Point-to-point responses:
Anonymous Referee #1:

The authors extend existing Budyko-type approaches for decomposing monthly ET
variance (eg Liu et al 2019) amongst variances (average monthly deviation from an
annual mean value) in underlying physical drivers of plant water use (e.g. rainfall). In
particular, the model extension now accounts for variance in snowmelt fluxes and
variance in vegetation cover. The manuscript is a logical extension of work previously
published on the topic. However, I do have serious concerns with clarity of
presentation in some parts of the manuscript, as well as the underlying “consistency”

of the datasets used in the study (detailed in specific comments below).

RESPONSE: Thank you for the constructive comments. As for the “consistency” of
the datasets, three variables cannot be directly observed at the basin scale, including
evapotranspiration (ET), water storage change (AS) and snowmelt runoff (Qm), but
can be indirectly estimated from different sources of datasets. In this study, AS and
Qm were estimated by GLDAS data and the degree-day model, respectively. ET was
obtained using the water balance equation based on the data of rainfall, runoff, AS and
Qm. As you mentioned, GLDAS-AS may ignore the groundwater storage and lead to
errors; however, it seemed that this is the best option. For example, GRACE data is
superior for estimating AS; however, its coarse spatial resolution may result in even

larger errors (please find detailed response in comment 5).

GLDAS has a snowmelt band, but we selected the degree-day model for Qm because
of the following aspects. On the one hand, large uncertainties exist in the snow data
from GLDAS products. On the other hand, the major input data in the degree-day
model we used are measured, which can provide more accurate results of snowmelt
runoff. The previous studies using different methods indicated that our modelled Qm

is reliable (see comment 10).

Similarly, because of the uncertainties in the forcing data and modelling algorithms of
GLDAS-ET, the estimated ET from the water balance equation is more reasonable

(see comment 9). To validate the reliability of our ET, we conducted a comparison



between our estimated ET, ET _GLDAS and ET from a dataset of “ground truth of
land surface evapotranspiration at regional scale in the Heihe River Basin (2012-2016)
ETmap Version 1.0”, respectively. The results showed that our estimated ET fits better

with ETmap compared to GLDAS-ET, suggesting our estimated ET is acceptable.

Of course, in order to keep the “consistency” of the datasets, the abovementioned
three variables from GLDAS can be used in the revised manuscript. However, we
think, data reliability is more important than data consistency, especially for those
data with large uncertainties. For any employed dataset, uncertainties would exist in
the three estimated variables, a new section about the uncertainties will thus be added

in the revised manuscript.
4.5 Uncertainties

Uncertainties from different sources may result in errors for this study. First, this
study estimated AS and Q. with the GLDAS Noah land surface model and the
degree-day model, respectively. Although the GLDAS AS has been widely used in
hydrological studies, it ignores the change in deep groundwater (Nie et al., 2016;
Syed et al., 2008; Zhang et al., 2016), which may lead to errors in ET estimation
based on water balance equation. But previous studies showed that the groundwater
change in our study area is relatively small, and can thus be ignored. For example,
Du et al. (2016) used the abcd model to quantitatively determine monthly variations
of water balance for the sub-basins of Heihe River (including basins 3-5 in our study )
and found that the soil water storage change have obvious effects on the monthly
water balance, whilst the impact of monthly groundwater storage change is negligible.
Furthermore, it has been found that any change in climate conditions and underlying
basin characteristics will affect the contributions of heat balance components and
cause temporal variations of DDF (Kuusisto, 1980, Ohmura, 2001). But previous
studies indicated that there is no significant seasonal change in DDF in west China
(Zhang et al., 2006), as such, it is acceptable to estimate snowmelt runoff using fixed
DDF values in this study. In comparison, the contribution of snow meltwater to runoff
(Fs) was 12.9% in Basin 2 during 1971-2015 by using Spatial Processes in Hydrology
model(Li et al., 2019), while Fs was 25% in Basin 3 from 2001 to 2012 based on



geomorphology-based ecohydrological model (Li et al., 2018), <10% in Basin 6
during 1961-2006 by using SRM model (Gao et al., 2011). Our results indicated that
the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and 6.7%, respectively, which were
close to those from different models. Finally, the uncertainties of AS and Qn may lead
to errors in ET estimation by water balance equation. To validate the reliability of our
estimated ET, the comparison with ETnap from April to September during 2012-2014
was conducted (Figure S4). The results showed that our estimated ET fitted well with
ETwep and basically fell around the 1:1 line, indicating ET estimated using water

balance equation by considering the items of AS and Qw is acceptable.

Second, previous studies concluded that three main factors could be responsible for
the variability of n, including underlying physical conditions (such as soil and
topography characteristics) (Milly, 1994, Yang et al., 2007), climate seasonality (such
as the temporal variability of rainfall, mismatch between water and energy) (Ning et
al., 2017, Potter et al., 2005) and vegetation dynamics (Donohue et al., 2007, Zhang
et al., 2001). On the short time scale, the changes in soil and topography are
negligible and its impact on the variability of n can be ignored. In consequence, the
factors, should be considered, are climate seasonality and vegetation dynamics. When
parameterizing n, this study considered M but ignored climate seasonality since the
covariance item between R and Ey, i.e. eie4cov(R, Ey) in the attribution equation (13)
can represent climate seasonality. In addition, human influence represented by
parameter n on the water balance cannot be ignored, which remains further

investigation.
The specific introduction of ETmap will be added in section 2.2-Data.

ET from dataset of “ground truth of land surface evapotranspiration at regional scale
in the Heihe River Basin (2012-2016) ET,qp Version 1.0” (hereafter “ETnap”), was
used to validate the reliability of our estimated ET. This dataset was published by
National Tibetan Plateau Data Center. It was upscaled from 36 eddy covariance flux
tower sites (65 site years) to the regional scale with five machine learning algorithms,
and then applied to estimate ET for each grid cell (I km x I km) across the Heihe
River Basin each day over the period 2012-2016. It has been evaluated to have high



accuracy (Xu et al., 2018). Basins 3,4,5 in our study belongs to the headwater
sub-basins of Heihe River, and our monthly ET from April to September during
2012-2014 was thus compared with ETap.
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Figure S4. Comparison of monthly ET derived from water balance equation and ETap
during 2012-2014.

I also have a general question about the overall approach (that will probably reveal
my own ignorance about these methods!). When I think about “variability” in ET, I
first think about the year-by-year variation in the magnitude of ET in a particular
month. However, if ’'m understanding this manuscript correctly, the variability that is
under consideration is the average of the monthly deviation of ET (or underlying
drivers) from a long-term annual average. Is this interpretation correct? That is, in
Equation 12 does noverline ET equal the long term annual mean, and does the index

[13%2]
1

in this case index all of the values for a given month? If so, this is somewhat

€9
1

confusing, as in the previous sections, “i” was used to index the month itself (not the
collection of values for a given month). I ask because I can imagine another form of
“variance” that is more in line with my expectations, but i’m not entirely sure how it
should be interpreted with respect to the variance I described above (or if it’s even
functionally different from what i described above): This is where noverline ET is the
long term monthly mean of that particular variable (not the annual mean), and where
the variance is the variance of the annual realization of that variable about it’s long
term monthly mean. I think the author’s framework addresses the former definition,
but am not sure. Is there a significant difference between these two interpretations? If
so, what are the different types of questions that you might address with one approach

or the other? Additionally, in the case of the first description (average deviation in a

given month from a long term annual mean), why is this simply not referred to as



seasonality? Presumably this form of “variability” can’t be used to address questions
relating to long term trends, etc. I apologize if this long-winded question is a bit
convoluted; I’'m wrestling with some of these concepts for the first time! Thanks for

any additional clarification.

RESPONSE: The unbiased sample variance in equation 12 is estimated by the
concept of statistics, not derived by previous studies or us. I would like to clarify the
specific calculation as follows: in this study, with data of growing season (April to
September) during 2001-2014, the sample size was 6 months/yearx14 years=84
months, i.e. N=84 in equation 12. The calculation regarded all the months as a group
or a time series of data, and did not conduct calculation for each calendar month. In
consequence, i is used to index time series of month from 1 to N. ET is the long-term
average of ET for 84 months. As such, one time series of data can only had one
variance. It is known that a small test set size leads to a large bias in the estimate of
the true variance between design sets (Geng et al., 1979; Wickenberg-Bolin et al.,
2006). Comparing with conducting calculation for each calendar month, the
calculation by us and other researchers (Liu et al., 2019; Ye et al., 2015; Zeng and Cai,
2015; Zeng and Cai, 2016) can obtain larger sample size. In fact, our variance can
also refer to the ET seasonality, as to it reflect the intra-annual change in ET. In the

revised version, we will explain the related variables more clearly:

The unbiased sample variance of ET (O-IZET) is defined as:

1 = 1
0ty =77 iey (ETi —ET)? = ——% | (AET))?

(12)

where ET is the long term monthly mean of ET. N is the sample size, it equals 84 in
this study (6 months/yearx14 years=84 months). i is used to index time series of

month from I to N.
COMMENTS:

1) It would be helpful if the authors included units when introducing terms; e.g. What

1s “M” and what are its units?



RESPONSE: The units of related variables will be added in the revised version. M is
vegetation coverage and is dimensionless. “M” will be introduced in more details in

Line 140:

The monthly normalized difference vegetation index (NDVI) at a spatial resolution of
1km from the MODIS MOD13A43.006 product was used to assess vegetation coverage
(M), which can be calculated from the method of Yang et al. (2009):

M = _NDVIZNDVnin
NDV Iygx—NDV I pin

where NDVIyax and NDVIyin are the NDVI values of dense forest (0.80) and bare soil
(0.05).

2) Lines 53 - 65: veg change and disturbance?

RESPONSE: Vegetation change is more suitable. Vegetation change is the final

results no matter it is disturbed by any environmental change.
3) Lines 56-57: Why the “but™?

RESPONSE: With the given precipitation, if vegetation condition is improved, the
transpiration will increase to lead to higher ET. According to the water balance
equation, the increasing ET will result in decreasing runoff, i.e., the ratio of Qr to P.

To clarify this, it was replaced with “and” in this version.

4) Lines 67-68: What do the authors mean by “which has been the foundation for
decomposing ET or runoff variance and is expressed as:”. What has been the
foundation for decomposing ET? Are the authors saying that “snowmelt influence has

been the foundation for decomposing ET”’? I’m not sure what that means.

RESPONSE: The short-term water balance equation was the foundation of
decomposing ET/or runoff variance. Its general form can be expressed as:
P=ET+Qr+AS. But this equation is not suitable for the regions where the hydrology is
highly dependent on winter mountain snowpack and spring snowmelt runoff. Thus,
the water balance equation should be modified to consider the impacts of snowmelt

on runoff in short-term time scale. To clarify this, it will be revised as:



The short-term water balance equation was the foundation of decomposing ET/or

runoff variance. Its general form can be expressed as:
P=ET+Qr+AS (1)

where P, including liquid (rainfall) and solid (snowfall) precipitation, is the total
water source of hydrological cycle. But this equation is not suitable for the regions
where the land surface hydrology is highly dependent on winter mountain
snowpack and spring snowmelt runoff. It has been reported that annual Qr
originating from snowmelt accounted for 20%-70% of the total runoff across the
world, including west United States (Huning and AghaKouchak, 2018), coastal areas
of Europe (Barnett et al., 2005), west China (Li et al., 2019b), northwest India
(Maurya et al, 2018), south of the Hindu Kush (Ragettli et al., 2015), and
high-mountain Asia (Qin et al., 2020). In these regions, the mountain snowpack serves
as a natural reservoir that storing cold-season P to meet the warm-season water
demand (Qin et al., 2020; Stewart, 2009).Thus, the water balance equation should

be modified to consider the impacts of snowmelt on runoff in short-term time scale.

5) Lines 131-132: Delta S is computed as difference in GLDAS soil moisture down to
2m between months. However, the authors explicitly refer to groundwater as being
important with respect to storage change impacts on ET in their introduction. Can
these shallow soil moisture measurements reliably represent total storage changes in
the catchment? Presumably, in these semi-arid basins, significant storage dynamics
occur below 2m depth, both in the deep unsaturated zone and deeper groundwater.
What are the consequences of this for the author’s findings? Will the impact of

storage changes be significantly underestimated?

RESPONSE: Yes, GLDAS-AS ignores the change in groundwater. For groundwater
change, the best option is GRACE-AS; however, it is not applicable in the study area
since the low spatial resolution of GRACE (1°x1°) would lead to large errors in small
basins. Instead, GLDAS-AS is appropriate in representing the basin-scale water
storage change. First, GLDAS has high spatial resolution of 0.25°x0.25°. Second, the
groundwater change in west China is small and can be ignored. Specifically, Du et al.

(2016) used the abcd model to quantitatively determine monthly variations of water



balance for the sub-basins of Heihe River (including basins 3-5 in our study ) and
found that soil water storage change have effects on monthly water balance, whilst the
impact of monthly groundwater storage change is negligible. To clarify the
uncertainties, a new section will be added in the revised manuscript. The details can

be found at the beginning.

6) Line 138: This seems important. Some overview of the Yang 2009 method would

be helpful.

RESPONSE: M” will be introduced in more details and the specific revision can be

found in comment 1.

7) Line 142: What is F? Assuming it’s percent forest cover. It’s unclear why we need

this, and its relationship to M.

RESPONSE: F is percent forest cover. It was used to explain the finding of “better
vegetation condition, especially larger forest cover, could result in stronger impacts on
ET variance” in Line 302-306. In your 20" comment, you think that this explanation
is just a restatement of the finding. We will thus delete the related text of F in Line
141-144 and Line 304-306, and will give discussion according to your suggestion in

the 20t comment.

8) Line 157: Perhaps useful to point out the parallel to Zeng and Cai, a further
elaboration of “effective” precipitation. In their case, this included precip and deltaS.

Here, snowmelt is added.
RESPONSE: This part will be revised as:

_ PeX EO
ET - (Pen+ES)l/n (3)

where n is the controlling parameter of the Choudhury—Yang equation. P, is the total
available water supply for ET. In previous studies, Pe included P and AS (Pe=P-AS)
on finer time scale. But snowmelt runoff should also be considered in the

snow-dependent basins.

9) Line 162: So, ET is obtained as the residual of a mass balance, and then this

nonlinear equation is solved for “n” for each value of ET? It seems strange to me not



to use the GLDAS-estimated ET (which is available), given that this is how Delta S is

specified.

RESPONSE: Yes, your understanding of the calculation of ET and n is right. When
we chose the datasets used in our manuscript, the observed data was first choice.
However, it is hard to obtain the observed ET at catchment scale. GLDAS-ET is
indeed available. But it has been found that GLDAS products failed to reproduce the
water balance-based annual ET time series, which was considered as measured ET,
over most basins in China (Bai and Liu, 2018). The errors may come from the
uncertainty of its forcing data and model algorithms. On one hand, the precipitation
data come from the Princeton Global Fording dataset, which is a reanalysis dataset
generated from a climate model. The spatial resolution is only 2°x2° (Sheffield et al.,
2006). The low spatial resolution of forcing data should surely affect ET accuracy,
especially in small basins. On the other hand, GLDAS products used
Penman-Monteith equation to estimate ET. In this equation, the soil water stress factor
is critically important for plant transpiration suppression. However, this factor was
implicitly considered by GLDAS products with the vapor pressure deficit (VPD). It is
potentially problematic to use VPD to reflect soil water stress for transpiration,
especially in drier regions. Some other promising recently released high-resolution ET
products, such as GLEAM v3.2 and CLSM v2.0 also have similar problems. In the
introduction section, we have illustrated that the short-term water balance equation
was the foundation of decomposing ET/or runoff variance (see comment 4). In many
present studies of Budyko, water balance equation is also usually used to obtain the
ET values (Liu et al., 2018; Wang, 2012a; Yang et al., 2009) . Further, ET obtained
from water balance equation was usually considered as “observed ET” and used to
validate modeled ET(Bai and Liu, 2018; Liu et al., 2016). The advantage of this
method is that the water balance terms except for ET come from the direct
observations. In our manuscript, except for observed rainfall and runoff items, the
water balance equation also includes snowmelt (Qr) and AS items. Even Qr and AS do
not directly observed, the key parameters of Qr model is calculated using measured
data; further, GLDAS-AS is also acceptable, which has been explained in comment 5.

To sum up, we think ET obtained from water balance equation should be relatively



reasonable compared with global ET products.

To validate the reliability of our ET, we conducted a comparison between our
estimated ET, ET _GLDAS and ET from a dataset of “ground truth of land surface
evapotranspiration at regional scale in the Heihe River Basin (2012-2016) ETmap
Version 1.0”, respectively. This ET dataset was published by National Tibetan Plateau
Data Center. It was upscaled from 36 eddy covariance flux tower sites (65 site years)
to the regional scale with five machine learning algorithms, and then applied to
estimate ET for each grid cell (1 km % 1 km) across the Heihe River Basin each day
over the period 2012-2016. It has been evaluated to have high accuracy Basins 3,4,5
in our study belongs to the headwater sub-basins of Heihe River, and our monthly ET
from April to September during 2012-2014 was thus compared with ETmap (see Figure
S4). The results showed that our estimated ET fits better with ETmap compared to
GLDAS-ET and basically fell around the 1:1 line. Moreover, ET GLDAS values is
obviously smaller than ETmap. Even in the July and August, monthly ET GLDAS is
less than 60 mm, which is unreasonable in this region. Thus, it can be concluded that

our estimated ET by water balance equation is acceptable. The details can be found at

the beginning.
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Comparison of monthly ET derived from GLDAS product and ETmap during
2012-2014.

10) Line 170: GLDAS specifically has a snowmelt band. Why not use that, given

using it for other aspects of the analysis? Might be more consistent?

RESPONSE: The snow model used by GLDAS2-Noah is the Noah land surface
model, which has a single-layer snow scheme. And it is forced using the Princeton

meteorological forcing dataset. It has been found that there remains substantial



uncertainty about the representation of snow on the ground in many reanalysis and
GLDAS products, as evidenced by the wide spread of snow water equivalent and
snow depth simulations in such systems (e.g., (Broxton et al., 2016; Mudryk et al.,
2015)). For example, GLDAS products underestimate forcing data, including
precipitation and snow season temperature, which undeniably contributes to these
products having low snow water equivalent. Furthermore, GLDAS products that
predict more snow ablation at near-freezing temperatures have larger underestimates
of snow water equivalent. In contrast, the major input data in the degree-day model
we used are measured. Specifically, the temperature data comes from meteorological
stations and the degree-day factor is surveyed by difference GPS for each basin. Even
the snow cover data is obtained from remote sensing product, its higher spatial
resolution (1kmx1km) could reflect slight change of snow cover area and lead to

relatively accurate modelling of snowmelt runoff.

We also compared our snowmelt runoff values with other studies. In comparison, the
contribution of snow meltwater to runoff (Fs) was 12.9% in Basin 2 during 1971-2015
by using Spatial Processes in Hydrology model(Li et al., 2019), while Fs was 25% in
Basin 3 from 2001 to 2012 based on geomorphology-based ecohydrological model
(Li et al., 2018), <10% in Basin 6 during 1961-2006 by using SRM model (Gao et al.,
2011). Our results indicated that the Fs in Basin 2, 3 and 6 were 14.8%, 24.5% and
6.7%, respectively, which were close to those from different models. It can be
concluded that our snowmelt runoff value is acceptable. The details can be found at

the beginning.

11) Line 180: The authors state March to July are the major snowmelt months. Why
then do the authors then only perform their analysis April to July? Also, why not just
apply the analysis for all months of the year? What is the purpose of leaving out the

rest of the year?

RESPONSE: In this study, we focused on the ET variability in growing season,
which is from April to September in this region. Thus, the beginning of snowmelt
months was set as April. One of the major issues we care about is quantifying the

contributions of vegetation change on ET variance on finer time scale by developing



the relationship between Budyko controlling parameter n and vegetation coverage M
on monthly scale. At first, we explored the relationship between n and M for all
months of the year, but their relationship was not significant in most basins. We found
that the abnormal points in non-growing season influenced this relationship, which
means the impact of vegetation on ET variance in non-growing season is very weak.
Thus, in order to decrease the attribution error, we focused on the analysis in growing

season.
12) Line 186: “M” has not been sufficiently defined leading up to this section.
RESPONSE: the specific revision of “M”can be found in comment 1.

13) Line 194: Is there any basis (e.g. citation) for this functional dependence? While I
agree that vegetation will play a role in determining ‘n’, it’s also true that ‘n’ likely
depends on other catchment features, such as soil water storage capacity. I guess the
question, then, is whether these other drivers can be assumed constant through time,
and thus somehow justifiably lumped into the fitted constant parameter ‘a’ in
Equation8. Can the authors confirm that vegetation is likely the only non-static
component of the exponent ‘n’ through a brief review of such mechanistic models?
The first one that comes to mind is Porporato et al (2004); though I’m not sure the
functional form is identical to Equation 3. Porporato, Amilcare, Edoardo Daly, and

Ignacio Rodriguezlturbe. "Soil water balance and ecosystem response to climate

change." The American Naturalist 164.5 (2004): 625-632.

RESPONSE: Except for our previous study in HESS (Ning et al, 2017), Yang et al.
(2009) in WRR and Liu et al. (2018) in HESS also used power function to fit the
relationship between controlling parameter and vegetation coverage (M). These works

will be cited in our revised manuscript.

Except for vegetation condition, other factors, such as soil property, topography and
climate seasonality will also influence parameter controlling parameter. But
multicollinearity may occur when the explanatory variables are intercorrelated, which
will, in turn, induce a series of problems. For example, the effects of individual

explanatory variables may not be precisely estimated and the regression coefficients



may become highly unstable (Mjelde et al., 1991). Therefore, it is necessary to check
the interactions between explanatory variables and select independent variables when
developing expressions of the controlling parameters. This work has been done in our
previous study: “Ning, Tingting, Zhou, Sha, et al., 2019. Interaction of vegetation,
climate and topography on evapotranspiration modelling at different time scales
within the Budyko framework. Agricultural and Forest Meteorology, 275: 59-68”. The
changes in landform, such as topography or soils, are gentle and can be ignored.
Therefore, we focused on the interactions among vegetation coverage(M), climate
seasonality index (SAI). We found that, on annual scale, M and SAI were
significantly related to controlling parameter, while being independent from each
other; in consequence, both of them should be parameterized into the Budyko model.
In this study, we only considered M while ignored SAI when parameterizing n
because the covariance item between rainfall and potential evapotranspiration, i.e.
e1e4cov(R, Eo), in equation (13) can represent the climate seasonality. According to
your suggestion, a brief review about the impact factors of Budyko controlling
parameter will be added in the discussion of revised manuscript. The details can be

found at the beginning of this response.

14) Line 216: It’s probably obvious to most folks, but the authors should still probably
define the overbar as some long term mean. Also, would nbar{ET also equal the
longterm mean ET from Equation 3? Probably best to try to stay consistent with

notation if possible.

RESPONSE: ET will be defined as “long-term mean of monthly ET” in the revised
manuscript. Initially, the Choudhury-Yang equation, i.e. equation (3), was derived on
long-term scale, thus ET in this equation represented ET on the long-term scale, and it

will be revised as ET in the revised manuscript.

15) Line 227: What is the function “F”? It is not defined. It is referred to as a “factor”
in Line 233. Also, what is the underscore notation used here e.g. “R_M”. Presumably
these correspond to the terms in Equation 14, but that’s not very clear, and the

notation is not explained or defined.

RESPONSE: Sorry for our carelessness. In the revised manuscript, “F” will be



defined as “the individual contributions of each factor”; each two factors linked by

underscore represent the interaction effects between them.

16) Line 240 - 244: This is an unexpected addition that I don’t fully understand. Are
the authors analyzing results for different representations of effective precipitation? If
so,why, and where was this motivated? I don’t think it was outlined in the methods. It
looks like the authors use 3 different forms of increasing complexity; precip alone;

precip plus snowmelt; precip plus snowmelt plus storage differential.

RESPONSE: Yes, Figure 3 presents the water balance in the monthly scale of all the
study basins in the Budyko’s framework with four different computations of aridity
index or ET ratio: i. ET=R-Qr when R is considered as water supply (Pe=R); ii.
ET=R-AS-Qr when R-AS is considered as water supply (Pe= R-AS); iii.
ET=R+Qm-Qr when R+Qm is considered as water supply (Pe= R+Qm); iv. ET=R-AS
+Qm-Qr when R-AS+Qm is considered as water supply (Pe= R-AS+Qm).

The motivation is: the Budyko framework was originally derived on long-term scale.
Then it was gradually extended to characterize and predict the interannual variability
of ET and the runoff fluxes on short time scales (including interanual and monthly
scales). Some studies also showed that the Budyko framework was not suitable to
represent ET variation on short time scales, because of the data points drew by ET
ratio and dryness index beyond the two limit curves of Budyko framework (Chen et
al., 2013; Du et al., 2016; Wang, 2012b). These studies found that ignoring AS is the
main reason (see Figure 11 by (Du et al., 2016); Figure 3 by (Chen et al., 2013)). Thus,
validating the feasibility of using Budyko equation for variability of ET on the short

time scale is the foundation.

Considering different combinations of water supply to ET is the main method for
validation. In this study, except for AS, snowmelt runoff (Qm) is an important item of
monthly water balance equation. Four combinations of water supply were thus
assumed to prove the importance of considering AS and Qm into Budyko framework
on monthly scale in the original manuscript. In this version, to avoid confusion, we
only considered three combinations of water supply, i.e., Pe=R, Pe= R-AS and

P.=R-AS+On.



The motivations will be added and the related expression will be revised. You pointed
out that the operation of this part was not outlined in the methods. As they are used to
show the distribution of data points of EO/Pe and ET/Pe under the Budyko framework,

the figure is enough even without description in the methods.

4.1 The effects of monthly storage change and snowmelt runoff in the Budyko

framework

The Budyko framework is usually used for analyses of long-term average catchment
water balance; however, it was employed for the interpretation of the monthly
variability of the water balance in this study. Thus, it’s very necessary to validate the
feasibility of Budyko equation for monthly variability. Furthermore, the impact of AS
on the representation of Budyko framework on finer time scale has assessed by
several studies (Chen et al., 2013; Du et al., 2016, Liu et al., 2019; Zeng and Cai,
2015). However, the impact of QO and its combined effects with AS in
snowmelt-dependent basins are mostly ignored. Therefore, we present the water
balance in the monthly scale of six basins in the Budykos framework with three
different computations of aridity index (¢9=E¢/P.) or ET ratio (ET/Pe) in Figure 3. In
Figure 3a, ET=R-Qr when R is considered as water supply, i.e., Pe=R. The points of
monthly ET ratio and aridity index in April and May were well below Budyko curves
in 6 basins, monthly ET ratio was even negative in several year, which means the
local rain are not the only sources of ET in this area, especially in spring. In Figure
3b, ET=R-AS-Qr with Pe= R-AS. Compared with figure 3a, the way-off points in April
and May were improved to a certain extent but negative points still existed, suggesting
that except for R, AS also play a significant role in maintaining spring ET, but the
variability of ET cannot be completely explained by these two variables. In Figure 3c,
ET=R-AS+Qm-Qr with P.=R-AS+Q,. Compared to the points in Figures 3a-b, all
points focused on Budykos curves more closely in each basin when P.=R+Qu-AS
(Figure 3c). From this comparison, it can be concluded that the Budyko framework is
applicable to the monthly scale in snowmelt-dependent basins, if the water supply is

described accurately by considering AS and QOn.



(a)

(c)
Pe=R-AS+Q,,

f) 3 6 2 12 15
Eo/Pe
o Aug = Sep

Eg/Pe
e Apr o May ¥ Jun & Jul

Figure 3 Plots for aridity index vs. evapotranspiration index scaled by available water supply for
monthly series in growing season. Total water availability is (a) R, (b) R-AS and (c) R-AS +QOh.

The n value for each Budyko curve is fitted by long-term averaged monthly data.

17) Figure 3: I'm also a bit confused on this figure. Should it be the case that the



points fall on the correspondingly colored curves? Were the curves generated by
fitting to the points? Why should a single curve be fit across the ensemble of ET/Pe
values for each month? Isn’t it reasonable to expect that even the same month in
different years will have different values for “n” due to interannual variability in
factors that determine “n”? (this relates to my general question about timescales at the

start of the review).

RESPONSE: Theoretically, the points should fall on the Budyko curves. But
deviations from the Budyko curve have been detected in many previous studies. In
addition to climate conditions, other variables including vegetation, soil, topography
and climate seasonality, also influence the variability of regional water balances
(Wang, 2012b; Yang et al., 2007). All these factors can be encoded into the controlling
parameter of the Budyko equations. In this study, the vegetation coverage was chosen
to explain the monthly variability of n, which was obtained by equation 5 for each
month. To make the figure clearer, the mean annual n for each month was used to
draw the Budyko curve. This operation was also adopted by many previous studies

(Du et al., 2016; Liu et al., 2018; Ning et al., 2017).

18) Line 245: Can the authors explain this statement? I don’t understand the
significance. Is this just to say that if you don’t account for all potential fluxes into the

rooting zone, the mass balance might be incorrect?

RESPONSE: Yes. In order to obtain the right ET values, the mass balance should
consider all potential fluxes. If this is not done, the abnormal data point will be

observed in Figure 3, such as the negative monthly ET ratio in Figure 3a-b.

19) Line 261: Is it true that nDelta S is expected to be small or zero if there are no

interannual storage changes?

RESPONSE: We checked the original data and recalculated the mean and the
standard deviation values of AS and confirmed this result is correct. Here, what we
found is that the intra-annual changes of water storage is relatively large, but its mean
monthly value was small. This is because AS in some months is positive but in some

months is negative.



20) Line 304 - 306: I don’t think this is an explanation; it’s a restatement of the
finding that vegetation has a larger impact on ET variance when water is not limiting.
The authors still have not answered (or ventured a hypothesis) as to why ET is more
sensitive to variability in vegetation cover when water is not a limiting factor? I can
think of a couple of vague hypotheses, but would love to see a bit more discussion

from the authors on this point; it seems central to the paper.

RESPONSE: We agreed with you. The related text of F will be deleted. We will give

discussion according to your suggestion in the revised manuscript:

C(M) showed an increasing trend from 0.5% to 9.5% with the decreasing ¢, implying
that the contribution of vegetation change to ET variance was larger in relatively
humid basin. It can be explained that transpiration is more sensitive to vegetation
change, and thus the higher vegetation coverage could increase the proportion of
transpiration to ET in humid regions (Niu et al., 2019, Zhang et al., 2020). The
Budyko hypothesis stated that change in ET is controlled by change in available
energy when water supply is not a limiting factor under humid conditions (Budyko,
1974, Yang et al., 2006). The increasing M results in the reallocation of available
energy between canopy and soil. Specifically, more energy is consumed by canopy
thus increases transpiration. Further, Previous studies have found that ET differs
greatly among species, because of the difference in canopy roughness, the timing of
physiological functioning, water holding capacity of the soil and rooting depth of the
vegetation (Baldocchi et al., 2004; Bruemmer et al., 2012). Generally, forest had
larger ET than grassland (Ma et al., 2020; Zha et al., 2010). The fraction of forest
area is relatively high and thus lead to the higher contributions to ET for whole basin
in the humid region. For example, Wei et al. (2018) showed that the global average
variation in the annual Q. due to the vegetation cover change was 30.7+22.5% in
forest-dominated regions on long-term scales, which was higher than our results

because of their higher forest cover.

21) Line 313: A downward trend with respect to increasing aridity? It would be

helpful if the authors continued to explicitly state the dependent and independent



variables when talking about trends.
RESPONSE: This part will be revised as:

Similar as C(R), C(QOn) showed a downward trend with the decreasing ¢, ranging from 2.9% to

0.4%.

22) Line 318: Elasticity has not been defined up to this point. This is an important

concept that the authors should explain more clearly around Equations 13 and 14.

RESPONSE: ¢ in equations 13 and 14 is the partial differentia coefficients of ET to
each variable, not the elasticity coefficients. We will define it in equation (11) where it

firstly appears.

23) Line 318: I think it would be very helpful if the authors more explicitly described
this idea that the contribution is dependent on both the magnitude of the variance of

the driving variable as well as the elasticity.

RESPONSE: This part will be revised as:

2

It can be explained that the contribution of each variable to o7,

was not only the
product of the partial differential coefficients, but also relied on its variance value
according to equation 13. Specifically, the partial differential coefficients of 0.1 for a
variable means that a 10% change in that variable may result in a change in ET by
1%, which can only reflect the theoretical contribution of each variable. By

multiplying the variance value, the actual contribution of each variable could be

obtained.

24) Lines 320 - 324: The model developed here cannot speak to these non-stationary
changes though, correct? The analysis here is only pertinent to intra-annual variability
attribution, as the variance under consideration is that of the average of the monthly
deviation from an annual mean, as opposed to the year-to-year variance of a particular
variable about it’s long term monthly mean? Again, this relates to my timescale

question at the start of the review.

RESPONSE: The analysis of this study is only pertinent to intra-annual variability

attribution. But it can be used to represent nonstationary changes, but just limited to



intra-annual scale. Specifically, the intra-annual variability of ET is related to the
intra-annual variability of related factor. Here, we emphasized that the climate
warming shifted the timing of snowmelt earlier in the spring in the Qilian Mountains,
which resulted in increased soil moisture and a greater proportion of Qm to ET. The
shifting of timing of snowmelt earlier in the spring referred to the intra-annual

variability of snowmelt period. Thus, we thought it is reasonable.
25) Line 330: What is a “good” vegetation condition?

RESPONSE: This expression is indeed improper. Thus “good vegetation condition”

will be revised as “higher vegetation coverage”.
26) Line 392: “Corrected” I assume should be “correlated”?
RESPONSE: We are so sorry for our carelessness. “correlated” is right.
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