Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins

Tingting Ningab*, Zhi Li, Qi Fengab, Zongxing Lib and Yanyan Qinab

aKey Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China

bQilian Mountains Eco-environment Research Center in Gansu Province, Lanzhou, 730000, China

cCollege of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China

* Correspondence to: Tingting Ning (ningting2012@126.com)
Abstract: Previous studies have successfully applied variance decomposition frameworks based on the Budyko equations to determine the relative contribution of variability in precipitation, potential evapotranspiration (E_0), and total water storage changes (ΔS) to evapotranspiration variance (σ^2_{ET}) on different time-scales; however, the effects of snowmelt (Q_m) and vegetation (M) changes have not been incorporated into this framework in snow-dependent basins. Taking the arid alpine basins in the Qilian Mountains in northwest China as the study area, we extended the Budyko framework to decompose the growing season σ^2_{ET} into the temporal variance and covariance of rainfall (R), E_0, ΔS, Q_m, and M. The results indicate that the incorporation of Q_m could improve the performance of the Budyko framework on a monthly scale; σ^2_{ET} was primarily controlled by the R variance with a mean contribution of 63%, followed by the coupled R and M (24.3%) and then the coupled R and E_0 (14.1%). The effects of M variance or Q_m variance cannot be ignored because they contribute to 4.3% and 1.8% of σ^2_{ET}, respectively. By contrast, the interaction of some coupled factors adversely affected σ^2_{ET}, and the ‘out-of-phase’ seasonality between R and Q_m had the largest effect (-7.6%). Our methodology and these findings are helpful for quantitatively assessing and understanding hydrological responses to climate and vegetation changes in snow-dependent regions on a finer time-scale.

Keywords: evapotranspiration variability; snowmelt; vegetation; attribution
1 Introduction

Actual evapotranspiration (ET) drives energy and water exchanges among the hydrosphere, atmosphere, and biosphere (Wang et al., 2007). The temporal variability in ET is, thus, the combined effect of multiple factors interacting across the soil–vegetation–atmosphere interface (Katul et al., 2012; Xu and Singh, 2005). Investigating the mechanism behind ET variability is also fundamental for understanding hydrological processes. The basin-scale ET variability has been widely investigated with the Budyko framework (Budyko, 1961, 1974); however, most studies are conducted on long-term or inter-annual scales and cannot interpret the short-term ET variability (e.g. monthly scales).

Short-term ET and runoff (Q_r) variance have been investigated recently for their dominant driving factors (Feng et al., 2020; Liu et al., 2019; Wu et al., 2017; Ye et al., 2015; Zeng and Cai, 2015; Zeng and Cai, 2016; Zhang et al., 2016a); to this end, an overall framework was presented by Zeng and Cai (2015) and Liu et al. (2019). Zeng and Cai (2015) decomposed the intra-annual ET variance into the variance/covariance of precipitation (P), potential evapotranspiration (E_0), and water storage change (ΔS) under the Budyko framework based on the work of Koster and Suarez (1999). Subsequently, Liu et al. (2019) proposed a new framework to identify the driving factors of global Q_r variance by considering the temporal variance of P, E_0, ΔS, and other factors such as the climate seasonality, land cover, and human impact. Although
the proposed framework performs well for the ET variance decomposition, further research is necessary for considering additional driving factors and for studying regions with unique hydrological processes.

The impact of vegetation change should first be fully considered when studying the variability of ET. Vegetation change significantly affects the hydrological cycle through rainfall interception, evapotranspiration, and infiltration (Rodriguez-Iturbe, 2000; Zhang et al., 2016b). Higher vegetation coverage increases ET but reduces the ratio of Q_r to P (Feng et al., 2016). However, most of the existing studies on ET variance decomposition either ignored the effects of vegetation change or did not quantify its contributions. Vegetation change is closely related to the Budyko controlling parameters, and several empirical relationships have been successfully developed on long-term and inter-annual scales (Li et al., 2013; Liu et al., 2018; Ning et al., 2020; Xu et al., 2013; Yang et al., 2009). However, the relationship between vegetation and its controlling parameters on a finer time-scale has received less attention. As such, it is important to quantitatively investigate the contribution of vegetation change to ET variability on a finer time-scale.

Second, for snow-dependent regions, the water balance equation should be modified to consider the influence of snowmelt in short-term time scale, which has been the foundation for decomposing ET or runoff variance and is expressed as:
where P, including liquid (rainfall) and solid (snowfall) precipitation, is the total water source of the hydrological cycle. However, this equation is unsuitable for regions where the land-surface hydrology is highly dependent on the winter mountain snowpack and spring snowmelt runoff. The global annual Q_r originating from snowmelt accounts for 20–70% of the total runoff, including west United States (Huning and AghaKouchak, 2018), coastal areas of Europe (Barnett et al., 2005), west China (Li et al., 2019b), northwest India (Maurya et al., 2018), south of the Hindu Kush (Ragettli et al., 2015), and high-mountain Asia (Qin et al., 2020). In these regions, the mountain snowpack serves as a natural reservoir that stores cold-season P to meet the warm-season water demand (Qin et al., 2020; Stewart, 2009). As such, the water balance equation in these regions on a short time-scale should be rewritten as:

$$ R + Q_s = ET + Q_r + \Delta S, $$

where R is the rainfall, and Q_s is the snowmelt runoff. Many observations and modelling experiments have found that due to global warming, increasing temperatures would induce earlier runoff in the spring or winter and reduce the flows in summer and autumn (Barnett et al., 2005; Godsey et al., 2014; Stewart et al., 2005; Zhang et al., 2015). Therefore, the role of snowmelt change on ET variability in snow-dependent basins on a finer time-scale should be studied.
The overall objective of this study was to decompose the ET variance into the temporal variability of multiple factors considering vegetation and snowmelt change. The six cold alpine basins in the Qilian Mountains of northwest China were taken as an example study area. Specifically, we aimed to: (i) determine the dominant driving factor controlling the ET variance; (2) investigate the roles of vegetation and snowmelt change in the variance; and (3) understand the interactions among the controlling factors in ET variance. The proposed method will help quantify the hydrological response to changes in snowmelt and vegetation in snowmelt-dependent regions, and our results will prove to be insightful for water resource management in other similar regions worldwide.

2 Materials

2.1 Study area

Six sub-basins located in the upper reaches of the Heihe, Shiyang, and Shule rivers in the Qilian Mountains were chosen as the study area (Figure 1). They are important inland rivers in the dry region of northwest China. The runoff generated from the upper reaches contributes to nearly 70% of the water resources of the entire basin and thus plays an important role in supporting agriculture, industry development, and ecosystem maintenance in the middle and downstream rivers (Cong et al., 2017; Wang et al., 2010a). Snowmelt and in-mountain-generated rainfall make up the water supply system for the upper basins (Matin and Bourque, 2015), and the annual average P exceeds 450
mm in this region. At higher altitudes, as much as 600–700 mm of P can be observed (Yang et al., 2017). Nearly 70% of the total rainfall concentrates between June and September, while only 19% of the total rainfall occurs from March to June. Snowmelt runoff is an important water source (Li et al., 2012; Li et al., 2018; Li et al., 2016); in the spring, 70% of the runoff is supplied by snowmelt water (Wang and Li, 2001).

Characterised by a continental alpine semi-humid climate, alpine desert glaciers, alpine meadows, forests, and upland meadows are the predominant vegetation distribution patterns (Deng et al., 2013). Furthermore, this region has experienced substantial vegetation changes and resultant hydrological changes in recent decades (Bourque and Mir, 2012; Du et al., 2019; Ma et al., 2008).

Figure 1 The six basins in China’s northern Qilian Mountains. The Digital elevation data, at 30 m resolution, was provided by the Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences.
2.2 Data

Daily climate data were collected for 25 stations distributed in and around the Qilian Mountains from the China Meteorological Administration. They comprised rainfall, air temperature, sunshine hours, and relative humidity and would be used to calculate the monthly E_0 using the Priestley and Taylor (1972) equation.

The monthly runoff at the Dangchengwan, Changmabu, Zhamashike, Qilian, Yingluoxia, and Shagousi hydrological stations were obtained for 2001–2014 from the Bureau of Hydrology and Water Resources, Gansu Province. The sum of the monthly soil moisture and plant canopy surface water with a resolution of $0.25^\circ \times 0.25^\circ$ from the Global Land Data Assimilation System (GLDAS) Noah model was used to estimate the total water storage. The monthly ΔS was calculated as the water storage difference between two neighbouring months. Eight-day composites of the MODIS MOD10A2 Version 6 snow cover product from the MODIS TERRA satellite were used to produce the monthly snow cover area (SCA) of each basin. The SCA data were used to drive the snowmelt runoff model.

A monthly normalised difference vegetation index ($NDVI$) at a spatial resolution of 1 km from the MODIS MOD13A3.006 product was used to assess the vegetation coverage (M), which can be calculated from the method described in Yang et al. (2009). A land-use map with 1-km resolution in 2010 was used to determine the forest area of...
each basin, and it was provided by the Data Centre for Resources and Environmental Sciences of the Chinese Academy of Sciences. The percentages of forestland area to the whole basin area served as the F for each basin (%).

3 Methods

3.1 The Budyko framework at monthly scales

Probing the ET variability in the growing season can provide basic scientific reference points for agricultural activities and water resource planning and management (Li et al., 2015; Wagle and Kakani, 2014). Thus, we focus on the growing season ET variability on a monthly scale in this study.

Among the mathematical forms of the Budyko framework, this study employed the function proposed by Choudhury (1999) and Yang et al. (2008) to assess the basin water balance for good performance (Zhou et al., 2015):

$$ET = \frac{P \times E_0}{(P + E_0)^{1/n}}$$

(3)

where n is the controlling parameter of the Choudhury–Yang equation, and P is the total available water supply for ET. In Equation 2, however, the available water supply (P_a) includes the rainfall, snowmelt runoff, and water storage change in the snow-dependent basins on a finer time-scale, which can be rewritten as:
\[P_e = R + Q_S - \Delta S. \quad (4) \]

Equation 3 can thus be redefined as follows:

\[ET_i = \frac{(R_t + Q_s_t - \Delta S_t) \times E_0}{(R_t + Q_s_t - \Delta S_t)^n_i + E_0^n_i / n_i^2} \quad (5) \]

where \(i \) indicates each month of the growing season (April to September). After estimating the monthly \(ET \) of the growing season using Equation 2, the values of \(n \) for each month can be obtained via Equation 5.

3.2 Estimating the equivalent of snowmelt runoff

With the developed relationship between snowmelt and air temperature (Hock, 2003), the degree-day model simplifies the complex processes and performs well, so it is widely used in snowmelt estimation (Griessinger et al., 2016; Rice et al., 2011; Semadeni-Davies, 1997; Wang et al., 2010a). This study estimated the monthly \(Q_s \) using the degree-day model following the Wang et al. (2015) procedure. Specifically, the water equivalent of snowmelt (\(W \), mm) during the period \(m \) can be calculated as:

\[\sum_{i=1}^{m} W_i = DDF \sum_{i=1}^{m} T_i^n, \quad (6) \]

where \(DDF \) denotes the degree-day factor (mm/day \(\cdot \) \(^\circ \)C), and \(T_i^n \) is the sum of the positive air temperatures of each month. After obtaining \(W \), the monthly \(Q_s \) of each elevation zone can be expressed as:
\[\sum_{i=1}^{m} Q_{Si} = \sum_{i=1}^{m} W_i SCA_i, \]

where \(SCA_i \) is the snow cover area of each elevation zone.

According to Gao et al. (2011), the \(DDF \) values of Basins 1–6 were set to 3.4, 3.4, 4.0, 4.0, 4.0, and 1.7 mm/day \(\cdot \) °C, respectively. The six basins were divided into seven elevation zones with elevation differences of 500 m. The sum of \(Q_i \) in each elevation zone could be considered as the total \(Q \) of each basin. Previous studies have found that the major snow melting period is from March to July in this area (Wang and Li, 2005; Wu et al., 2015); furthermore, the MODIS snow product also showed that the \(SCA \) decreased significantly at the end of July. Thus, the snowmelt runoff from April to July for the growing season was estimated in this study.

3.3 Relationship between the Budyko controlling parameter and vegetation change

The relationships between the monthly parameters \(n \) and \(M \) for each basin in the growing season for 2001–2014 are presented in Figure 2. It can be seen that parameter \(n \) was significantly positively related to \(M \) in all six basins (\(p < 0.05 \)), which means that \(ET \) increased with increasing vegetation conditions under the given climate conditions.

In Equation 5, when \(n \to 0, ET \to 0 \), which means \(M \) should have the following limiting conditions: if \(ET \to 0, T \to 0 \) (transpiration), and thus \(M \to 0 \). Considering the relationship
shown in Figure 2 and the above limiting conditions, the general form of parameter n

can be expressed as follows:

$$n = a \times M^b,$$ \hspace{1cm} (8)

where a and b are constants, and their specific values for each basin are fitted in Figure 2.
Liu et al. (2019) proposed a framework to identify the driving factors behind the temporal variance of Q_r by combining the unbiased sample variance of Q_r with the total

3.4 ET variance decomposition

Liu et al. (2019) proposed a framework to identify the driving factors behind the temporal variance of Q_r by combining the unbiased sample variance of Q_r with the total
differentiation of \(Q_r \) changes. Here, we extended this method by considering the effects of changes in snowmelt runoff and vegetation coverage on \(ET \) variance.

By combining Equation 5 with Equation 8, Equation 5 can be simplified as \(ET \approx f(R_i, Q_{si}, \Delta S_i, E_{0i}, M_i) \). Thus, the total differentiation of \(ET \) changes can be expressed as:

\[
d\Delta ET_i = \frac{\partial f}{\partial R} dR_i + \frac{\partial f}{\partial Q_s} dQ_{si} + \frac{\partial f}{\partial \Delta S} d\Delta S_i + \frac{\partial f}{\partial E_0} dE_{0i} + \frac{\partial f}{\partial M} dM_i + \tau, \tag{9}
\]

where \(\tau \) is the error. The partial differential coefficients can be calculated as:

\[
\frac{\partial ET}{\partial R} = \frac{\partial ET}{\partial Q_s} = \frac{\partial ET}{\partial \Delta S} = \frac{ET}{E_0} \times \left(\frac{E_0^2}{P_e^2 + E_0^2} \right), \tag{10a}
\]

\[
\frac{\partial ET}{\partial E_0} = \frac{ET}{E_0} \times \left(\frac{P_e^n}{P_e^n + E_0^n} \right), \tag{10b}
\]

\[
\frac{\partial ET}{\partial M} = \frac{ET}{n} \left(\frac{\ln(P_e^n/E_0^n)}{n} - \frac{P_e^n \ln P_e + E_0^n \ln E_0}{P_e^n + E_0^n} \right) \times a \times b \times M^{b-1}. \tag{10c}
\]

The first-order approximation of \(ET \) changes in Equation 9 can be expressed as:

\[
\Delta ET_i \approx \varepsilon_1 \Delta R_i + \varepsilon_2 \Delta Q_{si} + \varepsilon_3 \Delta S_i + \varepsilon_4 \Delta E_{0i} + \varepsilon_5 \Delta M_i, \tag{11}
\]

where \(\varepsilon_1 = \frac{\partial ET}{\partial R}; \varepsilon_2 = \frac{\partial ET}{\partial Q_s}; \varepsilon_3 = \frac{\partial ET}{\partial \Delta S}; \varepsilon_4 = \frac{\partial ET}{\partial E_0}; \varepsilon_5 = \frac{\partial ET}{\partial M}. \)

The unbiased sample variance of \(ET \) is defined as:

\[
\sigma_{ET}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (ET_i - \overline{ET})^2 = \frac{1}{N-1} (\Delta ET_i)^2. \tag{12}
\]

Combining Equation 11 with Equation 12, \(\sigma_{ET}^2 \) can be decomposed as the contribution
from different variance/covariance sources:

\[
\sigma_{ET}^2 = \sum_{i=1}^{N} (\varepsilon_1 \Delta R_i + \varepsilon_2 \Delta Q_s_i + \varepsilon_3 \Delta S_i + \varepsilon_4 \Delta E_0_i + \varepsilon_5 \Delta M_i)^2. \tag{13}
\]

Expanding Equation 13, \(\sigma_{ET}^2 \) can be further rewritten as:

\[
\sigma_{ET}^2 = \varepsilon_1^2 \sigma_R^2 + \varepsilon_2^2 \sigma_{Q_s}^2 + \varepsilon_3^2 \sigma_{\Delta S}^2 + \varepsilon_4^2 \sigma_{E_0}^2 + \varepsilon_5^2 \sigma_{M}^2 + 2\varepsilon_1 \varepsilon_2 \text{cov}(R, Q_s) + \\
2\varepsilon_1 \varepsilon_3 \text{cov}(R, \Delta S) + 2\varepsilon_1 \varepsilon_4 \text{cov}(R, E_0) + 2\varepsilon_1 \varepsilon_5 \text{cov}(R, M) + 2\varepsilon_2 \varepsilon_3 \text{cov}(Q_s, \Delta S) + \\
2\varepsilon_2 \varepsilon_4 \text{cov}(Q_s, E_0) + 2\varepsilon_2 \varepsilon_5 \text{cov}(Q_s, M) + 2\varepsilon_3 \varepsilon_4 \text{cov}(E_0, \Delta S) + 2\varepsilon_3 \varepsilon_5 \text{cov}(M, \Delta S) + \\
2\varepsilon_4 \varepsilon_5 \text{cov}(E_0, M), \tag{14}
\]

where \(\sigma \) represents the standard deviation, and \(\text{cov} \) represents the covariance. Equation 14 can be further simplified as:

\[
\sigma_{ET}^2 = F(R) + F(Q_s) + F(\Delta S) + F(E_0) + F(M) + F(R, Q_s) + F(R, \Delta S) + \\
F(R, E_0) + F(R, M) + F(Q_s, \Delta S) + F(Q_s, E_0) + F(Q_s, M) + F(\Delta S, E_0) + \\
F(\Delta S, M) + F(E_0, M), \tag{15}
\]

By separating out Equation 15, the contribution of each factor to \(\sigma_{ET}^2 \) can be calculated as:

\[
C(X_j) = \frac{F(X_j)}{\sigma_{ET}^2} \times 100\%, \tag{16}
\]

where \(C(X_j) \) is the contribution of factor \(F(j) \) to \(\sigma_{ET}^2 \), and \(j = 1–15 \), representing the 15 factors in Equation 15.
4 Results and Discussion

4.1 Performance of the monthly Budyko framework

The importance of considering ΔS in the Budyko framework on a finer time-scale has been underscored by several studies (Chen et al., 2013; Du et al., 2016; Liu et al., 2019; Zeng and Cai, 2015); however, the effects of Q_m in snowmelt-dependent basins are mostly ignored. Here, the monthly Budyko curves—scaled by different available water supply values (P_e) for monthly series in the growing season—were compared. When $P_e = R$ and $P_e = R - \Delta S$, the data points of the monthly ET ratio and aridity index ($\phi = E_0/P_e$) in April and May were well below the Budyko curves in the six sub-basins; the monthly ET ratio was even negative during several years (Figure 3a,b), which means that local rain and water storage are not the only sources of ET in this area, especially in the spring. When $P_e = R + Q_m$, the outlier points in April and May were significantly improved (Figure 3c), suggesting that Q_m is an important source of spring ET. Similarly, Wang and Li (2001) also determined that 70% of the runoff is supplied by snowmelt water in the spring in this area. Compared to the points in Figures 3a–c, all the points focused on Budyko’s curves more closely in each basin when $P_e = R + Q_m - \Delta S$ (Figure 3d). Therefore, considering Q_m and ΔS in the water balance equation can improve the performance of the Budyko framework in snowmelt-dependent basins on a monthly scale.
Figure 3 Plots for the aridity index vs. evapotranspiration index scaled by the available water supply for monthly series in the growing season. The total water availability is (a) R, (b) $R - \Delta S$, (c) $R + Q_m$, and (d) $R + Q_m - \Delta S$. The n value for each Budyko curve is fitted by long-term...
averaged monthly data.

4.2 Variations in the growing season water balance

The mean and standard deviation (σ) for each item in the growing season water balance in the six basins are summarised in Tables 1 and 2. The proportion of ∆S in the water balance was small, with a mean value of 1.2 mm; however, its intra-annual fluctuation was relatively large, with a σ∆S of 5.3 mm, and σ∆S was even as high as 9.0 mm in Basin 6. Compared to ∆S, Qm represented a larger proportion of the water balance with a mean of 8.5 ± 6.5 mm, indicating its important role in the basin water supply. For this region, the water supply of ET was not only R but also included Qm and ∆S. Consequently, the mean monthly ET generally approached R (55.8 ± 27.4 mm) or higher values in Basin 1.

Table 1 Averaged monthly hydrometeorological characteristics and vegetation coverage in the growing season (2001–2014).

<table>
<thead>
<tr>
<th>ID</th>
<th>Station</th>
<th>Area</th>
<th>R</th>
<th>Qm</th>
<th>∆S</th>
<th>E0</th>
<th>M</th>
<th>n</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dangchengwan</td>
<td>14325</td>
<td>57.2</td>
<td>8.6</td>
<td>0.7</td>
<td>126.7</td>
<td>0.08</td>
<td>3.08</td>
<td>59.1</td>
</tr>
<tr>
<td>2</td>
<td>Changmabu</td>
<td>10961</td>
<td>68.9</td>
<td>10.8</td>
<td>1.1</td>
<td>123.0</td>
<td>0.13</td>
<td>1.79</td>
<td>59.3</td>
</tr>
<tr>
<td>3</td>
<td>Zhamashike</td>
<td>4986</td>
<td>73.5</td>
<td>10.6</td>
<td>1.5</td>
<td>120.3</td>
<td>0.40</td>
<td>1.59</td>
<td>59.1</td>
</tr>
<tr>
<td>4</td>
<td>Qilian</td>
<td>2452</td>
<td>74.5</td>
<td>9.0</td>
<td>1.4</td>
<td>116.8</td>
<td>0.44</td>
<td>1.37</td>
<td>54.9</td>
</tr>
<tr>
<td>5</td>
<td>Yingluoxia</td>
<td>10009</td>
<td>77.2</td>
<td>7.4</td>
<td>1.1</td>
<td>117.4</td>
<td>0.53</td>
<td>1.35</td>
<td>55.1</td>
</tr>
<tr>
<td>6</td>
<td>Shagousi</td>
<td>1600</td>
<td>83.5</td>
<td>4.8</td>
<td>1.4</td>
<td>116.3</td>
<td>0.48</td>
<td>1.01</td>
<td>47.1</td>
</tr>
</tbody>
</table>

The change patterns of the monthly R, ∆S, Qm, and ET during the growing season are presented in Figure 4 and Supplementary Figures S1–S3. R exhibited a regular
unimodal trend, with a maximum value occurring in July. The maximum Q_m appeared in May, which is a result that is in agreement with previous studies in this region (Wang and Qin, 2017; Zhang et al., 2016c). The peak of ΔS lagged that of Q_m for one month in Basins 1–4 and three months in Basins 5–6, indicating a recharge of soil water by snowmelt. Yang et al. (2015) also detected the time differences between ΔS and Q_m and found that ΔS had a time lag of 3–4 months more than did Q_m in the Tarim River Basin, another arid alpine basin in north-western China with hydroclimatic conditions similar to those of the study region. Further, the abundant R in July should contribute to more available water for ΔS; however, the ΔS in July was relatively small. This can be partially explained by the higher water consumption, i.e. the ET in July. In a manner similar to the change pattern of R, ET exhibited a unimodal trend, suggesting the crucial role of R.
Figure 4 Variations in the monthly ET for each basin during 2001–2014. A distribution curve is shown to the right side of each box plot, and the data points are represented by diamonds. Different letters indicate significant differences at $p < 0.05$.

4.3 Controlling factors of the ET variance

The contributions of R, E_o, Q_m, ΔS, and M to σ^2_{ET} for each basin are shown in Figure 5. The results showed that the variance of these five factors could explain σ^2_{ET}, with the total contribution rates ranging from 56.5% (Basin 6) to 98.6% (Basin 1). With the
decreasing ϕ from Basin 1 to Basin 6, $C(R)$ showed an increasing trend, ranging from 40.6% to 94.2%; conversely, $C(E_0)$ exhibited a decreasing trend, ranging from 0.2% to 4.1%. This result indicated that R played a key role in σ^2_{ET} in this region. Similarly, Zhang et al. (2016a) found that $C(P)$ increased rapidly with increasing ϕ, whereas $C(E_0)$ decreased rapidly based on 282 basins in China. Our results are also consistent with previous conclusions that changes in ET or Q_r are dominated by changes in water conditions rather than by energy conditions in dry regions (Berghuijs et al., 2017; Yang et al., 2006; Zeng and Cai, 2016; Zhang et al., 2016a).

The M variance had the second largest contribution to σ^2_{ET} with a mean $C(M)$ value of 4.3% for the six basins. Specifically, $C(M)$ showed an increasing trend from 0.5% to 9.5% with decreasing ϕ, implying that the contribution of the vegetation change to the ET variance was larger in the humid basin. This can be explained by the fact that better vegetation conditions, especially forest cover, could have a stronger impact on ET variance. With the estimated percentages of forestland relative to the whole basin (F) (Table S1), we found that the M variance indeed had a larger contribution to σ^2_{ET} in Basins 4–6 with a higher F. Wei et al. (2018) showed that the global average variation in the annual Q_r due to the vegetation cover change was $30.7 \pm 22.5\%$ in forest-dominated regions on long-term scales, which was higher than our results because of their higher forest cover.

The contribution of the Q_m variance ranked third with a mean value of 1.8%. Similar to...
$C(R), C(Q_m)$ showed a downward trend from Basin 1 to Basin 6, ranging from 2.9% to 0.4%. The larger $C(Q_m)$ can be explained by the larger variance in Q_m in Basins 2–4 (σ values in Table 2). However, the Q_m in Basin 1 was only 8.6 mm, and $C(Q_m)$ was the largest in all six sub-basins (2.9%). This is because the contribution of each variable to σ_{ET}^2 was not only the product of its variance value but also relied on the elasticity coefficient of σ_{ET}^2 according to Equation 13. The ε_{Q_m} value was the largest in Basin 1 and thus led to the largest $C(Q_m)$. In addition, shifts in the snowmelt period can also partially explain the positive contribution of the Q_m variance. Like many snow-dominated regions of the world (Barnett et al., 2005), climate warming shifted the timing of snowmelt earlier in the spring in the Qilian Mountains (Li et al., 2012). Earlier snowmelt due to a warmer atmosphere resulted in increased soil moisture and a greater proportion of Q_m to ET (Barnhart et al., 2016; Bosson et al., 2012).

Previous studies have considered that most precipitation changes are transferred to water storage (Wang and Hejazi, 2011); thus, ΔS has distinct impacts on the intra-annual ET or Q_r variance in arid regions (Ye et al., 2015; Zeng and Cai, 2016; Zhang et al., 2016a). However, the study region under investigation has a small $C(\Delta S)$ with a mean value of 1.02%, which is likely to be caused by the vegetation conditions and time-scale. First, the six basins have good vegetation conditions compared to other arid basins; consequently, plant transpiration and rainfall interception consume most of the water supply and reduce the transformation of rainfall to water storage. This is
consistent with previous studies that showed that the fractional contribution of transpiration to ET would increase with increasing woody cover (Villegas et al., 2010; Wang et al., 2010b). Second, the large contribution of ΔS to the intra-annual ET or Q_r variance in arid regions is mostly detected at monthly scales. The smaller ΔS in the non-growing season will increase the annual value of $\sigma_{\Delta S}$. However, this study focused on the growing season with a smaller $\sigma_{\Delta S}$, which consequently led to a lower $C(\Delta S)$.

4.4 Interaction effects between controlling factors on the ET variance

The interaction effect of two factors on the ET variance was represented by their covariance coefficients using Equations 14 and 15 (Figure 5). Among the ten groups of interaction effects, the coupled R and M had the largest contribution to the ET variance, with a mean value of 24.3%. The positive covariance of R and M indicated that M changes in-phase with R (i.e. R occurred in the growing season), thus increasing the ET variance. $C(R_M)$ showed an increasing trend from 9.9% to 34.6% with decreasing ϕ. With different water conditions, the types and proportions of the main ecosystems varied across basins. In particular, F showed an increasing trend with decreasing ϕ, which partially explained the spatial variations in $C(R_M)$. Previous studies concluded that the differences in physiological and phenological characteristics of ecosystem types are likely to modulate the response of the ecosystem ET to climate variability (Bruemmer et al., 2012; Falge et al., 2002; Li et al., 2019a). For example, Yuan et al. (2010) found that, at the beginning of the growing season, a significantly higher ET was
observed in evergreen needleleaf forests; however, during the middle term of the growing season (June–August), the ET was largest in deciduous broadleaf forests in a typical Alaskan basin.

As an indicator of climate seasonality, the covariance of R and E_0 indicates matching conditions between the water and energy supplies, such as the phase difference between the storm season and warm season. A positive cov(R, E_0) suggests an in-phase R change with E_0 and consequently increases the ET variance. In this study, following C(R_M), the coupled R and E_0 had a large impact on the ET variance with a mean contribution of 14.1%. With a typical temperate continental climate, the study area has in-phase water and energy conditions; however, its ET is limited by the water supply in spite of the abundant energy supply (Yang et al., 2006). The vegetation receives the largest water supply in the growing season and can vary its biomass seasonally in order to adapt to the R seasonality (Potter et al., 2005; Ye et al., 2016). Consequently, the impact of climate variability on ET variance was mainly reflected by the R seasonality in the study area.

In comparison, the interacting effects between R and Q_m, M and Q_m, R and ΔS, and Q_m and E_0 contributed negatively to the ET variance. Among them, the effect of the coupled R and Q_m was largest with a C(R, Q_m) of -7.6%. This may suggest that Q_m changes were out-of-phase with R. Specifically, the major snow melting period was from March to May, when snowmelt water accounts for $\sim70\%$ of the water supply; however, $\sim65\%$
of the annual R occurred in the summer (June–August) (Li et al., 2019a). Overall, Q_m sustains the ET in the spring, but R supports the ET in the summer.

Figure 5 Contribution to the ET variance in the growing season from each component in Equation 15.

5 Conclusion

Recently, several studies have applied a variance decomposition framework based on the Budyko equation to elucidate the dominant driving factors of the ET variance at
annual and intra-annual scales by decomposing the intra-annual ET variance into the variance/covariance of \(P, E_0, \) and \(\Delta S \). Vegetation changes can greatly affect the ET variability, but their effects on the ET variance on finer time-scales was not quantified by this decomposed method. Further, in snow-dependent regions, snowpack stores precipitation in winter and releases water in spring; thus, \(Q_m \) plays an important role in the hydrological cycle. Therefore, it is also necessary to consider the role of the \(Q_m \) changes on the ET variability.

In this study, six arid alpine basins in the Qilian Mountains of northwest China were chosen as examples. The monthly \(Q_m \) during 2001–2014 was estimated using the degree-day model, and the growing season ET was calculated using the water balance equation \((ET = R + Q_s - Q_r - \Delta S) \). The controlling parameter \(n \) of the Choudhury–Yang equation was found to be closely corrected with \(M \), as estimated by NDVI data. Thus, by combining the Choudhury–Yang equation with the semi-empirical formula between \(n \) and \(M \), the growing season \(\sigma_{ET}^2 \) is decomposed into the temporal variance and covariance of \(R, E_0, \Delta S, Q_m, \) and \(M \). The main results showed that considering \(Q_m \) and \(\Delta S \) in the water balance equation can improve the performance of the Budyko framework in snow-dependent basins on a monthly scale; \(\sigma_{ET}^2 \) was primarily enhanced by the \(R \) variance, followed by the coupled \(R \) and \(M \) and then the coupled \(R \) and \(E_0 \). The enhancing effects of the variance in \(M \) and \(Q_m \) cannot be ignored; however, the interactions between \(R \) and \(Q_m \), \(M \) and \(Q_m \), \(R \) and \(\Delta S \), and \(Q_m \) and \(E_0 \) dampened \(\sigma_{ET}^2 \).
As a simple and effective method, our extended ET variance decomposition method has the potential to be widely used to assess the hydrological responses to changes in the climate and vegetation in snow-dependent regions at finer time-scales.

Table 2 The elasticity coefficients of ET for five variables and the standard deviation of each variable for the six basins.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Elasticity coefficients</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_R</td>
<td>$\varepsilon_{Q,m}$</td>
</tr>
<tr>
<td>1</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>6</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Data availability

Author contributions

Tingting Ning: Methodology, Writing–original draft, Software, Visualisation

Zhi Li: Writing–review & editing

Qi Feng: Conceptualisation, Supervision
Zongxing Li and Yanyan Qin: Data curation, Resources

Competing interests

The authors declare that they have no conflicts of interest.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41807160, U1703124, 42001035), the CAS ‘Light of West China’ Program (Y929651001), the National Key Research and Development Program of China (2017YFC0404305), and the Major Program of the Natural Science Foundation of Gansu Province, China (18JR4RA002).

References

Godsey, S.E., Kirchner, J.W., & Tague, C.L., 2014. Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California,

Lan, Y., Hu, X., Din, H., La, C., & Song, J., 2012. Variation of Water Cycle Factors in the Western Qilian Mountain Area under Climate WarmingTaking the Mountain Watershed of the Main Stream of Shule River Basin for Example. *Journal of*

