Point-to-point responses:

Anonymous Referee #2:

This manuscript aimed to extend previous framework of temporal variance
decomposition in snow-dependent basins by incorporating the effects of snowmelt
and vegetation changes. The topic is interesting and the manuscript is well structured.
However, 1 have serious concerns with the methods and results (especially the

robustness of the estimates of water cycle components) in the manuscript.

RESPONSE: We appreciate your constructive comments, and will revise the
manuscript accordingly. In particular, to validate the reliability of the estimated water
cycle components, we compared our results with previous studies, and found that our

results are acceptable. Furthermore, the uncertainties were discussed.
4.5 Uncertainties

Uncertainties from different sources may result in errors for this study. First, this
study estimated AS and Qw with the GLDAS Noah land surface model and the
degree-day model, respectively. Although the GLDAS AS has been widely used in
hydrological studies, it ignores the change in deep groundwater (Nie et al., 2016;
Syed et al., 2008; Zhang et al., 2016), which may lead to errors in ET estimation
based on water balance equation. But previous studies showed that the groundwater
change in our study area is relatively small, and can thus be ignored. For example,
Du et al. (2016) used the abcd model to quantitatively determine monthly variations
of water balance for the sub-basins of Heihe River (including basins 3-5 in our study )
and found that the soil water storage change have obvious effects on the monthly
water balance, whilst the impact of monthly groundwater storage change is negligible.
Furthermore, it has been found that any change in climate conditions and underlying
basin characteristics will affect the contributions of heat balance components and
cause temporal variations of DDF (Kuusisto, 1980; Ohmura, 2001). But previous
studies indicated that there is no significant seasonal change in DDF in west China
(Zhang et al., 2006), as such, it is acceptable to estimate snowmelt runoff using fixed
DDF values in this study. In comparison, the contribution of snow meltwater to runoff

(Fs) was 12.9% in Basin 2 during 1971-2015 by using Spatial Processes in Hydrology



model(Li et al., 2019), while Fs was 25% in Basin 3 from 2001 to 2012 based on
geomorphology-based ecohydrological model (Li et al., 2018), <10% in Basin 6
during 1961-2006 by using SRM model (Gao et al., 2011). Our results indicated that
the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and 6.7%, respectively, which were
close to those from different models. Finally, the uncertainties of AS and Qn may lead
to errors in ET estimation by water balance equation. To validate the reliability of our
estimated ET, the comparison with ETnap from April to September during 2012-2014
was conducted (Figure S4). The results showed that our estimated ET fitted well with
ETwap and basically fell around the 1:1 line, indicating ET estimated using water

balance equation by considering the items of AS and QO is acceptable.

Second, previous studies concluded that three main factors could be responsible for
the variability of n, including underlying physical conditions (such as soil and
topography characteristics) (Milly, 1994; Yang et al., 2007), climate seasonality (such
as the temporal variability of rainfall, mismatch between water and energy) (Ning et
al., 2017, Potter et al., 2005) and vegetation dynamics (Donohue et al., 2007, Zhang
et al, 2001). On the short time scale, the changes in soil and topography are
negligible and its impact on the variability of n can be ignored. In consequence, the
factors, should be considered, are climate seasonality and vegetation dynamics. When
parameterizing n, this study considered M but ignored climate seasonality since the
covariance item between R and Ey, i.e. eie4cov(R, Ey) in the attribution equation (13)
can represent climate seasonality. In addition, human influence represented by
parameter n on the water balance cannot be ignored, which remains further

investigation.
The specific introduction of ETmap will be added in section 2.2-Data:

ET from dataset of “ground truth of land surface evapotranspiration at regional scale
in the Heihe River Basin (2012-2016) ETuap Version 1.0” (hereafter “ETmap”), was
used to validate the reliability of our estimated ET. This dataset was published by
National Tibetan Plateau Data Center. It was upscaled from 36 eddy covariance flux
tower sites (65 site years) to the regional scale with five machine learning algorithms,

and then applied to estimate ET for each grid cell (I km x I km) across the Heihe



River Basin each day over the period 2012-2016. It has been evaluated to have high
accuracy (Xu et al., 2018). Basins 3,4,5 in our study belongs to the headwater
sub-basins of Heihe River, and our monthly ET from April to September during

2012-2014 in these three basins was thus compared with ETap.
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Figure S4. Comparison of monthly ET derived from water balance equation and ETap
during 2012-2014.

Comments

1. In this study, the total water storage is estimated using the GLDAS soil moisture
and plant canopy surface water. Is this estimation reliable? More details about the
methods (or additional comparison) may be needed to show the robustness of the total

water storage estimation.

RESPONSE: The other reviewer also doubted the reliability of GLDAS-AS because
it ignored the change in the deeper groundwater. For groundwater change, the best
option is GRACE-AS; however, it is not applicable in the study area since the low
spatial resolution of GRACE (1°x1°) would lead to large errors in small basins.
Instead, GLDAS-AS is appropriate in representing the basin-scale water storage
change. First, GLDAS has high spatial resolution of 0.25°x0.25°. Second, the
groundwater change in west China is small and can be ignored. Specifically, Du et al.
(2016) used the abcd model to quantitatively determine monthly variations of water
balance for the sub-basins of Heihe River (including basins 3-5 in our study ) and
found that soil water storage change have effects on monthly water balance, whilst the
impact of monthly groundwater storage change is negligible. To clarify the
uncertainties, a new section will be added in the revised manuscript. The details can

be found at the beginning.



2. The degree-day model is used to estimate the equivalent of snowmelt runoff. In this
model, the degree-day factors (DDF) in the study basins are fixed (if my
understanding is correct here) and vary from 1.7-4.0 mm/dayA°uC. Is there any
uncertainty/validation of these factors? How the variation of the DDF could possibly

affect the results of snowmelt runoft?

RESPONSE: Yes, your understanding is correct. It has been found that any changes
in climate conditions and the underlying basin characteristics will affect the relative
contributions of the heat balance components and cause temporal variations of the
DDF (Kuusisto, 1980; Ohmura, 2001). But previous study indicated that there is no
significant seasonal change in DDF in Western China (Zhang et al., 2006), which
contains our study area. Thus, using the fixed DDF values to estimate snowmelt
runoff is acceptable in this area. We also compared our snowmelt runoff values with
other studies. In comparison, the contribution of snow meltwater to runoff (Fs) was
12.9% in Basin 2 during 1971-2015 by using Spatial Processes in Hydrology
model(Li et al., 2019), while Fs was 25% in Basin 3 from 2001 to 2012 based on
geomorphology-based ecohydrological model (Li et al., 2018), <10% in Basin 6
during 1961-2006 by using SRM model (Gao et al., 2011). Our results indicated that
the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and 6.7%, respectively, which were
close to those from different models. It can be concluded that our snowmelt runoff
value is acceptable. Further, the uncertainties induced by the variation of the DDF will

also discussed in revised manuscript. The details can be found at the beginning.

3. The total water storage and snowmelt runoff estimates are then used to calculate ET.

Is the obtained ET reliable in terms of the above two comments?

RESPONSE: Even though there are many global ET products, but they have large
uncertainty of its forcing data and model algorithms. Taking GLDAS-ET as an
example, the precipitation data used come from the Princeton Global Fording dataset,
which is a reanalysis dataset generated from a climate model. The spatial resolution is
only 2°x2° (Sheffield et al., 2006). The low spatial resolution of forcing data should
surely affect ET accuracy, especially in small basins. On the other hand, GLDAS ET

products used Penman-Monteith equation to estimate ET. In this equation, the soil



water stress factor is critically important for plant transpiration suppression. However,
this factor was implicitly considered by GLDAS products with the vapor pressure
deficit (VPD). It is potentially problematic to use VPD to reflect soil water stress for
transpiration, especially in drier regions. Some other promising recently released
high-resolution ET products, such as GLEAM v3.2 and CLSM v2.0 also have similar
problems. Thus, To validate the reliability of our ET, we conducted a comparison
between our estimated ET, ET _GLDAS and ET from a dataset of “ground truth of
land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016)
ETmap Version 1.0”, respectively. This ET dataset was published by National Tibetan
Plateau Data Center. It was upscaled from 36 eddy covariance flux tower sites (65 site
years) to the regional scale with five machine learning algorithms, and then applied to
estimate ET for each grid cell (1 km x 1 km) across the Heihe River Basin each day
over the period 2012-2016. It has been evaluated to have high accuracy. Basins 3,4,5
in our study belongs to the headwater sub-basins of Heihe River, and our monthly ET
from April to September during 2012-2014 in these three basins was thus compared
with ETmap (see Figure S4). The results showed that our estimated ET fits better with
ETmap compared to GLDAS-ET and basically fell around the 1:1 line. Moreover,
ET GLDAS values is obviously smaller than ETmap. Even in the July and August,
monthly ET_GLDAS is less than 60 mm, which is unreasonable in this region. Thus,
it can be concluded that our estimated ET by water balance equation is acceptable.

The details can be found at the beginning.
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Comparison of monthly ET derived from GLDAS product and ETmap during
2012-2014.

4. I do not understand the results in Fig. 3. For example, we can see there are black

dots in panel (b) (Pe=R-dS) with VERY low ET/Pe values (close to zero). If I



understand this correctly, when replace Pe with R+Qm-dS in panel (d), the ET/Pe
should decrease as the Qm is positive (Table 1). It means that these low ET/Pe values
in panel (b) should be more close to zero (close to x-axis) in panel (d). However, I did
not see any black dots close to x-axis. WHERE are they? The results in Fig. 3 are

confusing and do not make sense.

RESPONSE: Yes, as the Qm is positive, Pe with R+Qm-dS should increase
compared with Pe with R-dS. But ET also increased, because it equals Pe-Qr
according to equation (2) and (4). Thus, E0/Pe in x-axis will decrease while ET/Pe in
y-axis will increase when considered Qm in panel d. Furthermore, the larger Qm, the
larger increase in ET/Pe while decrease in EO/Pe, which means the black dots will

move to the upper left after considering Qm.

The other reviewer also doubted the motivation of this part. Perhaps the simplest
revised method is deleting the related content. But we thought it should be reserved as
the following reasons: the Budyko framework was originally derived on long-term
scale. Then it was gradually extended to characterize and predict the interannual
variability of ET and the runoff fluxes on short time scale (including interanual and
monthly scales). Some studies also showed that the Budyko framework was not
suitable for exhibit ET variation on short time scale, because of the data points drew
by ET ratio and dryness index beyond the two limit curves of Budyko framework
(Chen et al., 2013; Du et al., 2016; Wang, 2012). These studies found that ignoring AS
is the main reason (see Figure 11 by (Du et al., 2016); Figure 3 by (Chen et al., 2013)).
Thus, validating the feasibility of using Budyko equation for variability of ET on the

short time scale is the foundation.

Considering different combinations of water supply to ET is the main method for
validation. In this study, except for AS, snowmelt runoff (Qm) is an important item of
monthly water balance equation. Four combinations of water supply were thus
assumed to prove the importance of considering AS and Qm into Budyko framework
on monthly scale in the original manuscript. In this version, to avoid confusion, we
only considered three combinations of water supply, i.e., Pe=R, Pe= R-AS and

P.=R-AS+Qh.



Further, the related expression will also be revised.

4.1 The effects of monthly storage change and snowmelt runoff in the Budyko

framework

The Budyko framework is usually used for analyses of long-term average catchment
water balance; however, it was employed for the interpretation of the monthly
variability of the water balance in this study. Thus, it’s very necessary to validate the
feasibility of Budyko equation for monthly variability. Furthermore, the impact of AS
on the representation of Budyko framework on finer time scale has assessed by
several studies (Chen et al., 2013; Du et al., 2016, Liu et al., 2019; Zeng and Cai,
2015). However, the impact of QO and its combined effects with AS in
snowmelt-dependent basins are mostly ignored. Therefore, we present the water
balance in the monthly scale of six basins in the Budykos framework with three
different computations of aridity index (9=Eo/P.) or ET ratio (ET/Pe) in Figure 3. In
Figure 3a, ET=R-Qr when R is considered as water supply, i.e., Pe=R. The points of
monthly ET ratio and aridity index in April and May were well below Budyko curves
in 6 basins, monthly ET ratio was even negative in several year, which means the
local rain are not the only sources of ET in this area, especially in spring. In Figure
3b, ET=R-AS-Qr with Pe= R-AS. Compared with figure 3a, the way-off points in April
and May were improved to a certain extent but negative points still existed, suggesting
that except for R, AS also play a significant role in maintaining spring ET, but the
variability of ET cannot be completely explained by these two variables. In Figure 3c,
ET=R-AS+Qm-Qr with P.=R-AS+Q,. Compared to the points in Figures 3a-b, all
points focused on Budykos curves more closely in each basin when P.=R+Qu-AS
(Figure 3c). From this comparison, it can be concluded that the Budyko framework is
applicable to the monthly scale in snowmelt-dependent basins, if the water supply is

described accurately by considering AS and QOn.
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Figure 3 Plots for aridity index vs. evapotranspiration index scaled by available water supply for
monthly series in growing season. Total water availability is (a) R, (b) R-AS and (c) R-AS +QOh.

The n value for each Budyko curve is fitted by long-term averaged monthly data.

5. Do the Qs in the equations and the Qm in the figures have the same physical



meaning? If so, please keep the symbols consistent in the manuscript.

RESPONSE: We are so sorry for our carelessness. These two symbols all represented

the snowmelt runoff. In the revised version, Qs will be revised as Qm.

6. In this manuscript, the term “temporal variance” is used in growing season by
simply extending previous studies (e.g., Liu et al 2019). Is the definition of “temporal
variance” in the growing season in this study the same as that in previous work? I

cannot understand how it works in math.

RESPONSE: The definition of “temporal variance” in the growing season in this
study is same as that in previous work. The only difference is the calculation of
sample size (N) in equation 12. In previous studies, they focused on ET or runoff
variance for all months. Thus, the sample size was 12 months/year x n years. In this
study, we concerned ET variance in the growing season (April to September). Thus
the sample size was 6 months/year x n years. The unbiased sample variance in
equation 12 is estimated by the concept of statistics, not derived by previous studies
or us. I would like to clarify the specific calculation as follows: in this study, with data
of growing season (April to September) during 2001-2014, the sample size was 6
months/yearx14 years=84 months, i.e. N=84 in equation 12. The calculation regarded
all the months as a group or a time series of data, and did not conduct calculation for
each calendar month. In consequence, i is used to index time series of month from 1
to N. ET is the long-term average of ET for 84 months. As such, one time series of
data can only had one variance. It is known that a small test set size leads to a large
bias in the estimate of the true variance between design sets (Geng et al., 1979;
Wickenberg-Bolin et al., 2006). Comparing with conducting calculation for each
calendar month, the calculation by us and other researchers (Liu et al., 2019; Ye et al.,
2015; Zeng and Cai, 2015; Zeng and Cai, 2016) can obtain larger sample size. In the

revised version, we will explain the related variables more clearly:

The unbiased sample variance of ET (UIZST) is defined as:

2 __1 N T2 — L yN 2
O-ET = Ezlﬁl (ETl - ET) = Ezlfl (AETL)

(12)



where ET is the long term monthly mean of ET. N is the sample size, it equals 84 in
this study (6 months/year <14 years=84 months). i is used to index time series of

month from 1 to N.
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