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Abstract. NASA’s Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal 10 

patterns in surface soil moisture using dual L-band microwave retrievals of horizontal, TBh, and vertical, 

TBv, polarized microwave brightness temperatures through a modeled relationship between vegetation 

opacity and surface scattering albedo (i.e. ‘tau-omega’ model). Although this model has been validated 

against in situ soil moisture measurements across sparse validations sites, there is lack of systematic 

characterization of where and why SMAP estimates deviate from the in situ observations. Here, soil 15 

moisture observations from the US Climate Reference Network are used within a mutual information 

framework to decompose the overall retrieval uncertainty from SMAPs Modified Dual Channel 

Algorithm (MDCA) into random uncertainty derived from raw data itself and model uncertainty derived 

from the model’s inherent structure. The results shown that, on average, 12% of the uncertainty in SMAP 

soil moisture estimates is caused by the loss of information in the MDCA model itself while the remainder 20 

is induced by inadequacy of TBh and TBv observations. We find the fraction of algorithm induced 

uncertainty is negatively correlated (pearson r of -0.48) with correlations between in-situ observations 

and MDCA estimates. A decomposition of mutual information between TBh, TBv and MDCA soil moisture 

shows that on average 55% of the mutual information is redundantly shared by TBh and TBv, while the 

information provided uniquely from both TBh and TBv is 15%. The fraction of information redundantly 25 

provided by TBh and TBv was found to be tightly correlated (pearson r = -0.7) to how well the MDCA 

output correlated to in situ observations. Thus, MDCA overall quality improves as TBh and TBv provide 

more redundant information for the MDCA. This suggests the informational redundancy between these 

remotely sensed observations can be used as independent metric to assess the overall quality of 

algorithms using these data streams. This study provides a baseline approach that can also be applied to 30 

evaluate other remote sensing models and understand informational loss as satellite retrievals are 

translated to end user products. 
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1 Introduction  

Accurate information on soil moisture is of great importance to understand various of biophysical 

processes in hydrology, agronomy, and ecosystem sciences (Bassiouni et al., 2020; Uber et al., 2018). 45 

The poor spatial representativeness of in-situ soil moisture sensors, combined with their labor-intensive 

installation and maintenance, impedes the application these sensors to understand large scale ecosystem 

phenomena (Babaeian et al., 2019; Petropoulos et al., 2015). Spaceborne passive microwave remote 

sensing has been developed as a reliable method to estimate surface soil moisture at large scales 

(Petropoulos et al., 2015). It leverages the large discrepancies in dielectric properties between liquid 50 

water and dry soil that result in a high dependency of soil dielectric constants on soil moisture (Njoku 

and Entekhabi, 1996). Various microwave frequencies have been available to date, amongst which the 

L-band (1.4-1.427 GHz) microwave frequencies were found to be more desirable for soil moisture 

estimation because they can sense soil moisture at a relatively deeper layer (~5cm) and greater vegetation 

penetration (Njoku and Entekhabi, 1996). Though microwave remote sensing has been investigated for 55 

decades, significant uncertainties still exists in both microwave radiometry and in the algorithms used to 

translate microwave observations to soil moisture estimates. 

L-band remote sensing soil moisture estimation uses a radiometer to measure surface emission 

intensity, which is a linear function of brightness temperature. The brightness temperature is linked with 

soil moisture and vegetation opacity through the ‘tau-omega’ emission model and parameterized by soil 60 

and vegetation functions (Njoku and Entekhabi, 1996). The ‘tau-omega’ model rationale has been 

adopted by SMAP, which is one of the earth observation missions dedicated to soil moisture estimation 

at L-band microwave frequency. SMAP implemented two primary algorithms: (1) single channel 

algorithm (SCA) that uses one polarized brightness temperature as primary input to retrieve soil moisture 

and (2) the modified dual channel algorithm (MDCA) that can retrieve soil moisture and vegetation 65 

opacity simultaneously by taking the advantage of polarized brightness temperature in both directions 

(Peggy O’Neill et al., 2018). There is strong interest in the MDCA approach because of its independent 

estimation of vegetation water status. Although SMAP can provide spatially explicit soil moisture 

estimates that have been shown to be useful to understand a set of ecohydrological problems 

(Jadidoleslam et al., 2019; Williams and Beer, 2010), the soil moisture retrievals are still subject to 70 

significant amount of uncertainty due to the imperfection of the model and the forcing datasets. Therefore, 

it is critical to diagnosis and quantify the causality of the uncertainty caused by the SMAP algorithm in 

order to improve the soil moisture retrieval accuracy.  

SMAP soil moisture products have been extensively validated against well-calibrated in situ soil 

moisture using unbiased root mean square error (ubRMSE), bias, RMSE and pearson correlation 75 

coefficients at ‘core’ and ‘sparse’ validation sites (Babaeian et al., 2019; Colliander et al., 2017). 

Additionally, the triple collocation method, which combines in situ measurements, SMAP observations, 

and model fields, has been used to characterize systematic biases and error variances (Chen et al., 2017, 

2018b). These validation investigations found that SMAP met the required accuracy target (0.04 cm3/cm3) 

on average, while there exist some locations where the performance of SMAP did not met the expected 80 

performance. This is because these validation studies all focused on finding the general uncertainty of 

SMAP (which is the deviation of SMAP soil moisture from the in situ or reference soil moisture) and 

cannot diagnose and differentiate from which the uncertainty arise. Indeed, the causality of uncertainty 

of SMAP soil moisture may arise from two aspects: (1) the uncertainty due to the inaccuracies from 

forcing the datasets and (2) the uncertainty due to poor model form and parameterizations. In addition, 85 

the evaluation metrics used in these evaluation studies are either heavily depend on in situ soil moisture 
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or additional reference dataset, which challenges SMAP to be validated in some remote and inaccessible 

areas.   

The challenges faced by previous SMAP evaluation investigations can be resolved by leveraging 

two information quantities (Shannon, 1948): (1) Shannon’s entropy, which describes the inherent 90 

uncertainty of a random variable and (2) mutual information, which represents the reduction in 

uncertainty of one random variable given the knowledge of another random variable. Gong et al. (2013) 

leveraged these information quantities to partition overall uncertainty in the hydrological modeling 

process into two categories (1) random uncertainty that arises by incompleteness of exploratory variable 

and/or inherent stochasticity of forcing datasets (2) model uncertainty that is contributed by poor model 95 

parameterization. The random uncertainty is not resolvable for the given system as they are only related 

to the probability densities, while the model uncertainty is reduceable by a better model parameterization.  

Recent research on partial information decomposition has provided tremendous opportunities for 

understanding the nuanced interactions among different variables and model structure. Initially proposed 

by Williams and Beer (2010) and further advanced by Goodwell and Kumar (2017), this approach has 100 

been used to understand environmental processes that links two source variables with a target variable. 

It partitions multivariate mutual information into unique, redundant and synergistic components. The 

unique information represents the amount of information shared with the target variable only from each 

individual source variable. Synergistic information is the information provided to the target while both 

source variables act jointly. Redundant information is the overlapping information that both source 105 

variables redundantly provide to a target. Information partition brings a new insight into unambiguously 

characterizing the interdependencies between source variables and a target variable without any 

underlying modeling assumption. The partitioned components may be used as a new model evaluation 

metric that can be used to assess SMAP algorithm performance in remote and inaccessible regions. 

In this study, we focus on (1) quantifying the random uncertainty and model uncertainty in SMAP 110 

Modified Dual Channel Algorithm (MDCA) and understand how model uncertainty is related to MDCA 

retrieval accuracy; (2) developing an in situ and ancillary data independent SMAP MDCA evaluation 

reference metric using partial information decomposition between SMAP MDCA soil moisture and 

horizontally polarized (TBh) and vertically polarized brightness temperature (TBv). 

 115 

2 Material and Methods 

2.1 In situ soil moisture 

US Climate Reference Network (USCRN) is a systematic and sustained network operated and 

maintained by National Oceanic and Atmospheric Administration (NOAA) to support climate-impact 

research with continuous high-quality field observed soil moisture, soil temperature and windspeed at 120 

different temporal scales (Bell et al., 2013). The USCRN provides soil moisture observations at five 

different standard depth (5, 10 20, 50 and 100 cm) in 114 locations of Contiguous U.S. (CONUS). The 

in situ datasets have been used for a wide variety of research such as drought monitoring and satellite 

soil moisture evaluations (Mishra et al., 2017). The hourly soil moisture dataset at the depth of 5 cm was 

collected from 58 selected USCRN stations (Fig. 1) based on the availability in situ soil moisture dataset 125 

and the quality of SMAP pixels in the study period of 03/31/2015 – 10/01/2019.  

 

2.2 MDCA soil moisture  

In this study, we acquired TBh, TBv and MDCA soil moisture from the SMAP Enhanced Level-2 

Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture (https://nsidc.org/data/smap), Version 3 in the 130 

https://doi.org/10.5194/hess-2020-534
Preprint. Discussion started: 28 October 2020
c© Author(s) 2020. CC BY 4.0 License.



4 

 

same period of the USCRN soil moisture at every station (Peggy O’Neill et al., 2018). The extracted data 

series were filter by their respective quality flags and the TBh, TBv and MDCA soil moisture values were 

kept only when they all simultaneous pass quality control. MDCA retrieves soil moisture based on the 

‘tau-omega’ model, which is a well- known radiative transfer-based soil moisture retrieval algorithm in 

the passive microwave soil moisture community. It requires the brightness temperature (TB) as inputs 135 

and parameterized by overlaying vegetation and soil surface information. The MDCA invert the ‘tau-

omega’ model with initial guesses of surface soil moisture and vegetation optical depth. The guesses of 

soil moisture and vegetation optical depth are adjusted iteratively until they minimize the difference 

between satellite observed TB and inverted TB from a least square perspective. Compared to the SCAs, 

the MDCA updates roughness and the polarization mixing parameters (Chaubell et al., 2020).  140 

 

2.3 Information - based uncertainty decomposition  

Shannon’s entropy is a quantity that express the inherent uncertainty associated with a random 

variable. Commonly, modeling efforts are focused on reducing the uncertainty in the variable of interest, 

which is denoted as H(Yobs), using other explanatory variables through some physically- or empirically- 145 

based models. Most of models being constructed of natural processes are not perfect, and the model 

outputs are often not capable of capturing the information of the “truth”. In theory, there exists a best 

achievable model performance that describe the variable of interest the best for a particular system given 

the available datasets (Gong et al., 2013); yet detailed structure of best achievable model performance is 

often unknown. Although the detailed structure of best achievable model performance maybe remain 150 

unknown, mutual information, denoted as I(XInputs; Yobs) where XInputs are the available inputs and Yobs is 

the in situ measured variable of interest, can provide a good benchmark measure. The quantity I(•;•) 

represents the amount of uncertainty reduced due to the knowledge of either variable in this function.  

It should be noted that a model is a formal hypothesis that maps input datasets space to output dataset 

space in the form of a mathematical function. Therefore, the model hypothesis (function), at least, cannot 155 

provide new information. This is expressed as the data processing inequality which states that “no clever 

manipulation of the data can improve the inferences that can be made from the data” (Cover and Thomas, 

2005). Formally, if random variables X, Y, Z are said to form a Markov chain (denoted by X→Y→Z), 

wherein the conditional distribution of Z only depends on Y and is conditionally independent of X, then 

X can only influence Z via the knowledge of Y and knowing Z can only decrease the amount of X tells 160 

about Y. The formula of data processing inequality is defined as: 

 

I(X, Y)  ≥  I(X, Z) (1) 

 

Hence, given the measure of best achievable model performance and data processing inequality, the 

relationship between input, output, and in situ measurements in any modeling processes can be expressed 165 

as follows: 

 

H(Yobs) ≥  I(XInputs; Yobs)  ≥  I(Ymodel; Yobs) (2) 

 

The relationship equation (2) allow us to differentiate two types of uncertainties, (1) random uncertainty, 

which unresolvable due to the randomness of the input datasets, that is the difference between H(Yobs) 170 

and I(XInputs;Yobs); (2) model uncertainty, which is resolvable due to the inadequacy of model, that is the 

information gap between and I(XInputs; Yobs) and I(Ymodel;Yobs).  
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In our case, XInputs are TBh and TBv, Yobs is the in situ surface soil moisture, Ymodel is MDCA soil 

moisture. The H(Yobs) can be calculated as: 

 175 

𝐻(𝑌obs) =  − ∑ 𝑝(𝑦) log2 𝑝(𝑦)

𝑦∈𝑌𝑜𝑏𝑠

 (3) 

 

Where p(y) probability mass function of Yobs that is estimated by a fixed bin method (Freedman and 

Diaconis, 1981). This method calculates H(Yobs) in unit of bits. Previous study has indicated that this 

method may underestimates the true entropy (Paninski, 2003). Therefore, we leveraged the simple Miller-

Madow corrected entropy estimator (Chen et al., 2018a) and applied a normalization method to remove 180 

the bias that may cause by the heterogeneity in length of available datasets across all stations. We 

acknowledge that there exist several entropy correction and estimation methods. However, we pick this 

Miller-Madow correction based on its simplicity and effectiveness. The corrected and normalized entropy 

is then expressed as follows:  

 185 

HCN (Yobs) =  
𝐻(𝑌obs)+ 

𝐾− 1

2𝑛

𝑙𝑜𝑔2
𝑛  

(4) 

 

Where HCN(Yobs) is the Miller-Madow corrected and normalized entropy, hereafter entropy, n is the 

number of data points that were used to calculate the normalized entropy, K is the number of non-zero 

probabilities associate based on the fixed binned method.  

The computation of two types of uncertainties require the estimation of I(TBv, TBh; Yobs) and I(YMDCA; 190 

Yobs), which can be computed via the following equation:  

 

I(TBh, TBv; Yobs) = HCN(TBh, TBv) + HCN(Yobs) - HCN(TBh, TBv, Yobs) (5) 

 

Where HCN(TBh, TBv) and HCN(TBh, TBv, Yobs) the estimated joint entropy that describes the uncertainty 

associated with a set of variables. HCN(YMDCA; Yobs) can be estimated by replacing the TBh, TBv with YMDCA 195 

on both side of the equation. It worth noting that the joint entropies are estimated using equation (3) 

except they require the estimation of joint probability mass functions that are also estimated using the 

fixed bin method (Freedman and Diaconis, 1981). 

 

2.4 Partial information decomposition  200 

This method partitions multivariate shared information to unique, redundant and synergistic 

components. The decomposed information components on the model inputs and outputs maybe 

indicative on understand informational loss as model inputs are translated to end user products and these 

components may have the potential for evaluating model performance. The partial information 

decomposition of MDCA can be expressed as follows:  205 

 

I(TBh, TBv; YMDCA) = U1(TBh; YMDCA) + U2(TBv; YMDCA) +  

R(TBh, TBv; YMDCA) + S(TBh, TBv; YMDCA) 

(6) 

 

Where U1 and U2 are unique information of TBh and TBv shared with YMDCA, respectively. S and R are the 

synergistic information and redundant information that TBh and TBv shared with YMDCA, respectively. All 
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the decomposed components are non-negative real values. 210 

 The individual mutual information between TBh, TBv and YMDCA can be expressed as follows:  

 

I(TBh; YMDCA) = U1(TBh; YMDCA) + R(TBh,TBv; YMDCA) (7) 

 

 

U1, U2, S and R are unknowns in the systems of equations (6) - (8). Therefore, additional information 215 

is need  to fully estimated one of these unknowns. We used the approach proposed by Goodwell and 

Kumar (2017) to estimate R as follows:  

 

R = Rmin + Is*(RMMI - Rmin) (9) 

 

Where Rmin is represents a lower bound for R that is expressed as: 220 

 

Rmin = max(0, -II) (10) 

 

The inter-dependency of TBh and TBv represented by Is and computed as:   

 

Is = 
𝐼(TBh;TBv)

min {𝐻(TBh); 𝐻(TBv)}
 

(11) 

 225 

II is interaction information that can be positive or negative. II is computed as:  

 

II = I(TBh; YMDCA|TBv) - I(TBh; YMDCA) (12) 

 

3 Results  

3.1 Information quantities and system uncertainties    230 

Figure 2 shows the estimated entropy and mutual information quantities across the study sites. It is 

shown that the joint entropy of TBh and TBv (HCN(h,v)) are always the largest compared to other 

information quantities. On average, HCN(h,v) is 0.53 bits, which is greater than the entropies of MDCA 

soil moisture, HCN(MDCA), and in situ soil moisture, HCN(in situ), (0.38 and 0.35, respectively). 

Although the pattern of HCN(MDCA) and HCN(in situ) are similar, the HCN(in situ) is more variable than 235 

HCN(MDCA) with the coefficients of variation (CV) being 0.08 and 0.05, respectively. Mutual 

information between TBh, TBv and in situ soil moisture, I(h,v; In situ), and mutual information between 

MDCA soil moisture and in situ soil moisture, I(MDCA; In situ), are the least information quantities, as 

they are expected to be. I(h,v; In situ) follows the pattern of I(MDCA; In situ) with the mean values being 

0.09 and 0.06, respectively.  240 

It is noticeable that there exists large information gaps (Fig. 2) between HCN(in situ) and I(h,v; in 

situ) and I(h,v; In situ) and I(MDCA; in situ). HCN(in situ) represent the amount of information that is 

required to fully characterize the “true ”soil moisture, while I(h,v; in situ) indicates the available 

information contained in the system input variable about the “true” soil moisture. The information gap 

between HCN(in situ) and I(MDCA; in situ) is the overall SMAP uncertainty in which 88% is contributed 245 

by the random uncertainty in the systems explanatory variables (Fig. 3). The information gap between 

I(TBv; YMDCA) = U1(TBv; YMDCA) + R(TBh,TBv; YMDCA) (8) 
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I(h,v; In situ) and I(MDCA; in situ) represents the MDCA model uncertainty, which contributes 12% of 

the total uncertainty (Fig. 3). 

 

3.2 Model uncertainty and retrieval accuracy  250 

Figure 4 shows the relationship between the fraction of model uncertainty against different 

commonly adopted absolute (Fig. 4a) and relative model evaluation metrics (Fig. 4b). The model 

uncertainty is shown to be tightly related to these metrics. It is observed that the fraction of MDCA 

induced uncertainty is positively correlated (r = 0.28) with RMSE of in-situ soil moisture and MDCA 

soil moisture (Fig. 4a). An obvious negative relationship is found when it comes to the relationship 255 

between the fraction of MDCA induced uncertainty and r of MDCA soil moisture and in situ soil moisture 

(r = -0.48). Both the positive and negative relationship are in line with general expectations since model 

uncertainty should go up when the retrieval accuracy is poor and vice versa. 

 

3.3 Partial information decomposition of MDCA  260 

Figure 5 illustrates that majority of the mutual information between TBh, TBv and MDCA (I(TBh,TBv; 

MDCA)) is redundantly shared by TBh and TBv, which take about 0.55 of I(TBh,TBv; MDCA) on average 

(Fig. 5). Uh is comparable to S with a mean value of 0.15, respectively. Compared to other decomposed 

information components, Uv is the smallest but is of similar magnitude with Uh and S with mean being 

0.14. Although the R is the largest information component, it has the smallest CV (0.35) compared to Uh 265 

(CV = 0.58), Uv (CV = 0.52) and S (CV = 0.63). In general, the MDCA system is dominated by R. This 

indicates that both TBh and TBv provide information regarding the soil moisture estimations, but these two 

variables are themselves highly dependent.   

 

3.4 Partial information decomposition and retrieval accuracy  270 

Figure 6 shows the relationship between different decomposed information components and the 

RMSE of in situ and MDCA soil moisture. In general, only Uh is significantly negatively correlated (r = 

-0.28) with the RMSE of in situ and MDCA soil moisture (Fig. 6a), while relationships between RMSE 

and other components are not statistically significant (Fig. 6b – Fig. 6d). Figure 7 shows the relationship 

between different information components and the r of in situ and MDCA soil moisture. This 275 

demonstrates that all the information components are significantly correlated with the correlation, r, of 

in situ and MDCA soil moisture. Uh, Uv and S are negatively (Fig. 7a – Fig. 7c) correlated with r, while 

R is positively correlated with r. R shows the strongest correlation (Fig. 7d) with the relative model 

evaluation metric (r = 0.7). This indicates that R could potentially be a reference metric for MDCA 

evaluation. It does not require in situ soil moisture and shows a better performance than simply using r 280 

(Fig. 7d inset). 

 

4 Discussion 

4.1 Random uncertainty and model uncertainty  

The first objective of this study is to leverage information theory to quantitatively decompose the 285 

overall uncertainty to random uncertainty and model uncertainty in the MDCA as an approach to 

understand where retrieval errors arise. This information theory approach can add considerable power to 

SMAP modeling diagnosis. Mutual information can provide a way to unambiguously define the best 

model performance that is able to completely transform the available information to the desired target 

given a set of the input data. 290 
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In this study, any model based on MDCA model structure is a hypothesis that relates TBh and TBv to 

soil moisture based on prior physical knowledge. The essence of the model is a procedure of processing 

the TBh and TBv to get soil moisture. The modeled soil moisture is deemed as an estimate of “true” soil 

moisture and a Markov chain is formed from TBh, TBv via MDCA soil moisture to in situ soil moisture. 

Any model, even the one performs the best, can only reduce the available information in its primary 295 

inputs (TBh and TBv) and is not capable of add new information about the “true” soil moisture. Hence, 

there is no chance of building a model that is better than the benchmark one (yet even achieving this 

theoretically limit is nearly impossible) if no freedom is given to the available datasets. If, however, given 

more freedom on available datasets, it is possible to build models that outperform best achievable model 

performance by adding new explanatory variables which will lead to a family of models that have 300 

completely different model structure. Additionally, the fraction that random uncertainty contributes to 

the overall uncertainty is quite significant (88% on average) in this study. The random uncertainty in the 

system may arises from the inherent error due to calibration of TBh and TBv in the locations and the 

presence water body. If poorly calibrated, the soil moisture estimations can be exacerbated due to the 

error propagation that hinders the correct information being transformed. Therefore, for example, a better 305 

and robust calibration strategy of TBh and TBv to the presence of water body might need. Furthermore, a 

better quality-control method or additional data screening metric with respect to water corrected TBh and 

TBv is also required to further reduce the random uncertainty.  

Apart from random uncertainty, the model uncertainty contribution is also a significant amount the 

total (12% on average). This model uncertainty may arise from poor model parameterizations. It’s known 310 

that the ‘tau-omega’ model in MDCA is parameterized by landcover based parameters. The values of 

these parameters are derived from past studies, past experience and some information discussions with 

subject matter experts, which could be biased and inaccurate (Peggy O’Neill et al., 2018). In addition, 

these parameter values are differentiated by landcover and do not vary in time and microwave 

polarization directions. In fact, these parameters may not vary in short time (days or weeks) but could 315 

vary from a long-term perspective (month or years) and the parameter associated with vegetation 

structure may vary correspondent to different phenology phases.  

To summarize, this is the first attempt of leveraging mutual information approach to quantitively 

analyze the uncertainty components in microwave remote sensing models. The results of this study can 

be further used as a foundation guidance of SMAP algorithm assessing approach that can quantitively 320 

identify where information lost in the process of SMAP soil moisture modeling. This analysis, though 

focused on MDCA soil moisture, can be transferred and extended to analyze any other remote sensing 

models. 

 

4.2 Model evaluation from another perspective  325 

The second objective was to demonstrate is that partitioned information components can be used as 

a new MDCA model evaluation metric that does not depend on in situ soil moisture and other ancillary 

datasets. We found a strong linear relationship between R and r of MDCA and in situ soil moisture, which 

indicated that TBh and TBv are highly dependent. R is also the dominant component relative to others 

quantified here. From an information perspective, higher or complete R indicates that one source variable 330 

is a function of the other, or they share the same source. It can be observed from Figure 7d (inset) that 

there is a strong linear relationship between TBv and TBh (r ≥ 0.94). Therefore, it is expected that a higher 

redundancy in the MDCA system. The MDCA takes TBv and TBh as primary inputs while TBh and TBv 

share a lot of redundancy. Therefore, it is not surprising that the MDCA soil moisture underperforms 
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SMAP SCA soil moisture due to the error accumulation and error propagation from both channels. 335 

To summarize, the redundant information shown a strong correlation with r, which could be 

potentially used as a MDCA evaluation metric. This metric only involves TBh, TBv and MDCA soil 

moisture and doesn’t depend on in situ measurement and ancillary dataset. Compared to another in situ 

independent metric, such as pearson r of TBh and TBv, it shows a better performance (0.70 vs 0.52). This 

is potentially due to numerous non-linear processes acting within the MDCA, which are not well captured 340 

by linear metrics such as the pearson r of TBh and TBv  

 

5 Conclusion and Limitations   

 This study attempts to differentiate and quantify the uncertainty sources in MDCA using 

information theoretic. We found that on average 88% of the uncertainty is contributed by the inadequacy 345 

of explanatory variables of SMAP or uncertainties in the estimated brightness temperature, while the rest 

of the uncertainty is induced by inaccurate MDCA parameterizations. The fraction of the model 

uncertainty to the overall uncertainty is negatively correlated with the pearson r of in situ and MDCA 

soil moisture (r = -0.48) while positively correlated with the error between in situ and MDCA soil 

moisture (r = 0.28). The decomposition of the mutual information has shown that all decomposed 350 

components are correlated with the pearson r between in situ and MDCA soil moisture with the redundant 

information being the tightest (r = 0.7). The uncertainty decomposition analysis opens a new window for 

SMAP algorithm uncertainty diagnosis. The result of mutual information decomposition analysis can be 

adopted as a new in situ independent SMAP soil moisture evaluation reference metric.  

We acknowledge the existence of limitations of this study. First, we expect that this approach can 355 

be generalized to analyze other remote sensing models. However, it may be difficult to compute the joint 

probability density function for models with high-dimensional inputs, and thus also difficult to estimate 

the joint entropy and mutual information components. Though there exist several approaches for 

computing joint entropy and mutual information, the caveat here is that it is not guaranteed that the 

estimated mutual information can be exactly the entropy and joint entropy that fulfils the equality of, for 360 

instance, equation (5). Second, this study was conducted at locations where in situ soil moisture readily 

available. The problem of how to leverage information theory to evaluate the error components in the 

locations without in situ soil moisture measurements is challenging and could be an interesting topic for 

future works. Third, we would expect that the information theoretic to provide asymptotic estimation of 

random and model uncertainties, the best performance we can expect from this current uncertainty 365 

analysis is to use all of the available datasets we have; yet we believe that uncertainty estimations of this 

approach should be stabilized given adequate representative locations and data records.  
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Figure 1 Spatial distribution of selected USCRN stations from west to east. See figure 2 caption for 

names of individual sites based on numbering. 
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 475 

 

Figure 2 Information quantities of in situ soil moisture, TBh, TBv and MDCA soil moisture across 

the study sites. 
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Figure 3 Mutual information between MDCA soil moisture and in situ soil moisture against mutual 480 

information between TBh, TBv and in situ soil moisture. 
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Figure 4 Fraction of MDCA model uncertainty against RMSE of MDCA soil moisture and in situ 

soil moisture (a) and fraction of MDCA model uncertainty against pearson r of MDCA soil moisture 495 

and in situ soil moisture (b). 
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Figure 5 The normalized partial information decomposition components between TBh, TBv and 

MDCA soil moisture. 
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 525 

Figure 6 Normalized partial information decomposition components against RMSE of MDCA and 

in situ soil moisture. 
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 545 

Figure 7 Normalized partial information decomposition components against pearson r of MDCA 

and in situ soil moisure. 
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