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Abstract.

The co-occurrence of (not necessarily extreme) precipitation and surge can lead to extreme inland water levels in coastal
areas. In a previous work the positive dependence between the two meteorological drivers was demonstrated in a ease-study
managed water system in the Netherlands by empirically investigating an 800-year time series of water levels, which were
simulated via a physical-based hydrological model driven by a regional climate model large ensemble.

In this study, we present and-test-a—an_impact-focused multivariate statistical framework to replicate-the-demonstrated
dependenee-model the dependence between these flooding drivers and the resulting return periods of inland water levels.
We-use-the same-800-year data-series-to-develop-This framework is applied to the same managed water system using the
aforementioned large ensemble. Composite analysis is used to guide the selection of suitable predictors and to obtain an im-
pact function -which-is-able-to-empirically-deseribe-that optimally describes the relationship between high inland water levels
(the impact) and its-driving-variables(precipitation-and-surge)—tn-our-study-area;-this-relationship-is-complex-beecause-of-the

explanatory predictors. This is complex due to the high degree of human management affecting the dynamics of the water level.
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Training the impact function with subsets of data uniformly distributed along the range of water levels plays a major role in
obtaining an unbiased performanceat-the-full-range-of simulated-water-levels—,

The dependence structure between the driving—vartables—defined predictors is modeled using two- and three-dimensional
copulas. These are used to generate paired synthetic precipitation and surge events, transformed into inland water levels via the
impact function. The compounding effects of surge and precipitation and the return water level estimates fairly well reproduce
the earlier results from the empirical analysis of the same regional climate model ensemble. Regarding the return levels this is
quantified by a root-mean-square deviation of 0.02 m, The proposed framework is therefore-able to produce robust estimates of
compound extreme water levels for a highly managed hydrological system. Even though the framework has only been applied
and validated in one study area, it shows great potential to be transferred to other areas.

In addition, we present a unique assessment of the uncertainty when using only 50 years of data (what is typically available
from observations). Training the impact function with short records leads to a general underestimation of the return levels
as water level extremes are not well sampled. Also, the marginal distributions of the 50-year time series of the surge show
high variability. Moreover, compounding effects tend to be underestimated when using 56-year-50-year slices to estimate the
dependence pattern between predictors. Overall, the internal variability of the climate system is identified as a major source of

uncertainty in the multivariate statistical model.

Copyright statement. COPYRIGHT

1 Introduction

Floods, wildfires, and heatwaves typically result from the combination of several physical processes {e-g5Baldwin-et-al; 2049 Manning-et

—Sueh-(e.g., Baldwin et al., 2019; Manning et al., 2019; AghaKouchak et al.,

2020). The physical drivers of such processes are
not necessarily extreme or hazardous when occurring in isolation, but they can lead to significant impacts when occurring

altogether, or in a narrow time range

}(Seneviratne et al., 2012). Extreme events
resulting from the combinations of physical drivers are referred to as compound events, and can be classified into different (not
entirely exclusive) categories (Zscheischler et al., 2020). These compound climate extremes are receiving increasing attention
because of their disproportionate economic, societal, and environmental impacts, and because traditional univariate approaches
can lead to strongly biased estimates of the associated risks (Zscheischler-and-Seneviratne; 2047)(Wahl et al., 2015). However,
many challenges still lay ahead in order to properly understand, and predict, the complex chain of drivers that leads to com-
pound events. Estimating the dependencies among drivers is challenging mainly due to the limited amount of data available,
especially for rare events (Zscheischler et al., 2018). Moreover, the definition of multivariate extremes is not as straightforward
as in the univariate case. A paradigm shift from a classical top-down approach adopted in many climate studies towards an

impact-centric perspective is needed (Zscheischler et al., 2018).
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storm-surge-and-hes atCompound flooding in coastal settings often originates from a combination
of storm-driven waves and surges, and blocked discharge of terrestrial water from e.g. intense precipitation or snow melt.
Meteorological conditions can lead to a (nearly) simultaneous occurrence of storm surge or waves and a discharge peak when
the area that generates the discharge is located close to the probability-of-oceurrence-of-these-extreme-water-levels—ean-be

regions across the globe (Ward et al., 2018; Couasnon et al., 2020). Low-lying coastal regions are particularly susceptible to

flooding caused by the interaction of different hazards (i.e.,

aay Ha O

compound flooding), including oceanographic, pluvial, and/or

fluvial hazards (Hendry et al., 2019). Thus, the assessment of multivariate events has received increasing attention in the coastal
Anderson et al., 2019; Serafin and Ruggiero, 2014; Rueda et al.,
- The associated impacts strongly depend on the catchment features and the characteristics of the storms (Wahl et al., 2015). For
discharge peaks originating from remote precipitation or snow melt inputs (for instance in larger river systems) delays between

engineering and management communities (e.g.

the surge and discharge peaks are usually due to the finite travel speed of the discharge wave (Khanal et al., 2019b; Klerk et al., 2015

—~With the aim to obtain methods compu-

tationally less expensive than numerical simulations, statistical models have been used to model compound events and estimate
their probability of occurrence. In some specific cases, bi- or multi-variate distributions can be derived directly from physical
properties (e.g. the joint distribution between wave height and wave periods in wind-sea states as a function of wave steepness
(de Waal and van Gelder, 2005)). However, these are often limited to idealized or very specific settings and rely heavily on the
selection of the marginal distributions. In contrast, copula-based methods (Sklar, 1959) have the advantage to capture the de-

pendence between a set of variables independently from their marginal distributions (Genest and Favre, 2007), which explains

why they have become a widely used approach nowadays.

2016; Wahl et al.



80

85

90

95

100

105

110

—In recent years, several copula-based studies have been carried out to study compound flooding events in coastal areas at dif-

ferent spatial scales(e.g. Couasnon et al., 2018; Moftakhari et al., 2019; Jane et al., 2020). For example, Bevacqua et al. (2017)
developed and implemented a conceptual statistical model to quantify the risk of compound floods that result from the com-
bination of storm surge and high river runoff in Ravenna (Italy). At regional scale, Wahl et al. (2015) assessed the historical
changes in the compound flooding due to precipitation and storm surge in US cities and identified a significant increase in the
number of compound events over the past century in major coastal cities. Accounting for climate change projections, Bevacqua
et al. (2019) showed how global warming can increase the probability of compound coastal flooding in Northern Europe. At
a global scale, Couasnon et al. (2020) provided a perspective of the compound flood potential from riverine and coastal flood
drivers, which highlighted the complexity and large regional variability of such dependence structures. Dependence between
ocean wave heights and storm surges was recently investigated by Marcos et al. (2019) at global scale, showing that 55% of
the world coastlines face compound storm surge wave extremes.

This study

is motivated

by a near flooding event in 2012 in the Lauwersmeer reservoir in the Netherlands that was classified as a compound event
van den Hurk et al., 2015). This multivariate event was characterized by a high inland (reservoir) water level (IWL) exceedin
redefined warning levels and resulted from the joint occurrence of heavy precipitation on an already wet soil and a high storm

surge impeding gravitational drainage over several consecutive tidal periods. In terms of the categorization of Zscheischler et al. (2020)

this event can be classified as multivariate, pre-conditioned and temporally compounding, which illustrates the complexit
of this near flooding event. van den Hurk et al. (2015) empirically assessed the return periods associated to compound extreme

water levels with a single model initial-condition large ensemble (SMILE) of regional climate model (RCM) simulations

covering 800 years under present-day climate conditions. SMILEs are a physically based approach to increase the size of the
database and therefore increase the number of simulated extreme compound events. Apart from van den Hurk et al. (2015)

SMILEs have been applied as tool to investigate compound events by e.g. Zhou and Liu (2018), Khanal et al. (2019a), and
Poschlod et al. (2020). This methodology allowed van den Hurk et al. (2015) to demonstrate a positive dependence between
storm surge and heavy precipitation and showed that the probability of occurrence of these extreme water levels can be greatly
underestimated if such dependence is omitted.

Here, we develop a copula-based statistical framework to model the extreme water levels in the Lauwersmeer reservoir,
using-the-same-including the dependence among the underlying drivers. Using the same aforementioned 800-year climate

dataset-asreference—Twonovel-aspects-are-addressed-in-eur-analysis—ensemble, we reproduce the results empirically obtained

by van den Hurk et al. (2015) and provide additional insights into the underlying physical factors and modelling uncertainties

in compound analysis. Although the study is site specific, we address two novel aspects that provide relevant insights for the
field of compound analysis.



First, we propose an impact-focused approach guided by composite analysis to model the relationship between extreme
water levels and underlying drivers in a water system with strong human management. We investigate the strong impact of

115 the definition and selection of the predictors based-on-the-meteorological-drivers-and-their-interaction-on-theresulting-wate
has-been-explored-rarely-and discuss the interpretation of their dependence structures in the context of this impact-focused
approach (which differs from conventional driver-centric approaches). Flooding events in managed water systems have been
rarely explored in the literaturetmost-, Most flooding studies cover natural systems };-despite-the-growing refevanee-of-which

120 typically exhibit a simpler relationship between drivers and impact variables (e.g. Bevacqua et al., 2017). Therefore, this stud

rovides a novel insight for flood risk managementis-, which is growing in relevance in many low-lying managed-areas (Portner
et al., 2019) where sea level rise increases flood frequency (Moftakhari et al., 2017; Taherkhani et al., 2020a).

Second, we explore for the first time (to our knowledge) the effect of internal (natural) climate variability on copula-based
compound event analysis. We investigate the effect of using a 50-year subset of data on the estimation of dependence structures

125 (and other elements involved in the compound event analysis), ultimately assessing the accuracy of the estimation of return
levels. This is particularly relevant as most compound climate extreme studies are based on observations or simulated time-
slices with lengths well under 50 years (e.g. Ganguli and Merz, 2019; Wahl et al., 2015; Zheng et al., 2013). The global study

of Ward et al. (2018) showed that most available datasets of overlapping discharge-surge have a median duration of 36 years,

with shorter to no observed records in most of Africa, South America and Asia.

130 2 Data-andstudy-Study area and data

Water management in the Netherlands is administered by regional water boards, which are approximately aligned with hydrological
units, The study area comprises the water managementunitboard unit of Noorderzijlvest (1440 km?) situated in the north of the

Netherlands (Fig. 1), which has an average altitude close to mean sea level height. The Lauwersmeer reservoir stores excessive

water before it drains into the North Sea by gravity during low tides. In January 2012, a combination of heavy and prolonged

135 rainfall on saturated soil during high sea level conditions (blocking the free drainage) led to extreme intand-waterlevels IWL

accompanied by precautionary implications such as evacuation. Both precipitation and storm surge associated to this event

were mild extremes (with return periods of about 10 years, respectively), but the-intand-water IWL reached unusually extreme
levels.

In terms of the underlying meteorological patterns, extreme winds with long fetch leading to high surges typically occur in

140 October-December as a result of deep and extensive low-pressure systems moving from the North Atlantic region to central

or Northern Scandinavia (van den Hurk et al., 2015). Most extreme precipitation events occur during the summer months

linked to slow-moving medium-sized low-pressure systems over northern Germany or southern Denmark (van den Hurk et al.,

2015). High water-levels TWLs are caused by the interaction between these two patterns, which mostly occur in July-October.

Additionally, Ridder et al. (2018) found that the majority of these types of compound events are accompanied by the presence

145 of an atmospheric river over the Netherlands.
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Figure 1. Overview of study site, including elevation around the area, approximate location of data collection sites, and extent of the

hydrological unit (HU) and water board the Lauwersmeer Reservoir belongs to. The station Lauwersoog (yellow dot) measures the surge,

and the IWL is observed at the gauge marked by the red dot. The bottom right-hand side panel shows where the study site is situated in the

van-denHurk-et-al~2045)-In_this study, we build our statistical framework on the same database that was developed and
applied by van den Hurk et al. (2015). van den Hurk et al. (2015) empirically estimated the return periods of intand-waterlevel

IWL by applying a physically based modelling chain. They used the climate simulations of the 16-member ensemble of the
RCM KNMI RACMO?2 (van Meijgaard et al., 2008; Van Meijgaard et al., 2012) driven by the global climate model (GCM)
EC-EARTH 2.3 (Hazeleger et al., 2012). Forced by historical emissions, the GCM was run from 1850 to 2000 with 16 different
perturbations of initial atmospheric conditions. This ensemble was dynamically downscaled by the RCM at 12 km horizontal

resolution for transient runs from 1951 to 2000, resulting in 800 years of historic climate. After-bias-adjustment-theseregional
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ton—As the 16 50-year simulations only differ by the initial
atmospheric conditions of the driving GCM, the variability of the 16 time series can be interpreted as model representations of

the internal variability of the climate system (Deser et al., 2012; Hawkins and Sutton, 2009).

The bias of precipitation was adjusted for 5-day sums and the resulting rainfall intensities were spatially averaged for the
climate model grid cells enclosing the Noorderzijlvest area. After bias-adjustment of wind speed and calculating a spatial
average for the relevant area of the North Sea, a regression equation was applied to estimate the surge. The regression equation
was calibrated to local surge conditions at the station Lauwersoog (Fig. 1). The historical astronomical tide between 1951
and 2000 using all known current tidal constituents was added to the modelled storm surge data for the complete period of
800 years. The sum of surge and tide results in a time series of still water levels (SWL) at the North Sea. These regional
simulations were then used to drive RTC-Tools, a hydrological management simulator (Schwanenberg et al., 2013) generating

To assess compounding effects, van den Hurk et al. (2015) constructed a randomized ensemble of independent drivers by
shuffling the time series of model generated precipitation and storm surge in a way that preserved climatological characteristics
but removed the correlation between surge and precipitation. After adding the tidal cycle to compute the SWL, the correspond-
ing watertevels IWLs were derived by forcing RTC-Tools with these shuffled time series of precipitation and tetal-sargeSWL.
van den Hurk et al. (2015) concluded that the return period associated to the extreme 2012 waterdevel-IWL was almost three
times larger for shuffled data than for the original data, which indicated the presence of a-compounding-effeet-ofprecipitation
and-surge-on-water-level-(whieh-was-compounding processes between precipitation and SWL leading to higher IWL. This is

also shown by comparing the empirical joint probability density functions of the original and shuffled time series). However,
the dependence of surge-SWL and precipitation was weaker for the largest waterleve-IWL events, which were dominated by
specific neap tide conditions with a low tidal range and consequently high values of the low tides (van den Hurk et al., 2015).

3 Methods
3.1 Conceptual model

The statistical model for estimating intand-waterlevel-HIWL has been developed following four consecutive steps:

1. Characterization of the compound event with a predictand, representing the so-called "impact" (watertevellWL), and a
set of predictors (conditioned to the impact variable) representing the underlying drivers (precipitation and surgeSWL)
of extreme watertevelsIWLs.

2. Development of an impact function that relates the predictand and predictors defined in step (1).

3. Modelling of the joint probability distribution of the predictors, which implies finding the probability distributions to

model their marginal behavior, and identifying the best copula(s) to model their dependence structure.
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4. Estimating the return-waterIWL return levels by randomly generating a large number of paired precipitation and sterm
surge-SWL synthetic events from the joint distribution obtained in step (3), which is converted to-annuabmaximum-water
fevels TWLs with the impact function fitted in step (2).

To reproduce the findings of van den Hurk et al. (2015), including the effect of the dependence between precipitation and

sturge-SWL on return levels, this procedure is applied to both the original dataset and the shuffled data (see Section 2). Meore

‘We explored statistical models of two and three dimensions
2D and 3D case, respectively) to account for multiple predictors: a bivariate copula model accounting for the iteration of
recipitation and SWL, and a trivariate (vine) copula model where we separate SWL into the astronomical tide and the surge

or non-tidal residual). With this separation we investigate whether the difference in controllin

surge affects the depiction of the dependency structure causing compounding effects. The design of the analyses has followed
an iterative process, with repeated feedbacks-feedback between the different steps. The selection of the predictors plays a

hysical processes of tide and

crucial role in the consecutive steps and the performance of the statistical modeling framework. Specifically, the performance

of the impact function is highly sensitive to thisseleetion-the selection of the SWL (or surge in the trivariate model) predictor
and has been a strong driver for the final choice of predictors. The performance of the impact function based on mean, minimum
iven in the Su . S1) and highlights

and maximum SWL for different temporal aggregations is

the sensitivity to the SWL predictor.

lementary Material (see Fi

3.2 Selection of predictands and predictors

The series of annual maxima of-intand-watertevel-IWLs (W Ly,,«) is chosen as predictand to represent the impact and used
to reproduce the return plots of van den Hurk et al. (2015). In the process of predictors selection, three aspects were taken
into consideration: (1) the underlying physically driving processes, including the proper representation of the compound nature
of surge-and-preeipitationprecipitation and SWL (or surge and tide in the 3D case); (2) the human management practices
controlling the-intand-waterdeve-HIWL dynamics in RTC-tools (Section 2); (3) the memory of the physical system, including
lags in the occurrence of drivers that might potentially affect the magnitude of the impact.

To-iHustrate-the rationale-behind-the selection-of the-predietors—The iterative process to select the predictors is guided by the
composite of all 800 W Ly, and the underlying drivers is-visualized-in-(Fig. 2). Peaks in precipitation and total-sterm-surge
SWL are preceding the occurrence of the annual W L,,«. Opening and closing the gates of the reservoir leads to periodic
fluctuations of the-itntand-watertevellWL. The gates are opened during the low tide to lower the-intand-watertevellWL. If
the ocean water level exceeds the-intand-waterdevellWL, the gates stay closed and the-intand-waterJeve-HIWL rises due to
collection of water from the surrounding watershed. For most of the 800 annual maximum events, the gates stay closed for
several subsequent tidal cycles (see Fig. 2).

s—For the 2D case, we choose

the following predictors: the accumulated precipitation over 12 days prior to W L., noted as P24 acum, and the minimum

total-surge-SWL over the 36 h prior to W L,,,«, noted as Sgﬁh’min. For the 3D case, the precipitation predictor is the same



25

1.5

o
3, BN

meters
o

AALAARAARN

IWL
SWL
~1.3 Precipitation

Precipitation [mm/h]

Precipitation [mm/h]

Days from WLmax

Figure 2. Composite of flooding drivers and associated waterteve-IWL response for the 2D (a) and 3D (b) cases, computed using all 800
annual maxima events. Solid lines represent the median of all values at a given time, whereas the shaded areas depict the values between the

5" and 95" percentiles. Vertical lines indicate the time windows used for the selected predictors (see Table 1).

Table 1. Selected predictors for the 2D and 3D cases.Note-that-total-surge-is-the sum-ofsurge-plus-tide

2D case 3D case

P124d,acum: accumulated precipitation over 12 days prior to W L ax P124,acum: accumulated precipitation over 12 days prior to W Limax
S{eh,min: minimum tetatsurge-SWL over 36 h prior to W Linax S72h,mean: Mean surge over 72 h prior to W Lyax

T12h, min: minimum tide over 12h prior to W Ly ax

as in 2D case, but the total-surge-SWL is separated into
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the mean surge over 72 h prior to W Ly,,x, noted as S725, mean. and the minimum tide over +2h-12 h prior to W L., noted
as Thopn,min (see Table 1). The time periods of aggregation, as well as the choice of applying the arithmetic mean, minimum

or the sum, were iteratively optimized according to the performance of the impact function and its reproduction of the return

period curves (see Section 3.3 and 3.4). The-compesiteplots-(Fig—2)-guided-this-iteration-processWe tested different temporal
aggregations of the surge and tide predictors in 12-hourly time steps between 12 and 96 hours, as this duration corresponds
to_the tidal cycle. The aggregation of precipitation was tested from one day to 20 days. All possible combinations of these
predictors were used to drive the four impact function approaches (introduced in Section 3.3) and were evaluated by the
trade-off between the performance metrics of the impact function (see Section 3.3) and the ability to reproduce extreme events
exceeding the flood warning level (see Section 3.4).

The iterative process of predictor selection led to interesting insights about the physical processes behind these compound
events. In terms of precipitation, Fig. 2 shows that the duration of the median peak of accumulated precipitation prior to
W Lax is about S-five days, which agrees with the relevant temporal range of precipitation directly affecting the-inland-water
leveIWLs identified by van den Hurk et al. (2015). Instantaneous contribution of precipitation to inland-waterlevelsIWLs due
to direct rainfall on the reservoir surface is small and therefore a time lag is needed to capture the contributions from surface
runoff, streamflow, and interflow caused by rainfall over the whole catchment. However, the impact function performs better
for a longer aggregation time period (12 days). We argue that the precipitation prior to 5-five days helps to better capture the
system memory induced by soil moisture storage, as early rainfall can affect W L, by saturating the soil. Indeed, one of
the factors contributing to the largest event in 2012 was soil saturation caused by above normal rain in the preceding weeks
(van den Hurk et al., 2015). This is shown by the 95" percentile precipitation envelope in Fig. 2 that has a peak lasting more
than 5 days and has a non-zero plateau for a time lag above 9-10 days.

For the 3D case, the level of the low tide during the antecedent 12-hourly cycle to W L.« is clearly identified as a potential
predictor. It varies over time due to astronomical cycles and thus contributes to the timing of the reservoir drainage. The

contribution from the surge is better captured by taking the average over the previous 72h72 h, which perfectly matches the

duration of the surge peak observed in Fig. 2b (for both mean and extreme percentiles). When-the-total-surge-is-considered-as
i It is reasonable to obtain a representative time lag of 72 h as three days is the mean duration of cyclones

over East-central Europe (Bartoszek, 2017). When surge and tide are considered together (i.e., SWL; 2D case), a trade-off

between the contribution of surge and tide is achieved by considering the minimum tetal-surge-SWL over an intermediate time

period of 36 h. Figure 2a shows that for most of the 800 events the reservoir gates were closed for at least three tidal cycles

(equaling 36 -h). Differing time periods (12 h, 24 h, 48 h, 60 h and 72 h) yield a worse performance of the impact function
(see Fig. S1). The minimum of the SWL is taken to account for the human management of the system. In a natural system,
the SWL would directly affect the maximum IWL (e.g., Bevacqua et al., 2017) leading to the mean or the maximum SWL as
likely predictors. In the study area, the human management results in the reservoir gates being opened at minimum SWL. This
relationship is also reflected by the performance of the impact function for minimum, mean, and maximum SWL of 36 hours

10
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Figure 3. Density histograms for precipitation (a), totat-sarge- SWL (b), and low tide (c) associated to all hourly time series (blue), to selected

predictors (conditioned to W Luax) (pink), and to the corresponding univariate annual maxima (green).

Due to our impact-focused approach (see Section 3.1), the chosen predictors are conditioned to W Ly, This deviates from
other studies in which an n-way sampling approach is followed (i.e. conditioning to one of the (extreme) driving variables
at a time) (e-g—Ward-et-al52048)—This-procedure—(e.g., Ward et al., 2018). The latter is usually followed when information
about the impact variable is limited and/or when the focus is on identifying the driver that contributes most to compounding
effects. Conditioning the drivers on the impact variable guarantees an optimal training of the impact function (Section 3.3)
and all extreme watertevel-events-IWLs leading to a significant impact are captured, including those that might not result
from the combination of extreme univariate events. Figure 3 compares the distributions of P24 acum, Sg%h,min and T'2p,min
to the distribution of the corresponding univariate annual maxima. The selected predictors have notably lower values than the
corresponding annual maxima, especially for precipitation and tide variables. The-correspondingsurge-events-are-In contrast,
the conditioned SWL distribution is closer to their annual-maximacorresponding annual maximum distribution, which agrees
with the dominant role of this-waterlevel-driver--SWL as flooding driver leading to extreme IWLs (as seen in Section 3.3-)

3.3 Impact function

The impact function is designed to reproduce W L, given a set of predictors (see Section 3.2). We explored different ap-
proaches, including multiple linear regression (MLR), random forests (RF) (Meinshausen, 2006) and artificial neural net-

works with stochastic gradient descent for regression (NN) (He et al., 2015; Phan, 2015). The number of trees in the RF

approach was set to 50, after performing a sensitivity analysis assessing the overall performance of the approach (estimated as
root-mean-square error (RMSE) via k-fold validation) depending on the number of trees. We selected 50 trees, as larger values
did not lead to an increase in performance. The learning process of the NN used here is based on stochastic gradient descent,
and the applied activation function is the sigmoid function. The architecture of the network is as follows: input layer with two

2D case) or three (3D case) neurons; two hidden layers with eight neurons each, output layer with one neuron. The different
regression models are evaluated by means of the root-mean-square-error(RMSE)RMSE, the mean absolute error (MAE), the

11
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linear (Pearson’s) correlation coefficient r and, the error associated to return level estimates. This procedure was carried out
teratively-for different sets of predictors in order to minimize the deviations between the W L, simulated by the RTC-Tools
and the W L.,,.x estimated via the impact functions.

For the 2D case (Table 1), all impact function approaches simulate intand-watertevels-W Ly, with an RMSE of 9 cm or
less, an MAE of 7cm or less and r greater than 0.7 (see Fig. S2 in the Supplementary Material (SM)). RF exhibits the best
performance by means of r =0.88, MAE = 4 cm and RMSE = 6 cm. However, none of these approaches reproduce well the
extreme water levels exceeding O m, which have the largest impact (see Fig. S4-in-SM)S3). This is due to the optimization
process of the regression models, which uses a cost function penalizing the squared error of the estimated water level for each
of the 800 annual maxima. The 800 annual maxima are not evenly distributed across the range of water levels between -0.5 m
and 0.22 m. 82 % of the samples feature water levels below -0.1 m and 94 % of the events show water levels below 0 m. Hence,
the optimized regression models are biased to reproducing W Ly, ., between -0.5 m and -0.1 m.

To overcome the underestimation of the most extreme events, we apply a bin-sampling strategy to train the impact function,

iteratively-optimizing the number of bins and samples per bin -

All 800 values are divided into 12 classes ("bins") according to their intand-watertevel-W Ly, and distributed in 5 cm steps
(see Table 2). From each of these bins, +0-samples<9-ten samples (nine for the highest bin) are randomly drawn and the
parameters of the MIER-impact function are optimized for the subset. To avoid any bias due to the randomized selection, this

procedure is bootstrapped 1000 times and the mean of the resulting parameters is taken for the final impact function. For the

regression models based on machine-learning (RF, NN), the implementation of this bin-sampling approach is not easy as a

simple combination of the bootstrapped parameters is not straightforward. For MLR a combination of the linear regression
factors of the 1000 random runs can well be constructed by applying the arithmetic mean. Consequently, we opt for MLR as

the model of choice to define the impact function. This results in the final two-dimensional linear regression:

W Linax = —0.1639 +0.3998 - ST 1in +0.0027 - Prog aeum (1)

The comparison of W Ly, simulated by the RTC-Tools and W L, estimated via Eq. 1 is shown in Fig. 4. After standard-
ization of the predictors by X = (X —X)/X%4, where X and X*¢ are the corresponding mean and standard deviation, the

dominant role of surge-SWL compared to precipitation is evident:

W Linax = —0.1932 4 0.1033 - Sk min + 0-0639 - Piog acum )

For the 3D case (Table 1), we obtained:

W Loy = —0.2645 4 0.4652 - S7op mean + 0.3434 - Tyop min +0.0028 - Piog acum 3)
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Figure 4. W Ly,ax obtained by RTC-Tools vs. W Ly,ax obtained using MLR with bin sampling approach for the 2D case (see Table 1).

Table 2. Distribution of the bin-sampling classes.

bin WLI WL2 WL3 WL4 WLS WL6 WL7 WLS WL9 WLI10 WLI11 WLI12
WEm W Lygax [Iml - <04 (-04,-035)  (-035-03)  (-0.3,-0.25)  (-0.25-0.2)  (-0.2,-0.15)  (-0.15,-0.1) = -(0.1,-0.05) ~ (-0.05,0) ~ (00.05)  (0.05,0.1)  >0.1
# samples 31 55 109 122 136 123 82 63 32 27 11 9

which has the following standardized version:

305

W Linax = —0.1972 4 0.1110 - S72j, mean + 0.0644 - Ti9p min + 0.0663 - Piag acum %)

The 3D impact function shows slightly better performance metrics than in the 2D case (r: 0.76, RMSE: 0.085 m, MAE:

0.066 m vs. 1: 0.71, RMSE: 0.091 m, MAE: 0.071 m, see Fig. S3S4). However, the 2D model better reproduces the extreme

events over the flood warning level, which is 7 cm Normaal Amsterdams Peil (NAP). For these events, the RMSE of the 2D

310 model amounts to 0.034 m, whereas the RMSE of the 3D model amounts to 0.078 m. This agrees with the performance of the
return level estimationsis—; the 3D model performs slightly worse (generally more tendency to underestimate )-forthe 3D-ease

tthan the 2D model, see Fig. $4-53 vs. Fig. S5).
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3.4 Joint probability density function and return levels

The joint distribution of the selected predictors is modelled via a copula function (Sklar, 1959; Nelsen, 2007) (see Section
1 of SM). The selection of the marginal distributions and the dependence structure of the predictors is crucial for a robust
assessment of extreme-intand-waterJevelsW Ly,,.. The overall methodology to obtain the return plots is similar between the
2D and 3D cases (see Section 3.1) and implemented as follows. 1) To separate marginal and dependence analysismodelling,
data are ranked and transformed to uniform in the unit (hyper)-square using rank statistics; 2) copula family and parameters
are fitted to these uniform data with the maximum pseudo-likelihood estimator (Kojadinovic and Yan, 2010); 3) a total of 40
copula types are considered (VineCopula R package, version 2.3.0) selecting the one leading to the lowest Akaike information
criterion (AIC) (Schepsmeier et al., 2015). The adequacy of the selected copula model is assessed using a goodness-of-fit test
based on Kendall’s processes (Genest et al., 2009; Wang and Wells, 2000); 4) Suitable-suitable marginal distributions for the
(unranked) defined predictors are identified, testing a wide range of distributions commonly used in hydrologic analysis and
selecting the one with the best fit (lowest AIC; Sakamoto et al., 1986); 5) the joint probability distribution of the considered
predictors is obtained with the best fitted copula(s) and marginals; 6) assuming that the selected copula accurately represents
the tails of the distribution (an inherent assumption of the majority of studies of this type), simulated events from this joint
distribution are obtained by sampling uniform data from the copulasand-cenverting-; 7) sampled events are converted to real
units with the previously fitted marginals; 78) Finally, the obtained synthetic samples are used to estimate intand-waterlevels
W Ly ax via the impact function explained in Section 3.3. Note that the fitted marginals are intentionally not used for the copula
fitting in order to make the choice of the copula(s) totally independent from the choice of the marginal(s) (Genest and Favre,
2007).

Once water levels have been calculated, the associated return periods are obtained using Weibull plotting positions (Makko-
nen, 2006). Compounding effects are assessed by comparing the return value/period curve obtained by fitting the copula model
and the marginals to the dependent and the shuffled (independent) data (Section 2). In-eur-analysis;copula-medels-Copula
models are used to generate many synthetic events of paired precipitation and surge (up to 100.000) to produce stable return
level estimates of intand-watertevel-1W L, up to a 10.000-year return period. Although producing a 10.000-year data set
from 800 years of empirical data entails dealing with large uncertainties, especially for the highest return levels, we chose that
number because it establishes the standard level of protection in many places in the Netherlands, especially those exposed to

severe flooding (Bouwer and Vellinga, 2007).

4 Results and discussion

The results of the statistical modelling framework are presented here. We find that the model with three predictors (3D case),

i.e., precipitation, surge, and tide, does not generally outperform the model with two predictors (2D case), i.e., precipitation and

total-surgeSWL, (see Table 1). Therefore;Even though the impact function of the 3D model shows slightly better performance
metrics than the impact function of the 2D model, the 2D model shows a closer reproduction of the extreme events over the
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flood warning level (see Section 3.3). Based on this evaluation and following the parsimony principle, results of the 2D case
are presented herein the manuscript, leaving most of results of the 3D case in the SM.

4.1 Dependence structure between S-SWLs and Pprecipitation

In order to better understand the underlying factors leading to W L,,,x, this Section explores the dependence structure between

surge-and-preeipitation—for-the-SWL and precipitation (2D caseusing-) using the Kendall’s #ecerrelation—rank correlation
coefficient (1) (Kendall, 1938) and the joint PDF (probability density function) of Sé’éhmin and P24 acum. Different sources

of variability are assessed, with a special focus on the internal variability of the climate system.

4.1.1 Interpretation of 7: dependence vs. independence

rank-correlation The T between-estimate between the defined predictors, i.e., ST, i 1d Piag acum is-investigated—For for
the dependent data set it-amounts to -0.05, differing from zero correlation at the 95 % significance level. To further investigate
the compound nature of the two predictors, the same correlation is calculated using the shuffled (independent) data. In this
case, 7 amounts to -0.15.

The negative 7 between Sy, i

and P24, acum 18 arguably related to the positive contribution of both surge-the SWL and
precipitation to ¥ -EmaeIWL and therefore the negative slope of the W L, isolines as a function of these predictors: lower
values of one driver can be compensated by higher values of the other driver to generate a given water level. This is illustrated
with a simple theoretical example in Section 2 of SM —Therank-correlation(and Fig. S6). This example highlights that when

drivers positively contribute to increasing the impact, then impact-focused predictors (i.e.

can have a negative 7 for positively correlated drivers. This example also illustrates that comparing the 7 between conditioned

redictors with that obtained from an independent dataset provides information about the dependence pattern among drivers.
In our study, the 7 obtained from the predictors of the dependent case exceeds +of-that obtained from the independent case

redictors conditioned to the impact

by +0.10, which arguably indicates a positive dependence pattern between surge-SWL and precipitation. Fig—5-shows-thejoint

PbF-obtained-by-our-statistical-model-Similarly, the corresponding joint PDFs (see Section -3:4)—Simitarly;-the shaded-orange
area-highlights—the-3.4) show the increased probability of having both extreme SgGh’min and Pi24acum (leading to extreme
water-tevelsIWLs) as obtained from the original data, in comparison to the independent case —(see shaded orange area in
Fig. 5). This agrees with the findings of van den Hurk et al. (2015) obtained empirically.

In summary, as a result of the-conditioning-on-Whour impact-focused approach, the correlation between the defined pre-
dictors (the explanatory variables of the impact function) does not duplicate the dependence between drivers (precipitation
and surgeSWLs) leading to extreme waterJevelsIWLs. Such conditioning complicates the interpretation of the dependence
structure and compound effects, but optimizes the performance of the impact function and hence the performance of the statis-
tical modelling of return level estimates. It is therefore important to distinguish between the correlation/dependence between
the selected predictors, and the correlation/dependence between the drivers (although the former informs the latter). There

is certainly a number of ways one could define the drivers to better portray such dependence but, regardless of that, when
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Figure 5. Scatter plot of Sg;;h’min and P124,acum and its joint PDF corresponding to original data (black) and shuffled data (red). Shaded

orange area highlights the increased probability of extreme Sg;;h,mm and P24 acum for the original data.

broadly speaking about positive dependence/correlation between drivers one would refer to the increased likelihood of concur-
rent drivers that contribute to impactful events, the so-called "compound effects”. As illustrated by the example in the SM and
shown in Fig. $1S6, positive compound effects are not necessarily associated with positive values of T between the correspond-
ing conditioned predictors. Compound effects can still be investigated by comparison with estimates obtained from shuffled
(independent) data, expressed by either 7 or the associated return level estimates (as shown in Section 4.2). For example, the
positive dependence between surge and precipitation is not depicted by the plain correlation between S homin A0d P12d acum
but by the positive shift between the corresponding correlations obtained for the original and shuffled data. Moreover, although
such dependence has an impact on WEIWL return levels (Section 4.2), the fact that 7 between S homin A4 P12d acum 18 weak
also indicates that the dependence between drivers is not very strong.
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4.1.2 Seasonal variability

To increase process understanding and strengthen the link between the statistical framework and the physical processes, we

investigate the seasonal variability of the dependence structure between S;;’;). ; and P24 acum- T 1s lowest during winter (DJF:

-0.13) and increases in spring (MAM: 0.01) and summer (JJA: 0.10) and drops again in the fall (SON: 0). This variability is
caused by the underlying physical factors leading to extreme watertevelsz:IWLs, which depend on the seasonality of surge and

recipitation in this area, as explained in Section 2 (see also Fi

. S7). In general, surge-SWL contributes more to W Ly, than
precipitation, which is explained by the dominant role of surge (see Section 3.3). This-is—consistent-with-the-correspondenee

between-the-The monthly frequency of W-iyaxevents-and-the-menthlyfrequeney-of-the-the annual maximum of min-total
stirge-the minimum SWL over 36-h time windows (without being conditioned to ¥ -Emm)€W Lyyq,) shows the highest values

between September and December (see Fig. S6(a)-vs-S7(b))—tn—wintersurge-, which is similar to the seasonal course of

the monthly frequency of W L events (see Fig. 6). In winter, the contribution of SWLs intensifies and it becomes the

most predominant driver;-a . This

agrees with the lowest seasonal correlation between 53 and P24 acum Obtained for this season. In summer, the likelihood

6h,min

of heavy precipitation increases (see Fig. S7 (b)), which increases the chance of compound surge and precipitation leading to

extreme TWLs, which is reflected in a larger correlation between SZ., . and P in this season.
We also investigated separating the statistical-analysis-WW L,, ., events into seasonal clusters to build the impact function.
It did not lead to an improved model representation of W L, events in terms of RMSE (not shown) and led to increased

uncertainty for large return periods due to a smaller statistical sample. The latter was particularly critical for spring and summer,
as the number of annual maxima events is unevenly spread over the annual cycle and few of these events occur in the warmer
seasons. The majority of W L,,,« occurs in the fall (Fig. S66(a)) for which the-waterlevel-IWL is also larger (Fig. $66).

Therefore, we continue our analysis with all-year results and ignore the seasonal signature of WAIWL return levels.
4.1.3 Variability as a function of tides

The correlation between surge-SWLs and precipitation varies as a function of the tide elevation, as shown in Table 3. There is a

tendency of intensified positive dependence between 53 and Pj2q acum for higher T2p, min, 1.€., for smaller tidal ranges

6h,min
and higher low tides. This is apparent for both the surge predictor in the 3D case (S721,mean) and the totalstrge-SWL predictor
(S;;%h,min) in the 2D case. This result is in contrast with findings of van den Hurk et al. (2015), who argued that surge and
precipitation had a weaker correlation for most extreme W L., which they attributed to low tidal range between high and low
tides, as extreme waterlevel-terds-IWLs tend to occur in neap tide conditions.

Indeed, there is a positive dependence between T'2p min and W Ly,ay (7=0.10), which is reflected by a positive shift of the
low tides prior to W Ly,,x with respect to the distribution of all low tides (see Fig. 3(c)). Also, the upper 10 % percentile of
T2, min occurs in the fall season (Fig. S8), when the largest water level events tend to occur (Fig. $66). This is consistent with

the lower amplitude in the major tidal constituents in September/October in the North Sea (Griwe et al., 2014).
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g

However, P24 acum and particularly Sgﬁh,min have a greater impact on W Lyy,ax than T'12p min. This is reflected in their
respective rank correlation coefficients: 7 = 0.23 (P124,acum and W Lyay) and 7 = 0.42 (Sz’%h,min and W L,,.y) (7 = 0.36 for
S72h,mean and W Ly o). Adse

Moreover, we argue that it is not evident whether the correlation between surge and precipitation is weaker for extreme
retura-water-IWL return levels. The tail of the return level plot is affected by sampling variability. As an example, Fig—S13
iHustrates-we calculated the variation of the range of uncertainty in estimating the 800-year return level by sampling 800 and
100,000 events, respectively, from our statistical framework for both the independent and dependent cases. We empirically
obtain that, with a single 800-year realization, there is a probability of 12 % of the 800-year return level from original data to
be smaller than the 800-year return level based on the shuffled data. However, when sampling 100,000 events, the probability
is virtually zero. A visualization of this example is given in Fig. S9. This indicates that estimates about the variability of the
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Table 3. 7 eorrelation-estimate between S3g), iy and Pl2d acum, and S72h,mean and Pi2g acum, as a function of T12p, min.

Ti2h,min range SgGh,min m&m
T12h, min<10th percentile -0.08 -0.13
T2k, min<50th percentile -0.06 -0.09
T2k, min>50th percentile -0.02 -0.02
T12h, min>90th percentile 0.08 0.15

role of driver dependence on generating high waterlevels- IWLs might be subject to sampling uncertainty for return periods of
similar value as the sample-sizelengthlength of sample size. In any case, clustering by tides reveals that a weaker correlation

between 53 and P24 acum 1s more likely to happen with lower T'1 25, min and therefore larger tidal ranges. Separating the

6h,min

statistical analysis into tidal clusters did not lead to improvement in terms of RMSE (not shown), but we further investigate the
tide effect in the 3D case (see Section 4.2).

4.1.4 Climate variability

The internal climate variability can have profound effects in the evaluation of compound flooding hazards, as the dependence

structure and correlation of predictors is highly modulated by how climatic variables affect those predictors. To assess the
effect of the internal variability of the climate system on the estimation of the correlation between the selected predictors, the

correlation between 5’3 and Pj24 acum 18 estimated for each individual member of the SMILE (50 years per member)

6h,min

(Fig. S%9a7a). The correlation ranges between -0.18 and 0.04 and its mean is -0.05 (equal to the value obtained using 800 years
of data). However, none of these values are statistically significantly-significant different from zero, given that reducing the

sample size increases the chance of obtaining non-statistically significant correlation estimates at a given significance level
here 95 %).

The correlation difference between original and shuffled data (which indicates the positive dependence between surge and
precipitation, see Section 4.1.1), is largely affected by climate variability. Fig. S9b-k-7b-k show the variability of 7 and its
statistical significance (at the 95% confidence level) for the shuffled data, which leads to a range of the correlation difference
from -0.26 to 0.36 accounting for all ten shuffles. This indicates that internal climate variability has a pronounced impact on

the estimation of compound effects.

be-generalized—Section 4.2 further investigates this matter in terms of the return levels estimates.

4.2 Return water level estimates: compound effects and climate variability

In the-foHowingthis subsection, the proposed statistical framework is validated-against-the-inland-retara-watertevel-evaluated

in terms of the IWL return levels, using the empirical estimates provided by van den Hurk et al. (2015);-deseribing-. We also
describe the results from the marginal and dependence assess

This-section-also-showeases-the-analysis, as well as the sensitivity of the three main-methodological components (impact func-
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Figure 7. Variability of copula fitting among the 16 50-year runs for original (a) and shuffled data (b-k). Red dots indicate the independence

test is rejected.

tion, marginal distributions, and dependence assessment) to the-length-of-data-availability-and-the-internal climate variabilit
represented by the inter-run variability across the different-members-of-the-SMHE-16 SMILE members.

4.2.1 Joint probability density function

To estimate the-inland-waterlevel-TW L., based on the 2D model, the normal and the Weibull distributions are selected as the

optimal-best-fit probability distributions to fit the marginals for tetal-surge-and-preeipitationS WL and precipitation, respectively.
To represent the joint behavior of the two selected predictors, the rotated Tawn type I copula is selected —with associated
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negative 7 (-0.05). As explained in Section 4.1.1, a negative 7 for the predictors is compatible with positive dependence

between drivers due to the impact-focused approach. The Tawn copula is an asymmetric extension of the Gumbel copula. This
asymmetry feature agrees with the scatter plot in Figure 5. When SL., . is low, W Ly, events occur for relatively high
P, compared to the other W L events), while ST, . does not need to be particularly high when P is low.

This is due to the asymmetric contribution of P; and ST, . to WL with the surge predictor being the dominant
redictor, as seen in Section 3.3.

Similarly, in the 3D case a normal distribution fits both tide and pure-surge accurately, and precipitation is well described

by a Weibull distribution. The vine structure that most accurately describes the dependence between these three variables

contains the following bivariate copulas: rotated BB1 (270°) (dependence between Pi24, acum and Th2p, min), Frank (dependence

T
72h,mean

), and rotated Clayton (90°) (dependence between T2, min given ST

between 1125, min and S 72h,mean’

and P12d,acurn

given T2, min). Fhe-A visual representation of the structure of the regular vine is given in Fig. SHS10.

4.2.2 Compound effects

Generally, the calculation of return periods for independent drivers ean-might be performed by forcing an independence copula

or by randomly sampling from the fitted marginals directly (Genest and Favre, 2007). However, we selected the predictors

conditioned to W L.« in order to eptimize-thereproduction-of-inland-waterlevels-ensure a close reproduction of WL

calculated by the impact function. This step affects the correlation between the predictors (see Section 4.1.1 and Fig. $156),
which is why zero correlation between surge-SWL and precipitation does not equal to zero correlation between Sg,;;h,min
and P24 acum- In fact, 7 associated to S3T6 h,min and Pj24,acum Obtained from the shuffled data (independent case) features—a
correlation-with-a—value-of-amounts to -0.15. Hence, our statistical framework cannot reproduce the return period curves of

the shuffled data when using an independent copula to describe the dependence structure between Sig, .

Therefore, to quantify the compound nature of W L., we used the return levels estimated from the independent drivers

shuffled data) as reference.
To assess the independent case, we use the predictors defined in Table 1 obtained from the shuffled data (see Section 2)

and we follow the same procedure as for the dependence case to obtain the corresponding return-water-IWL return levels.

and P12d,acum .

Results for both cases are shown in Fig. 8 (2D case) and Fig. $+2-S11 (3D case), where return periods/levels are compared
against the empirical estimates by van den Hurk et al. (2015). Both 2D (Fig. 8) and 3D (Fig. S+2511) approaches reproduce
compounding effects with high skill-—The-small-difference-between-these-, as shown by a comparison between the empirical

and simulated data for equivalent return periods via RMSE. The RMSEs of the 2D case (dependence and shuffles) amount

to 0.02 m, where the RMSEs of the 3D case (dependence and shuffles) amount to 0.019 m. The small difference of 1 cm
between the performance of the 2D and 3D cases shows that adding complexity to our framework deesnotnecessarily-improve

performanee—However-the-trivariate-model-is-slightly-bette eproducing-the-independent-case—can only slightly improve
the performance. The almost equivalent performance of both models led us to present the simpler model in the manuscript as
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Figure 8. Inland-watertevel-IWL return level against estimated return period using a bivariate copula model (2D case). Blue and red
dotted lines depict the dependence and independence case, respectively. Transparent red denotes confidence intervals, which account for the
uncertainty range between the 5 and 95*® percentiles, as computed from all shuffles. Light blue and orange dots represent the return values

empirically obtained by van den Hurk et al. (2015).

a preferable choice, and leave the more complex model in the SM. In addition, as seen later on in Section 4.2.3, the 3D model

is more sensitive to climate variability uncertainty.
Despite overall good performance, both 2D and 3D approaches differ slightly from the empirical data for the highest return

periods. However, as noted in Section 4.1.3., the tail of the return plot is sensitive to the number of simulations used to obtain
such estimates (see Fig. S+3S9). This explains the disagreement between the modelled and the empirical estimates for large
return periods (modelled lines are more parallel than empirically estimated lines), as we obtained these curves by simulating

larger samples (100,000 events) than the empirical analysis (166;606-800 events).
4.2.3 Climate variability

In Section 4.1.4 we shew-showed the effect of the climate variability on the predictors’ dependence structure by exploring
7. Here, we explore the effect of climate variability on each component of our statistical framework: the impact function,

the marginal distribution, and the copula function. In particular, we investigate the impact on (i1) the estimates of Wi IWL
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return levels corresponding to the dependence case (Fig. 9) and (i2) the ratio of the estimated return periods from the shuffled
505 predictors (RP;) to those derived by accounting for dependence between predictors (RP;) (Fig. 10). This ratio indicates the
bias in return period calculation if dependence between drivers was ignored and is used as a proxy of the compound effects, i.e.,
the increased probability of extreme WE-IWL due to the positive dependence between surge-SWLs and precipitation. Table 4

specifies the settings used to produce FigFigs. 9 and 10.
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Figure 9. Retura-water IWL return level against estimated return period using a bivariate copula. Blue dots depict the return level estimates
obtained using the proposed statistical framework (using 800 years of data). Green-Transparent green illustrates the uncertainty associated to
internal climate variability, represented by bounds computed using the 5*® and 95" percentiles from all 50-year ensembles, and the median
value (opaque green dots). This is assessed for each component of the methodology: a) 50-year ensembles are used for all components; b)
same as a) but MLR impact function with standard sampling is trained with 800 years of data; c) same as b) but using bin sampling approach;
€d) 50-year runs are used for copula fitting only; de) 50-year runs are used for tetat-surge-SWL marginal fitting only; and ef) 50-year runs

are used for precipitation marginal fitting only (see Table 4).
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Figure 10. Compound effect (estimated as ratio between return periods as obtained from shuffled and original data) against IWL return water
level using a bivariate copula. Blue dots depict the values obtained using the proposed statistical framework (using 800 years of data). Green
Transparent green illustrates the uncertainty associated to internal climate variability, represented by bounds computed using the 5™ and
95" percentiles from all 50-year ensembles, and the median value (opaque dots). This is assessed for each component of the methodology:
a) 50-year ensembles are used for all components; b) same as a) but MLR impact function with standard sampling is trained with 800 years
of data; ¢) same as b) but using bin sampling approach; €d) 50-year runs are used for copula fitting only; de) 50-year runs are used for totat

starge-SWL marginal fitting only; and ef) 50-year runs are used for precipitation marginal fitting only (see Table 4).

25



510

515

520

525

530

Table 4. Settings used in subpanels of Figures 9 and 10 to assess climate variability (green).

50-year runs 800 -year ensemble
Subpanels Impact function ~ Copula ~ Fetatsurge SWL PDF  Precipitation PDF Impact function ~ Copula  Fetatsurge- SWL PDF  Precipitation PDF
a X X X X
b X X X x*
c X X X X
d X X *x X X
e X X X X
f X X X X

* Impact function is-notoptimatty-trainedbased on MLR with standard sampling, i.e. bin sampling approach is not implemented.

First, Fig. 9(a) shows WEIWL return period and level estimates for the bivariate case, and associated variability computed
from all subsets of 50 years for each component. Large uncertainty intervals surround the average of values based on these 50-
year subsets, and this average return period curve is shifted downwards compared to the 800 year reference curve approach. The
general tendency of the regression model to underestimate-simulate lower return levels, especially for high return periods, is
mainly caused by the fact that we cannot perform the bin-sampling approach with only 50 years of data. Indeed, not performing
the bin-sampling procedure when using the entire dataset-data set (800 years of data) also-leads-to-an-underestimation-of return
valuesfor-both-dependent-and-independent-eases-leads to a very similar result (Fig. 9(b)). The eptimal-training of the impact
function by means of bin sampling eliminates the tendency to underestimate-highreturn-periodssimulate lower return levels, as
shown in Fig. 9(c) where the proposed function in-Subseetion-3-3-(Eq. 1) is applied while using 50-year ensembles for marginal
and copula fitting. Yet, uncertainty is not reduced when using the bin sampling approach with 800 years, which illustrates that
most uncertainty related to internal climate variability is introduced by other framework components. Similar to Fig. 9(a)
and (c), Fig. 10(a) and (c) show the variability of the return period ratio when 50-year ensembles are used for all framework
components and when the impact function is-eptimally-trainedwith bin sampling is applied, respectively. Return period ratios
are likely to vary significantly when only 50 years of data are available as noted by the large green intervals (Fig. 10(a) and
(c)). Furthermore, there is a tendency to underestimate compounding effects even when the impact function has-been-optimally
trained-with bin sampling is used (Fig. 10(c)).

Second, the effect of climate variability on copula fitting and its impact on inland WE-IWL return level estimation are
shown in Fig. 9(d). Here, we apply the optimally trained impact function and use the entire dataset-data set to fit the marginals
while varying-the-length-of-the-dataused-in-using 50 years of data for the copula fitting. As expected, the copula fitting does
not generate significant differences between the 50-year runs as 7 becomes virtually zero for all 50-year runs (see Section
4.1.4, Fig. $97(a)). This low variability induced by copula fitting, however, does not imply that bivariate copula models are
generally unaffected by climate variability. In this study, copulas do not play a significant role in the estimation of inland
Wihreturapertod-estimation IWL return period for the 2D dependence case. While there is dependence among drivers, the
KendalKendall’s 7 for the 800 years of the selected (conditioned) predictors is very close to zero. Hence, shortening the dataset
data set length does not affect the reliable estimation of WA=IWL in terms of copula modelling for the dependence 2D case.

Nonetheless, climate variability does affect the estimation of WI-IWL for the shuffled data (not shown) due to the inherent
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variability in the corresponding 7 and copula fitting (Fig. S9b-k7b-k)). This suggests that the use of short records probably
affects the estimation of compound effects. Indeed, Fig. 10(d) clearly illustrates that the use of shortrecords-small samples to
fit the copulas tends to lead to an underestimation of compound effects. Climate variability also causes a large uncertainty of
return period ratios when copulas are derived from 50-year time series.

Third, to explore the effect of climate variability on marginal fitting, we tested and fitted different suitable probability
distributions to the marginals of all 50-year ensembles, while using 800 years for copula fitting and the optimally trained impact
function to transform simulations. A comparison between Fig. 9(e), Fig. 10(e), Fig. 9(f) and Fig. 10(f) shows the uncertainty
associated to total-surge-SWL and precipitation data marginal fitting. We find that most uncertainty in estimating WEIWL
return levels is associated to the fitting of the total-surge-SWL distribution (Fig. $+06S12(a)). This uncertainty is reflected in the
water-teveIWL estimates, since the total-surge-SWL is the predominant driver. Furthermore, comparing Fig. 710(d-f) reveals
that the tendency to underestimate compounding effects in Fig. 10(d) is mainly introduced by the copula fitting. Hence, short
records might prehibithinder a proper estimation of compound effects due to poor copula fitting.

An analogous uncertainty analysis was performed for the trivariate case (Fig. S+4S13), examining the uncertainty associated
to each component of the proposed statistical framework. Although generally similar insights were obtained as for the bivariate
uncertainty assessment, some differences are worth mentioning. For instance, copula fitting (Fig. S+4S513(c)) presents larger
uncertainty intervals than for the bivariate case. As the predictors are defined differently in the trivariate case, the correlation
between them has also changed and has become crucial to reproduce WI-IWL dependence curves. In addition, separating total
surge-SWL into surge and tidal range reveals that marginal fitting uncertainty is mostly caused by surge, followed by tides (see
Fig. $16S12(c) and (d)). Although tidal range is an important factor determining the occurrence of extreme WA=IWL in our
study case, the surge is the most important variable explaining the behavior of intand-WIE-IWL (as seen in Section 3:33.3, Eq.
4.

In sum, we find that the internal variability of the climate system represented by the variability between the 16 50-year
members induces a large uncertainty range at every step of our statistical framework. The impact function cannot be properly
calibrated with 50-year data. Furthermore, compound effects tend to be underestimated when applying short records to fit the

copula.

5 Conclusions

In this study we developed a-an impact-focused copula-based multivariate statistical framework that produces robust estimates
of compound extreme inland water return levels (IWL) for a highly managed reservoir in the Netherlands. This work was
motivated by a near-flooding event in 2012, which was empirically analyzed by van den Hurk et al. (2015) based on a single
model initial-condition large ensemble (SMILE) consisting of a set of 16 50-year simulations. Like in van den Hurk et al.
(2015), we used these 16 members as 800 years of current climate conditions that account for the internal variability of the
climate system. In particular, we defined simulations of the intand-watertevelIWL as the impact variable, and total-surge
still water level (SWL) and precipitation as the underlying drivers. To assess compounding effects, we used a randomized
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ensemble of independent drivers which van den Hurk et al. (2015) obtained by shuffling the 50-year runs, thereby removing
the correlation between surge and precipitation but preserving their climatological characteristics.

The high degree of human management in the system studied poses a challenge to select suitable predictors and subsequently
developing an impact function that is skillful at predicting watertevels-IWLs as a function ef-the-underlying-driverssuch
predictors. We considered bivariate and trivariate models (which was 1mplemented after separatmg totalsurge-SWL in surge and

resulting in similar performance
at reproducing the return levels by van den Hurk et al. (2015). Predictors were selected after an iterative process (guided by

composite analysis) to optimize the performance of the impact function and return level estimates. After testing several options,
we defined the-annuabmaximum-water-tevel W Ly, (annual maxima of IWL) as predictand, and the +2-day-12 day cumulative

precipitation and 36-h-mintmum-tetal-surge-36 h minimum SWL prior to W L.« as predictors. The resulting eptimal-impact

function is a multilinear regression model with a bin-sampling approach that gives more weight to the most extreme water level

tidal ranges)

events in the calibration process. Total-surgeSWL, and in particular surge, is found to be the predominant driver.

Our statistical model shows that, although not very strong, the dependence structure between drivers (sarge-SWL and pre-
cipitation) contributes to increased retura-waterIWL return levels, as was found empirically by van den Hurk et al. (2015).
Hewever,—due-Due to the conditioning of the proposed predictors on the impact variablethis-is-notreflected-in—apositive =
between-the-selected-predietors:-but, the positive dependence is implicitly assessed by comparing the joint probability distri-
butions and return level estimates to results obtained from the shuffled (independent) data. Some extreme watertevels IWLs are
primarily driven by surge (especially those occurring in winter) but eempoundess-inereases-compound processes increase for
other seasons. A copula-based multivariate statistical framework is generally able to capture the complex compound nature of
precipitation and surgeSWL, and to reproduce extreme intand-water- IWL return levels at the local scale, also under conditions
where the strong management of the hydrological system was not explicitly represented in the underlying data.

Furthermore, we performed a unique uncertainty assessment to explore the impact of internal climate variability on the
return water level estimates. The use of a subset of 50-years of data (which is the typical maximum record length available
from ebserved-observational records) was tested for different components of our framework, namely the impact function, the
copula fitting, and the marginal fitting. Using a-degraded-impactfunction-training-an impact function with standard sampling
leads to a consistent underestimation of the return levels, as the bin sampling approach is not feasible for 50 years of data.
The marginal fitting of tetal-surge is the factor that most contributes to uncertainty of the return level estimates. For the 2D
case, copula fitting with small samples does not lead to additional uncertainty and-shorteningrecords-does-noet-significantly
impaetin the return level estimates. However, low variability provided by copula models is due to their insignificant role in the
estimation of WA-IWL return level for the dependence 2D case, as correlation between the selected predictors (conditioned
to WEIWL annual maxima) is close to zero. Indeed, the 2D case could be simplified with an independent copula with no
major impact on return level estimates. Yet, dependence models are still crucial to reproduce and understand compounding
effects, as the dependence structure does play a significant role when modelling the shuffled data. The use of the-50-year
stbset-subsets leads to a tendency to underestimate the increased probability of extreme WA=-IWL due to inherent positive

dependence between surge-SWL and precipitation. For the 3D case, increased dependence between the predictors and a larger
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model complexity leads to increased uncertainty induced by copula fitting when shorter records are used. We emphasize that
these findings are highly case-specific and dependent on the chosen statistical framework. However, this case study illustrates
605 that internal variability is—can be a major source of uncertainty for estimation of extreme intand-watertevels-IWLs and the

associated compound effects.

Although the results presented here are site specific, the general framework can be transferred to other locations, given
the availability of relatively long overlapping records of flooding drivers and impact variable. If the size of the database
needs to be extended prior to developing a multivariate statistical framework, a regional climate model (RCM) SMILE and a

610 hydrological management simulator to derive empirical estimates could be used (e.g., van den Hurk et al., 2015). Depending
on the size of the ensemble and spatial resolution of the RCM, large computational resources may be required. Defining.
appropriate predictors leading to a satisfying performance of the impact function depends on the hydrological characteristics
and management of a given system. For systems with low or no management, we would expect a more straightforward
construction of an impact function, but appropriate lags between drivers and impacts should be accounted for. Characterizing.

615 probability distributions that precisely describe the marginals and fitting copulas _that accurately capture the dependence
structure largely depend on data availability.

The proposed framework assumes waves are not an important driver of extreme IWLs, and only low-frequency sea-level
components are accounted for. This is reasonable considering the characteristics of the study area: 1) sheltering effects of
barrier islands protecting from extreme wave climate and 2) shallow waters inducing wave breaking for large wave heights. In

620 contrast, surge is a relevant driver of extreme SWLs in such shallow water environments. However, if our framework were to
be implemented in areas exposed to extreme waves, ocean wave predictors would need to be included in the model. Yet the
proposed framework described in Section 3 would still be valid.

The surge is calculated from the meteorological forcing for all relevant time scales, from daily to multi-annual, using
the empirical relationship between surge and model generated wind. Apart from the astronomical tide, no other sources of

625 variability are incorporated in the sea level records. Therefore, the main limitation of this study is the exclusion of long-term
2020b)

variability, this assumption is reasonable.
We conclude that ourstatistical-frameworkneeds-larger sample sizes than what we would typically obtain from observational

nonstationary sea-level processes, such as sea-level rise which plays a large role in increasing extreme SWLs (Taherkhani et al.,

630 data are needed in order to reproduce ¢ ¢ ¢ ¢ statisties—Observationt series-representative
extreme IWL statistics. Furthermore, observations are one possible realization of the climate system within its boundaries
of internal variability. Therefore, short records present challenges to properly estimate the relationship between predictors and
predictand, marginal distributions and dependence patterns. Large sample sizes made available from the application of SMILEs

are valuable to investigate compound events and quantify the associated uncertainties induced by internal variability.
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