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Abstract. NASA’s Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface 10 

soil moisture using dual L-band microwave retrievals of horizontal (TBh) and vertical (TBv) polarized microwave brightness 

temperatures through a modeled mechanistic relationship between vegetation opacity, surface scattering albedo, and soil 

effective temperature (Teff). Although this model has been validated against in situ soil moisture, there is a lack of systematic 

characterization of where and why SMAP estimates deviate from the in situ observations. Here, we assess how the 

information content of in situ soil moisture observations from the US Climate Reference Network contrasts with (1) the 15 

information contained within raw SMAP observations (i.e., ‘informational random uncertainty’) derived from TBh, TBv and 

Teff themselves, and (2) with the information contained in SMAP’s Dual Channel Algorithm (DCA) soil moisture estimates 

(i.e., ‘informational model uncertainty’) derived from the model’s inherent structure and parameterizations. The results show 

that, on average, 80% of the information in the in situ soil moisture is unexplained by SMAP DCA soil moisture estimates. 

35% of the unexplained information is caused by the loss of information in the DCA modeling process while the remainder 20 

is induced by a lack of additional explanatory power within TBh, TBv and Teff. Overall, retrieval quality of SMAP DCA soil 

moisture, denoted as the Pearson correlation coefficient between SMAP DCA soil moisture and in situ soil moisture, is 

negatively correlated with the informational uncertainties, with slight differences across different landcovers. The 

informational model uncertainty (Pearson correlation of -0.59) was found to be more influential than the informational 

random uncertainty (Pearson correlation of -0.34), suggesting that the poor performance of SMAP DCA at some locations is 25 

driven by model parameterization and/or structure and not underlying satellite measurements of TBh and TBv. A 

decomposition of mutual information between TBh, TBv and DCA soil moisture shows that on average 58% of information 

provided by TBh and TBv to DCA estimates is redundancy. The amount of information redundantly and synergistically 

provided by TBh and TBv was found to be tightly related (Pearson correlation of 0.79 and -0.82, respectively) to the retrieval 

quality of SMAP DCA. TBh and TBv tend to contribute large redundant information to DCA estimates under surfaces or 30 

conditions where DCA makes better retrievals. This study provides a baseline approach that can also be applied to evaluate 

other remote sensing models and understand informational loss as satellite retrievals are translated to end user products. 

 

 

 35 
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1 Introduction  

Accurate information on soil moisture is of great importance for understanding various biophysical processes in hydrology, 

agronomy, and ecosystem sciences (Bassiouni et al., 2020; Uber et al., 2018). The poor spatial representativeness of in-situ 

soil moisture sensors, combined with their labor-intensive installation and maintenance, impedes the application these 

sensors to understand large scale ecosystem phenomena (Babaeian et al., 2019; Petropoulos et al., 2015). Spaceborne passive 40 

microwave remote sensing has been developed as a reliable method to estimate surface soil moisture at large scales 

(Wigneron et al., 2017). It leverages the large discrepancies in dielectric properties between liquid water and dry soil that 

result in a high dependency of soil dielectric constants on soil moisture (Njoku and Entekhabi, 1996). Various microwave 

frequencies have been available to date, amongst which the L-band microwave frequencies were found to be desirable for 

soil moisture estimations because they can sense soil moisture at a relatively deeper layer (~5cm) and can provide greater 45 

vegetation penetration power (Mohanty et al., 2017). Though microwave remote sensing has been investigated for decades, 

significant uncertainties still exist in both microwave radiometry and in the algorithms used to translate microwave 

observations to soil moisture estimates (Gruber et al., 2020). 

 

Passive L-band remote sensing soil moisture estimation uses a radiometer to measure surface emission intensity, which is 50 

proportional to the brightness temperature (Wang and Qu, 2009). The brightness temperature is linked with soil moisture and 

vegetation opacity through the ‘tau-omega’ emission model and parameterized by soil and vegetation functions (Jackson et 

al., 1982; Mo et al., 1982). The ‘tau-omega’ model rationale has been adopted by NASA’s Soil Moisture Active-Passive 

(SMAP) mission, which is one of the earth observation missions dedicated to estimate soil moisture at L-band microwave 

frequency (Entekhabi et al., 2010). SMAP implemented two primary algorithms: (1) the single channel algorithm (SCA) that 55 

uses one polarized brightness temperature as primary input to retrieve soil moisture and (2) the dual channel algorithm (DCA) 

that retrieves soil moisture and vegetation opacity simultaneously by taking the polarized brightness temperature information 

in both horizontal and vertical directions (O’Neill et.al., 2020a). There is strong interest in the DCA approach because of its 

independent estimation of vegetation opacity in lieu of the specified vegetation climatology employed by the SCA (O’Neill 

et.al., 2020a). Other L-band focused satellite mission such as Soil Moisture and Ocean Salinity (SMOS) retrieves both soil 60 

moisture and vegetation optical depth by using numerous brightness measurements for different incidence angles (Kerr et al., 

2012). Additionally, it has been suggested that using a time-integrated vegetation opacity, as is employed in the multi-

temporal dual channel algorithm (MT-DCA) for instance (Konings et al., 2016), improves the estimates of soil and 

vegetation state. These contrasting approaches, as well as other studies on SMAP’s temporal polarized ratio algorithm 

(TPRA) (Gao et al., 2020) and regularized dual channel algorithm (RDCA) (Chaubell et al., 2020), suggested there is still 65 

uncertainty about how SMAP observations of horizontal and vertical brightness temperature can be best translated into 

estimates of surface properties. Although SMAP can provide spatially explicit soil moisture estimates that have been shown 

to be useful to understand a set of ecohydrological problems (Dadap et al., 2019; Feldman et al., 2018), the soil moisture 

retrievals are still subject to significant amount of uncertainty due to the imperfection of the model and the forcing datasets. 

It is also important to consider the how the amount of duplicate information carried within a set of observations limits the 70 

number of independent parameters to be inferred (Konings et al., 2015). Therefore, it is critical to diagnosis and quantify the 

causality of the uncertainty caused by the SMAP algorithm to improve the soil moisture and vegetation opacity retrieval 
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quality.  

 

SMAP soil moisture products have been extensively validated against well-calibrated in situ soil moisture using unbiased 75 

root mean square error (ubRMSE), bias, RMSE Pearson correlation coefficients and triple collocation method at ‘core’ and 

‘sparse’ validation sites (Chan et al., 2016; Chen et al., 2017; Colliander et al., 2017; Zhang et al., 2019). These validation 

investigations found that SMAP met the required accuracy target (ubRMSE, 0.04 m3/m3) on average, while there exist some 

locations where the performance of SMAP did not met the expected performance. All these validation studies were focused 

on finding the general uncertainty of SMAP (which is the deviation of SMAP soil moisture from the in situ or reference soil 80 

moisture) and cannot diagnose and differentiate where the uncertainty arises. Indeed, the causality of uncertainty of SMAP 

soil moisture may arise from two aspects: (1) the uncertainty due to the inaccuracies from forcing the datasets and (2) the 

uncertainty due to poor model structure and parameterizations. In addition, the assessment metrics used in these evaluation 

studies are either heavily dependent on in situ soil moisture or additional reference datasets, which does not allow for SMAP 

to be validated in some remote and inaccessible areas. 85 

 

The challenges faced by previous SMAP evaluation investigations can be resolved by leveraging two information quantities : 

(1) Shannon’s entropy (Shannon, 1948), which is the amount of information required to fully describe a random variable and 

(2) mutual information (Cover and Thomas, 2005), which represents the amount information of knowing one variable given 

the knowledge of another or a set of random variables. Gong et al., 2013 first leveraged these information quantities to 90 

partition overall uncertainty in the hydrological modeling process into two categories: (1) random uncertainty that arises by 

incompleteness of exploratory variable and/or inherent stochasticity of forcing datasets, and (2) model uncertainty that is 

contributed by poor model parameterization or formulation. The random uncertainty is not resolvable for the given system as 

it is only related to the probability distributions of the forcing data itself, while the model uncertainty is reduceable by a 

better model parameterization.  95 

 

Given that both horizontal and vertical polarized brightness temperatures are measured by SMAP, it is unclear how each 

polarization contributes information to the overall performance of the DCA. Recent research on partial information 

decomposition has provided tremendous opportunities for understanding the nuanced interactions among different variables 

and model structure. Initially proposed by Williams and Beer, 2010 and further advanced by Goodwell and Kumar, 2017, 100 

this approach has been used to understand environmental processes that link two source variables with a target variable by 

partitioning multivariate mutual information into unique, redundant and synergistic components. The unique information 

represents the amount of information shared with the target variable from each individual source variable separately (Finn 

and Lizier, 2018). Synergistic information is the information provided to the target while both source variables act jointly 

(Kunert-Graf et al., 2020). Redundant information is the overlapping information that both source variables redundantly 105 

provide to a target (Wibral et al., 2017). Information partitioning brings new insight by unambiguously characterizing the 

interdependencies between source variables and a target variable without any underlying assumption (Goodwell et al., 2018).  

 

The overall objective of this study is to demonstrate that by assessing how information flows through satellite algorithms 
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from raw retrievals to end user products, we can illuminate areas where improvements can be made and diagnose instances 110 

where algorithm estimates are expected to be uncertain. In this study, we focus on (1) quantifying the random uncertainty 

and model uncertainty in SMAP’s Dual Channel Algorithm (DCA) and understand how these uncertainties are related to 

DCA retrieval quality; (2) exploring how the partial information components between SMAP DCA soil moisture and 

horizontally polarized and vertically polarized brightness temperature can be used to indicate overall DCA soil moisture 

retrieval performance. 115 

 

2 Material and Methods 

2.1 In situ soil moisture 

The US Climate Reference Network (USCRN) is a systematic and sustained network that is operated and maintained by 

National Oceanic and Atmospheric Administration (NOAA) to support climate-impact research with continuous high-quality 120 

field observed soil moisture, soil temperature and windspeed at different temporal scales (Diamond et al., 2013). The 

USCRN provides soil moisture observations at five different standard depth (5 cm, 10 cm 20 cm, 50 cm, and 100 cm) in 114 

locations of Contiguous U.S. (CONUS) (Bell et al., 2013). These in situ datasets have been used for a wide variety of 

research such as drought evaluation and satellite soil moisture validation (Bell et al., 2015; Leeper et al., 2017). The hourly 

soil moisture (beta version product) datasets at the depth of 5 cm were collected from 58 (15 croplands, 32 grasslands, 5 125 

shrublands, 2 savannas, 4 mixed) selected USCRN stations (Fig. 1 and Table S1) based on the availability of in situ soil 

moisture dataset and the data quality of SMAP pixels in the study period of March 31, 2015 to December 10, 2020.  

 

2.2 SMAP Level-2 datasets  

In this study, we acquired the water body corrected horizontally polarized brightness temperature (TBh), vertically polarized 130 

brightness temperature (TBv), soil effective temperature (Teff), DCA soil moisture and the fraction of landcover at each 

selected USCRN station from SMAP Level-2 Radiometer Half-Orbit 36 km EASE-Grid Soil moisture, Version 7 data 

product (O’Neill et. al., 2020b) in the same period as the USCRN soil moisture at every station. The extracted data series 

were filtered by the internal quality flags of TBh (“tb_qual_flag_h”), TBv (“tb_qual_flag_v”) and DCA 

(“retrieval_qual_flag_option3”) as provided in SMAP data files. We retain data points at a particular SMAP observation time 135 

when they all simultaneous pass quality control and fall within their correspondent valid ranges (e.g., 0 ~ 330K for TBh and 

TBv, 253.15K ~ 313.15K for Teff, > 0.02m3/m3 for DCA soil moisture) as specified in the SMAP documentation (Chan, 2020). 

On average, the number of datapoints across all the sites is 1090 with a minimum of 225 and a maximum of 1651. DCA 

retrieves soil moisture based on the ‘tau-omega’ model (Jackson et al., 1982; Mo et al., 1982), which is a well-known 

radiative transfer based soil moisture retrieval algorithm in the passive microwave soil moisture community. It requires the 140 

brightness temperatures as the main inputs, soil effective temperature as an ancillary input, and is parameterized based on 

overlaying vegetation and soil surface information (Njoku and Entekhabi, 1996). The DCA iteratively feeds the ‘tau-omega’ 

model with initial guesses of soil moisture and vegetation optical depth. The retrieved soil moisture is assumed to be close to 

the real value when the estimated brightness temperatures are similar to the satellite observed brightness temperature 

(Konings et al., 2017; O’Neill et. al., 2020a). Compared to the SCAs, the DCA uses a different polarization mixing factor 145 

function and different values of vegetation single scattering albedo (O’Neill et. al., 2020a).  
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The SMAP fraction of landcover data field provides the fraction of top three dominate landcovers that were classified by 

International Geosphere – Biosphere Programme (IGBP) ecosystem surface classification scheme at each pixel (Chan, 2020). 

The IGBP classified land surface into water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf 150 

forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, woody savannas, savannas, grasslands, 

permanent wetlands, croplands, urban and built-up, croplands/natural vegetation mosaics, snow and ice, barren (Seitzinger et 

al., 2015). In this study, the landcover of the study site was classified as the most dominate landcover if the fraction of the 

most dominate landcover was greater than 50%. Otherwise, the landcover of the study site is classified as the “mixed” 

landcover. Furthermore, the study sites that are dominated by woody savanna were classified as savannas, by closed/open 155 

shrublands were classified as shrublands, by cropland/natural vegetation mosaics were classified as croplands. Sites meeting 

specified data requirements and their associated landcover classification are shown in Figure 1. Additionally, the 500m leaf 

area index (LAI) of each site was obtained from NASAs Moderate Resolution Imaging Spectrometer (MODIS) mission 

(Myneni et. al., 2015; ORNL DAAC, 2018) and averaged in time. Within each site the mean and standard deviation of LAI 

of all pixels within each SMAP pixel was calculated as a measure of vegetation biomass and variability. 160 

 

2.3 Information – based uncertainty partitioning  

The fundamental quantity of information theory is Shannon’s entropy (Shannon, 1948), which represents the amount of 

information required to fully describe a random variable (Cover and Thomas, 2005). Shannon’s entropy is the basic building 

block of computing mutual information and the informational uncertainties. The entropy of a single random variable is 165 

defined as 

H(X) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑥 ∈𝑋 𝑝(𝑥), (1) 

where p(x) is the probability mass function of random variable X. The estimation of p(x) often involves discretizing the 

values of X into a set of bins and then the p(x) of a specific bin is computed by dividing the total number of datapoints within 

a specific bin by the total of number of data points of X. The number of bins in this study is estimated by Freedman-Diaconis 

binning method (Freedman and Diaconis, 1981). The entropy calculated by eq. (1) is in unit of bits.  170 

 

Previous study has indicated that this method (eq. (1)) may underestimate the true entropy (Paninski, 2003). Therefore, we 

leveraged the simple Miller-Madow corrected entropy estimator (Zhang and Grabchak, 2013) and we also normalization the 

entropy to remove the bias that may cause by the heterogeneity in length of available datasets across all stations. We 

acknowledge that there exist several entropies estimation methods. However, we select the Miller-Madow correction based 175 

on its simplicity and effectiveness. The corrected and normalized entropy is then expressed as 

HCN (X) =  
𝐻(X) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (2) 

where HCN(X) is the Miller-Madow corrected and normalized entropy of random variable X (hereafter entropy), H(X) is the 

uncorrected entropy from eq. (1), n is the number of data points of X , K is the number of non-zero probabilities (bins 
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contains more than one data point) based on the fixed binned method (Freedman and Diaconis, 1981). In this study, all 

entropies of single random variables in the later equations (i.e., HCN(TBh), HCN(TBv), HCN(in situ) etc.) are computed using the 180 

combination of eq. (1) and eq. (2) with the replacement of p(•) by their individual probability mass functions. 

 

The joint entropy (Cover and Thomas, 2005) is a critical intermediate information quantity to calculate these informational 

uncertainties. It represents the amount of information required to describe a set of random variables. The joint entropy for 

two random variables is defined as 185 

H(X, Y) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑦𝜖𝑌 𝑝(𝑥, 𝑦)𝑥∈𝑋 , (3) 

where p(x, y) is the joint probability mass function associated with X and Y that is estimated by the same method mentioned 

above. The same normalization and correction method of eq. (2) is applied to joint entropy of eq. (3). The entropy after the 

correction and normalization is formulated as 

HCN (X, Y) =  
𝐻(X,Y) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (4) 

where HCN(X, Y) is the corrected and normalized joint entropy of random variable associated with {X, Y}, H(X, Y) is the 

uncorrected and unnormalized entropy from eq. (3), n is the number of data points that were used to calculate the normalized 190 

joint entropy (hereafter joint entropy), K is the number of non-zero joint probabilities based on the Freeman and Diaconis 

method (Freedman and Diaconis, 1981). All the joint entropies that are associated with two or more random variables in the 

later equations (i.e., HCN(in situ, DCA), HCN(TBh, TBv, DCA), HCN(TBh, TBv, Teff, in situ) etc.) are computed using the 

combination of eq. (3) and eq. (4) with the replacement of p(•) by their joint probability mass functions, respectively.  

 195 

Generally, modeling efforts are focused on capturing the information of a random variable of interest via other explanatory 

variables through some physically- or empirically- based models. However, most of models being constructed of natural 

processes are not perfect, and the model outputs are often not capable of capturing the exact relationship between the 

available input variables and the variable of interest (Gong et al., 2013). There exists a maximum achievable performance of 

a model that describes the variable of interest the best for a particular system given the available datasets (Gong et al., 2013); 200 

yet the detailed structure of this model is often unknown. Mutual information (Cover and Thomas, 2005), for instance I(A; 

B), is a measure of the amount information due to the knowledge of knowing either random variable A or B in the function 

I(•;•). Mutual information between model inputs and in situ observations of model output (hereafter in situ observations) can 

be used as a useful and effective measure of best achievable performance model because it links the model inputs and in situ 

observations only through the joint and marginal probability mass functions that do not involve any priori model 205 

assumptions (Gong et al., 2013). 

 

The mutual information can be defined based on entropy and joint entropy (Cover and Thomas, 2005). The mutual 

information between TBh and DCA, and the mutual information between TBv and DCA, are computed as
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and 210 

The mutual information between in situ and DCA soil moisture is computed as 

The mutual information between DCA and in situ soil moisture is calculated as 

I(TBh, TBv; DCA) = HCN(TBh, TBv) + HCN(DCA) - HCN(TBh, TBv, DCA). (8) 

The mutual information between TBh, TBv, Teff and in situ soil moisture is computed as:  

I(TBh, TBv, Teff; in situ) = HCN(TBh, TBv, Teff) + HCN(in situ) - HCN(TBh, TBv, Teff, in situ). (9) 

 

We adopted the information uncertainty analysis by Gong et al., 2013 and applied it to SMAP DCA. For a given system in 215 

which the inputs and output are linked via mathematical functions, the mutual information between model output and in situ 

observation can never exceed the entropy of the in situ observations. Conceptually, the entropies of model output and in situ 

observations can be considered as two circles (of equal or unequal sizes) and the mutual information between model output 

and in situ observation can be viewed as the overlapping area of these two circles (Uda, 2020). Therefore, the maximum 

mutual information shared between model output and in situ is the minimum of the entropy of model output and in situ 220 

observations, i.e: I(DCA, in situ) ≤ min[HCN(DCA), HCN(in situ)]. Intuitively, the overlapping area of two circles cannot be 

larger that of the smaller circle. Because we are focused on representing the observed soil condition, the information gap 

between in situ observations, HCN(in situ), and the mutual information shared between in situ observations and model output, 

I(DCA, in situ), is defined as informational total uncertainty (ITot). This quantity describes how much of the information 

within in situ observations, as measured by HCN(in situ), is not captured by the estimator, as measured by I(DCA, in situ). 225 

The mutual information between the in situ observations and the available explanatory variables is also always smaller than 

the entropy of in situ observations. This information gap, defined as informational random uncertainty (IRnd), is caused by the 

existence of inherent data uncertainty of the explanatory variables and a lack of complete explanatory variables to fully 

capture the information in the in situ observations (Gong et al., 2013). Furthermore, the mutual information between model 

inputs and in situ observations should equal to the mutual information between in situ observations and model output if the 230 

model hypothesis completely captures the true relationship between model inputs and in situ observations. However, it’s 

commonly stated that “All models are wrong” (Box, 1976) and model assumptions typically cannot fully express the true 

relationship between the explanatory variables and in situ observations. Hence, the mutual information between model 

I(TBh; DCA) = HCN(TBh) + HCN(DCA) - HCN(TBh, DCA) (5) 

I(TBv; DCA) = HCN(TBv) + HCN(DCA) - HCN(TBv, DCA). (6) 

I(DCA; in situ) = HCN(DCA) + HCN( in situ ) - HCN(DCA, in situ ). (7) 
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output and in situ observation is expected to be smaller than the mutual information between model inputs and in situ 

observations (Gong et al., 2013). This information gap, defined as informational model uncertainty (IMod) is induced by poor 235 

model assumption, formulations, and/or inappropriate model parameterizations. Therefore, the informational total 

uncertainty (ITot) is the sum of the informational random uncertainty and informational model uncertainty come naturally 

given the explicitly definition of these informational uncertainties.  

 

In this study, the explanatory variables of DCA are TBh, TBv and the Teff. The in situ observation and model output are in situ 240 

USCRN soil moisture and DCA soil moisture, respectively. Leveraging eq. (7) and eq. (9), the DCA informational random 

uncertainty (IRnd), DCA informational model uncertainty (IMod), and DCA total informational uncertainty (ITot) calculated are 

calculated as: 

IRnd = HCN(in situ) – I(TBh, TBv, Teff; in situ), (10) 

IMod = I(TBh, TBv, Teff; in situ) – I(DCA; in situ), (11) 

and 

ITot = HCN(in situ) – I(DCA; in situ) = IRnd + IMod. (12) 

 245 

2.4 Partial information decomposition  

The distinct informational contributions of TBh and TBv to the DCA soil moisture are assessed through a decomposition of the 

mutual information. This method partitions multivariate mutual information to unique, redundant and synergistic 

components (Williams and Beer, 2010). The decomposed information components on the DCA model inputs and outputs are 

expected to indicative of informational flow as model inputs are translated to end user products, and these components may 250 

have potential for evaluating model performance. The partial information decomposition of I(TBh, TBv; DCA) can be 

expressed as 

I(TBh, TBv; DCA) = Uh(TBh; DCA) + Uv(TBv; DCA) +R(TBh, TBv; DCA) + S(TBh, TBv; DCA), (13) 

where Uh and Uv are unique information of TBh and TBv shared with DCA, respectively. S and R are the synergistic 

information and redundant information that TBh and TBv shared with DCA estimates, respectively. All the decomposed 

components are non-negative real values (Williams and Beer, 2010). 255 

 

The mutual information between TBh and DCA and mutual information between TBv and DCA are formulated as  

I(TBh; DCA) = Uh(TBh;DCA) + R(TBh,TBv; DCA) (14) 

and 
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I(TBv; DCA) = Uv(TBv; DCA) + R(TBh,TBv; DCA). (15) 

In this approach, Uh, Uv, S and R are unknowns in the systems of equations (13) - (15). Goodwell and Kumar (2017) showed 

that the R can be formulated as 260 

R = Rmin + Is*(RMMI - Rmin), (16) 

where 

Is = 
𝐼(TBh;TBv)

min {𝐻𝐶𝑁(TBh); 𝐻𝐶𝑁(TBv)}
, (17) 

RMMI = min[I(TBh; DCA), I(TBv; DCA)] (18) 

and 

Rmin = max(0, -II) (19) 

The II is the interaction information of TBh, TBv, DCA and can be computed as:  

II = I(TBh; DCA| TBv ) - I(TBh; DCA) = HCN(TBh, DCA) + HCN(TBv, DCA) +  

HCN(TBh, TBv) – HCN(TBh) - HCN(TBv) - HCN(DCA) – HCN(TBh, TBv, DCA) 
(20) 

 

It is important to note that we used the point based in situ soil moisture as the ground truth in this analysis. Due to coarse 265 

spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be able to represent the spatial 

averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil moisture is 5 cm, the penetration 

depth was found to be even shallower in wetter regions (Shellito et al., 2016). In fact, the L-band sensing depth was found to 

as little as ~1cm (Jackson et al., 2012) and was found to vary with surface soil moisture conditions (Escorihuela et al., 2010; 

Raju et al., 1995). The heterogeneity in each pixel relative to the in situ observations together with the sensing depth 270 

disparity may influence the results of this study and can bias the estimation of informational uncertainties. We also 

acknowledge the existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al., 

2012). However, most of upscaling methods are achieved under the assistance of additional reference soil moisture datasets. 

This process introduces additional pieces of information in the DCA system making the separation of the uncertainty induced 

by the upscaling algorithm or additional dataset from other informational uncertainties much harder. Additionally, we used 275 

the hourly in situ data to best match the SMAP DCA soil moisture retrievals in time (within an hour). Based on current 

technologies, it is difficult to find a reference dataset with high frequency in time domain and good spatial coverage. Here 

we consider the informational uncertainty caused by the spatial mismatch and sensing depth mismatch between in situ and 

DCA soil moisture as part of the informational random uncertainty (IRnd) because the DCA is essentially a mathematical 

function and does not inherently require the inputs to be at a specific resolution. The spatial resolution is often the inherent 280 

attribute of the data. The reader should also keep these in mind while interpreting and adopting the results in this study. 
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3 Results  

3.1 Information quantities and system informational uncertainties 

The estimated entropies across all the study sites are shown in Figure 2 while the mutual information quantities are shown in 285 

Figure 3. The brightness temperature entropies, HCN(TBh) and HCN(TBv), generally follow the same pattern across sites with 

both having an average value of 0.37. Although the patterns of HCN(TBh) and HCN(TBv) are similar, the HCN(TBh) is slightly 

more variable than HCN(TBv) with the coefficients of variation (CV) being 0.053 and 0.046, respectively. HCN(Teff) shares the 

same average with HCN(TBh) and HCN(TBv), whereas the pattern of HCN(Teff) is quite different (Fig. 2). On average, the HCN(in 

situ) is 0.35, while HCN(DCA) is 0.38. In general, HCN(DCA) follows the pattern of HCN(in situ) with the CV of HCN(DCA) 290 

(0.064) being smaller than the CV of HCN(in situ) (0.081).  

 

As shown in Figure 4a, the entropies of the retrieved brightness temperatures and DCA model output, HCN(TBh), HCN(TBv) 

and HCN(DCA), are significantly correlated with the entropy of in situ observations, HCN(in situ), while no significant 

correlation is found between HCN(in situ) and HCN(Teff). The HCN(DCA) has the strongest correlation strength with HCN(in 295 

situ) compared with other entropy quantities (Fig. 4a). As expected, the mutual information quantities (Fig. 3) are shown to 

be generally smaller than the entropy quantities (Fig. 2). On average, I(TBh,TBv; DCA) is 0.14, while the I(DCA; in situ) and 

I(TBh,TBv, Teff; in situ) are 0.07 and 0.17 (Fig. 3), respectively. I(TBh,TBv, Teff; in situ) and I(TBh,TBv; DCA) are significantly 

correlated (0.58 and -0.30) with HCN(in situ), while no significant correlation is found for I(DCA; in situ) and HCN(in situ) 

(Fig. 4b).  300 

 

It is noticeable that there exists a large information gap between HCN(in situ) in Figure 2 and I(TBh,TBv, Teff; in situ) and 

I(TBh,TBv, Teff; in situ) and I(DCA; in situ) in Figure 3. These information gaps confirm the existence of informational 

random uncertainty (IRnd) and informational model uncertainty (IMod) in the SMAP DCA system. When calculating 

informational quantities on a site-by-site basis and then averaging, the SMAP DCA explains 20% of the HCN(in situ) leaving 305 

80% of the HCN(in situ) that is unexplained (Table 1) as informational total uncertainty (ITot). 35% of the ITot is caused by IMod, 

while the rest is induced by IRnd. The information uncertainties vary slightly across different landcovers. On average across 

sites, the SMAP DCA system is capable of capturing more information of HCN(in situ) at croplands and savannas (Table 1). 

Shrublands have largest absolute IRnd (0.21) than other landcovers, while savannas have the largest proportion of IRnd to ITot 

(Table 1). IMod in absolute value is greater in shrublands, grasslands, and croplands with grasslands have the largest 310 

proportion of IMod to ITot (Table 1). When lumping all the datasets together and recalculating informational quantities, we 

observe that SMAP DCA captures 10% of the information in the in situ soil moisture and the proportion of IMod to ITot is 

larger.  

 

The relationship between different informational uncertainties and the Pearson correlation coefficients between in situ soil 315 

moisture and SMAP DCA soil moisture, a commonly adopted relative model evaluation metric in SMAP studies (Chan et al., 

2016; Colliander et al., 2017), was evaluated. The ITot, IMod and IRnd are shown to be related how well the SMAP DCA soil 

moisture is correlated with in situ soil moisture (Fig. 5a - Fig. 5c). ITot is found to be negatively correlated (r = -0.69, Fig. 5a) 

with the Pearson correlation between in situ soil moisture and SMAP DCA soil moisture. Similarly, IMod and IRnd are also 
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shown to be negatively (-0.59 and -0.34 respectively) related to the Pearson correlation between in situ soil moisture and 320 

SMAP DCA soil moisture with IMod being more influential than IRnd (Fig. 5b and 5c). These negative relationships are 

consistent with general expectations since SMAP tends to capture more information about the in situ soil moisture (i.e. lower 

ITot, IMod and IRnd) when it retrieves high quality datasets (higher correlation between in situ soil moisture and SMAP DCA 

soil moisture).  

 325 

3.2 Partial information decomposition of DCA  

The partial information decompositions were assessed on a site basis and are shown in Figure 6. The fractional contribution 

of each component to that site’s mutual information between brightness temperatures and DCA estimates, I(TBh,TBv; DCA), 

was also calculated and are given in Table 2. Generally, the majority of I(TBh,TBv; DCA) is redundantly (R) shared by TBh and 

TBv, which is about 0.08 (58% of I(TBh,TBv; DCA)) on average (Table 2). The mean values of unique information of TBh (Uh) 330 

and synergistic information (S) of TBh and TBv are 0.024 (18% of I(TBh,TBv; DCA)) and 0.018 (14% of I(TBh,TBv; DCA)), 

respectively (Table 2). Compared to other decomposed information components, Uv is the smallest with its mean being 0.013 

(10% of I(TBh,TBv; DCA)). Savannas have the highest absolute and fraction of R (0.101 ,74% of I(TBh,TBv; DCA)) (Table 2). 

In general, the DCA system is mainly dominated by R as indicated by both site wise decomposition and when lumping all 

datasets together (45% of I(TBh,TBv; DCA)) and S is consistently the lowest (Table 2).  335 

 

Through this analysis, it is shown in figure 7 that there are strong relationships between SMAP DCA retrieval quality and 

decomposed information components. In general, the correlation strength between DCA and in situ soil moisture is higher 

when Uh, Uv and S are low and R is high. This is demonstrated by a significant correlation of these components with the 

Pearson correlation between in situ and DCA soil moisture. The negative relationship between increasing S and decreasing 340 

DCA quantity is strongest of the decomposed components, though the positive relationship between increasing R and 

decreasing DCA is of similar correlation strength. This indicates that R or S contains useful information about DCA soil 

moisture quality.  

 

4 Discussion 345 

4.1 DCA informational uncertainties 

The first objective of this study is to leverage information theory to quantitatively decompose the informational total 

uncertainty into informational random uncertainty and informational model uncertainty in the DCA as an approach to 

understand where retrieval uncertainties arise. This information theory approach can provide new insight to SMAP modeling 

diagnosis. It offers an opportunity of partitioning the total informational uncertainty in the DCA into the uncertainty due to 350 

the input datasets and the uncertainty due to model structure and model parameterizations. This partition process cannot be 

achieved by leveraging the common DCA assessment metrics (Chan et al., 2016) (e.g., Pearson correlation, ubRMSE) that 

only involve the DCA soil moisture and in situ soil moisture.  

 

The DCA model structure is inherently a hypothesis that relates the input datasets to soil moisture based on prior physical 355 

knowledge. The DCA is thus a procedure of processing the input dataset into estimates soil moisture. Thus, models, even 
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those that perform the best, can only reduce the available information in its inputs and are not capable of adding new 

information about the “true” soil moisture. Hence, there is no possibility of building a model that is better than the one with 

the best achievable performance of the input data themselves (yet even achieving this theoretically limit is nearly impossible) 

(Gong et al., 2013). If, however, more freedom on available datasets to incorporate is given, it is possible to build models 360 

that outperform the best achievable model performance by adding new explanatory variables which may lead to a family of 

models that have completely different model structure. Based on Table 1, we find that the DCA has more informational 

uncertainty in shrublands than grasslands and croplands. This might be due to stronger variability in vegetation in for 

shrublands while grasslands and croplands tend to be more uniform and homogeneous. It is worth noting that these finding 

are based on averaging our studied sites within different landcover categories, and results may be different while comparing 365 

two specific sites from different landcovers. In addition, we find the proportion of informational uncertainty increases as the 

data is lumped together relative to averaging these statics calculated on a site-by-site basis (Table 1). Treating all the surfaces 

together as a whole does not reduce the informational total uncertainty because the lumping process contains both “high 

quality” and “low quality” (as assessed by the Pearson correlation between in situ and DCA soil moisture) datasets. The 

uncertainties in these datasets may accumulate while lumping them together and result in an increase in total informational 370 

uncertainty.  

 

The fraction that informational random uncertainty contributes to the informational total uncertainty is quite significant (65% 

on average) in this study. The informational random uncertainty in the system may arises from the inherent error due to 

calibration of TBh and TBv (Al-Yaari et al., 2017), the mismatch in the scale of observations, and the presence water bodies 375 

(Ye et al., 2015). If poorly calibrated, the soil moisture estimations can be exacerbated due to the error propagation that 

hinders the correct information being expressed. Furthermore, SMAP attempts to Teff to capture both soil and canopy 

temperature because the differences between canopy and soil temperature are minimized in the morning and afternoon orbits. 

The Teff is computed based on a model that uses the information from average soil temperature of first layer and second layer 

of a land surface model for SMAP soil moisture retrievals (O’Neill et. al., 2020a). The modeling processe may produce 380 

erroneous Teff dataset and hence contribute the informational random uncertainty of DCA. Therefore, a better and robust 

calibration strategy of TBh and TBv to the presence of water bodies and a comprehensive assessment of Teff may be needed to 

reduce some of the information random uncertainty.  

 

Informational model uncertainty contributes an unneglectable portion to the informational total uncertainty (35% on average). 385 

This model uncertainty may arise from poor model parameterizations, which may vary with site soil moisture dynamics 

(HCN(in situ)). As shown in figure 4b, the I(TBh,TBv, Teff; in situ) increases as the in situ soil moisture is more dynamic as 

reflected by high values of HCN(TBh) and HCN(TBv). The raw observations (TBv, TBh, and Teff) provide more available 

information to the system, whereas such information is not properly captured by the algorithm as reflected by low correlation 

strength between HCN(in situ) and I(DCA; in situ). Therefore, it is more likely to observe large information model 390 

uncertainty where the soil moisture is more dynamic, which may cause a low efficiency of DCA to correctly transmit the 

available information. It is known that DCA is parameterized with a set of surface and vegetation parameters such as 

vegetation single scattering albedo (ω), surface height standard deviation (s), etc. These parameter values are landcover 
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dependent and are derived from past studies as well as prior experience and some information discussions with experts, all of 

which could be biased and inaccurate (O’Neill et. al., 2020a). These parameter values also are not differentiated by landcover 395 

microwave polarization directions and were assumed to be constant in time. It is possible that these parameters (such as ω) 

vary in time (Konings et al., 2017) and shift during senescence or harvesting seasons. It is observed that the proportion of the 

informational model uncertainty is slightly smaller in shrublands (Table 1) (here we do not include savannas in the 

discussion since this landcover only have 2 sites), while these proportions are larger in croplands and grasslands (Table 1). 

This might because the model parameterizations are more reasonable in shrublands than other landcovers. In addition, 400 

croplands and grasslands may have seasonal harvesting and therefore may more subject to changes in these values, while 

shrublands may not. Additionally, when averaging informational values site-by-site, the informational random uncertainty is 

a larger fraction of the total uncertainty, whereas when all data are lumped together, the informational model uncertainty is a 

larger fraction (Table 1). DCA parameters are different with respect to each landcover, and the biases induced by these 

parameters at each site may accumulate through the system resulting a dominance in informational model uncertainty over 405 

informational random uncertainty when all sites are lumped together. 

 

To summarize, this is the first attempt of leveraging mutual information approach to analyze the uncertainty components in 

microwave remote sensing models. The results of this study can be further used as guidance in assessing of SMAP algorithm 

and can quantitively identify where information lost in the process of SMAP soil moisture modeling. More broadly, this 410 

study, though focused on SMAP, can be transferred and extended to analyze other remote sensing algorithms. Over many 

decades, a lot of effort, resources, and time have been devoted to the launch numerous of satellite missions to retrieve the 

key environmental variables such as evapotranspiration and vegetation biomass (Dubayah et al., 2020; Hulley et al., 2017). 

Performing such analysis on these retrieval algorithms is expected to be beneficial to understanding the informational flow in 

these algorithms and may provide insights to further improve the data retrieval accuracy as well as making maximum use of 415 

data collected at greater expense. 

 

4.2 Model evaluation from another perspective  

The second objective of this study was to demonstrate that the partitioned information components contain useful 

information about DCA model performance that does not depend on in situ soil moisture and other ancillary datasets. We 420 

find a strong linear relationship between redundant (R) and synergistic (S) information of the polarized brightness 

temperatures and Pearson correlation between DCA and in situ soil moisture. In general, it is more likely to observe higher R 

and lower S (and Uh and Uv) in the less woody landcovers such as croplands and grasslands, where the range of brightness 

temperature may possibly be greater. These information components were found to be marginally correlated with factors 

such as vegetation density (the Pearson correlation of average LAI with R, S, Uh, Uv are 0.23, -0.38, -0.54, and -0.19 425 

respectively) and vegetation heterogeneity (the Pearson correlation of LAI standard deviation with R, S, Uh, Uv are 0.22, -

0.39, -0.53, and -0.22 respectively). Additionally, these informational components were also found to be correlated with the 

mutual information shared between brightness temperatures and DCA estimates (the Pearson correlation of I(TBh,TBv; DCA) 

with R, S, Uh, Uv are 0.6, -0.27, 0.22, and -0.16 respectively), the informational total uncertainty (the Pearson correlation of 

ITot with R, S, Uh, Uv are -0.75, 0.62, 0.55, and 0.68 respectively), informational random uncertainty (the Pearson correlation 430 
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of IRnd with R, S, Uh, Uv are -0.41 , 0.30, 0.05, and 0.15 respectively), and informational model uncertainty (the Pearson 

correlation of IMod with R, S, Uh, Uv are -0.62, 0.55, 0.66, and 0.74 respectively). This indicates that these informational 

components in the DCA system are not only physically driven by both vegetation density and heterogeneity but also other 

factors such as how algorithm processes the information from TBh and TBv to produce the DCA outputs. It is more likely to 

observe higher R and lower S in locations where vegetation is denser and more heterogeneous, yet the correlation of these 435 

variables with model quality (0.47 for mean LAI and 0.42 for the standard deviation of LAI) are weaker than the correlations 

found between R and S and model quality shown in figure 7. The R and S metric in this study can thus not only integrate 

information about how the surface vegetation density and heterogeneity influence the algorithm performance but provided 

insight into how effectively DCA algorithm uses the information from TBh and TBv. 

 440 

Compared with other ancillary and in situ independent metrics such as correlation strength between Pearson correlation of 

TBh with TBv and the Pearson correlation between in situ and DCA soil moisture (0.67), the correlation strength of S and R 

with Pearson correlation of in situ and DCA soil moisture are tighter (0.79 and -0.82 for R and S). This suggests the complex 

non-linear relationship between of TBh, TBv with DCA soil moisture is better captured by R and S as compared to the direct 

correlation between the two brightness temperatures themselves. Given the strength of this relationship, the R and S holds the 445 

potential to be used as a DCA evaluation metric that does not depend on in situ measurement and ancillary dataset. It is also 

useful for SMAP DCA soil moisture users to have a rough estimation of how high the quality (as characterized as the 

correlation strength between DCA and in situ) of the obtained DCA soil moisture without actually knowing the in situ soil 

moisture. However, this depends on specific user requirements for data quality. In general, the DCA soil moisture tends to be 

in high end in term retrieval quality (~ 0.75 in Pearson correlation) when the R is greater 0.1 or S is smaller than 0.015. It is 450 

important to note that the decomposed information components are dependent on the DCA parameterizations (e.g., ω, h. etc.) 

that may influence how the TBh and TBv are probabilistically linked with the DCA and hence may alter the partitioned 

information components.  

 

4.3 Approach Limitations 455 

While we expect that this approach can be generalized to analyze other remote sensing models, it may be difficult to 

compute the joint probability density functions for models with high-dimensional inputs. Difficulty in determining the joint 

probability density functions hinders the estimation of high dimensional joint entropy and mutual information components, 

and these are still open questions in the field of information theory. Although there exist serval data dimension reduction 

techniques, these dimension reduction techniques are mostly based some assumptions (Xu et al., 2019). In practice, most of 460 

the systems with high dimension inputs tend to be complex. Therefore, there is a strong risk of introducing additional 

uncertainty if one chooses an inappropriate technique.  

 

It is important to understand that SMAP DCA system retrieves soil moisture with the help of vegetation water content 

climatology derived from the MODIS NDVI data stream. This is specified as a set value for each location and day of year 465 

combination and is used to estimate the unknown vegetation optical depth (O’Neill et. al., 2020a). The reader should 

keep in mind that this study considers such data as a dynamic time-varying parameter and it is not treated as a data input in 
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this study. Adding NDVI as a data input would result in I(TBh, TBv, Teff, NDVI; in situ) being larger than or equal to I(TBh, TBv, 

Teff; in situ) in the calculation of IRnd, and therefore IRnd would decrease. Since, ITot only considers DCA output and in situ 

data it is not altered by adding dynamic parameters and IMod would therefore increase. Thus, consideration of additional 470 

dynamic parameters in this informational assessment would serve to shift uncertainties from those attributed to the input data 

themselves to uncertainties attributed to the model structure and parameterizations. 

  

This study was conducted only at locations where in situ soil moisture is readily available. It could be an interesting topic to 

explore if, and how, information-based uncertainty analysis can be applied in the locations without in situ soil moisture 475 

measurements. We would expect the informational uncertainty analysis to provide the estimates of random and model 

uncertainties. The best performance we can expect from this current uncertainty analysis is to use all the available datasets 

we have; yet we believe that uncertainty estimations of this approach should be stabilized given adequate representative 

locations and data records.  

 480 

5 Conclusions  

This study differentiates and quantifies the uncertainty sources in the SMAP DCA using information theory. We found that 

on average DCA soil moisture explains 20% of the information in the in situ soil moisture leaving 80% unexplained. Among 

the unexplained information, 65% is informational random uncertainty that is caused by the inherent stochasticity of the 

explanatory variables of SMAP DCA and a lack of additional explanatory variables in the system, while the rest of the 485 

informational uncertainty is caused by inappropriateness of the assumption of DCA model structure and parameterizations. 

We show that informational random uncertainty contributes a larger proportion of the informational total uncertainty across 

different landcovers. However, the informational model uncertainty contributes more to total uncertainty when lumping all 

the datasets together. The performance of SMAP DCA is negatively correlated to all the information uncertainties, with the 

informational model uncertainty being more reflective of overall SMAP DCA retrieval quality than the informational random 490 

uncertainty.  

 

The decomposition of the mutual information has shown that all decomposed components are significantly related to the 

Pearson correlation between in situ and DCA soil moisture, with the redundant and synergistic information being the 

strongest. Good DCA model performance (as measured by Pearson correlation between in situ and DCA soil moisture) is 495 

more likely to be found in locations where the redundant information of brightness temperatures shared with DCA soil 

moisture is high and is more dominant relative to other components. The informational uncertainty decomposition analysis 

opens a new window for SMAP algorithm uncertainty diagnosis. SMAP DCA users may examine to the R and S components 

to have an approximate estimation of the soil moisture data quality obtained when no in situ soil moisture is readily available.  

 500 

Code availability 

The code regarding the SMAP dataset time series, mutual information and partial information decomposition 

calculation can obtained from https://github.com/libonancaesar/HESS_Information_Uncertainty  
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Figure 1 Spatial distribution of selected USCRN stations classified by landcovers. 

 

 

 

 690 

 

 

 



22 

 

   

Figure 2 Entropies of horizontally polarized brightness temperature (TBh), vertically polarized brightness temperature (TBv), 695 

in situ soil moisture, DCA soil moisture, and soil effective temperature (Teff) across the study sites. The sites are ordered by 

longitude (West to East).   
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Figure 3 Mutual information between horizontally polarized brightness temperature (TBh), vertically polarized brightness 

temperature (TBv), soil effective temperature (Teff) and in situ soil moisture; mutual information between horizontally 

polarized brightness temperature (TBh), vertically polarized brightness temperature (TBv) and DCA soil moisture; mutual 

information between DCA soil moisture and in situ soil moisture. See figure 2 caption for site ordering.   710 
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 720 

Figure 4 Entropy of in situ soil moisture against the entropies of DCA soil moisture, horizontally polarized brightness 

temperature (TBh), vertically polarized brightness temperature (TBv) and soil effective temperature (Teff) (a) and mutual 

information quantities (b).  
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Figure 5 SMAP informational total uncertainty (a), SMAP informational model uncertainty (b) and SMAP informational 

random uncertainty (c) against Pearson correlation between in situ soil moisture and DCA soil moisture 
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  740 

Figure 6 Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized brightness 

temperature and DCA soil moisture. See figure 2 caption for site ordering.  
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Figure 7 Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized 755 

brightness temperature against Pearson correlation coefficient between in situ and DCA soil moisture. 
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Landcover 

Informational random 

uncertainty, IRnd 

(and its % of ITot) 

Informational model 

uncertainty, IMod 

(and its % of ITot) 

Informational total 

uncertainty, ITot 

(and its % of HCN(in situ)) 

Number of  

Sites 

 

Shrublands 0.21 (68%) 0.10 (32%) 0.31 (87%) 5 

Grasslands 0.18 (63%) 0.11 (37%) 0.28 (81%) 32 

Croplands 0.18 (66%) 0.10 (34%) 0.28 (78%) 15 

Savannas 0.16 (73%) 0.06 (27%) 0.22 (64%) 2 

Mixed 0.19 (68%) 0.09 (32%) 0.28 (79%) 4 

Lumped 0.14 (46%) 0.17 (54%) 0.32 (90%) 58 

Overall 0.18 (65%) 0.10 (35%) 0.28 (80%) 58 

Table 1 The amount of informational uncertainties in percentage. The values in the table are the average of each landcover. 765 

The values in “Overall” are the average of all the sites. The “Lumped” field is computed using all available dataset.  

 

 

 

 770 

 

 

 

 

 775 

 

 

 

 

 780 

 

 

 

 

 785 

 

 

 

 

 790 

 

 

 



29 

 

Landcover 

Unique information 

of TBh (Uh) (and its % 

I(TBh, TBv; DCA)) 

Unique information of 

TBv (Uv) (and its % 

I(TBh, TBv; DCA)) 

Synergistic information 

of TBh and TBv (S) (and 

its % I(TBh, TBv; DCA)) 

Redundant information of 

TBh and TBv (R) (and its % 

I(TBh, TBv; DCA)) 

Mutual information 

(I(TBh, TBv; DCA)) 

Number 

of sites 

Shrublands 0.034 (28%) 0.019(16%) 0.029 (25%) 0.037 (31%) 0.120 5 

Grasslands 0.028 (20%) 0.013 (10%) 0.019 (14%) 0.079 (56%) 0.140 32 

Croplands 0.018 (13%) 0.013 (11%) 0.014 (11%) 0.089 (65%) 0.134 15 

Savannas 0.008 (7%) 0.006 (5%) 0.012 (10%) 0.101 (78%) 0.128 2 

Mixed 0.013(11%) 0.007 (6%) 0.011 (9%) 0.092 (74%) 0.123 4 

Lumped 0.014 (19%) 0.019 (25%) 0.008 (11%) 0.034 (45%) 0.076 58 

Overall 0.024 (18%) 0.013 (10%) 0.018 (14%) 0.080 (58%) 0.135 58 

Table 2 The partial information decomposition components. The values in the table are the average of each landcover. The 

values in “Overall” are the average of all the sites. The “Lumped” field is computed using all available dataset.  795 
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