
Point-to-point responses:
Anonymous Referee #2:

This manuscript aimed to extend previous framework of temporal variance

decomposition in snow-dependent basins by incorporating the effects of snowmelt

and vegetation changes. The topic is interesting and the manuscript is well structured.

However, I have serious concerns with the methods and results (especially the

robustness of the estimates of water cycle components) in the manuscript.

RESPONSE: We appreciate your constructive comments, and will revise the

manuscript accordingly. In particular, to validate the reliability of the estimated water

cycle components, we compared our results with previous studies, and found that our

results are acceptable. Furthermore, the uncertainties were discussed.

4.5 Uncertainties

Uncertainties from different sources may result in errors for this study. First, this

study estimated ΔS and Qm with the GLDAS Noah land surface model and the

degree-day model, respectively. Although the GLDAS_ΔS has been widely used in

hydrological studies, it ignores the change in deep groundwater (Nie et al., 2016;

Syed et al., 2008; Zhang et al., 2016), which may lead to errors in ET estimation

based on water balance equation. But previous studies showed that the groundwater

change in our study area is relatively small, and can thus be ignored. For example,

Du et al. (2016) used the abcd model to quantitatively determine monthly variations

of water balance for the sub-basins of Heihe River (including basins 3-5 in our study )

and found that the soil water storage change have obvious effects on the monthly

water balance, whilst the impact of monthly groundwater storage change is negligible.

Furthermore, it has been found that any change in climate conditions and underlying

basin characteristics will affect the contributions of heat balance components and

cause temporal variations of DDF (Kuusisto, 1980; Ohmura, 2001). But previous

studies indicated that there is no significant seasonal change in DDF in west China

(Zhang et al., 2006); as such, it is acceptable to estimate snowmelt runoff using fixed

DDF values in this study. In comparison, the contribution of snow meltwater to runoff

(Fs) was 12.9% in Basin 2 during 1971-2015 by using Spatial Processes in Hydrology



model(Li et al., 2019), while Fs was 25% in Basin 3 from 2001 to 2012 based on

geomorphology-based ecohydrological model (Li et al., 2018), <10% in Basin 6

during 1961-2006 by using SRM model (Gao et al., 2011). Our results indicated that

the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and 6.7%, respectively, which were

close to those from different models. Finally, the uncertainties of ΔS and Qm may lead

to errors in ET estimation by water balance equation. To validate the reliability of our

estimated ET, the comparison with ETmap from April to September during 2012-2014

was conducted (Figure S4). The results showed that our estimated ET fitted well with

ETmap and basically fell around the 1:1 line, indicating ET estimated using water

balance equation by considering the items of ΔS and Qm is acceptable.

Second, previous studies concluded that three main factors could be responsible for

the variability of n, including underlying physical conditions (such as soil and

topography characteristics) (Milly, 1994; Yang et al., 2007), climate seasonality (such

as the temporal variability of rainfall, mismatch between water and energy) (Ning et

al., 2017; Potter et al., 2005) and vegetation dynamics (Donohue et al., 2007; Zhang

et al., 2001). On the short time scale, the changes in soil and topography are

negligible and its impact on the variability of n can be ignored. In consequence, the

factors, should be considered, are climate seasonality and vegetation dynamics. When

parameterizing n, this study considered M but ignored climate seasonality since the

covariance item between R and E0, i.e. ε1ε4cov(R, E0) in the attribution equation (13)

can represent climate seasonality. In addition, human influence represented by

parameter n on the water balance cannot be ignored, which remains further

investigation.

The specific introduction of ETmap will be added in section 2.2-Data:

ET from dataset of “ground truth of land surface evapotranspiration at regional scale

in the Heihe River Basin (2012-2016) ETmap Version 1.0” (hereafter “ETmap”), was

used to validate the reliability of our estimated ET. This dataset was published by

National Tibetan Plateau Data Center. It was upscaled from 36 eddy covariance flux

tower sites (65 site years) to the regional scale with five machine learning algorithms,

and then applied to estimate ET for each grid cell (1 km × 1 km) across the Heihe



River Basin each day over the period 2012–2016. It has been evaluated to have high

accuracy (Xu et al., 2018). Basins 3,4,5 in our study belongs to the headwater

sub-basins of Heihe River, and our monthly ET from April to September during

2012-2014 in these three basins was thus compared with ETmap.

Figure S4. Comparison of monthly ET derived from water balance equation and ETmap
during 2012-2014.

Comments

1. In this study, the total water storage is estimated using the GLDAS soil moisture

and plant canopy surface water. Is this estimation reliable? More details about the

methods (or additional comparison) may be needed to show the robustness of the total

water storage estimation.

RESPONSE: The other reviewer also doubted the reliability of GLDAS-∆S because

it ignored the change in the deeper groundwater. For groundwater change, the best

option is GRACE-∆S; however, it is not applicable in the study area since the low

spatial resolution of GRACE (1°×1°) would lead to large errors in small basins.

Instead, GLDAS-∆S is appropriate in representing the basin-scale water storage

change. First, GLDAS has high spatial resolution of 0.25°×0.25°. Second, the

groundwater change in west China is small and can be ignored. Specifically, Du et al.

(2016) used the abcd model to quantitatively determine monthly variations of water

balance for the sub-basins of Heihe River (including basins 3-5 in our study ) and

found that soil water storage change have effects on monthly water balance, whilst the

impact of monthly groundwater storage change is negligible. To clarify the

uncertainties, a new section will be added in the revised manuscript. The details can

be found at the beginning.



2. The degree-day model is used to estimate the equivalent of snowmelt runoff. In this

model, the degree-day factors (DDF) in the study basins are fixed (if my

understanding is correct here) and vary from 1.7-4.0 mm/dayÂ˚uC. Is there any

uncertainty/validation of these factors? How the variation of the DDF could possibly

affect the results of snowmelt runoff?

RESPONSE: Yes, your understanding is correct. It has been found that any changes

in climate conditions and the underlying basin characteristics will affect the relative

contributions of the heat balance components and cause temporal variations of the

DDF (Kuusisto, 1980; Ohmura, 2001). But previous study indicated that there is no

significant seasonal change in DDF in Western China (Zhang et al., 2006), which

contains our study area. Thus, using the fixed DDF values to estimate snowmelt

runoff is acceptable in this area. We also compared our snowmelt runoff values with

other studies. In comparison, the contribution of snow meltwater to runoff (Fs) was

12.9% in Basin 2 during 1971-2015 by using Spatial Processes in Hydrology

model(Li et al., 2019), while Fs was 25% in Basin 3 from 2001 to 2012 based on

geomorphology-based ecohydrological model (Li et al., 2018), <10% in Basin 6

during 1961-2006 by using SRM model (Gao et al., 2011). Our results indicated that

the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and 6.7%, respectively, which were

close to those from different models. It can be concluded that our snowmelt runoff

value is acceptable. Further, the uncertainties induced by the variation of the DDF will

also discussed in revised manuscript. The details can be found at the beginning.

3. The total water storage and snowmelt runoff estimates are then used to calculate ET.

Is the obtained ET reliable in terms of the above two comments?

RESPONSE: Even though there are many global ET products, but they have large

uncertainty of its forcing data and model algorithms. Taking GLDAS-ET as an

example, the precipitation data used come from the Princeton Global Fording dataset,

which is a reanalysis dataset generated from a climate model. The spatial resolution is

only 2°×2° (Sheffield et al., 2006). The low spatial resolution of forcing data should

surely affect ET accuracy, especially in small basins. On the other hand, GLDAS ET

products used Penman-Monteith equation to estimate ET. In this equation, the soil



water stress factor is critically important for plant transpiration suppression. However,

this factor was implicitly considered by GLDAS products with the vapor pressure

deficit (VPD). It is potentially problematic to use VPD to reflect soil water stress for

transpiration, especially in drier regions. Some other promising recently released

high-resolution ET products, such as GLEAM v3.2 and CLSM v2.0 also have similar

problems. Thus, To validate the reliability of our ET, we conducted a comparison

between our estimated ET, ET_GLDAS and ET from a dataset of “ground truth of

land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016)

ETmap Version 1.0”, respectively. This ET dataset was published by National Tibetan

Plateau Data Center. It was upscaled from 36 eddy covariance flux tower sites (65 site

years) to the regional scale with five machine learning algorithms, and then applied to

estimate ET for each grid cell (1 km × 1 km) across the Heihe River Basin each day

over the period 2012–2016. It has been evaluated to have high accuracy. Basins 3,4,5

in our study belongs to the headwater sub-basins of Heihe River, and our monthly ET

from April to September during 2012-2014 in these three basins was thus compared

with ETmap (see Figure S4). The results showed that our estimated ET fits better with

ETmap compared to GLDAS-ET and basically fell around the 1:1 line. Moreover,

ET_GLDAS values is obviously smaller than ETmap. Even in the July and August,

monthly ET_GLDAS is less than 60 mm, which is unreasonable in this region. Thus,

it can be concluded that our estimated ET by water balance equation is acceptable.

The details can be found at the beginning.

Comparison of monthly ET derived from GLDAS product and ETmap during
2012-2014.

4. I do not understand the results in Fig. 3. For example, we can see there are black

dots in panel (b) (Pe=R-dS) with VERY low ET/Pe values (close to zero). If I



understand this correctly, when replace Pe with R+Qm-dS in panel (d), the ET/Pe

should decrease as the Qm is positive (Table 1). It means that these low ET/Pe values

in panel (b) should be more close to zero (close to x-axis) in panel (d). However, I did

not see any black dots close to x-axis. WHERE are they? The results in Fig. 3 are

confusing and do not make sense.

RESPONSE: Yes, as the Qm is positive, Pe with R+Qm-dS should increase

compared with Pe with R-dS. But ET also increased, because it equals Pe-Qr

according to equation (2) and (4). Thus, E0/Pe in x-axis will decrease while ET/Pe in

y-axis will increase when considered Qm in panel d. Furthermore, the larger Qm, the

larger increase in ET/Pe while decrease in E0/Pe, which means the black dots will

move to the upper left after considering Qm.

The other reviewer also doubted the motivation of this part. Perhaps the simplest

revised method is deleting the related content. But we thought it should be reserved as

the following reasons: the Budyko framework was originally derived on long-term

scale. Then it was gradually extended to characterize and predict the interannual

variability of ET and the runoff fluxes on short time scale (including interanual and

monthly scales). Some studies also showed that the Budyko framework was not

suitable for exhibit ET variation on short time scale, because of the data points drew

by ET ratio and dryness index beyond the two limit curves of Budyko framework

(Chen et al., 2013; Du et al., 2016; Wang, 2012). These studies found that ignoring ∆S

is the main reason (see Figure 11 by (Du et al., 2016); Figure 3 by (Chen et al., 2013)).

Thus, validating the feasibility of using Budyko equation for variability of ET on the

short time scale is the foundation.

Considering different combinations of water supply to ET is the main method for

validation. In this study, except for ∆S, snowmelt runoff (Qm) is an important item of

monthly water balance equation. Four combinations of water supply were thus

assumed to prove the importance of considering ∆S and Qm into Budyko framework

on monthly scale in the original manuscript. In this version, to avoid confusion, we

only considered three combinations of water supply, i.e., Pe=R, Pe= R-∆S and

Pe=R-∆S+Qm.



Further, the related expression will also be revised.

4.1 The effects of monthly storage change and snowmelt runoff in the Budyko

framework

The Budyko framework is usually used for analyses of long-term average catchment

water balance; however, it was employed for the interpretation of the monthly

variability of the water balance in this study. Thus, it’s very necessary to validate the

feasibility of Budyko equation for monthly variability. Furthermore, the impact of ∆S

on the representation of Budyko framework on finer time scale has assessed by

several studies (Chen et al., 2013; Du et al., 2016; Liu et al., 2019; Zeng and Cai,

2015). However, the impact of Qm and its combined effects with ∆S in

snowmelt-dependent basins are mostly ignored. Therefore, we present the water

balance in the monthly scale of six basins in the Budyko’s framework with three

different computations of aridity index (ϕ=E0/Pe) or ET ratio (ET/Pe) in Figure 3. In

Figure 3a, ET=R-Qr when R is considered as water supply, i.e., Pe=R. The points of

monthly ET ratio and aridity index in April and May were well below Budyko curves

in 6 basins; monthly ET ratio was even negative in several year, which means the

local rain are not the only sources of ET in this area, especially in spring. In Figure

3b, ET=R-∆S-Qr with Pe= R-∆S. Compared with figure 3a, the way-off points in April

and May were improved to a certain extent but negative points still existed, suggesting

that except for R, ∆S also play a significant role in maintaining spring ET, but the

variability of ET cannot be completely explained by these two variables. In Figure 3c,

ET=R-∆S+Qm-Qr with Pe=R-∆S+Qm. Compared to the points in Figures 3a-b, all

points focused on Budyko’s curves more closely in each basin when Pe=R+Qm-∆S

(Figure 3c). From this comparison, it can be concluded that the Budyko framework is

applicable to the monthly scale in snowmelt-dependent basins, if the water supply is

described accurately by considering ∆S and Qm.



Figure 3 Plots for aridity index vs. evapotranspiration index scaled by available water supply for

monthly series in growing season. Total water availability is (a) R, (b) R-∆S and (c) R-∆S +Qm.

The n value for each Budyko curve is fitted by long-term averaged monthly data.

5. Do the Qs in the equations and the Qm in the figures have the same physical



meaning? If so, please keep the symbols consistent in the manuscript.

RESPONSE: We are so sorry for our carelessness. These two symbols all represented

the snowmelt runoff. In the revised version, Qs will be revised as Qm.

6. In this manuscript, the term “temporal variance” is used in growing season by

simply extending previous studies (e.g., Liu et al 2019). Is the definition of “temporal

variance” in the growing season in this study the same as that in previous work? I

cannot understand how it works in math.

RESPONSE: The definition of “temporal variance” in the growing season in this

study is same as that in previous work. The only difference is the calculation of

sample size (N) in equation 12. In previous studies, they focused on ET or runoff

variance for all months. Thus, the sample size was 12 months/year×n years. In this

study, we concerned ET variance in the growing season (April to September). Thus

the sample size was 6 months/year × n years. The unbiased sample variance in

equation 12 is estimated by the concept of statistics, not derived by previous studies

or us. I would like to clarify the specific calculation as follows: in this study, with data

of growing season (April to September) during 2001-2014, the sample size was 6

months/year×14 years=84 months, i.e. N=84 in equation 12. The calculation regarded

all the months as a group or a time series of data, and did not conduct calculation for

each calendar month. In consequence, i is used to index time series of month from 1

to N. �떀� ��� is the long-term average of ET for 84 months. As such, one time series of

data can only had one variance. It is known that a small test set size leads to a large

bias in the estimate of the true variance between design sets (Geng et al., 1979;

Wickenberg-Bolin et al., 2006). Comparing with conducting calculation for each

calendar month, the calculation by us and other researchers (Liu et al., 2019; Ye et al.,

2015; Zeng and Cai, 2015; Zeng and Cai, 2016) can obtain larger sample size. In the

revised version, we will explain the related variables more clearly:

The unbiased sample variance of ET (��떀
� ) is defined as:

��떀
� � �

�䗨� ���
� ��떀� 䗨 �떀� �� ��� � �

�䗨� ���
� ���떀����

(12)



where �떀� �� is the long term monthly mean of ET. N is the sample size, it equals 84 in

this study (6 months/year×14 years=84 months). i is used to index time series of

month from 1 to N.
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