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Abstract. NASA’s Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface
soil moisture using dual L-band microwave retrievals of horizontal (Tgn) and vertical (Tgy) polarized microwave brightness
temperatures through a modeled mechanistic relationship between vegetation opacity, surface scattering albedo, and soil
effective temperature (Ter). Although this model has been validated against in situ soil moisture, there is a lack of systematic
characterization of where and why SMAP estimates deviate from the in situ observations. Here, we assess how the
information content of in situ soil moisture observations from the US Climate Reference Network contrasts with (1) the
information contained within raw SMAP observations (i.e., ‘informational random uncertainty’) derived from Tgn, Ty and
Terr themselves, and (2) with the information contained in SMAP’s Dual Channel Algorithm (DCA) soil moisture estimates
(i.e., ‘informational model uncertainty”) derived from the model’s inherent structure and parameterizations. The results show
that, on average, 80% of the information in the in situ soil moisture is unexplained by SMAP DCA soil moisture estimates.
35% of the unexplained information is caused by the loss of information in the DCA modeling process while the remainder
is induced by a lack of additional explanatory power within Tgn, Tey and Tes. Overall, retrieval quality of SMAP DCA soil
moisture, denoted as the Pearson correlation coefficient between SMAP DCA soil moisture and in situ soil moisture, is
negatively correlated with the informational uncertainties, with slight differences across different landcovers. The
informational model uncertainty (Pearson correlation of -0.59) was found to be more influential than the informational
random uncertainty (Pearson correlation of -0.34), suggesting that the poor performance of SMAP DCA at some locations is
driven by model parameterization and/or structure and not underlying satellite measurements of Tgn and Tgy. A
decomposition of mutual information between Tgn, Tey and DCA soil moisture shows that on average 58% of information
provided by Tgn and Tgy to DCA estimates is redundancy. The amount of information redundantly and synergistically
provided by Tsnhand Tsy was found to be tightly related (Pearson correlation of 0.79 and -0.82, respectively) to the retrieval
quality of SMAP DCA. Teh and Tgy tend to contribute large redundant information to DCA estimates under surfaces or
conditions where DCA makes better retrievals. This study provides a baseline approach that can also be applied to evaluate
other remote sensing models and understand informational loss as satellite retrievals are translated to end user products.
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1 Introduction

Accurate information on soil moisture is of great importance for understanding various biophysical processes in hydrology,
agronomy, and ecosystem sciences (Bassiouni et al., 2020; Uber et al., 2018). The poor spatial representativeness of in-situ
soil moisture sensors, combined with their labor-intensive installation and maintenance, impedes the application these
sensors to understand large scale ecosystem phenomena (Babaeian et al., 2019; Petropoulos et al., 2015). Spaceborne passive
microwave remote sensing has been developed as a reliable method to estimate surface soil moisture at large scales
(Wigneron et al., 2017). It leverages the large discrepancies in dielectric properties between liquid water and dry soil that
result in a high dependency of soil dielectric constants on soil moisture (Njoku and Entekhabi, 1996). Various microwave
frequencies have been available to date, amongst which the L-band microwave frequencies were found to be desirable for
soil moisture estimations because they can sense soil moisture at a relatively deeper layer (~5cm) and can provide greater
vegetation penetration power (Mohanty et al., 2017). Though microwave remote sensing has been investigated for decades,
significant uncertainties still exist in both microwave radiometry and in the algorithms used to translate microwave
observations to soil moisture estimates (Gruber et al., 2020).

Passive L-band remote sensing soil moisture estimation uses a radiometer to measure surface emission intensity, which is
proportional to the brightness temperature (Wang and Qu, 2009). The brightness temperature is linked with soil moisture and
vegetation opacity through the ‘tau-omega’ emission model and parameterized by soil and vegetation functions (Jackson et
al., 1982; Mo et al., 1982). The ‘tau-omega’ model rationale has been adopted by NASA’s Soil Moisture Active-Passive
(SMAP) mission, which is one of the earth observation missions dedicated to estimate soil moisture at L-band microwave
frequency (Entekhabi et al., 2010). SMAP implemented two primary algorithms: (1) the single channel algorithm (SCA) that
uses one polarized brightness temperature as primary input to retrieve soil moisture and (2) the dual channel algorithm (DCA)
that retrieves soil moisture and vegetation opacity simultaneously by taking the polarized brightness temperature information
in both horizontal and vertical directions (O’Neill et.al., 2020a). There is strong interest in the DCA approach because of its
independent estimation of vegetation opacity in lieu of the specified vegetation climatology employed by the SCA (O’Neill
et.al., 2020a). Other L-band focused satellite mission such as Soil Moisture and Ocean Salinity (SMOS) retrieves both soil
moisture and vegetation optical depth by using numerous brightness measurements for different incidence angles (Kerr et al.,
2012). Additionally, it has been suggested that using a time-integrated vegetation opacity, as is employed in the multi-
temporal dual channel algorithm (MT-DCA) for instance (Konings et al., 2016), improves the estimates of soil and
vegetation state. These contrasting approaches, as well as other studies on SMAP’s temporal polarized ratio algorithm
(TPRA) (Gao et al., 2020) and regularized dual channel algorithm (RDCA) (Chaubell et al., 2020), suggested there is still
uncertainty about how SMAP observations of horizontal and vertical brightness temperature can be best translated into
estimates of surface properties. Although SMAP can provide spatially explicit soil moisture estimates that have been shown
to be useful to understand a set of ecohydrological problems (Dadap et al., 2019; Feldman et al., 2018), the soil moisture
retrievals are still subject to significant amount of uncertainty due to the imperfection of the model and the forcing datasets.
It is also important to consider the how the amount of duplicate information carried within a set of observations limits the
number of independent parameters to be inferred (Konings et al., 2015). Therefore, it is critical to diagnosis and quantify the
causality of the uncertainty caused by the SMAP algorithm to improve the soil moisture and vegetation opacity retrieval
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quality.

SMAP soil moisture products have been extensively validated against well-calibrated in situ soil moisture using unbiased
root mean square error (UbRMSE), bias, RMSE Pearson correlation coefficients and triple collocation method at ‘core’ and
‘sparse’ validation sites (Chan et al., 2016; Chen et al., 2017; Colliander et al., 2017; Zhang et al., 2019). These validation
investigations found that SMAP met the required accuracy target (ubRMSE, 0.04 m3/mq) on average, while there exist some
locations where the performance of SMAP did not met the expected performance. All these validation studies were focused
on finding the general uncertainty of SMAP (which is the deviation of SMAP soil moisture from the in situ or reference soil
moisture) and cannot diagnose and differentiate where the uncertainty arises. Indeed, the causality of uncertainty of SMAP
soil moisture may arise from two aspects: (1) the uncertainty due to the inaccuracies from forcing the datasets and (2) the
uncertainty due to poor model structure and parameterizations. In addition, the assessment metrics used in these evaluation
studies are either heavily dependent on in situ soil moisture or additional reference datasets, which does not allow for SMAP
to be validated in some remote and inaccessible areas.

The challenges faced by previous SMAP evaluation investigations can be resolved by leveraging two information quantities :
(1) Shannon’s entropy (Shannon, 1948), which is the amount of information required to fully describe a random variable and
(2) mutual information (Cover and Thomas, 2005), which represents the amount information of knowing one variable given
the knowledge of another or a set of random variables. Gong et al., 2013 first leveraged these information quantities to
partition overall uncertainty in the hydrological modeling process into two categories: (1) random uncertainty that arises by
incompleteness of exploratory variable and/or inherent stochasticity of forcing datasets, and (2) model uncertainty that is
contributed by poor model parameterization or formulation. The random uncertainty is not resolvable for the given system as
it is only related to the probability distributions of the forcing data itself, while the model uncertainty is reduceable by a
better model parameterization.

Given that both horizontal and vertical polarized brightness temperatures are measured by SMAP, it is unclear how each
polarization contributes information to the overall performance of the DCA. Recent research on partial information
decomposition has provided tremendous opportunities for understanding the nuanced interactions among different variables
and model structure. Initially proposed by Williams and Beer, 2010 and further advanced by Goodwell and Kumar, 2017,
this approach has been used to understand environmental processes that link two source variables with a target variable by
partitioning multivariate mutual information into unique, redundant and synergistic components. The unique information
represents the amount of information shared with the target variable from each individual source variable separately (Finn
and Lizier, 2018). Synergistic information is the information provided to the target while both source variables act jointly
(Kunert-Graf et al., 2020). Redundant information is the overlapping information that both source variables redundantly
provide to a target (Wibral et al., 2017). Information partitioning brings new insight by unambiguously characterizing the
interdependencies between source variables and a target variable without any underlying assumption (Goodwell et al., 2018).

The overall objective of this study is to demonstrate that by assessing how information flows through satellite algorithms
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from raw retrievals to end user products, we can illuminate areas where improvements can be made and diagnose instances
where algorithm estimates are expected to be uncertain. In this study, we focus on (1) quantifying the random uncertainty
and model uncertainty in SMAP’s Dual Channel Algorithm (DCA) and understand how these uncertainties are related to
DCA retrieval quality; (2) exploring how the partial information components between SMAP DCA soil moisture and
horizontally polarized and vertically polarized brightness temperature can be used to indicate overall DCA soil moisture
retrieval performance.

2 Material and Methods

2.1 In situ soil moisture

The US Climate Reference Network (USCRN) is a systematic and sustained network that is operated and maintained by
National Oceanic and Atmospheric Administration (NOAA) to support climate-impact research with continuous high-quality
field observed soil moisture, soil temperature and windspeed at different temporal scales (Diamond et al., 2013). The
USCRN provides soil moisture observations at five different standard depth (5 cm, 10 cm 20 cm, 50 cm, and 100 cm) in 114
locations of Contiguous U.S. (CONUS) (Bell et al., 2013). These in situ datasets have been used for a wide variety of
research such as drought evaluation and satellite soil moisture validation (Bell et al., 2015; Leeper et al., 2017). The hourly
soil moisture (beta version product) datasets at the depth of 5 cm were collected from 58 (15 croplands, 32 grasslands, 5
shrublands, 2 savannas, 4 mixed) selected USCRN stations (Fig. 1 and Table S1) based on the availability of in situ soil
moisture dataset and the data quality of SMAP pixels in the study period of March 31, 2015 to December 10, 2020.

2.2 SMAP Level-2 datasets

In this study, we acquired the water body corrected horizontally polarized brightness temperature (Tgn), vertically polarized
brightness temperature (Tgy), soil effective temperature (Terr), DCA soil moisture and the fraction of landcover at each
selected USCRN station from SMAP Level-2 Radiometer Half-Orbit 36 km EASE-Grid Soil moisture, Version 7 data
product (O’Neill et. al., 2020b) in the same period as the USCRN soil moisture at every station. The extracted data series
were filtered by the internal quality flags of Ten (“tb_qual flag h”), Tay (“tb_qual flag v’) and DCA
(“retrieval_qual_flag option3”) as provided in SMAP data files. We retain data points at a particular SMAP observation time
when they all simultaneous pass quality control and fall within their correspondent valid ranges (e.g., 0 ~ 330K for Tgh and
Ty, 253.15K ~ 313.15K for Tef, > 0.02m3m? for DCA soil moisture) as specified in the SMAP documentation (Chan, 2020).
On average, the number of datapoints across all the sites is 1090 with a minimum of 225 and a maximum of 1651. DCA
retrieves soil moisture based on the ‘tau-omega’ model (Jackson et al., 1982; Mo et al., 1982), which is a well-known
radiative transfer based soil moisture retrieval algorithm in the passive microwave soil moisture community. It requires the
brightness temperatures as the main inputs, soil effective temperature as an ancillary input, and is parameterized based on
overlaying vegetation and soil surface information (Njoku and Entekhabi, 1996). The DCA iteratively feeds the ‘tau-omega’
model with initial guesses of soil moisture and vegetation optical depth. The retrieved soil moisture is assumed to be close to
the real value when the estimated brightness temperatures are similar to the satellite observed brightness temperature
(Konings et al., 2017; O’Neill et. al., 2020a). Compared to the SCAs, the DCA uses a different polarization mixing factor
function and different values of vegetation single scattering albedo (O’ Neill et. al., 2020a).
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The SMAP fraction of landcover data field provides the fraction of top three dominate landcovers that were classified by
International Geosphere — Biosphere Programme (IGBP) ecosystem surface classification scheme at each pixel (Chan, 2020).
The IGBP classified land surface into water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf
forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, woody savannas, savannas, grasslands,
permanent wetlands, croplands, urban and built-up, croplands/natural vegetation mosaics, snow and ice, barren (Seitzinger et
al., 2015). In this study, the landcover of the study site was classified as the most dominate landcover if the fraction of the
most dominate landcover was greater than 50%. Otherwise, the landcover of the study site is classified as the “mixed”
landcover. Furthermore, the study sites that are dominated by woody savanna were classified as savannas, by closed/open
shrublands were classified as shrublands, by cropland/natural vegetation mosaics were classified as croplands. Sites meeting
specified data requirements and their associated landcover classification are shown in Figure 1. Additionally, the 500m leaf
area index (LAI) of each site was obtained from NASAs Moderate Resolution Imaging Spectrometer (MODIS) mission
(Myneni et. al., 2015; ORNL DAAC, 2018) and averaged in time. Within each site the mean and standard deviation of LAI
of all pixels within each SMAP pixel was calculated as a measure of vegetation biomass and variability.

2.3 Information — based uncertainty partitioning

The fundamental quantity of information theory is Shannon’s entropy (Shannon, 1948), which represents the amount of
information required to fully describe a random variable (Cover and Thomas, 2005). Shannon’s entropy is the basic building
block of computing mutual information and the informational uncertainties. The entropy of a single random variable is
defined as

H(X) = = Zxexp(x)log, p(x), 1)

where p(x) is the probability mass function of random variable X. The estimation of p(x) often involves discretizing the
values of X into a set of bins and then the p(x) of a specific bin is computed by dividing the total number of datapoints within
a specific bin by the total of number of data points of X. The number of bins in this study is estimated by Freedman-Diaconis
binning method (Freedman and Diaconis, 1981). The entropy calculated by eq. (1) is in unit of bits.

Previous study has indicated that this method (eq. (1)) may underestimate the true entropy (Paninski, 2003). Therefore, we
leveraged the simple Miller-Madow corrected entropy estimator (Zhang and Grabchak, 2013) and we also normalization the
entropy to remove the bias that may cause by the heterogeneity in length of available datasets across all stations. We
acknowledge that there exist several entropies estimation methods. However, we select the Miller-Madow correction based
on its simplicity and effectiveness. The corrected and normalized entropy is then expressed as

K-1
H(X) + -

Hen (X) = , 2

log, n

where Hen(X) is the Miller-Madow corrected and normalized entropy of random variable X (hereafter entropy), H(X) is the
uncorrected entropy from eq. (1), n is the number of data points of X , K is the number of non-zero probabilities (bins
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contains more than one data point) based on the fixed binned method (Freedman and Diaconis, 1981). In this study, all
entropies of single random variables in the later equations (i.e., Hen(Tsn), Hen(Tasv), Hen(in situ) etc.) are computed using the
combination of eq. (1) and eq. (2) with the replacement of p(¢) by their individual probability mass functions.

The joint entropy (Cover and Thomas, 2005) is a critical intermediate information quantity to calculate these informational
uncertainties. It represents the amount of information required to describe a set of random variables. The joint entropy for
two random variables is defined as

H(X, Y) = = Xxex Lyer p(x, y)l0gz p(%,¥), @)

where p(x, y) is the joint probability mass function associated with X and Y that is estimated by the same method mentioned
above. The same normalization and correction method of eq. (2) is applied to joint entropy of eq. (3). The entropy after the
correction and normalization is formulated as

K-1
HXY) + n

Hen (X, Y) = , (4)

logo n

where Hen(X, Y) is the corrected and normalized joint entropy of random variable associated with {X, Y}, H(X, Y) is the
uncorrected and unnormalized entropy from eg. (3), n is the number of data points that were used to calculate the normalized
joint entropy (hereafter joint entropy), K is the number of non-zero joint probabilities based on the Freeman and Diaconis
method (Freedman and Diaconis, 1981). All the joint entropies that are associated with two or more random variables in the
later equations (i.e., Hen(in situ, DCA), Hen(Ten, Tevy, DCA), Hen(Ten, Tev, Tefr, in situ) etc.) are computed using the
combination of eq. (3) and eg. (4) with the replacement of p(+) by their joint probability mass functions, respectively.

Generally, modeling efforts are focused on capturing the information of a random variable of interest via other explanatory
variables through some physically- or empirically- based models. However, most of models being constructed of natural
processes are not perfect, and the model outputs are often not capable of capturing the exact relationship between the
available input variables and the variable of interest (Gong et al., 2013). There exists a maximum achievable performance of
a model that describes the variable of interest the best for a particular system given the available datasets (Gong et al., 2013);
yet the detailed structure of this model is often unknown. Mutual information (Cover and Thomas, 2005), for instance I(A,;
B), is a measure of the amount information due to the knowledge of knowing either random variable A or B in the function
I(+;»). Mutual information between model inputs and in situ observations of model output (hereafter in situ observations) can
be used as a useful and effective measure of best achievable performance model because it links the model inputs and in situ
observations only through the joint and marginal probability mass functions that do not involve any priori model
assumptions (Gong et al., 2013).

The mutual information can be defined based on entropy and joint entropy (Cover and Thomas, 2005). The mutual
information between Tgn and DCA, and the mutual information between Tg, and DCA, are computed as
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I(Ten; DCA) = Hen(Ten) + Hen(DCA) - Hen(Ten, DCA) (5)

and

I(Tey; DCA) = Hen(Tey) + Hen(DCA) - Hen(Tev, DCA). (6)

The mutual information between in situ and DCA soil moisture is computed as

I(DCA,; in situ) = Hen(DCA) + Hen( in situ ) - Hen(DCA, in situ ). )
The mutual information between DCA and in situ soil moisture is calculated as
I(Ten, Tev; DCA) = Hen(Ten, Tev) + Hen(DCA) - Hen(Ten, Tev, DCA). (8)
The mutual information between Tgn, Tay, Terf and in situ soil moisture is computed as:

I(Ten, Tav, Tefr; in situ) = Hen(Ten, Tav, Terr) + Hen(in situ) - Hen(Ten, Tav, Tefr, in situ). 9)

We adopted the information uncertainty analysis by Gong et al., 2013 and applied it to SMAP DCA. For a given system in
which the inputs and output are linked via mathematical functions, the mutual information between model output and in situ
observation can never exceed the entropy of the in situ observations. Conceptually, the entropies of model output and in situ
observations can be considered as two circles (of equal or unequal sizes) and the mutual information between model output
and in situ observation can be viewed as the overlapping area of these two circles (Uda, 2020). Therefore, the maximum
mutual information shared between model output and in situ is the minimum of the entropy of model output and in situ
observations, i.e: I(DCA, in situ) < min[Hcn(DCA), Hen(in situ)]. Intuitively, the overlapping area of two circles cannot be
larger that of the smaller circle. Because we are focused on representing the observed soil condition, the information gap
between in situ observations, Hen(in situ), and the mutual information shared between in situ observations and model output,
I(DCA, in situ), is defined as informational total uncertainty (l:). This quantity describes how much of the information
within in situ observations, as measured by Hcn(in situ), is not captured by the estimator, as measured by I(DCA, in situ).
The mutual information between the in situ observations and the available explanatory variables is also always smaller than
the entropy of in situ observations. This information gap, defined as informational random uncertainty (lrng), is caused by the
existence of inherent data uncertainty of the explanatory variables and a lack of complete explanatory variables to fully
capture the information in the in situ observations (Gong et al., 2013). Furthermore, the mutual information between model
inputs and in situ observations should equal to the mutual information between in situ observations and model output if the
model hypothesis completely captures the true relationship between model inputs and in situ observations. However, it’s
commonly stated that “All models are wrong” (Box, 1976) and model assumptions typically cannot fully express the true
relationship between the explanatory variables and in situ observations. Hence, the mutual information between model
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output and in situ observation is expected to be smaller than the mutual information between model inputs and in situ
observations (Gong et al., 2013). This information gap, defined as informational model uncertainty (Iwmod) is induced by poor
model assumption, formulations, and/or inappropriate model parameterizations. Therefore, the informational total
uncertainty (I is the sum of the informational random uncertainty and informational model uncertainty come naturally
given the explicitly definition of these informational uncertainties.

In this study, the explanatory variables of DCA are Tgn, Tev and the Tesr. The in situ observation and model output are in situ
USCRN soil moisture and DCA soil moisture, respectively. Leveraging eq. (7) and eg. (9), the DCA informational random
uncertainty (Irndg), DCA informational model uncertainty (Imod), and DCA total informational uncertainty (Ivw:) calculated are
calculated as:

lrng = HCN(in SitU) — |(TBh, Tav, Tef, IN SitU), (10)
Imod = 1(Ten, Tav, Tefr; in situ) — I((DCA,; in situ), (11)

and
Itot = Hen(in situ) — I(DCA; in situ) = lrng + Iviod- (12)

2.4 Partial information decomposition

The distinct informational contributions of Ten and Tgy to the DCA soil moisture are assessed through a decomposition of the
mutual information. This method partitions multivariate mutual information to unique, redundant and synergistic
components (Williams and Beer, 2010). The decomposed information components on the DCA model inputs and outputs are
expected to indicative of informational flow as model inputs are translated to end user products, and these components may
have potential for evaluating model performance. The partial information decomposition of I(Tgn, Tey; DCA) can be
expressed as

I(Ten, Tey; DCA) = Un(Ten; DCA) + Uy(Tay; DCA) +R(Ten, Tey; DCA) + S(Ten, Tayv; DCA), (13)

where Up and U, are unique information of Tgn and Tgy shared with DCA, respectively. S and R are the synergistic
information and redundant information that Ten and Tsy shared with DCA estimates, respectively. All the decomposed
components are non-negative real values (Williams and Beer, 2010).
The mutual information between Tg,and DCA and mutual information between Tgyand DCA are formulated as

I(Ten; DCA) = Up(Ten;DCA) + R(Ten, Tey; DCA) (14)

and
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I(Tev; DCA) = Uy(Tgy; DCA) + R(Ten, Tey; DCA). (15)

In this approach, Uy, Uy, S and R are unknowns in the systems of equations (13) - (15). Goodwell and Kumar (2017) showed
that the R can be formulated as

R = Rmin + Is*(Rmmi - Rmin), (16)
where
S = min {Hc:v((TTBBhSBHVc)N(TBV)}’ ()
Rumi = min[I(Ten; DCA), I(Tev; DCA)] (18)
and
Rmin = max(0, -11) (19)
The Il is the interaction information of Tgp, Tey, DCA and can be computed as:
11 =1(Ten; DCA| Tey ) - I(Ten; DCA) = Hen(Ten, DCA) + Hen(Tey, DCA) + (20)

Hen(Ten, Tev) — Hen(Ten) - Hen(Tey) - Hen(DCA) — Hen(Ten, Tey, DCA)

It is important to note that we used the point based in situ soil moisture as the ground truth in this analysis. Due to coarse
spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be able to represent the spatial
averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil moisture is 5 cm, the penetration
depth was found to be even shallower in wetter regions (Shellito et al., 2016). In fact, the L-band sensing depth was found to
as little as ~1cm (Jackson et al., 2012) and was found to vary with surface soil moisture conditions (Escorihuela et al., 2010;
Raju et al., 1995). The heterogeneity in each pixel relative to the in situ observations together with the sensing depth
disparity may influence the results of this study and can bias the estimation of informational uncertainties. We also
acknowledge the existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al.,
2012). However, most of upscaling methods are achieved under the assistance of additional reference soil moisture datasets.
This process introduces additional pieces of information in the DCA system making the separation of the uncertainty induced
by the upscaling algorithm or additional dataset from other informational uncertainties much harder. Additionally, we used
the hourly in situ data to best match the SMAP DCA soil moisture retrievals in time (within an hour). Based on current
technologies, it is difficult to find a reference dataset with high frequency in time domain and good spatial coverage. Here
we consider the informational uncertainty caused by the spatial mismatch and sensing depth mismatch between in situ and
DCA soil moisture as part of the informational random uncertainty (Irng) because the DCA is essentially a mathematical
function and does not inherently require the inputs to be at a specific resolution. The spatial resolution is often the inherent
attribute of the data. The reader should also keep these in mind while interpreting and adopting the results in this study.
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3 Results

3.1 Information quantities and system informational uncertainties

The estimated entropies across all the study sites are shown in Figure 2 while the mutual information quantities are shown in
Figure 3. The brightness temperature entropies, Hen(Ten) and Hen(Tasy), generally follow the same pattern across sites with
both having an average value of 0.37. Although the patterns of Hen(Ten) and Hen(Tey) are similar, the Hen(Ten) is slightly
more variable than Hen(Tsy) With the coefficients of variation (CV) being 0.053 and 0.046, respectively. Hen(Tesr) shares the
same average with Hen(Ten) and Hen(Tey), Whereas the pattern of Hen(Terr) is quite different (Fig. 2). On average, the Hen(in
situ) is 0.35, while Hcn(DCA) is 0.38. In general, Hen(DCA) follows the pattern of Hen(in situ) with the CV of Hen(DCA)
(0.064) being smaller than the CV of Hcn(in situ) (0.081).

As shown in Figure 4a, the entropies of the retrieved brightness temperatures and DCA model output, Hen(Ten), Hen(Tav)
and Hen(DCA), are significantly correlated with the entropy of in situ observations, Hen(in situ), while no significant
correlation is found between Hen(in situ) and Hen(Terr). The Hen(DCA) has the strongest correlation strength with Hen(in
situ) compared with other entropy quantities (Fig. 4a). As expected, the mutual information quantities (Fig. 3) are shown to
be generally smaller than the entropy quantities (Fig. 2). On average, I(Tgn, Tay; DCA) is 0.14, while the I(DCA,; in situ) and
I(Ten, Tay, Tes; in situ) are 0.07 and 0.17 (Fig. 3), respectively. I(Ten, Tay, Tesr; in situ) and 1(Ten, Tey; DCA) are significantly
correlated (0.58 and -0.30) with Hen(in situ), while no significant correlation is found for I(DCA; in situ) and Hen(in situ)
(Fig. 4b).

It is noticeable that there exists a large information gap between Hcn(in situ) in Figure 2 and 1(Ten, Tay, Tes; in situ) and
I(Ten, Tey, Tefr; in situ) and I(DCA; in situ) in Figure 3. These information gaps confirm the existence of informational
random uncertainty (lrng) and informational model uncertainty (Imod) in the SMAP DCA system. When calculating
informational quantities on a site-by-site basis and then averaging, the SMAP DCA explains 20% of the Hen(in situ) leaving
80% of the Hen(in situ) that is unexplained (Table 1) as informational total uncertainty (Ivot). 35% of the It is caused by Ivod,
while the rest is induced by Irng. The information uncertainties vary slightly across different landcovers. On average across
sites, the SMAP DCA system is capable of capturing more information of Hen(in situ) at croplands and savannas (Table 1).
Shrublands have largest absolute Irng (0.21) than other landcovers, while savannas have the largest proportion of Irng to Ivet
(Table 1). Imoa in absolute value is greater in shrublands, grasslands, and croplands with grasslands have the largest
proportion of Imes to lvor (Table 1). When lumping all the datasets together and recalculating informational quantities, we
observe that SMAP DCA captures 10% of the information in the in situ soil moisture and the proportion of Imoed t0 Itot IS
larger.

The relationship between different informational uncertainties and the Pearson correlation coefficients between in situ soil
moisture and SMAP DCA soil moisture, a commonly adopted relative model evaluation metric in SMAP studies (Chan et al.,
2016; Colliander et al., 2017), was evaluated. The I, Imod @nd Irng are shown to be related how well the SMAP DCA soil
moisture is correlated with in situ soil moisture (Fig. 5). It is found to be negatively correlated (r = -0.69, Fig. 5a) with the
Pearson correlation between in situ soil moisture and SMAP DCA soil moisture. Similarly, Imod and Irng are also shown to be
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negatively (-0.59 and -0.34 respectively) related to the Pearson correlation between in situ soil moisture and SMAP DCA
soil moisture with lyes being more influential than Irng (Fig. 5b and 5c¢). These negative relationships are consistent with
general expectations since SMAP tends to capture more information about the in situ soil moisture (i.e. lower I, Imog and
Irng) When it retrieves high quality datasets (higher correlation between in situ soil moisture and SMAP DCA soil moisture).

3.2 Partial information decomposition of DCA

The partial information decompositions were assessed on a site basis and are shown in Figure 6. The fractional contribution
of each component to that site’s mutual information between brightness temperatures and DCA estimates, I(Tgn, Tayv; DCA),
was also calculated and are given in Table 2. Generally, the majority of 1(Tgn, Tsv; DCA) is redundantly (R) shared by Tsh and
Tev, Which is about 0.08 (58% of I(Ten, Tev; DCA)) on average (Table 2). The mean values of unique information of Tgn (Un)
and synergistic information (S) of Tgn and Tg, are 0.024 (18% of I(Ten, Tey; DCA)) and 0.018 (14% of 1(Ten, Tey; DCA)),
respectively (Table 2). Compared to other decomposed information components, Uy is the smallest with its mean being 0.013
(10% of I(Tsn, Tey; DCA)). Savannas have the highest absolute and fraction of R (0.101 ,74% of 1(Tgn, Tey; DCA)) (Table 2).
In general, the DCA system is mainly dominated by R as indicated by both site wise decomposition and when lumping all
datasets together (45% of I(Tgn, Teyv; DCA)) and S is consistently the lowest (Table 2).

Through this analysis, it is shown in figure 7 that there are strong relationships between SMAP DCA retrieval quality and
decomposed information components. In general, the correlation strength between DCA and in situ soil moisture is higher
when Up, Uy and S are low and R is high. This is demonstrated by a significant correlation of these components with the
Pearson correlation between in situ and DCA soil moisture. The negative relationship between increasing S and decreasing
DCA quantity is strongest of the decomposed components, though the positive relationship between increasing R and
decreasing DCA is of similar correlation strength. This indicates that R or S contains useful information about DCA soil
moisture quality.

4 Discussion

4.1 DCA informational uncertainties

The first objective of this study is to leverage information theory to quantitatively decompose the informational total
uncertainty into informational random uncertainty and informational model uncertainty in the DCA as an approach to
understand where retrieval uncertainties arise. This information theory approach can provide new insight to SMAP modeling
diagnosis. It offers an opportunity of partitioning the total informational uncertainty in the DCA into the uncertainty due to
the input datasets and the uncertainty due to model structure and model parameterizations. This partition process cannot be
achieved by leveraging the common DCA assessment metrics (Chan et al., 2016) (e.g., Pearson correlation, ubRMSE) that
only involve the DCA soil moisture and in situ soil moisture.

The DCA model structure is inherently a hypothesis that relates the input datasets to soil moisture based on prior physical
knowledge. The DCA is thus a procedure of processing the input dataset into estimates soil moisture. Thus, models, even
those that perform the best, can only reduce the available information in its inputs and are not capable of adding new
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information about the “true” soil moisture. Hence, there is no possibility of building a model that is better than the one with
the best achievable performance of the input data themselves (yet even achieving this theoretically limit is nearly impossible)
(Gong et al., 2013). If, however, more freedom on available datasets to incorporate is given, it is possible to build models
that outperform the best achievable model performance by adding new explanatory variables which may lead to a family of
models that have completely different model structure. Based on Table 1, we find that the DCA has more informational
uncertainty in shrublands than grasslands and croplands. This might be due to stronger variability in vegetation in for
shrublands while grasslands and croplands tend to be more uniform and homogeneous. It is worth noting that these finding
are based on averaging our studied sites within different landcover categories, and results may be different while comparing
two specific sites from different landcovers. In addition, we find the proportion of informational uncertainty increases as the
data is lumped together relative to averaging these statics calculated on a site-by-site basis (Table 1). Treating all the surfaces
together as a whole does not reduce the informational total uncertainty because the lumping process contains both “high
quality” and “low quality” (as assessed by the Pearson correlation between in situ and DCA soil moisture) datasets. The
uncertainties in these datasets may accumulate while lumping them together and result in an increase in total informational
uncertainty.

The fraction that informational random uncertainty contributes to the informational total uncertainty is quite significant (65%
on average) in this study. The informational random uncertainty in the system may arises from the inherent error due to
calibration of Tgh and Tey (Al-Yaari et al., 2017), the mismatch in the scale of observations, and the presence water bodies
(Ye et al., 2015). If poorly calibrated, the soil moisture estimations can be exacerbated due to the error propagation that
hinders the correct information being expressed. Furthermore, SMAP attempts to Terr to capture both soil and canopy
temperature because the differences between canopy and soil temperature are minimized in the morning and afternoon orbits.
The Tet is computed based on a model that uses the information from average soil temperature of first layer and second layer
of a land surface model for SMAP soil moisture retrievals (O’Neill et. al., 2020a). The modeling processe may produce
erroneous Terr dataset and hence contribute the informational random uncertainty of DCA. Therefore, a better and robust
calibration strategy of Tgn and Tgy to the presence of water bodies and a comprehensive assessment of Ter may be needed to
reduce some of the information random uncertainty.

Informational model uncertainty contributes an unneglectable portion to the informational total uncertainty (35% on average).
This model uncertainty may arise from poor model parameterizations, which may vary with site soil moisture dynamics
(Hen(in situ)). As shown in figure 4b, the 1(Ten, Tev, Ter; in Situ) increases as the in situ soil moisture is more dynamic as
reflected by high values of Hen(Ten) and Hen(Tev). The raw observations (Tgsy, Ten, and Ter) provide more available
information to the system, whereas such information is not properly captured by the algorithm as reflected by low correlation
strength between Hcn(in situ) and I(DCA; in situ). Therefore, it is more likely to observe large information model
uncertainty where the soil moisture is more dynamic, which may cause a low efficiency of DCA to correctly transmit the
available information. It is known that DCA is parameterized with a set of surface and vegetation parameters such as
vegetation single scattering albedo (w), surface height standard deviation (s), etc. These parameter values are landcover
dependent and are derived from past studies as well as prior experience and some information discussions with experts, all of
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which could be biased and inaccurate (O’Neill et. al., 2020a). These parameter values also are not differentiated by landcover
microwave polarization directions and were assumed to be constant in time. It is possible that these parameters (such as w)
vary in time (Konings et al., 2017) and shift during senescence or harvesting seasons. It is observed that the proportion of the
informational model uncertainty is slightly smaller in shrublands (Table 1) (here we do not include savannas in the
discussion since this landcover only have 2 sites), while these proportions are larger in croplands and grasslands (Table 1).
This might because the model parameterizations are more reasonable in shrublands than other landcovers. In addition,
croplands and grasslands may have seasonal harvesting and therefore may more subject to changes in these values, while
shrublands may not. Additionally, when averaging informational values site-by-site, the informational random uncertainty is
a larger fraction of the total uncertainty, whereas when all data are lumped together, the informational model uncertainty is a
larger fraction (Table 1). DCA parameters are different with respect to each landcover, and the biases induced by these
parameters at each site may accumulate through the system resulting a dominance in informational model uncertainty over
informational random uncertainty when all sites are lumped together.

To summarize, this is the first attempt of leveraging mutual information approach to analyze the uncertainty components in
microwave remote sensing models. The results of this study can be further used as guidance in assessing of SMAP algorithm
and can quantitively identify where information lost in the process of SMAP soil moisture modeling. More broadly, this
study, though focused on SMAP, can be transferred and extended to analyze other remote sensing algorithms. Over many
decades, a lot of effort, resources, and time have been devoted to the launch numerous of satellite missions to retrieve the
key environmental variables such as evapotranspiration and vegetation biomass (Dubayah et al., 2020; Hulley et al., 2017).
Performing such analysis on these retrieval algorithms is expected to be beneficial to understanding the informational flow in
these algorithms and may provide insights to further improve the data retrieval accuracy as well as making maximum use of
data collected at greater expense.

4.2 Model evaluation from another perspective

The second objective of this study was to demonstrate that the partitioned information components contain useful
information about DCA model performance that does not depend on in situ soil moisture and other ancillary datasets. We
find a strong linear relationship between redundant (R) and synergistic (S) information of the polarized brightness
temperatures and Pearson correlation between DCA and in situ soil moisture. In general, it is more likely to observe higher R
and lower S (and Uy and U,) in the less woody landcovers such as croplands and grasslands, where the range of brightness
temperature may possibly be greater. These information components were found to be marginally correlated with factors
such as vegetation density (the Pearson correlation of average LAl with R, S, Uy, Uy are 0.23, -0.38, -0.54, and -0.19
respectively) and vegetation heterogeneity (the Pearson correlation of LAI standard deviation with R, S, Un, U, are 0.22, -
0.39, -0.53, and -0.22 respectively). Additionally, these informational components were also found to be correlated with the
mutual information shared between brightness temperatures and DCA estimates (the Pearson correlation of I(Tgn, Tey; DCA)
with R, S, Un, Uy are 0.6, -0.27, 0.22, and -0.16 respectively), the informational total uncertainty (the Pearson correlation of
It with R, S, Up, Uy are -0.75, 0.62, 0.55, and 0.68 respectively), informational random uncertainty (the Pearson correlation
of lrna With R, S, Up, Uy are -0.41 , 0.30, 0.05, and 0.15 respectively), and informational model uncertainty (the Pearson
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correlation of Imeg with R, S, Uy, Uy are -0.62, 0.55, 0.66, and 0.74 respectively). This indicates that these informational
components in the DCA system are not only physically driven by both vegetation density and heterogeneity but also other
factors such as how algorithm processes the information from Tgn and Tsy to produce the DCA outputs. It is more likely to
observe higher R and lower S in locations where vegetation is denser and more heterogeneous, yet the correlation of these
variables with model quality (0.47 for mean LAI and 0.42 for the standard deviation of LAI) are weaker than the correlations
found between R and S and model quality shown in figure 7. The R and S metric in this study can thus not only integrate
information about how the surface vegetation density and heterogeneity influence the algorithm performance but provided
insight into how effectively DCA algorithm uses the information from Tgh and Tgy.

Compared with other ancillary and in situ independent metrics such as correlation strength between Pearson correlation of
Ten With Tsy and the Pearson correlation between in situ and DCA soil moisture (0.67), the correlation strength of S and R
with Pearson correlation of in situ and DCA soil moisture are tighter (0.79 and -0.82 for R and S). This suggests the complex
non-linear relationship between of Tgn, Tey With DCA soil moisture is better captured by R and S as compared to the direct
correlation between the two brightness temperatures themselves. Given the strength of this relationship, the R and S holds the
potential to be used as a DCA evaluation metric that does not depend on in situ measurement and ancillary dataset. It is also
useful for SMAP DCA soil moisture users to have a rough estimation of how high the quality (as characterized as the
correlation strength between DCA and in situ) of the obtained DCA soil moisture without actually knowing the in situ soil
moisture. However, this depends on specific user requirements for data quality. In general, the DCA soil moisture tends to be
in high end in term retrieval quality (~ 0.75 in Pearson correlation) when the R is greater 0.1 or S is smaller than 0.015. It is
important to note that the decomposed information components are dependent on the DCA parameterizations (e.g., w, h. etc.)
that may influence how the Tsn and Tgy are probabilistically linked with the DCA and hence may alter the partitioned
information components.

4.3 Approach Limitations

While we expect that this approach can be generalized to analyze other remote sensing models, it may be difficult to
compute the joint probability density functions for models with high-dimensional inputs. Difficulty in determining the joint
probability density functions hinders the estimation of high dimensional joint entropy and mutual information components,
and these are still open questions in the field of information theory. Although there exist serval data dimension reduction
techniques, these dimension reduction techniques are mostly based some assumptions (Xu et al., 2019). In practice, most of
the systems with high dimension inputs tend to be complex. Therefore, there is a strong risk of introducing additional
uncertainty if one chooses an inappropriate technique.

It is important to understand that SMAP DCA system retrieves soil moisture with the help of vegetation water content
climatology derived from the MODIS NDVI data stream. This is specified as a set value for each location and day of year
combination and is used to estimate the unknown vegetation optical depth (O’Neill et. al., 2020a). The reader should
keep in mind that this study considers such data as a dynamic time-varying parameter and it is not treated as a data input in
this study. Adding NDV1 as a data input would result in I(Tgn, Tey, Tefr, NDVI; in situ) being larger than or equal to I(Tgn, Tay,
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Tes; in situ) in the calculation of Irng, and therefore Irng Would decrease. Since, It only considers DCA output and in situ
data it is not altered by adding dynamic parameters and Imoq Would therefore increase. Thus, consideration of additional
dynamic parameters in this informational assessment would serve to shift uncertainties from those attributed to the input data
themselves to uncertainties attributed to the model structure and parameterizations.

This study was conducted only at locations where in situ soil moisture is readily available. It could be an interesting topic to
explore if, and how, information-based uncertainty analysis can be applied in the locations without in situ soil moisture
measurements. We would expect the informational uncertainty analysis to provide the estimates of random and model
uncertainties. The best performance we can expect from this current uncertainty analysis is to use all the available datasets
we have; yet we believe that uncertainty estimations of this approach should be stabilized given adequate representative
locations and data records.

5 Conclusions

This study differentiates and quantifies the uncertainty sources in the SMAP DCA using information theory. We found that
on average DCA soil moisture explains 20% of the information in the in situ soil moisture leaving 80% unexplained. Among
the unexplained information, 65% is informational random uncertainty that is caused by the inherent stochasticity of the
explanatory variables of SMAP DCA and a lack of additional explanatory variables in the system, while the rest of the
informational uncertainty is caused by inappropriateness of the assumption of DCA model structure and parameterizations.
We show that informational random uncertainty contributes a larger proportion of the informational total uncertainty across
different landcovers. However, the informational model uncertainty contributes more to total uncertainty when lumping all
the datasets together. The performance of SMAP DCA is negatively correlated to all the information uncertainties, with the
informational model uncertainty being more reflective of overall SMAP DCA retrieval quality than the informational random
uncertainty.

The decomposition of the mutual information has shown that all decomposed components are significantly related to the
Pearson correlation between in situ and DCA soil moisture, with the redundant and synergistic information being the
strongest. Good DCA model performance (as measured by Pearson correlation between in situ and DCA soil moisture) is
more likely to be found in locations where the redundant information of brightness temperatures shared with DCA soil
moisture is high and is more dominant relative to other components. The informational uncertainty decomposition analysis
opens a new window for SMAP algorithm uncertainty diagnosis. SMAP DCA users may examine to the R and S components
to have an approximate estimation of the soil moisture data quality obtained when no in situ soil moisture is readily available.

Code availability
The code regarding the SMAP dataset time series, mutual information and partial information decomposition
calculation can obtained from https://github.com/libonancaesar/HESS_Information_Uncertainty

Data availability
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SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 7 is acquired from US National Snow and Ice
Data Center (https://nsidc.org/data/smap). The in situ soil moisture is accessible through U.S. Climate Reference Network
(https://lwww.ncdc.noaa.gov/crn/). The leaf area index dataset can be accessed through Oak Ridge National Laboratory
Distributed Active Archive Center (https://modis.ornl.gov/globalsubset/).
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Figure 2 Entropies of horizontally polarized brightness temperature (Tgn), vertically polarized brightness temperature (Tgy),

in situ soil moisture, DCA soil moisture, and soil effective temperature (Tes) across the study sites. The sites are ordered by

longitude (West to East).

695

700

22



—o— [(Tan, Tav, Ter; in situ)
025 —®— I(Tsn Tay; DCA)

« By |
~ }MN’N\

o
-
(4]

Mutual information
o
=)

0.05
0.00 . .
o QU SFEUOXCHNEENOOAUIL COTCOCOS VO UILIC O UCCoRS N0 OCRVRTDC Sca
R e S A B D R R B e s SPctatatanaass
T cAESEm- —Ors 8RQESNE 2SR 59o0 sl 0T eS Ur 5 890358388538
= £ 352 G 8=EC5R06E EaGsSM52IEE0L0 M0 5, X85 SENEAIsSSG0
[SN7)) 0 =R s wdo 34T Do 5 62 < WE=d0on owSsc O] om
- = Tq O ==S2Z00Q TopO T 0= Z3 3
= 5 9 o0 0] o0 o z
@ X g © = *
= 5 o
Study sites
705 y
Figure 3 Mutual information between horizontally polarized brightness temperature (Tsn), Vvertically polarized brightness
temperature (Tgy), soil effective temperature (Texr) and in situ soil moisture; mutual information between horizontally
polarized brightness temperature (Tgn), Vvertically polarized brightness temperature (Tsy) and DCA soil moisture; mutual
information between DCA soil moisture and in situ soil moisture. See figure 2 caption for site ordering.
710
715

23



720

725

730

735

Hewl(Ten) r=0.42, p<0.05
Hew(Tey) r=0.36, p<0.05 a
¥ Hew(DCA) r=0.47, p<0.05
® Hewl(Terr) r=—0.2, p>0.05

0450 ™

0.425 v
v v
® A4
0.400 v ¥y
-
e &%v ‘ . Shgl
i
§0375 -~ — e _.vt“ e w‘_'gf-."
E 5. ° TEhargly o,
L M 2P o la" o =
- i e °
0.350 = ian
= . ®
- = Ll
- v ¥ "'m ® o °
o %
0.325 -
v
0.300 >
v
0.275
026 028 030 0.32 0.34 0.36 0.38 0.40

Entropy of in situ, Hen(in situ)

® (Tgn Toy, Tem in situ) r=0.58, p<0.05

025 ¢ |(Tan, Teui DCA) r= —0.30, p<0.05 bee
B /(DCA;in situ) r= —0.12, p>0.05
*
2
0.20 . “ **
_ . o stontr @,
o ° :’ ka * o
2 *® o2
£ 015 = PR I P
. - [ ]
5 . T ot D, %S e o %
= ~— Tes v R
% re 'o @ 0 g% Tr—._
= ] \. ..‘o LY | o®
> L ] u
= 0.10 o [ | ]
m i | °
e — ‘_.. ‘.l. -
| u [ [] e — .
"a Rfmay B
0.05 = ] L] Bl |
| | - "
|
0.00
026 028 030 032 034 036 038 040

Entropy of in situ, Hen(in situ)

Figure 4 Entropy of in situ soil moisture against the entropies of DCA soil moisture, horizontally polarized brightness
temperature (Ten), vertically polarized brightness temperature (Tgy) and soil effective temperature (Terr) () and mutual

information quantities (b).

24



’ T~ . r=-0.69, p<0.05

0.8 -~ ."4 .

=}
[}
o"!
he
I'

<
I~

e  Shrublands
e Grasslands
Croplands
Savannas
o  Mixed

Pearson correlation between
SMAP DCA and in situ (unitless)
0
[ ]
[ ]

0'00.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350
SMAP informational total uncertainty, /74¢

1.0
—_ e r=—20.59, p<0.05
% ~.2 . Ve .
c O &) L4
o= 0.8 "-Q_,_._L? : . .
o c B e _°
=3 Ity % e
== ° o %y .
8 =S Yl ~ ]
B . -
%06 e cNmEE
'.8 [ LI .
T = [} ."'---._h
i e f—
o) c - t—
=S t = ~..0
Q T~
8« 04
cO e  Shrublands
o0 ®
] o e Grasslands
;_3 % 0.2 s  Croplands L
I3} Savannas
* Mixed
0.0
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
SMAP informational model uncertainty, /yoq
1.0
%\ q- A . . r= —0.3{, p<0.05
.
208 o ° +° 03 . o 1
o 'c Tre—ee s e
=5 Th—. . % .
== . . . ————. .
8 3 * . T o
= . . Tl
5 %06 ¥ o o ———
&< T *
o] *
g & - ¢ .
3 04
cO e  Shrublands
o0 .
@ N e Grasslands
§ % 0.2 s Croplands .
n Savannas
s  Mixed
00 0.14 0.16 0.18 0.20 0.22 0.24

SMAP informational random uncertainty, /g¢

Figure 5 SMAP informational total uncertainty (a), SMAP informational model uncertainty (b) and SMAP informational
random uncertainty against Pearson correlation between in situ soil moisture and DCA soil moisture

25



B Redundant information of Tgp and Ty

H Synergistic information of Tpy, and Tg,

HEl Unigue information of Tz,

Unigue information of Tz,

a[[IAoE|g
——— e LI0)CUSOD
e | 3]SOOAN
MS UojmaN
mm \\, LUOJMON
i LIBPSPEL)
—ee—— [210}p0Y
euoqqeys
= sBuLds AjjoH
A0 IYD
— s SOUIOY 59Q
uydor
ET T

abplpoos)

s|e4 XnoIg

M sieming

NAA Jojem||1S

INquIp3

i LIS

ussplagy

ajuolg

ausld
Kapreo
UBLUIILA
e - |[9MPOCD)
——— s 1S |JOMPO0D)
alebypoN
aoysainpy
——eeeeessssss SUELUELIOA]

— —eeee— LOIJOUNM JOYIUE
ojegng
BIOPIA
uosLieH
— s 2)UNT 27
aouepuns
uunpy
N3 Uied HOM
3N U0 HOA
———— SS0N1D) SET
QIC00G
830NUS|A
ZIL0D)
Japued
anesouiq
— s SUUE||| AL

A1) UrRUBLG

uoqa
Ale s
02y
BLINA
e Ee— O Y

— —— AIN2JO)
Aydanpy

Study sites

—mm OUEY OGS
olue(
Aeq uyor
Aally

= paoIaly

0.16

= a =] [= = 5 S
susuodwon COEMOQEOD&U uonewLIol |eaed

=
-

™~ o @K o

o =]
< 2
=]

0.04

Figure 6 Partial information decomposition components between horizontally (Tgn) and vertically (Tgy) polarized brightness

temperature and DCA soil moisture. See figure 2 caption for site ordering.

740

745

750

26



1.0

0.6

Pearson correlation between
SMAP DCA and in situ (unitless)

0.0

1.0

0.6

Pearson correlation between
SMAP DCA and in situ (unitless)

0.0

0.05

. * = —0.62, p<0.05
L.
"'HQ_:‘ o’ O °
Lt Sy L N L]
. "\' L o
B .
~e
® e® \'\,
. .
[ ] \_\..0
e ®
e
e Shrublands
® Grasslands .
e Croplands
Savannas
e Mixed
0.01 0.02 0.03 0.04
Unique information of Tgp
> =—-0.82, p<0.05
., ®
L
[ ] )’. ® ®
° e.9
% > $
° o
[ ] [ \.{. °
.
‘. “ \’\.
b
~.
[} ~,
~,
e Shrublands
e Grasslands
e Croplands
Savannas
® Mixed
0.01 0.02 0.03 0.04

0.05

Synergistic information of Tgp and Tg,

1.0
¢ . = —-0.67, p<0.05
A+
e ° -~
08 To~ g b
\.,.. ®
..~-\. A e ©®
o ~. .
° .\..‘__\. e °
0.6 ' y ~.e
i P P \_\. 5
~._ "
® o
(] ‘-.\_.\
., Py ° ®
0.4
®
® Shrublands
0.2 ® Grasslands °
o Croplands
Savannas
e Mixed
0.0
0.005 0.010 0.015 0.020 0.025  0.030
Unique information of Tg,,
1.0
o~
-~
= 079 p<005 o
/ ®
/
0.8 .... ® P
. " :
- ° o oo
) e L]
4
0.6 [ /‘/ ° - [}
o % ° Y
o
/./ []
[ ]
o ®
0.4
°
® Shrublands
02g ® Grasslands
® Croplands
Savannas
e Mixed
0.0
0.02 004 006 008 010 012 0.14 0.16

Redundant information of Tg, and Tg,

Figure 7 Partial information decomposition components between horizontally (Tgn) and vertically (Tgy) polarized

755

760

27

brightness temperature against Pearson correlation coefficient between in situ and DCA soil moisture.



Informational random Informational model Informational total Number of

Landcover uncertainty, Irnd uncertainty, Imod uncertainty, ltot Sites
(and its % of Itot) (and its % of ltot) (and its % of Hen(in situ))

Shrublands 0.21 (68%) 0.10 (32%) 0.31 (87%) 5

Grasslands 0.18 (63%) 0.11 (37%) 0.28 (81%) 32

Croplands 0.18 (66%) 0.10 (34%) 0.28 (78%) 15

Savannas 0.16 (73%) 0.06 (27%) 0.22 (64%) 2
Mixed 0.19 (68%) 0.09 (32%) 0.28 (79%) 4
Lumped 0.14 (46%) 0.17 (54%) 0.32 (90%) 58
Overall 0.18 (65%) 0.10 (35%) 0.28 (80%) 58

Table 1 The amount of informational uncertainties in percentage. The values in the table are the average of each landcover.
765  The values in “Overall” are the average of all the sites. The “Lumped” field is computed using all available dataset.
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Unique information Unique information of  Synergistic information ~ Redundant information of

Landcover  of Ten(Un) (and its % Tev (Uy) (and its % of Tenand Tev (S) (and  Ten and Tev (R) (and its % Mutual information  Number

(I(Ten, Tey; DCA)) of sites

I(Ten, Tev; DCA)) I(Ten, Tev; DCA))  its % I(Ten, Tev; DCA)) I(Ten, Tev; DCA))

Shrublands 0.034 (28%) 0.019(16%) 0.029 (25%) 0.037 (31%) 0.120 5
Grasslands 0.028 (20%) 0.013 (10%) 0.019 (14%) 0.079 (56%) 0.140 32
Croplands 0.018 (13%) 0.013 (11%) 0.014 (11%) 0.089 (65%) 0.134 15
Savannas 0.008 (7%) 0.006 (5%) 0.012 (10%) 0.101 (78%) 0.128 2
Mixed 0.013(11%) 0.007 (6%) 0.011 (9%) 0.092 (74%) 0.123 4
Lumped 0.014 (19%) 0.019 (25%) 0.008 (11%) 0.034 (45%) 0.076 58
Overall 0.024 (18%) 0.013 (10%) 0.018 (14%) 0.080 (58%) 0.135 58

Table 2 The partial information decomposition components. The values in the table are the average of each landcover. The
values in “Overall” are the average of all the sites. The “Lumped” field is computed using all available dataset.
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