirically

::::::::
assessed

:::
the

:::::
return

::::::
periods

:::::::::
associated

::
to

:::::::::
compound

:::::::
extreme

::::
water

::::::
levels

::::
with

::
a
:::::
single

::::::
model

::::::::::::::
initial-condition

:::::
large

::::::::
ensemble

::::::::
(SMILE)

::
of

::::::::
regional

::::::
climate

::::::
model

:::::::
(RCM)

::::::::::
simulations100

:::::::
covering

:::
800

:::::
years

:::::
under

::::::::::
present-day

:::::::
climate

:::::::::
conditions.

:::::::
SMILEs

:::
are

::
a
:::::::::
physically

:::::
based

::::::::
approach

::
to

:::::::
increase

:::
the

::::
size

::
of

:::
the

:::::::
database

:::
and

::::::::
therefore

::::::::
increase

:::
the

:::::::
number

::
of

:::::::::
simulated

:::::::
extreme

:::::::::
compound

::::::
events.

:::::
Apart

:::::
from

::::::::::::::::::::::
van den Hurk et al. (2015)

:
,
:::::::
SMILEs

::::
have

:::::
been

::::::
applied

::
as

::::
tool

::
to

::::::::::
investigate

:::::::::
compound

:::::
events

:::
by

:::
e.g.

::::::::::::::::::
Zhou and Liu (2018),

::::::::::::::::::
Khanal et al. (2019a),

::::
and

::::::::::::::::::
Poschlod et al. (2020).

::::
This

::::::::::::
methodology

::::::
allowed

:::::::::::::::::::::::
van den Hurk et al. (2015)

:
to

:::::::::::
demonstrate

:
a
:::::::

positive
::::::::::
dependence

::::::::
between

:::::
storm

::::
surge

::::
and

:::::
heavy

:::::::::::
precipitation

:::
and

::::::
showed

::::
that

:::
the

:::::::::
probability

::
of

:::::::::
occurrence

:::
of

::::
these

:::::::
extreme

:::::
water

:::::
levels

:::
can

:::
be

::::::
greatly105

::::::::::::
underestimated

::
if

::::
such

::::::::::
dependence

::
is

:::::::
omitted.

::::
Here,

:::
we

:::::::
develop

::
a
:::::::::::
copula-based

::::::::
statistical

::::::::::
framework

::
to

::::::
model

:::
the

:::::::
extreme

:::::
water

::::::
levels

::
in the Lauwersmeer reservoir,

using the same
::::::::
including

:::
the

::::::::::
dependence

::::::
among

:::
the

::::::::::
underlying

::::::
drivers.

::::::
Using

:::
the

:::::
same

:::::::::::::
aforementioned

:
800-year climate

dataset as reference. Two novel aspects are addressed in our analysis.
::::::::
ensemble,

:::
we

::::::::
reproduce

:::
the

::::::
results

:::::::::
empirically

::::::::
obtained

::
by

::::::::::::::::::::::
van den Hurk et al. (2015)

:::
and

:::::::
provide

::::::::
additional

:::::::
insights

::::
into

:::
the

:::::::::
underlying

:::::::
physical

::::::
factors

:::
and

:::::::::
modelling

:::::::::::
uncertainties110

::
in

:::::::::
compound

:::::::
analysis.

::::::::
Although

:::
the

:::::
study

::
is

:::
site

::::::::
specific,

::
we

:::::::
address

::::
two

:::::
novel

::::::
aspects

:::
that

:::::::
provide

:::::::
relevant

:::::::
insights

:::
for

:::
the

::::
field

::
of

:::::::::
compound

:::::::
analysis.

:
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First, we
::::::
propose

:::
an

:::::::::::::
impact-focused

::::::::
approach

::::::
guided

:::
by

:::::::::
composite

:::::::
analysis

::
to

::::::
model

:::
the

::::::::::
relationship

::::::::
between

:::::::
extreme

::::
water

::::::
levels

:::
and

::::::::::
underlying

::::::
drivers

::
in

:
a
::::::

water
::::::
system

::::
with

::::::
strong

::::::
human

:::::::::::
management.

:::
We

:
investigate the strong impact of

the definition and selection of the predictors based on the meteorological drivers and their interaction on the resulting water115

levels. An extra complication is generated by the strong human management of the water system. This type of flooding event

has been explored rarely
:::
and

::::::
discuss

:::
the

::::::::::::
interpretation

::
of

::::
their

::::::::::
dependence

:::::::::
structures

::
in

:::
the

:::::::
context

::
of

::::
this

:::::::::::::
impact-focused

:::::::
approach

::::::
(which

::::::
differs

:::::
from

:::::::::::
conventional

:::::::::::
driver-centric

:::::::::::
approaches).

:::::::
Flooding

::::::
events

::
in

::::::::
managed

:::::
water

:::::::
systems

::::
have

:::::
been

:::::
rarely

:::::::
explored

:
in the literature(most

:
.
::::
Most

:
flooding studies cover natural systems ), despite the growing relevance of

:::::
which

:::::::
typically

::::::
exhibit

:
a
:::::::
simpler

::::::::::
relationship

:::::::
between

::::::
drivers

:::
and

::::::
impact

::::::::
variables

::::::::::::::::::::::
(e.g. Bevacqua et al., 2017)

:
.
:::::::::
Therefore,

:::
this

:::::
study120

:::::::
provides

:
a
:::::
novel

::::::
insight

:::
for flood risk managementin

:
,
:::::
which

::
is

:::::::
growing

::
in

::::::::
relevance

::
in many low-lying managed areas (Pörtner

et al., 2019) where sea level rise increases flood frequency (Moftakhari et al., 2017; Taherkhani et al., 2020a).

Second, we explore for the first time (to our knowledge) the effect of internal
:::::::
(natural) climate variability on copula-based

compound event analysis. We investigate the effect of using a 50-year subset of data on the estimation of dependence structures

(and other elements involved in the compound event analysis), ultimately assessing the accuracy of the estimation of return125

levels. This is particularly relevant as most compound climate extreme studies are based on observations or simulated time-

slices with lengths well under 50 years (e.g. Ganguli and Merz, 2019; Wahl et al., 2015; Zheng et al., 2013). The global study

of Ward et al. (2018) showed that most available datasets of overlapping discharge-surge have a median duration of 36 years,

with shorter to no observed records in most of Africa, South America and Asia.

2 Data and study
:::::
Study area

:::
and

:::::
data130

:::::
Water

::::::::::
management

::
in

:::
the

::::::::::
Netherlands

::
is

:::::::::::
administered

::
by

:::::::
regional

:::::
water

::::::
boards,

:::::
which

:::
are

::::::::::::
approximately

::::::
aligned

::::
with

:::::::::::
hydrological

::::
units.

:
The study area comprises the water management unit

:::::
board

:::
unit

::
of

:
Noorderzijlvest (1440 km2) situated in the north of the

Netherlands
::::
(Fig.

::
1), which has an average altitude close to mean sea level height. The Lauwersmeer reservoir stores excessive

water before it drains into the North Sea by gravity during low tides. In January 2012, a combination of heavy and prolonged

rainfall on saturated soil during high sea level conditions (blocking the free drainage) led to extreme inland water levels
::::
IWL135

accompanied by precautionary implications such as evacuation. Both precipitation and storm surge associated to this event

were mild extremes (with return periods of about 10 years, respectively), but the inland water
::::
IWL reached unusually extreme

levels.

In terms of the underlying meteorological patterns, extreme winds with long fetch leading to high surges typically occur in

October-December as a result of deep and extensive low-pressure systems moving from the North Atlantic region to central140

or Northern Scandinavia (van den Hurk et al., 2015). Most extreme precipitation events occur during the summer months

linked to slow-moving medium-sized low-pressure systems over northern Germany or southern Denmark (van den Hurk et al.,

2015). High water levels
:::::
IWLs are caused by the interaction between these two patterns, which mostly occur in July-October.

Additionally, Ridder et al. (2018) found that the majority of these types of compound events are accompanied by the presence

of an atmospheric river over the Netherlands.145
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Figure 1.
:::::::
Overview

::
of

:::::
study

:::
site,

::::::::
including

:::::::
elevation

::::::
around

:::
the

::::
area,

::::::::::
approximate

::::::
location

::
of
::::

data
::::::::
collection

::::
sites,

::::
and

:::::
extent

::
of

:::
the

:::::::::
hydrological

:::
unit

:::::
(HU)

:::
and

::::
water

:::::
board

:::
the

::::::::::
Lauwersmeer

::::::::
Reservoir

::::::
belongs

::
to.

::::
The

:::::
station

:::::::::
Lauwersoog

::::::
(yellow

::::
dot)

:::::::
measures

:::
the

:::::
surge,

:::
and

::
the

::::
IWL

::
is

:::::::
observed

::
at

::
the

:::::
gauge

::::::
marked

::
by

:::
the

:::
red

:::
dot.

:::
The

::::::
bottom

::::::::
right-hand

:::
side

:::::
panel

::::
shows

:::::
where

:::
the

::::
study

:::
site

::
is
::::::
situated

::
in

:::
the

:::::::::
Netherlands.

van den Hurk et al. (2015)
:
In

::::
this

:::::
study,

:::
we

:::::
build

:::
our

::::::::
statistical

::::::::::
framework

::
on

::::
the

::::
same

::::::::
database

::::
that

:::
was

:::::::::
developed

::::
and

::::::
applied

::
by

::::::::::::::::::::::
van den Hurk et al. (2015).

::::::::::::::::::::::
van den Hurk et al. (2015) empirically estimated the return periods of inland water level

::::
IWL by applying a physically based modelling chain. They used the climate simulations of the 16-member ensemble of the

RCM KNMI RACMO2 (van Meijgaard et al., 2008; Van Meijgaard et al., 2012) driven by the global climate model (GCM)

EC-EARTH 2.3 (Hazeleger et al., 2012). Forced by historical emissions, the GCM was run from 1850 to 2000 with 16 different150

perturbations of initial atmospheric conditions. This ensemble was dynamically downscaled by the RCM at 12 km horizontal

resolution for transient runs from 1951 to 2000, resulting in 800 years of historic climate. After bias-adjustment, these regional

simulations were then used to drive RTC-Tools, a hydrological management simulator (Schwanenberg et al., 2015) generating
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the corresponding inland water level time series at hourly resolution. As the 16 50-year simulations only differ by the initial

atmospheric conditions of the driving GCM, the variability of the 16 time series can be interpreted as model representations of155

the internal variability of the climate system (Deser et al., 2012; Hawkins and Sutton, 2009).

:::
The

::::
bias

::
of

:::::::::::
precipitation

::::
was

:::::::
adjusted

:::
for

:::::
5-day

:::::
sums

:::
and

:::
the

::::::::
resulting

::::::
rainfall

:::::::::
intensities

:::::
were

:::::::
spatially

::::::::
averaged

:::
for

:::
the

::::::
climate

::::::
model

::::
grid

::::
cells

::::::::
enclosing

::::
the

:::::::::::::
Noorderzijlvest

::::
area.

:::::
After

::::::::::::::
bias-adjustment

::
of

:::::
wind

:::::
speed

::::
and

:::::::::
calculating

::
a
::::::
spatial

::::::
average

:::
for

:::
the

:::::::
relevant

:::
area

:::
of

:::
the

:::::
North

::::
Sea,

:
a
:::::::::
regression

:::::::
equation

:::
was

:::::::
applied

::
to

:::::::
estimate

:::
the

:::::
surge.

::::
The

::::::::
regression

::::::::
equation

:::
was

:::::::::
calibrated

::
to

:::::
local

:::::
surge

:::::::::
conditions

::
at

:::
the

::::::
station

:::::::::::
Lauwersoog

::::
(Fig.

:::
1).

::::
The

::::::::
historical

:::::::::::
astronomical

::::
tide

:::::::
between

:::::
1951160

:::
and

:::::
2000

:::::
using

::
all

::::::
known

:::::::
current

::::
tidal

::::::::::
constituents

::::
was

:::::
added

::
to

:::
the

::::::::
modelled

::::::
storm

:::::
surge

::::
data

:::
for

:::
the

::::::::
complete

:::::
period

:::
of

:::
800

:::::
years.

::::
The

::::
sum

:::
of

:::::
surge

:::
and

::::
tide

::::::
results

::
in

::
a
::::
time

:::::
series

:::
of

:::
still

::::::
water

:::::
levels

::::::
(SWL)

::
at
::::

the
:::::
North

::::
Sea.

:::::
These

::::::::
regional

:::::::::
simulations

:::::
were

::::
then

::::
used

::
to

::::
drive

::::::::::
RTC-Tools,

:
a
:::::::::::
hydrological

:::::::::::
management

::::::::
simulator

:::::::::::::::::::::::
(Schwanenberg et al., 2015)

:::::::::
generating

::
the

::::::::::::
corresponding

:::::
IWL

::::
time

:::::
series

::
at

:::::
hourly

:::::::::
resolution.

:

To assess compounding effects, van den Hurk et al. (2015) constructed a randomized ensemble of independent drivers by165

shuffling the time series of model generated precipitation and storm surge in a way that preserved climatological characteristics

but removed the correlation between surge and precipitation. After adding the tidal cycle
:
to
::::::::
compute

:::
the

::::
SWL, the correspond-

ing water levels
:::::
IWLs were derived by forcing RTC-Tools with these shuffled time series of precipitation and total surge

::::
SWL.

van den Hurk et al. (2015) concluded that the return period associated to the extreme 2012 water level
::::
IWL was almost three

times larger for shuffled data than for the original data, which indicated the presence of a compounding effect of precipitation170

and surge on water level (which was
:::::::::::
compounding

::::::::
processes

::::::::
between

::::::::::
precipitation

::::
and

:::::
SWL

::::::
leading

::
to

::::::
higher

:::::
IWL.

::::
This

::
is

also shown by comparing the empirical joint probability density functions of the original and shuffled time series). However,

the dependence of surge
::::
SWL

:
and precipitation was weaker for the largest water level

:::
IWL

:
events, which were dominated by

specific neap tide conditions with a low tidal range and consequently high values of the low tides
::::::::::::::::::::::
(van den Hurk et al., 2015).

3 Methods175

3.1 Conceptual model

The statistical model for estimating inland water level
:::
IWL

:
has been developed following four consecutive steps:

1. Characterization of the compound event with a predictand, representing the so-called "impact" (water level
::::
IWL), and a

set of predictors (conditioned to the impact variable) representing the underlying drivers (precipitation and surge
::::
SWL)

of extreme water levels
::::
IWLs.180

2. Development of an impact function that relates the predictand and predictors defined in step (1).

3. Modelling of the joint probability distribution of the predictors, which implies finding the probability distributions to

model their marginal behavior, and identifying the best copula(s) to model their dependence structure.
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4. Estimating the return water
::::
IWL

::::::
return levels by randomly generating a large number of paired precipitation and storm

surge
::::
SWL synthetic events from the joint distribution obtained in step (3), which is converted to annual maximum water185

levels
:::::
IWLs with the impact function fitted in step (2).

To reproduce the findings of van den Hurk et al. (2015), including the effect of the dependence between precipitation and

surge
::::
SWL

:
on return levels, this procedure is applied to both the original dataset and the shuffled data (see Section 2). More

details of each step are provided in the remainder of this Section
:::
We

::::::::
explored

::::::::
statistical

::::::
models

::
of

::::
two

:::
and

:::::
three

::::::::::
dimensions

:::
(2D

::::
and

:::
3D

:::::
case,

::::::::::
respectively)

:::
to

:::::::
account

:::
for

:::::::
multiple

:::::::::
predictors:

::
a
::::::::
bivariate

::::::
copula

:::::
model

::::::::::
accounting

:::
for

:::
the

:::::::
iteration

:::
of190

::::::::::
precipitation

::::
and

:::::
SWL,

:::
and

::
a
:::::::
trivariate

::::::
(vine)

::::::
copula

:::::
model

::::::
where

::
we

::::::::
separate

::::
SWL

::::
into

:::
the

:::::::::::
astronomical

:::
tide

::::
and

:::
the

:::::
surge

::
(or

::::::::
non-tidal

::::::::
residual).

::::
With

::::
this

:::::::::
separation

::
we

::::::::::
investigate

::::::
whether

:::
the

:::::::::
difference

::
in

:::::::::
controlling

:::::::
physical

:::::::::
processes

::
of

:::
tide

::::
and

::::
surge

::::::
affects

:::
the

::::::::
depiction

::
of

:::
the

::::::::::
dependency

::::::::
structure

::::::
causing

::::::::::::
compounding

::::::
effects. The design of the analyses has followed

an iterative process, with repeated feedbacks
:::::::
feedback

:
between the different steps. The selection of the predictors plays a

crucial role in the consecutive steps and the performance of the statistical modeling framework. Specifically, the performance195

of the impact function is highly sensitive to this selection
:::
the

:::::::
selection

:::
of

:::
the

::::
SWL

:::
(or

:::::
surge

::
in

:::
the

::::::::
trivariate

::::::
model)

::::::::
predictor

and has been a strong driver for the final choice of predictors.
::::
The

::::::::::
performance

::
of

:::
the

::::::
impact

:::::::
function

:::::
based

::
on

::::::
mean,

::::::::
minimum

:::
and

:::::::::
maximum

::::
SWL

:::
for

::::::::
different

::::::::
temporal

::::::::::
aggregations

::
is
:::::
given

::
in
:::

the
:::::::::::::

Supplementary
::::::::
Material

:::
(see

::::
Fig.

::::
S1)

:::
and

:::::::::
highlights

::
the

:::::::::
sensitivity

::
to

:::
the

:::::
SWL

::::::::
predictor.

3.2 Selection of predictands and predictors200

The series of annual maxima of inland water level
:::::
IWLs

:
(WLmax) is chosen as predictand to represent the impact and used

to reproduce the return plots of van den Hurk et al. (2015). In the process of predictors selection, three aspects were taken

into consideration: (1) the underlying physically driving processes, including the proper representation of the compound nature

of surge and precipitation
::::::::::
precipitation

::::
and

:::::
SWL

:::
(or

:::::
surge

::::
and

:::
tide

:::
in

:::
the

:::
3D

:::::
case); (2) the human management practices

controlling the inland water level
::::
IWL

:
dynamics in RTC-tools (Section 2); (3) the memory of the physical system, including205

lags in the occurrence of drivers that might potentially affect the magnitude of the impact.

To illustrate the rationale behind the selection of the predictors ,
:::
The

:::::::
iterative

::::::
process

::
to
:::::
select

:::
the

:::::::::
predictors

::
is

:::::
guided

:::
by the

composite of all 800 WLmax and the underlying drivers is visualized in (Fig. 2
:
). Peaks in precipitation and total storm surge

::::
SWL

:
are preceding the occurrence of the annual WLmax. Opening and closing the gates of the reservoir leads to periodic

fluctuations of the inland water level
::::
IWL. The gates are opened during the low tide to lower the inland water level

::::
IWL. If210

the ocean water level exceeds the inland water level
:::
IWL, the gates stay closed and the inland water level

::::
IWL rises due to

collection of water from the surrounding watershed. For most of the 800 annual maximum events, the gates stay closed for

several subsequent tidal cycles (see Fig. 2).

We explored statistical models of two and three dimensions to account for multiple predictors. For the 2D case, we choose

the following predictors: the accumulated precipitation over 12 days prior to WLmax, noted as P12d,acum, and the minimum215

total surge
::::
SWL

:
over the 36 h prior to WLmax, noted as ST

36h,min. For the 3D case, the precipitation predictor is the same
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Figure 2. Composite of flooding drivers and associated water level
::::
IWL response for the 2D (a) and 3D (b) cases, computed using all 800

annual maxima events. Solid lines represent the median of all values at a given time, whereas the shaded areas depict the values between the

5th and 95th percentiles. Vertical lines indicate the time windows used for the selected predictors (see Table 1).

Table 1. Selected predictors for the 2D and 3D cases.Note that total surge is the sum of surge plus tide

2D case 3D case

P12d,acum: accumulated precipitation over 12 days prior to WLmax P12d,acum: accumulated precipitation over 12 days prior to WLmax

ST
36h,min: minimum total surge

:::
SWL over 36 h prior to WLmax S72h,mean: mean surge over 72 h prior to WLmax

T12h,min: minimum tide over 12h prior to WLmax

as in 2D case, but the total surge
::::
SWL

:
is separated into the astronomical tide and the non-tidal residual (hereinafter tide and

surge, respectively). With this separation we investigate whether the difference in controlling physical processes of tide and

surge affects the depiction of the dependency structure causing compounding effects.
:::
tide

::::
and

:::::
surge. In particular, we consider
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the mean surge over 72 h prior to WLmax, noted as S72h,mean, and the minimum tide over 12h
::
12

:
h
:

prior to WLmax, noted220

as T12h,min (see Table 1). The time periods of aggregation, as well as the choice of applying the arithmetic mean, minimum

or the sum, were iteratively optimized according to the performance of the impact function and its reproduction of the return

period curves (see Section 3.3 and 3.4). The composite plots (Fig. 2) guided this iteration process
:::
We

:::::
tested

:::::::
different

::::::::
temporal

::::::::::
aggregations

::
of
::::

the
::::
surge

::::
and

::::
tide

::::::::
predictors

::
in
:::::::::

12-hourly
::::
time

:::::
steps

:::::::
between

:::
12

:::
and

:::
96

:::::
hours,

:::
as

:::
this

:::::::
duration

:::::::::::
corresponds

::
to

:::
the

::::
tidal

:::::
cycle.

::::
The

::::::::::
aggregation

::
of

:::::::::::
precipitation

::::
was

:::::
tested

:::::
from

:::
one

::::
day

::
to

:::
20

:::::
days.

:::
All

:::::::
possible

::::::::::::
combinations

::
of

:::::
these225

::::::::
predictors

:::::
were

::::
used

::
to
:::::

drive
:::

the
:::::

four
::::::
impact

:::::::
function

::::::::::
approaches

::::::::::
(introduced

::
in

:::::::
Section

::::
3.3)

::::
and

::::
were

:::::::::
evaluated

:::
by

:::
the

:::::::
trade-off

:::::::
between

:::
the

:::::::::::
performance

::::::
metrics

::
of

:::
the

::::::
impact

:::::::
function

::::
(see

::::::
Section

::::
3.3)

:::
and

:::
the

::::::
ability

::
to

::::::::
reproduce

:::::::
extreme

::::::
events

::::::::
exceeding

:::
the

:::::
flood

:::::::
warning

::::
level

::::
(see

::::::
Section

::::
3.4).

The iterative process of predictor selection led to interesting insights about the physical processes behind these compound

events. In terms of precipitation, Fig. 2 shows that the duration of the median peak of accumulated precipitation prior to230

WLmax is about 5
:::
five

:
days, which agrees with the relevant temporal range of precipitation directly affecting the inland water

level
:::::
IWLs identified by van den Hurk et al. (2015). Instantaneous contribution of precipitation to inland water levels

::::
IWLs

:
due

to direct rainfall on the reservoir surface is small and therefore a time lag is needed to capture the contributions from surface

runoff, streamflow,
:
and interflow caused by rainfall over the whole catchment. However, the impact function performs better

for a longer aggregation time period (12 days). We argue that the precipitation prior to 5
:::
five

:
days helps to better capture the235

system memory induced by soil moisture storage, as early rainfall can affect WLmax by saturating the soil. Indeed, one of

the factors contributing to the largest event in 2012 was soil saturation caused by above normal rain in the preceding weeks

(van den Hurk et al., 2015). This is shown by the 95th percentile precipitation envelope in Fig. 2 that has a peak lasting more

than 5 days and has a non-zero plateau for a time lag above 9–10 days.

For the 3D case, the level of the low tide during the antecedent 12-hourly cycle to WLmax is clearly identified as a potential240

predictor. It varies over time due to astronomical cycles and thus contributes to the timing of the reservoir drainage. The

contribution from the surge is better captured by taking the average over the previous 72h
::
72

::
h, which perfectly matches the

duration of the surge peak observed in Fig. 2b (for both mean and extreme percentiles). When the total surge is considered as

one single variable (
::
It

::
is

:::::::::
reasonable

::
to

:::::
obtain

::
a
:::::::::::
representative

:::::
time

:::
lag

::
of

::
72

::
h
::
as

:::::
three

::::
days

::
is

:::
the

:::::
mean

:::::::
duration

::
of

::::::::
cyclones

:::
over

:::::::::::
East-central

::::::
Europe

:::::::::::::::
(Bartoszek, 2017)

:
.
:::::
When

:::::
surge

::::
and

::::
tide

:::
are

:::::::::
considered

:::::::
together

:::::
(i.e.,

:::::
SWL;

:
2D case), a trade-off245

between the contribution of surge and tide is achieved by considering the minimum total surge
::::
SWL over an intermediate time

period of 36 h. Figure 2a shows that for most of the 800 events the reservoir gates were closed for at least three tidal cycles

(equaling 36 h).
::::::::
Differing

::::
time

::::::
periods

::::
(12

::
h,

::
24

::
h,
:::

48
::
h,

:::
60

:
h
::::

and
:::
72

::
h)

::::
yield

::
a
:::::
worse

:::::::::::
performance

::
of

:::
the

::::::
impact

::::::::
function

:::
(see

::::
Fig.

::::
S1).

::::
The

::::::::
minimum

::
of

:::
the

:::::
SWL

::
is
:::::
taken

::
to

:::::::
account

:::
for

:::
the

::::::
human

:::::::::::
management

::
of

:::
the

:::::::
system.

::
In

::
a
::::::
natural

:::::::
system,

::
the

:::::
SWL

::::::
would

::::::
directly

:::::
affect

:::
the

:::::::::
maximum

::::
IWL

::::::::::::::::::::::::
(e.g., Bevacqua et al., 2017)

::::::
leading

::
to

:::
the

:::::
mean

::
or

:::
the

:::::::::
maximum

:::::
SWL

::
as250

:::::
likely

:::::::::
predictors.

::
In

:::
the

::::
study

:::::
area,

:::
the

::::::
human

::::::::::
management

::::::
results

::
in

:::
the

::::::::
reservoir

::::
gates

:::::
being

::::::
opened

::
at

::::::::
minimum

::::::
SWL.

::::
This

:::::::::
relationship

::
is
::::
also

::::::::
reflected

::
by

:::
the

:::::::::::
performance

::
of

:::
the

::::::
impact

:::::::
function

:::
for

:::::::::
minimum,

:::::
mean,

::::
and

::::::::
maximum

:::::
SWL

::
of

:::
36

:::::
hours

::
as

::::::::
predictors

::::
(see

::::
Fig.

:::
S1).

:
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(a) Accumulated precipitation (b) Total surge
:::
SWL

:
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Figure 3. Density histograms for precipitation (a), total surge
::::
SWL (b), and low tide (c) associated to all hourly time series (blue), to selected

predictors (conditioned to WLmax) (pink), and to the corresponding univariate annual maxima (green).

Due to our impact-focused approach (see Section 3.1), the chosen predictors are conditioned to WLmax. This deviates from

other studies in which an n-way sampling approach is followed (i.e. conditioning to one of the (extreme) driving variables255

at a time) (e.g. Ward et al., 2018). This procedure
:::::::::::::::::::
(e.g., Ward et al., 2018)

:
.
:::
The

:::::
latter

:
is usually followed when information

about the impact variable is limited and/or when the focus is on identifying the driver that contributes most to compounding

effects. Conditioning the drivers on the impact variable guarantees an optimal training of the impact function (Section 3.3)

and all extreme water level events
::::
IWLs

:::::::
leading

::
to

::
a
:::::::::
significant

::::::
impact

:
are captured, including those that might not result

from the combination of extreme univariate events. Figure 3 compares the distributions of P12d,acum, ST
36h,min and T12h,min260

to the distribution of the corresponding univariate annual maxima. The selected predictors have notably lower values than the

corresponding annual maxima, especially for precipitation and tide variables. The corresponding surge events are
:
In

::::::::
contrast,

::
the

::::::::::
conditioned

:::::
SWL

::::::::::
distribution

::
is closer to their annual maxima

::::::::::::
corresponding

::::::
annual

::::::::
maximum

::::::::::
distribution, which agrees

with the dominant role of this water level driver ,
::::
SWL

::
as

:::::::
flooding

:::::
driver

:::::::
leading

::
to

:::::::
extreme

:::::
IWLs

:
(as seen in Section 3.3.

:
)

3.3 Impact function265

The impact function is designed to reproduce WLmax given a set of predictors (see Section 3.2). We explored different ap-

proaches, including multiple linear regression (MLR), random forests (RF) (Meinshausen, 2006) and artificial neural net-

works with stochastic gradient descent for regression (NN) (He et al., 2015; Phan, 2015). The
::::::
number

:::
of

::::
trees

::
in

::::
the

:::
RF

:::::::
approach

::::
was

:::
set

::
to

:::
50,

::::
after

:::::::::
performing

::
a
::::::::
sensitivity

:::::::
analysis

::::::::
assessing

:::
the

::::::
overall

:::::::::::
performance

::
of

:::
the

::::::::
approach

:::::::::
(estimated

::
as

::::::::::::::
root-mean-square

::::
error

::::::::
(RMSE)

:::
via

:::::
k-fold

:::::::::
validation)

:::::::::
depending

::
on

:::
the

:::::::
number

::
of

:::::
trees.

:::
We

:::::::
selected

::
50

:::::
trees,

::
as

:::::
larger

::::::
values270

:::
did

:::
not

::::
lead

::
to

::
an

:::::::
increase

::
in

:::::::::::
performance.

::::
The

:::::::
learning

:::::::
process

::
of

:::
the

:::
NN

:::::
used

::::
here

:
is
::::::

based
::
on

:::::::::
stochastic

:::::::
gradient

:::::::
descent,

:::
and

:::
the

::::::
applied

:::::::::
activation

:::::::
function

::
is

:::
the

:::::::
sigmoid

:::::::
function.

::::
The

::::::::::
architecture

::
of

:::
the

:::::::
network

::
is

::
as

:::::::
follows:

:::::
input

::::
layer

::::
with

::::
two

:::
(2D

:::::
case)

::
or

:::::
three

:::
(3D

:::::
case)

:::::::
neurons;

::::
two

::::::
hidden

:::::
layers

::::
with

:::::
eight

:::::::
neurons

::::
each,

::::::
output

:::::
layer

::::
with

:::
one

:::::::
neuron.

:::
The

:
different

regression models are evaluated by means of the root-mean-square error (RMSE)
::::::
RMSE, the mean absolute error (MAE), the
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linear (Pearson’s) correlation coefficient r and,
:
the error associated to return level estimates. This procedure was carried out275

iteratively for different sets of predictors in order to minimize the deviations between the WLmax simulated by the RTC-Tools

and the WLmax estimated via the impact functions.

For the 2D case (Table 1), all impact function approaches simulate inland water levels
::::::
WLmax:

with an RMSE of 9 cm or

less, an MAE of 7 cm or less and r greater than 0.7 (see Fig. S2 in the Supplementary Material (SM)). RF exhibits the best

performance by means of r =0.88, MAE = 4 cm and RMSE = 6 cm. However, none of these approaches reproduce
::::
well the280

extreme water levels exceeding 0 m, which have the largest impact (see Fig. S4 in SM)
:::
S3).

::::
This

::
is

:
due to the optimization

process of the regression models, which uses a cost function penalizing the squared error of the estimated water level for each

of the 800 annual maxima. The 800 annual maxima are not evenly distributed across the range of water levels between -0.5 m

and 0.22 m. 82 % of the samples feature water levels below -0.1 m and 94 % of the events show water levels below 0 m. Hence,

the optimized regression models are biased to reproducing WLmax between -0.5 m and -0.1 m.285

To overcome the underestimation of the most extreme events, we apply a bin-sampling strategy to train the impact function,

iteratively optimizing the number of bins and samples per bin . For the regression models based on machine-learning (RF,

NN), this bin-sampling does not increase the performance, as a simple combination of the bootstrapped parameters is not

straightforward. Consequently, we opt for MLR as the model of choice to define the impact function.
:
in

:::
an

:::::::
iterative

:::::::
manner.

All 800 values are divided into 12 classes ("bins") according to their inland water level
::::::
WLmax:

and distributed in 5 cm steps290

(see Table 2). From each of these bins, 10 samples (9
::
ten

:::::::
samples

:::::
(nine

:
for the highest bin) are randomly drawn and the

parameters of the MLR
::::::
impact

:::::::
function

:
are optimized for the subset. To avoid any bias due to the randomized selection, this

procedure is bootstrapped 1000 times and the mean of the resulting parameters is taken for the final impact function. For
:::
the

::::::::
regression

:::::::
models

:::::
based

:::
on

::::::::::::::
machine-learning

::::
(RF,

:::::
NN),

:::
the

:::::::::::::
implementation

:::
of

:::
this

:::::::::::
bin-sampling

::::::::
approach

::
is
::::

not
::::
easy

::
as

::
a

:::::
simple

:::::::::::
combination

::
of

:::
the

:::::::::::
bootstrapped

::::::::::
parameters

::
is

:::
not

::::::::::::::
straightforward.

:::
For

:
MLR a combination of the linear regression295

factors of the 1000 random runs can well be constructed by applying the arithmetic mean.
::::::::::::
Consequently,

:::
we

:::
opt

:::
for

::::
MLR

:::
as

::
the

::::::
model

::
of

::::::
choice

::
to

:::::
define

:::
the

::::::
impact

::::::::
function. This results in the final two-dimensional linear regression:

WLmax =−0.1639+0.3998 ·ST
36h,min +0.0027 ·P12d,acum (1)

The comparison of WLmax simulated by the RTC-Tools and WLmax estimated via Eq. 1 is shown in Fig. 4. After standard-

ization of the predictors by X̃ = (X −X)/Xsd, where X and Xsd are the corresponding mean and standard deviation, the300

dominant role of surge
::::
SWL compared to precipitation is evident:

WLmax =−0.1932+0.1033 · S̃T
36h,min +0.0639 · P̃12d,acum (2)

For the 3D case (Table 1), we obtained:

WLmax =−0.2645+0.4652 ·S72h,mean +0.3434 ·T12h,min +0.0028 ·P12d,acum (3)
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Figure 4. WLmax obtained by RTC-Tools vs. WLmax obtained using MLR with
::
bin

:
sampling approach for the 2D case (see Table 1).

Table 2. Distribution of the bin-sampling classes.

bin WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12

WL (m)
::::::
WLmax [

:
m] <-0.4 (-0.4,-0.35) (-0.35,-0.3) (-0.3,-0.25) (-0.25,-0.2) (-0.2,-0.15) (-0.15,-0.1) -(0.1,-0.05) (-0.05,0) (0 0.05) (0.05,0.1) >0.1

# samples 31 55 109 122 136 123 82 63 32 27 11 9

This expression has a slightly larger r, and lower RMSEand MAE(
::::
which

::::
has

:::
the

::::::::
following

::::::::::
standardized

:::::::
version:

:
305

WLmax =−0.1972+0.1110 · S̃72h,mean +0.0644 · T̃12h,min +0.0663 · P̃12d,acum
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

:::
The

:::
3D

::::::
impact

::::::::
function

:::::
shows

:::::::
slightly

:::::
better

:::::::::::
performance

:::::::
metrics

::::
than

::
in

:::
the

:::
2D

::::
case

:::
(r:

::::
0.76,

:::::::
RMSE:

:::::
0.085

:::
m,

::::::
MAE:

:::::
0.066

::
m

:::
vs.

:
r:
:::::
0.71,

::::::
RMSE:

::::::
0.091

::
m,

::::::
MAE:

:::::
0.071

:::
m, see Fig. S3

::
S4). However, the

:::
2D

:::::
model

:::::
better

::::::::::
reproduces

:::
the

:::::::
extreme

:::::
events

::::
over

:::
the

:::::
flood

:::::::
warning

:::::
level,

:::::
which

::
is
::
7
:::
cm

:::::::
Normaal

:::::::::::
Amsterdams

::::
Peil

::::::
(NAP).

::::
For

::::
these

::::::
events,

:::
the

::::::
RMSE

:::
of

:::
the

:::
2D

:::::
model

:::::::
amounts

::
to

:::::
0.034

:::
m,

:::::::
whereas

:::
the

::::::
RMSE

::
of

:::
the

:::
3D

:::::
model

::::::::
amounts

::
to

:::::
0.078

::
m.

::::
This

::::::
agrees

::::
with

:::
the

:
performance of the310

return level estimationsis :
:::
the

:::
3D

::::::
model

:::::::
performs

:
slightly worse (generally more tendency to underestimate ) for the 3D case

(
:::
than

:::
the

:::
2D

::::::
model,

:::
see

:
Fig. S4

::
S3 vs. Fig. S5).
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3.4 Joint probability density function and return levels

The joint distribution of the selected predictors is modelled via a copula function (Sklar, 1959; Nelsen, 2007) (see Section

1 of SM). The selection of the marginal distributions and the dependence structure of the predictors is crucial for a robust315

assessment of extreme inland water levels
::::::
WLmax. The overall methodology to obtain the return plots is similar between the

2D and 3D cases (see Section 3.1) and implemented as follows. 1) To separate marginal and dependence analysis
::::::::
modelling,

data are ranked and transformed to uniform in the unit (hyper)-square using rank statistics; 2) copula family and parameters

are fitted to these uniform data with the maximum pseudo-likelihood estimator (Kojadinovic and Yan, 2010); 3) a total of 40

copula types are considered (VineCopula R package, version 2.3.0) selecting the one leading to the lowest Akaike information320

criterion (AIC) (Schepsmeier et al., 2015). The adequacy of the selected copula model is assessed using a goodness-of-fit test

based on Kendall’s processes (Genest et al., 2009; Wang and Wells, 2000); 4) Suitable
:::::::
suitable marginal distributions for the

(unranked) defined predictors are identified, testing a wide range of distributions commonly used in hydrologic analysis and

selecting the one with the best fit (lowest AIC; Sakamoto et al., 1986); 5) the joint probability distribution of the considered

predictors is obtained with the best fitted copula(s) and marginals; 6)
::::::::
assuming

:::
that

:::
the

:::::::
selected

::::::
copula

:::::::::
accurately

:::::::::
represents325

::
the

::::
tails

:::
of

:::
the

::::::::::
distribution

:::
(an

:::::::
inherent

::::::::::
assumption

::
of

:::
the

::::::::
majority

::
of

::::::
studies

::
of

::::
this

:::::
type),

:
simulated events from this joint

distribution are obtained by sampling uniform data from the copulasand converting ;
:::

7)
:::::::
sampled

::::::
events

:::
are

::::::::
converted

:
to real

units with the previously fitted marginals; 7
:
8) Finally, the obtained synthetic samples are used to estimate inland water levels

:::::::
WLmax via the impact function explained in Section 3.3. Note that the fitted marginals are intentionally not used for the copula

fitting in order to make the choice of the copula(s) totally independent from the choice of the marginal(s) (Genest and Favre,330

2007).

Once water levels have been calculated, the associated return periods are obtained using Weibull plotting positions (Makko-

nen, 2006). Compounding effects are assessed by comparing the return value/period curve obtained by fitting the copula model

and the marginals to the dependent and the shuffled (independent) data (Section 2). In our analysis, copula models
::::::
Copula

::::::
models

:::
are

::::
used

::
to

:
generate many synthetic events of paired precipitation and surge (up to 100.000) to produce stable return335

level estimates of inland water level
:::::::
WLmax up to a 10.000-year return period. Although producing a 10.000-year data set

from 800 years of empirical data entails dealing with large uncertainties, especially for the highest return levels, we chose that

number because it establishes the standard level of protection in many places in the Netherlands, especially those exposed to

severe flooding (Bouwer and Vellinga, 2007).

4 Results and discussion340

The results of the statistical modelling framework are presented here. We find that the model with three predictors (3D case),

i.e., precipitation, surge, and tide, does not generally outperform the model with two predictors (2D case), i.e., precipitation and

total surge
:::::
SWL, (see Table 1). Therefore,

::::
Even

::::::
though

:::
the

::::::
impact

:::::::
function

::
of

:::
the

:::
3D

:::::
model

::::::
shows

::::::
slightly

:::::
better

:::::::::::
performance

::::::
metrics

::::
than

:::
the

::::::
impact

:::::::
function

:::
of

:::
the

:::
2D

::::::
model,

:::
the

:::
2D

:::::
model

::::::
shows

:
a
::::::

closer
:::::::::::
reproduction

::
of

:::
the

:::::::
extreme

::::::
events

::::
over

:::
the
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::::
flood

:::::::
warning

:::::
level

:::
(see

:::::::
Section

::::
3.3).

::::::
Based

::
on

::::
this

:::::::::
evaluation

:::
and

::::::::
following

:::
the

:::::::::
parsimony

:::::::::
principle, results of the 2D case345

are presented here
:
in

:::
the

:::::::::
manuscript, leaving most of results of the 3D case in the SM.

4.1 Dependence structure between S
:::::
SWLs

:
and P

:::::::::::
precipitation

In order to better understand the underlying factors leading to WLmax, this Section explores the dependence structure between

surge and precipitation for the
::::
SWL

::::
and

:::::::::::
precipitation

:
(2D caseusing

:
)
:::::
using

:::
the

:
Kendall’s τ correlation

:::
rank

::::::::::
correlation

::::::::
coefficient

:::
(τ )

:
(Kendall, 1938) and the joint PDF (probability density function) of ST

36h,min and P12d,acum. Different sources350

of variability are assessed, with a special focus on the internal variability of the climate system.

4.1.1 Interpretation of τ : dependence vs. independence

Since we are interested in those combinations of precipitation and surge that, together, lead to high water level, the Kendall’s

rank correlation
::::
The τ between

:::::::
estimate

:::::::
between

:::
the

:::::::
defined

:::::::::
predictors,

:::
i.e.,

:
ST
36h,min and P12d,acum is investigated. For

:::
for

the dependent data set , it amounts to -0.05, differing from zero correlation at the 95 % significance level. To further investigate355

the compound nature of the two predictors, the same correlation is calculated using the shuffled (independent) data. In this

case, τ amounts to -0.15.

The negative τ between ST
36h,min and P12d,acum is arguably related to the positive contribution of both surge

:::
the

::::
SWL

:
and

precipitation to WLmax ::::
IWL and therefore the negative slope of the WLmax isolines as a function of these predictors: lower

values of one driver can be compensated by higher values of the other driver to generate a given water level. This is illustrated360

with a simple theoretical example in Section 2 of SM . The rank correlation
::::
(and

::::
Fig.

:::
S6).

:::::
This

:::::::
example

::::::::
highlights

::::
that

:::::
when

:::::
drivers

:::::::::
positively

::::::::
contribute

::
to

:::::::::
increasing

:::
the

::::::
impact,

::::
then

:::::::::::::
impact-focused

::::::::
predictors

::::
(i.e.

::::::::
predictors

::::::::::
conditioned

::
to

:::
the

:::::::
impact)

:::
can

::::
have

:
a
::::::::
negative

:
τ
:::
for

::::::::
positively

:::::::::
correlated

::::::
drivers.

::::
This

::::::::
example

:::
also

:::::::::
illustrates

:::
that

:::::::::
comparing

:::
the

::
τ

:::::::
between

::::::::::
conditioned

::::::::
predictors

::::
with

::::
that

:::::::
obtained

:::::
from

::
an

::::::::::
independent

:::::::
dataset

:::::::
provides

::::::::::
information

:::::
about

:::
the

::::::::::
dependence

::::::
pattern

::::::
among

:::::::
drivers.

::
In

:::
our

:::::
study,

:::
the

::
τ
:::::::
obtained

:::::
from

:::
the

:::::::::
predictors of the dependent case exceeds τ of

:::
that

::::::::
obtained

::::
from

:
the independent case365

by +0.10, which arguably indicates a positive dependence pattern between surge
:::::
SWL and precipitation. Fig. 5 shows the joint

PDF obtained by our statistical model
:::::::
Similarly,

:::
the

::::::::::::
corresponding

::::
joint

:::::
PDFs

:
(see Section 3.4) . Similarly, the shaded orange

area highlights the
:::
3.4)

:::::
show

:::
the

:
increased probability of having both extreme ST

36h,min and P12d,acum (leading to extreme

water levels
::::
IWLs) as obtained from the original data, in comparison to the independent case .

:::
(see

::::::
shaded

::::::
orange

::::
area

:::
in

:::
Fig.

:::
5). This agrees with the findings of van den Hurk et al. (2015) obtained empirically.370

In summary, as a result of the conditioning on WL
::
our

:::::::::::::
impact-focused

::::::::
approach, the correlation between the defined pre-

dictors (the explanatory variables of the impact function) does not duplicate the dependence between drivers (precipitation

and surge
:::::
SWLs) leading to extreme water levels

::::
IWLs. Such conditioning complicates the interpretation of the dependence

structure and compound effects, but optimizes the performance of the impact function and hence the performance of the statis-

tical modelling of return level estimates. It is therefore important to distinguish between the correlation/dependence between375

the selected predictors, and the correlation/dependence between the drivers (although the former informs the latter). There

is certainly a number of ways one could define the drivers to better portray such dependence but, regardless of that, when
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Independence pdf

Original data

36-h min SWL (m)

Dependence pdf

Figure 5. Scatter plot of ST
36h,min and P12d,acum and its joint PDF corresponding to original data (black) and shuffled data (red). Shaded

orange area highlights the increased probability of extreme ST
36h,min and P12d,acum for the original data.

broadly speaking about positive dependence/correlation between drivers one would refer to the increased likelihood of concur-

rent drivers that contribute to impactful events, the so-called "compound effects". As
::::::::
illustrated

:::
by

:::
the

:::::::
example

::
in

:::
the

:::
SM

::::
and

shown in Fig. S1
::
S6, positive compound effects are not necessarily associated with positive values of τ between the correspond-380

ing conditioned predictors. Compound effects can still be investigated by comparison with estimates obtained from shuffled

(independent) data, expressed by either τ or the associated return level estimates (as shown in Section 4.2). For example, the

positive dependence between surge and precipitation is not depicted by the plain correlation between ST
36h,min and P12d,acum

but by the positive shift between the corresponding correlations obtained for the original and shuffled data. Moreover, although

such dependence has an impact on WL
::::
IWL

:
return levels (Section 4.2), the fact that τ between ST

36h,min and P12d,acum is weak385

also indicates that the dependence between drivers is not very strong.
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4.1.2 Seasonal variability

To increase process understanding and strengthen the link between the statistical framework and the physical processes, we

investigate the seasonal variability of the dependence structure between ST
36h,min and P12d,acum. τ is lowest during winter (DJF:

-0.13) and increases in spring (MAM: 0.01) and summer (JJA: 0.10) and drops again in the fall (SON: 0). This variability is390

caused by the underlying physical factors leading to extreme water levels.
:::::
IWLs,

:::::
which

:::::::
depend

::
on

:::
the

:::::::::
seasonality

:::
of

::::
surge

::::
and

::::::::::
precipitation

::
in

::::
this

::::
area,

::
as

::::::::
explained

::
in

:::::::
Section

:
2
::::
(see

::::
also

:::
Fig.

::::
S7).

:
In general, surge

:::::
SWL contributes more to WLmax than

precipitation
:
,
:::::
which

::
is

::::::::
explained

:::
by

:::
the

::::::::
dominant

::::
role

::
of

:::::
surge

:
(see Section 3.3). This is consistent with the correspondence

between the
::::
The monthly frequency of WLmax events and the monthly frequency of the

:::
the annual maximum of min total

surge
::
the

::::::::
minimum

:::::
SWL

:
over 36-h time windows (without being conditioned to WLmax) (

::::::::
WLmax)

:::::
shows

:::
the

::::::
highest

::::::
values395

:::::::
between

:::::::::
September

::::
and

:::::::::
December

::::
(see Fig. S6(a) vs S7(b)). In winter surge ,

::::::
which

::
is

::::::
similar

:::
to

:::
the

:::::::
seasonal

::::::
course

:::
of

::
the

::::::::
monthly

:::::::::
frequency

::
of

::::::::
WLmax :::::

events
::::

(see
::::
Fig.

:::
6).

::
In

:::::::
winter,

:::
the

::::::::::
contribution

:::
of

:::::
SWLs

:::::::::
intensifies

::::
and

::
it

:
becomes the

most predominant driver, and precipitation has a small contribution compared to other seasons (particularly the summer). This

agrees with the lowest seasonal correlation between ST
36h,min and P12d,acum obtained for this season.

::
In

:::::::
summer,

:::
the

:::::::::
likelihood

::
of

:::::
heavy

:::::::::::
precipitation

:::::::
increases

::::
(see

::::
Fig.

:::
S7

::::
(b)),

:::::
which

::::::::
increases

:::
the

::::::
chance

::
of

:::::::::
compound

:::::
surge

::::
and

::::::::::
precipitation

:::::::
leading

::
to400

::::::
extreme

::::::
IWLs,

:::::
which

::
is
::::::::
reflected

::
in

:
a
:::::
larger

:::::::::
correlation

:::::::
between

::::::::
ST
36h,min:::

and
:::::::::
P12d,acum::

in
:::
this

:::::::
season.

We also investigated separating the statistical analysis
:::::::
WLmax::::::

events
:
into seasonal clusters

:
to

:::::
build

:::
the

::::::
impact

:::::::
function.

It did not lead to an improved
:::::
model

:
representation of WLmax events

::
in

:::::
terms

::
of

::::::
RMSE

::::
(not

:::::::
shown) and led to

::::::::
increased

:::::::::
uncertainty

:::
for

::::
large

:::::
return

:::::::
periods

:::
due

::
to a smaller statistical sample. The latter was particularly critical for spring and summer,

as the number of annual maxima events is unevenly spread over the annual cycle and few of these events occur in the warmer405

seasons. The majority of WLmax occurs in the fall (Fig. S6
:
6(a)) for which the water level

::::
IWL

:
is also larger (Fig. S6

:
6).

Therefore, we continue our analysis with all-year results and ignore the seasonal signature of WL
::::
IWL

:
return levels.

4.1.3 Variability as a function of tides

The correlation between surge
:::::
SWLs and precipitation varies as a function of the tide elevation, as shown in Table 3. There is a

tendency of intensified positive dependence between ST
36h,min and P12d,acum for higher T12h,min, i.e.

:
, for smaller tidal ranges410

and higher low tides. This is apparent for both the surge predictor in the 3D case (S72h,mean) and the total surge
::::
SWL

:
predictor

(ST
36h,min) in the 2D case. This result is in contrast with findings of van den Hurk et al. (2015), who argued that surge and

precipitation had a weaker correlation for most extreme WLmax which they attributed to low tidal range between high and low

tides, as extreme water level tends
::::
IWLs

::::
tend

:
to occur in neap tide conditions.

Indeed, there is a positive dependence between T12h,min and WLmax (τ=0.10), which is reflected by a positive shift of the415

low tides prior to WLmax with respect to the distribution of all low tides (see Fig. 3(c)). Also, the upper 10 % percentile of

T12h,min occurs in the fall season (Fig. S8), when the largest water level events tend to occur (Fig. S6
:
6). This is consistent with

the lower amplitude in the major tidal constituents in September/October in the North Sea (Gräwe et al., 2014).
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Figure 6.
::::::::
Frequency

::
of

:::::::
WLmax :::::

events
:::::::
occurring

::::
each

:::::
month

:::
(a),

::::::
monthly

::::
mean

::
of
:::::::
WLmax:::

(b),
:::::::
ST
36h,min:::

(b),
:::
and

::::::::
P12d,acum:::

(d).

However, P12d,acum and particularly ST
36h,min have a greater impact on WLmax than T12h,min. This is reflected in their

respective rank correlation coefficients: τ = 0.23 (P12d,acum and WLmax) and τ = 0.42 (ST
36h,min and WLmax) (τ = 0.36 for420

S72h,mean and WLmax). Also

::::::::
Moreover, we argue that it is not evident whether the correlation between surge and precipitation is weaker for extreme

return water
::::
IWL

::::::
return levels. The tail of the return level plot is affected by sampling variability. As an example, Fig. S13

illustrates
:::
we

::::::::
calculated

:
the variation of the range of uncertainty in estimating the 800-year return level by sampling 800 and

100,000 events, respectively, from our statistical framework for both the independent and dependent cases. We empirically425

obtain that,
:
with a single 800-year realization

:
,
:
there is a probability of 12 % of the 800-year return level from original data to

be smaller than the 800-year return level based on the shuffled data. However, when sampling 100,000 events, the probability

is virtually zero.
:
A
:::::::::::
visualization

::
of

::::
this

:::::::
example

::
is

:::::
given

::
in

::::
Fig.

:::
S9.

:
This indicates that estimates about the variability of the
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Table 3. τ correlation
::::::
estimate

:
between ST

36h,min and P12d,acum, and S72h,mean and P12d,acum, as a function of T12h,min.

T12h,min range ST
36h,min ST

72h,mean:::::::
S72h,mean:

T12h,min<10th percentile -0.08 -0.13

T12h,min<50th percentile -0.06 -0.09

T12h,min>50th percentile -0.02 -0.02

T12h,min>90th percentile 0.08 0.15

role of driver dependence on generating high water levels
:::::
IWLs might be subject to sampling uncertainty for return periods of

similar value as the sample size length
:::::
length

::
of

::::::
sample

::::
size. In any case, clustering by tides reveals that a weaker correlation430

between ST
36h,min and P12d,acum is more likely to happen with lower T12h,min and therefore larger tidal ranges. Separating the

statistical analysis into tidal clusters did not lead to improvement
::
in

:::::
terms

::
of

::::::
RMSE

:::
(not

:::::::
shown), but we further investigate the

tide effect in the 3D case (see Section 4.2).

4.1.4 Climate variability

:::
The

:::::::
internal

::::::
climate

:::::::::
variability

:::
can

::::
have

::::::::
profound

::::::
effects

::
in

:::
the

:::::::::
evaluation

::
of

:::::::::
compound

:::::::
flooding

::::::::
hazards,

::
as

:::
the

::::::::::
dependence435

:::::::
structure

::::
and

:::::::::
correlation

::
of

:::::::::
predictors

::
is

::::::
highly

:::::::::
modulated

:::
by

::::
how

:::::::
climatic

::::::::
variables

:::::
affect

:::::
those

:::::::::
predictors.

:
To assess the

effect of the internal variability of the climate system on the
::::::::
estimation

::
of

:::
the

:
correlation between the selected predictors, the

correlation between ST
36h,min and P12d,acum is estimated for each individual member of the SMILE (50 years per member)

(Fig. S9a
::
7a). The correlation ranges between -0.18 and 0.04 and its mean is -0.05 (equal to the value obtained using 800 years

of data). However, none of these values are statistically significantly
:::::::::
significant different from zero,

:::::
given

::::
that

::::::::
reducing

:::
the440

::::::
sample

:::
size

::::::::
increases

::::
the

::::::
chance

::
of

::::::::
obtaining

::::::::::::::
non-statistically

:::::::::
significant

:::::::::
correlation

::::::::
estimates

::
at
::

a
:::::
given

::::::::::
significance

:::::
level

::::
(here

:::
95

::
%).

The correlation difference between original and shuffled data (which indicates the positive dependence between surge and

precipitation, see Section 4.1.1), is largely affected by climate variability. Fig. S9b-k
::::
7b-k show the variability of τ and its

statistical significance (at the 95% confidence level) for the shuffled data, which leads to a range of the correlation difference445

from -0.26 to 0.36 accounting for all ten shuffles. This indicates that internal climate variability has a pronounced impact on

the estimation of compound effects. However, our results are affected by the definition of the predictors, and therefore cannot

be generalized. Section 4.2 further investigates this matter in terms of the return levels estimates.

4.2 Return water level estimates: compound effects and climate variability

In the following
:::
this

:::::::::
subsection, the proposed statistical framework is validated against the inland return water level

::::::::
evaluated450

::
in

:::::
terms

::
of

:::
the

::::
IWL

:::::
return

::::::
levels,

:::::
using

:::
the

::::::::
empirical

:
estimates provided by van den Hurk et al. (2015), describing

:
.
:::
We

::::
also

:::::::
describe

:::
the results from the marginal and dependence assessments that form the basis of the methodology presented here.

This section also showcases the
:::::::
analysis,

::
as

::::
well

::
as

:::
the sensitivity of the three main methodological components (impact func-

19



Figure 7.
::::::::
Variability

::
of

:::::
copula

:::::
fitting

:::::
among

:::
the

::
16

::::::
50-year

::::
runs

::
for

::::::
original

:::
(a)

:::
and

::::::
shuffled

:::
data

:::::
(b-k).

:::
Red

::::
dots

::::::
indicate

::
the

:::::::::::
independence

:::
test

:
is
:::::::
rejected.

tion, marginal distributions, and dependence assessment) to the length of data availability and the
:::::::
internal

::::::
climate

:::::::::
variability

:::::::::
represented

:::
by

:::
the

:::::::
inter-run

:
variability across the different members of the SMILE

::
16

::::::
SMILE

::::::::
members.455

4.2.1 Joint probability density function

To estimate the inland water level
:::::::
WLmax based on the 2D model, the normal and the Weibull distributions are selected as the

optimal
:::::
best-fit probability distributions to fit the marginals for total surge and precipitation

::::
SWL

:::
and

:::::::::::
precipitation,

:
respectively.

To represent the joint behavior of the two selected predictors, the rotated Tawn type I copula is selected .
::::
with

:::::::::
associated
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:::::::
negative

::
τ

::::::
(-0.05).

:::
As

:::::::::
explained

::
in

:::::::
Section

:::::
4.1.1,

::
a
:::::::
negative

::
τ
:::

for
::::

the
::::::::
predictors

::
is
::::::::::

compatible
::::
with

::::::::
positive

::::::::::
dependence460

:::::::
between

::::::
drivers

:::
due

::
to

:::
the

:::::::::::::
impact-focused

::::::::
approach.

::::
The

::::
Tawn

::::::
copula

::
is

::
an

::::::::::
asymmetric

::::::::
extension

:::
of

::
the

:::::::
Gumbel

:::::::
copula.

::::
This

:::::::::
asymmetry

::::::
feature

::::::
agrees

::::
with

:::
the

::::::
scatter

::::
plot

::
in

::::::
Figure

::
5.

::::::
When

:::::::
ST
36h,min::

is
::::
low,

::::::::
WLmax :::::

events
:::::
occur

:::
for

::::::::
relatively

:::::
high

::::::::
P12d,acum:::::::::

(compared
::
to

:::
the

::::
other

::::::::
WLmax ::::::

events),
:::::
while

::::::::
ST
36h,min ::::

does
:::
not

::::
need

::
to

::
be

::::::::::
particularly

::::
high

:::::
when

::::::::
P12d,acum::

is
::::
low.

::::
This

:
is
::::
due

::
to

:::
the

::::::::::
asymmetric

::::::::::
contribution

::
of

:::::::::
P12d,acum:::

and
::::::::
ST
36h,min ::

to
:::::::
WLmax::::

with
:::
the

:::::
surge

::::::::
predictor

:::::
being

:::
the

::::::::
dominant

::::::::
predictor,

::
as

::::
seen

::
in

::::::
Section

::::
3.3.465

Similarly, in the 3D case a normal distribution fits both tide and pure surge accurately, and precipitation is well described

by a Weibull distribution. The vine structure that most accurately describes the dependence between these three variables

contains the following bivariate copulas: rotated BB1 (270◦) (dependence betweenP12d,acum and T12h,min), Frank (dependence

between T12h,min and ST
72h,mean), and rotated Clayton (90◦) (dependence between T12h,min given ST

72h,mean, and P12d,acum

given T12h,min). The
::
A

:::::
visual

::::::::::::
representation

::
of

:::
the structure of the regular vine is given in Fig. S11

::::
S10.470

4.2.2 Compound effects

To quantify the compound nature of WL, WL return levels are estimated considering independent drivers and used as reference.

Generally, the calculation of return periods for independent drivers can
::::
might

:
be performed by forcing an independence copula

or by randomly sampling from the fitted marginals directly (Genest and Favre, 2007). However, we selected the predictors

conditioned to WLmax in order to optimize the reproduction of inland water levels
:::::
ensure

::
a

::::
close

:::::::::::
reproduction

::
of
::::::::
WLmax475

calculated by the impact function. This step affects the correlation between the predictors (see Section 4.1.1 and Fig. S1
:::
S6),

which is why zero correlation between surge
::::
SWL

:
and precipitation does not equal to zero correlation between ST

36h,min

and P12d,acum. In fact, τ associated to ST
36h,min and P12d,acum obtained from the shuffled data (independent case) features a

correlation with a value of
:::::::
amounts

::
to

:
-0.15. Hence, our statistical framework cannot reproduce the return period curves of

the shuffled data when using an independent copula to describe the dependence structure between ST
36h,min and P12d,acum.480

::::::::
Therefore,

:::
to

:::::::
quantify

:::
the

:::::::::
compound

::::::
nature

:::
of

:::::::
WLmax,

:::
we

:::::
used

:::
the

::::::
return

:::::
levels

::::::::
estimated

:::::
from

:::
the

:::::::::::
independent

::::::
drivers

:::::::
(shuffled

:::::
data)

::
as

::::::::
reference.

:

To assess the independent case, we use the predictors defined in Table 1 obtained from the shuffled data
::::
(see

::::::
Section

:::
2)

and we follow the same procedure as for the dependence case to obtain the corresponding return water
:::
IWL

::::::
return

:
levels.

Results for both cases are shown in Fig. 8 (2D case) and Fig. S12
::::
S11 (3D case), where return periods/levels are compared485

against the empirical estimates by van den Hurk et al. (2015). Both 2D (Fig. 8) and 3D (Fig. S12
:::
S11) approaches reproduce

compounding effects with high skill. The small difference between these ,
::
as

::::::
shown

:::
by

:
a
::::::::::
comparison

::::::::
between

:::
the

::::::::
empirical

:::
and

::::::::
simulated

::::
data

:::
for

:::::::::
equivalent

::::::
return

::::::
periods

:::
via

:::::::
RMSE.

::::
The

:::::::
RMSEs

::
of

:::
the

:
2D

:::
case

:::::::::::
(dependence

::::
and

:::::::
shuffles)

:::::::
amount

::
to

::::
0.02

:::
m,

:::::
where

:::
the

:::::::
RMSEs

:::
of

:::
the

:::
3D

::::
case

:::::::::::
(dependence

:::
and

::::::::
shuffles)

:::::::
amount

::
to

:::::
0.019

:::
m.

::::
The

:::::
small

::::::::
difference

:::
of

::
1

:::
cm

:::::::
between

:::
the

::::::::::
performance

::
of

:::
the

:::
2D and 3D cases shows that adding complexity to our framework does not necessarily improve490

performance. However, the trivariate model is slightly better at reproducing the independent case.
:::
can

::::
only

:::::::
slightly

:::::::
improve

::
the

::::::::::::
performance.

:::
The

::::::
almost

:::::::::
equivalent

:::::::::::
performance

::
of

::::
both

::::::
models

:::
led

::
us

:::
to

::::::
present

:::
the

::::::
simpler

::::::
model

::
in

:::
the

::::::::::
manuscript

::
as
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Figure 8. Inland water level
:::
IWL

:
return level against estimated return period using a bivariate copula model (2D case). Blue and red

dotted lines depict the dependence and independence case, respectively. Transparent red denotes confidence intervals, which account for the

uncertainty range between the 5th and 95th percentiles, as computed from all shuffles. Light blue and orange dots represent the return values

empirically obtained by van den Hurk et al. (2015).

:
a
:::::::::
preferable

::::::
choice,

:::
and

:::::
leave

:::
the

::::
more

::::::::
complex

:::::
model

::
in

:::
the

::::
SM.

::
In

::::::::
addition,

::
as

::::
seen

::::
later

:::
on

::
in

::::::
Section

:::::
4.2.3,

:::
the

:::
3D

::::::
model

:
is
:::::
more

:::::::
sensitive

::
to
:::::::
climate

::::::::
variability

::::::::::
uncertainty.

:

Despite overall good performance, both 2D and 3D approaches differ slightly from the empirical data for the highest return495

periods. However, as noted in Section 4.1.3., the tail of the return plot is sensitive to the number of simulations used to obtain

such estimates (see Fig. S13
::
S9). This explains the disagreement between the modelled and the empirical estimates for large

return periods (modelled lines are more parallel than empirically estimated lines), as we obtained these curves by simulating

larger samples
:::::::
(100,000

::::::
events)

:
than the empirical analysis (100,000

:::
800

:
events).

4.2.3 Climate variability500

In Section 4.1.4 we show
::::::
showed the effect of the climate variability on the predictors’ dependence structure

::
by

:::::::::
exploring

:
τ . Here, we explore the effect of climate variability on each component of our statistical framework: the impact function,

the marginal distribution, and the copula function. In particular, we investigate the impact on (i
:
1) the estimates of WL

::::
IWL
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return levels corresponding to the dependence case (Fig. 9) and (ii
:
2) the ratio of the estimated return periods from the shuffled

predictors (RPs) to those derived by accounting for dependence between predictors (RPd) (Fig. 10). This ratio indicates the505

bias in return period calculation if dependence between drivers was ignored and is used as a proxy of the compound effects, i.e.
:
,

the increased probability of extreme WL
::::
IWL due to the positive dependence between surge

:::::
SWLs and precipitation. Table 4

specifies the settings used to produce Fig
:::
Figs. 9 and 10.
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Figure 9. Return water
::::
IWL

::::
return

:
level against estimated return period using a bivariate copula. Blue dots depict the return level estimates

obtained using the proposed statistical framework (using 800 years of data). Green
::::::::
Transparent

:::::
green illustrates the uncertainty associated to

internal climate variability, represented by bounds computed using the 5th and 95th percentiles from all 50-year ensembles, and the median

value (
:::::
opaque

:::::
green dots). This is assessed for each component of the methodology: a) 50-year ensembles are used for all components; b)

same as a) but
::::
MLR

:
impact function

::::
with

::::::
standard

:::::::
sampling

:
is trained with 800 years of data; c) same as b) but using bin sampling approach;

c
:
d) 50-year runs are used for copula fitting only; d

:
e) 50-year runs are used for total surge

::::
SWL marginal fitting only; and ef) 50-year runs

are used for precipitation marginal fitting only (see Table 4).
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Figure 10. Compound effect (estimated as ratio between return periods as obtained from shuffled and original data) against
::::
IWL return water

level using a bivariate copula. Blue dots depict the values obtained using the proposed statistical framework (using 800 years of data). Green

:::::::::
Transparent

::::
green

:
illustrates the uncertainty associated to internal climate variability, represented by bounds computed using the 5th and

95th percentiles from all 50-year ensembles, and the median value (
:::::
opaque

:
dots). This is assessed for each component of the methodology:

a) 50-year ensembles are used for all components; b) same as a) but
::::
MLR

:
impact function

:::
with

::::::
standard

:::::::
sampling

:
is trained with 800 years

of data; c) same as b) but using bin sampling approach; c
:
d) 50-year runs are used for copula fitting only; d

:
e) 50-year runs are used for total

surge
::::
SWL

:
marginal fitting only; and e

:
f) 50-year runs are used for precipitation marginal fitting only (see Table 4).
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Table 4. Settings used in subpanels of Figures 9 and 10 to assess climate variability (green).

50-year runs 800 -year ensemble

Subpanels Impact function Copula Total surge
:::
SWL PDF Precipitation PDF Impact function Copula Total surge

:::
SWL PDF Precipitation PDF

a x x x x

b x x x x∗

c x x x x

d x x x x x

e x x x x

f x x x x
∗ Impact function is not optimally trained

:::
based

::
on

:::
MLR

:::
with

:::::
standard

:::::
sampling, i.e. bin sampling approach is not implemented.

First, Fig. 9(a) shows WL
::::
IWL

:
return period and level estimates for the bivariate case, and associated variability computed

from all subsets of 50 years for each component. Large uncertainty intervals surround the average of values based on these 50-510

year subsets, and this average return period curve is shifted downwards compared to the 800 year reference curve approach. The

general tendency of the regression model to underestimate
:::::::
simulate

:::::
lower return levels, especially for high return periods, is

mainly caused by the fact that we cannot perform the bin-sampling approach with only 50 years of data. Indeed, not performing

the bin-sampling procedure when using the entire dataset
:::
data

:::
set (800 years of data) also leads to an underestimation of return

values for both dependent and independent cases
::::
leads

::
to

::
a

::::
very

::::::
similar

:::::
result (Fig. 9(b)). The optimal training of the impact515

function by means of bin sampling eliminates the tendency to underestimate high return periods
:::::::
simulate

:::::
lower

:::::
return

:::::
levels, as

shown in Fig. 9(c) where the proposed function in Subsection 3.3
:::
(Eq.

::
1)

:
is applied while using 50-year ensembles for marginal

and copula fitting. Yet, uncertainty is not reduced
::::
when

:::::
using

:::
the

:::
bin

::::::::
sampling

::::::::
approach

::::
with

:::
800

:::::
years, which illustrates that

most uncertainty related to internal climate variability is introduced by other framework components. Similar to Fig. 9(a)

and (c), Fig. 10(a) and (c) show the variability of the return period ratio when 50-year ensembles are used for all framework520

components and when the impact function is optimally trained
::::
with

:::
bin

::::::::
sampling

::
is

::::::
applied, respectively. Return period ratios

are likely to vary significantly when only 50 years of data are available as noted by the large green intervals (Fig. 10(a) and

(c)). Furthermore, there is a tendency to underestimate compounding effects even when the impact function has been optimally

trained
::::
with

:::
bin

:::::::
sampling

::
is
::::
used

:
(Fig. 10(c)).

Second, the effect of climate variability on copula fitting and its impact on inland WL
:::
IWL

:
return level estimation are525

shown in Fig. 9(d). Here, we apply the optimally trained impact function and use the entire dataset
::::
data

::
set

:
to fit the marginals

while varying the length of the data used in
::::
using

:::
50

::::
years

:::
of

::::
data

:::
for

::::
the copula fitting. As expected, the copula fitting does

not generate significant differences between the 50-year runs as τ becomes virtually zero for all 50-year runs (see Section

4.1.4, Fig. S9
:
7(a)). This low variability induced by copula fitting, however, does not imply that bivariate copula models are

generally unaffected by climate variability. In this study, copulas do not play a significant role in the estimation of inland530

WL return period estimation
::::
IWL

:::::
return

::::::
period

:
for the 2D dependence case. While there is dependence among drivers, the

Kendal
::::::
Kendall’s τ for the 800 years of the selected (conditioned) predictors is very close to zero. Hence, shortening the dataset

:::
data

:::
set

:
length does not affect the reliable estimation of WL

::::
IWL

:
in terms of copula modelling for the dependence 2D case.

Nonetheless, climate variability does affect the estimation of WL
:::
IWL

:
for the shuffled data (not shown) due to the inherent
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variability in the corresponding τ and copula fitting (Fig. S9b-k
::::
7b-k)). This suggests that the use of short records probably535

affects the estimation of compound effects. Indeed, Fig. 10(d) clearly illustrates that the use of short records
:::::
small

:::::::
samples

::
to

::
fit

:::
the

::::::
copulas

:
tends to lead to an underestimation of compound effects. Climate variability also causes a large uncertainty of

return period ratios
::::
when

:::::::
copulas

:::
are

::::::
derived

:::::
from

::::::
50-year

::::
time

:::::
series.

Third, to explore the effect of climate variability on marginal fitting, we tested and fitted different suitable probability

distributions to the marginals of all 50-year ensembles, while using 800 years for copula fitting and the optimally trained impact540

function to transform simulations. A comparison between Fig. 9(e), Fig. 10(e), Fig. 9(f) and Fig. 10(f) shows the uncertainty

associated to total surge
::::
SWL

:
and precipitation data marginal fitting. We find that most uncertainty in estimating WL

::::
IWL

return levels is associated to the fitting of the total surge
::::
SWL

:
distribution (Fig. S10

:::
S12(a)). This uncertainty is reflected in the

water level
::::
IWL

:
estimates, since the total surge

:::::
SWL is the predominant driver. Furthermore, comparing Fig. 7

::
10(d-f) reveals

that the tendency to underestimate compounding effects in Fig. 10(d) is mainly introduced by the copula fitting. Hence, short545

records might prohibit
:::::
hinder

:
a proper estimation of compound effects due to poor copula fitting.

An analogous uncertainty analysis was performed for the trivariate case (Fig. S14
:::
S13), examining the uncertainty associated

to each component of the proposed statistical framework. Although generally similar insights were obtained as for the bivariate

uncertainty assessment, some differences are worth mentioning. For instance, copula fitting (Fig. S14
:::
S13(c)) presents larger

uncertainty intervals than for the bivariate case. As the predictors are defined differently in the trivariate case, the correlation550

between them has also changed and has become crucial to reproduce WL
:::
IWL

:
dependence curves. In addition, separating total

surge
::::
SWL into surge and tidal range reveals that marginal fitting uncertainty is mostly caused by surge, followed by tides (see

Fig. S10
:::
S12(c) and (d)). Although tidal range is an important factor determining the occurrence of extreme WL

:::
IWL

:
in our

study case, the surge is the most important variable explaining the behavior of inland WL
::::
IWL (as seen in Section 3.3

:::
3.3,

::::
Eq.

:
4).555

In sum, we find that the internal variability of the climate system represented by the variability between the 16 50-year

members induces a large uncertainty range at every step of our statistical framework. The impact function cannot be properly

calibrated with 50-year data. Furthermore, compound effects tend to be underestimated when applying short records to fit the

copula.

5 Conclusions560

In this study we developed a
::
an

:::::::::::::
impact-focused copula-based multivariate statistical framework that produces robust estimates

of compound extreme inland water return levels
:::::
(IWL)

:
for a highly managed reservoir in the Netherlands. This work was

motivated by a near-flooding event in 2012, which was empirically analyzed by van den Hurk et al. (2015) based on a single

model initial-condition large ensemble (SMILE) consisting of a set of 16 50-year simulations. Like in van den Hurk et al.

(2015), we used these 16 members as 800 years of current climate conditions that account for the internal variability of the565

climate system. In particular, we defined simulations of the inland water level
::::
IWL as the impact variable, and total surge

:::
still

:::::
water

:::::
level

::::::
(SWL)

:
and precipitation as the underlying drivers. To assess compounding effects, we used a randomized
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ensemble of independent drivers which van den Hurk et al. (2015) obtained by shuffling the 50-year runs, thereby removing

the correlation between surge and precipitation but preserving their climatological characteristics.

The high degree of human management in the system studied poses a challenge to select suitable predictors and subsequently570

developing an impact function that is skillful at predicting water levels
::::
IWLs

:
as a function of the underlying drivers

::::
such

::::::::
predictors. We considered bivariate and trivariate models (which was implemented after separating total surge

::::
SWL in surge and

tidal ranges) but the latter did not lead to overall improvement. Optimal predictors were found
:::::::
resulting

::
in

::::::
similar

:::::::::::
performance

:
at
:::::::::::

reproducing
:::
the

:::::
return

:::::
levels

:::
by

::::::::::::::::::::::
van den Hurk et al. (2015).

:::::::::
Predictors

:::::
were

:::::::
selected after an iterative process

::::::
(guided

:::
by

::::::::
composite

::::::::
analysis) to optimize the performance of the impact function and return level estimates. After testing several options,575

we defined the annual maximum water level
:::::::
WLmax::::::

(annual
:::::::
maxima

::
of

:::::
IWL)

:
as predictand, and the 12-day

::
12

:::
day

:
cumulative

precipitation and 36-h minimum total surge
::
36

::
h
::::::::
minimum

:::::
SWL

:
prior to WLmax as predictors. The resulting optimal impact

function is a multilinear regression model with a bin-sampling approach that gives more weight to the most extreme water level

events in the calibration process. Total surge
:::::
SWL,

::::
and

::
in

::::::::
particular

:::::
surge,

:
is found to be the predominant driver.

Our statistical model shows that, although not very strong, the dependence structure between drivers (surge
::::
SWL

:
and pre-580

cipitation) contributes to increased return water
::::
IWL

:::::
return

:
levels, as was found empirically by van den Hurk et al. (2015).

However, due
:::
Due

:
to the conditioning of the proposed predictors on the impact variablethis is not reflected in a positive τ

between the selected predictors, but
:
, the positive dependence is implicitly assessed by comparing the joint probability distri-

butions and return level estimates to results obtained from the shuffled (independent) data. Some extreme water levels
:::::
IWLs are

primarily driven by surge (especially those occurring in winter) but compoundess increases
:::::::::
compound

::::::::
processes

:::::::
increase for585

other seasons. A copula-based multivariate statistical framework is generally able to capture the complex compound nature of

precipitation and surge
:::::
SWL, and to reproduce extreme inland water

::::
IWL return levels at the local scale, also under conditions

where the strong management of the hydrological system was not explicitly represented in the underlying data.

Furthermore, we performed a unique uncertainty assessment to explore the impact of internal climate variability on the

return water level estimates. The use of a subset of 50-years of data (which is the typical
:::::::::
maximum record length available590

from observed
:::::::::::
observational records) was tested for different components of our framework, namely the impact function, the

copula fitting, and the marginal fitting. Using a degraded impact function training
::
an

::::::
impact

:::::::
function

:::::
with

:::::::
standard

::::::::
sampling

leads to a consistent underestimation of the return levels, as the bin sampling approach is not feasible for 50 years of data.

The marginal fitting of total surge is the factor that most contributes to uncertainty of the return level estimates. For the 2D

case, copula fitting
::::
with

:::::
small

:::::::
samples does not lead to additional uncertainty and shortening records does not significantly595

impact
:
in
:
the return level estimates. However, low variability provided by copula models is due to their insignificant role in the

estimation of WL
::::
IWL return level for the dependence 2D case, as correlation between the selected predictors (conditioned

to WL
::::
IWL

::::::
annual

:::::::
maxima) is close to zero. Indeed, the 2D case could be simplified with an independent copula with no

major impact on return level estimates. Yet, dependence models are still crucial to reproduce and understand compounding

effects, as the dependence structure does play a significant role when modelling the shuffled data. The use of the 50-year600

subset
:::::
subsets

:
leads to a tendency to underestimate the increased probability of extreme WL

::::
IWL due to inherent positive

dependence between surge
::::
SWL

:
and precipitation. For the 3D case, increased dependence between the predictors and a larger
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model complexity leads to increased uncertainty induced by copula fitting when shorter records are used. We emphasize that

these findings are highly case-specific and dependent on the chosen statistical framework. However, this case study illustrates

that internal variability is
:::
can

:::
be a major source of uncertainty for estimation of extreme inland water levels

::::
IWLs

:
and the605

associated compound effects.

::::::::
Although

:::
the

::::::
results

::::::::
presented

::::
here

:::
are

::::
site

:::::::
specific,

:::
the

:::::::
general

::::::::::
framework

:::
can

:::
be

:::::::::
transferred

::
to

:::::
other

:::::::::
locations,

:::::
given

::
the

::::::::::
availability

:::
of

::::::::
relatively

::::
long

:::::::::::
overlapping

::::::
records

:::
of

:::::::
flooding

::::::
drivers

::::
and

::::::
impact

::::::::
variable.

::
If
:::
the

::::
size

:::
of

:::
the

::::::::
database

:::::
needs

::
to

::
be

::::::::
extended

::::
prior

::
to
::::::::::

developing
:
a
::::::::::
multivariate

:::::::::
statistical

:::::::::
framework,

::
a
:::::::
regional

::::::
climate

::::::
model

::::::
(RCM)

:::::::
SMILE

:::
and

::
a

::::::::::
hydrological

:::::::::::
management

::::::::
simulator

::
to

::::::
derive

::::::::
empirical

::::::::
estimates

:::::
could

:::
be

::::
used

::::::::::::::::::::::::::
(e.g., van den Hurk et al., 2015).

::::::::::
Depending610

::
on

:::
the

::::
size

:::
of

:::
the

::::::::
ensemble

::::
and

::::::
spatial

::::::::
resolution

:::
of

:::
the

::::::
RCM,

:::::
large

::::::::::::
computational

::::::::
resources

::::
may

:::
be

::::::::
required.

::::::::
Defining

:::::::::
appropriate

:::::::::
predictors

::::::
leading

::
to

::
a
::::::::
satisfying

:::::::::::
performance

::
of

:::
the

::::::
impact

:::::::
function

:::::::
depends

:::
on

:::
the

:::::::::::
hydrological

::::::::::::
characteristics

:::
and

:::::::::::
management

::
of

::
a
:::::
given

:::::::
system.

::::
For

:::::::
systems

::::
with

::::
low

:::
or

::
no

::::::::::::
management,

:::
we

::::::
would

::::::
expect

::
a

:::::
more

:::::::::::::
straightforward

::::::::::
construction

::
of

:::
an

::::::
impact

:::::::
function,

:::
but

::::::::::
appropriate

::::
lags

:::::::
between

::::::
drivers

:::
and

:::::::
impacts

::::::
should

::
be

:::::::::
accounted

:::
for.

:::::::::::::
Characterizing

:::::::::
probability

:::::::::::
distributions

:::
that

:::::::::
precisely

:::::::
describe

:::
the

:::::::::
marginals

::::
and

:::::
fitting

:::::::
copulas

::::
that

:::::::::
accurately

:::::::
capture

:::
the

:::::::::::
dependence615

:::::::
structure

::::::
largely

::::::
depend

:::
on

::::
data

:::::::::
availability.

:

:::
The

::::::::
proposed

:::::::::
framework

::::::::
assumes

:::::
waves

:::
are

::::
not

::
an

:::::::::
important

:::::
driver

::
of

:::::::
extreme

::::::
IWLs,

::::
and

::::
only

::::::::::::
low-frequency

::::::::
sea-level

::::::::::
components

:::
are

:::::::::
accounted

:::
for.

::::
This

::
is
::::::::::

reasonable
::::::::::
considering

:::
the

::::::::::::
characteristics

::
of
::::

the
:::::
study

::::
area:

:::
1)

::::::::
sheltering

::::::
effects

:::
of

:::::
barrier

::::::
islands

:::::::::
protecting

::::
from

:::::::
extreme

:::::
wave

::::::
climate

::::
and

::
2)

:::::::
shallow

:::::
waters

::::::::
inducing

::::
wave

::::::::
breaking

:::
for

::::
large

:::::
wave

:::::::
heights.

::
In

:::::::
contrast,

:::::
surge

::
is

:
a
:::::::
relevant

:::::
driver

::
of

:::::::
extreme

::::::
SWLs

::
in

::::
such

:::::::
shallow

:::::
water

::::::::::::
environments.

::::::::
However,

::
if

:::
our

:::::::::
framework

:::::
were

::
to620

::
be

:::::::::::
implemented

::
in

:::::
areas

:::::::
exposed

::
to

:::::::
extreme

::::::
waves,

:::::
ocean

:::::
wave

:::::::::
predictors

:::::
would

:::::
need

::
to

:::
be

:::::::
included

::
in

:::
the

::::::
model.

::::
Yet

:::
the

:::::::
proposed

::::::::::
framework

::::::::
described

::
in

::::::
Section

::
3

:::::
would

::::
still

::
be

:::::
valid.

:

:::
The

:::::
surge

::
is
:::::::::

calculated
:::::

from
:::
the

:::::::::::::
meteorological

:::::::
forcing

:::
for

:::
all

:::::::
relevant

::::
time

::::::
scales,

:::::
from

:::::
daily

::
to

::::::::::::
multi-annual,

:::::
using

::
the

:::::::::
empirical

::::::::::
relationship

:::::::
between

:::::
surge

::::
and

:::::
model

:::::::::
generated

:::::
wind.

:::::
Apart

:::::
from

:::
the

:::::::::::
astronomical

::::
tide,

:::
no

:::::
other

::::::
sources

:::
of

::::::::
variability

:::
are

:::::::::::
incorporated

::
in

:::
the

:::
sea

::::
level

:::::::
records.

:::::::::
Therefore,

:::
the

:::::
main

::::::::
limitation

:::
of

:::
this

:::::
study

::
is

:::
the

::::::::
exclusion

::
of

:::::::::
long-term625

:::::::::::
nonstationary

:::::::
sea-level

:::::::::
processes,

::::
such

::
as

:::::::
sea-level

::::
rise

:::::
which

::::
plays

::
a
::::
large

::::
role

::
in

::::::::
increasing

:::::::
extreme

:::::
SWLs

:::::::::::::::::::::
(Taherkhani et al., 2020b)

:
.
::::::::
However,

:::::
since

:::
our

:::::
focus

::
is

:::
on

:::
the

:::::::::
assessment

:::
of

::::::::
historical

:::::::
extreme

::::::::
sea-level

::::::
climate

:::::
with

:::::
focus

::
on

::::
the

:::::
effect

::
of

:::::::
climate

:::::::::
variability,

:::
this

::::::::::
assumption

:
is
::::::::::
reasonable.

We conclude that our statistical framework needs larger sample sizes than
::::
what

:
we would typically obtain from observational

data
::
are

:::::::
needed in order to reproduce accurate extreme inland water level statistics. Observational time series

:::::::::::
representative630

::::::
extreme

:::::
IWL

::::::::
statistics.

:::::::::::
Furthermore,

:::::::::::
observations

:
are one possible realization of the climate system within its boundaries

of internal variability. Therefore, short records present challenges to properly estimate the relationship between predictors and

predictand, marginal distributions and dependence patterns. Large sample sizes made available from the application of SMILEs

are valuable to investigate compound events and
:::::::
quantify the associated uncertainties induced by internal variability.
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