
1 

 

Information - based uncertainty decomposition in dual channel 

microwave remote sensing of soil moisture 

 

Bonan Li1, Stephen P. Good1 
 5 

1Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR 97330, USA 

Correspondence to: Bonan Li (libon@oregonstate.edu)  

 

Abstract. NASA’s Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface soil 

moisture using dual L-band microwave retrievals of horizontal, TBh, and vertical, TBv, polarized microwave brightness 10 

temperatures through a modeled mechanistic relationship between vegetation opacity, surface scattering albedo (i.e. ‘tau-

omega’ model)and soil effective temperature (Teff). Although this model has been validated against in situ soil moisture 

measurements across sparse validations sites, there is lack of systematic characterization of where and why SMAP estimates 

deviate from the in situ observations. Here, soil moisture observations we assess how the information content of in situ soil 

moisture observations from the US Climate Reference Network contrasts with (1) the information contained within raw SMAP 15 

observations (i.e. ‘informational random uncertainty’) derived from TBh, TBv and Teff themselves, and (2) with the information 

contained in SMAP’s Dual Channel Algorithm (DCA) soil moisture estimates (i.e. ‘informational model uncertainty’) derived 

from the model’s inherent structure and parameterizations. are used within a mutual information framework to decompose the 

overall retrieval uncertainty from SMAPs Modified Dual Channel Algorithm (MDCA) into random uncertainty derived from 

raw data itself and model uncertainty derived from the model’s inherent structure. The results show that, on average, 82% of 20 

the information in the in situ soil moisture is unexplained uncertainty in by SMAP DCA soil moisture. 36% of the unexplained 

information is caused by the loss of information in the DCA model process while the remainder is induced by a lackinadequacy 

of additional explanatory power beyond TBh, TBv and Teff. Overall, retrieval quality of SMAP DCA soil moisture is negatively 

correlated with the informational uncertainties, with slight differences across different landcovers. The informational model 

uncertainty (Pearson correlation of -0.51) was found to be more influential than the informational random uncertainty (Pearson 25 

correlation of -0.37). The DCA has a higher informational total uncertainty (88% of unexplained information of in situ soil 

moisture) in shrublands while the informational model uncertainty (31% of the informational total uncertainty) in shrublands 

is less dominant than other landcovers. We find the fraction of algorithm induced uncertainty is negatively correlated (pearson 

r of -0.48) with correlations between in-situ observations and MDCA estimates. A decomposition of mutual information 

between TBh, TBv and DCA soil moisture shows that on average 575% of the mutual information providedis redundantly shared 30 

by TBh and TBv is redundant. The amount of information redundantly , while the information provided uniquely from both TBh 

and TBv is 15%. The fraction of information redundantly provided by TBh and TBv was found to be tightly correlated (pearson 

Pearson correlation of -0.83r = -0.7) to how well the DCA correlated to in situ soil moistureobservations.  Higher redundant 

information provided by TBh and TBv tends to be found in landcovers with less woody components. The DCA retrieval quality 

improves as TBh and TBv provide more redundant information for the DCA soil moisture. This suggests that the informational 35 
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redundancy between these remotely sensed observations can be used as independent metric to assess the retrieval quality of 

algorithms using these data streams. This study provides a baseline approach that can also be applied to evaluate other remote 

sensing models and understand informational loss as satellite retrievals are translated to end user products. 

Thus, MDCA overall quality improves as TBh and TBv provide more redundant information for the MDCA. This suggests the 

informational redundancy between these remotely sensed observations can be used as independent metric to assess the overall 40 

quality of algorithms using these data streams. This study provides a baseline approach that can also be applied to evaluate 

other remote sensing models and understand informational loss as satellite retrievals are translated to end user products. 

 

 

 45 

 

1 Introduction  

Accurate information on soil moisture is of great importance to understand various of biophysical processes in hydrology, 

agronomy, and ecosystem sciences (Bassiouni et al., 2020; Uber et al., 2018). The poor spatial representativeness of in-situ 

soil moisture sensors, combined with their labor-intensive installation and maintenance, impedes the application these sensors 50 

to understand large scale ecosystem phenomena (Babaeian et al., 2019; Petropoulos et al., 2015). Spaceborne passive 

microwave remote sensing has been developed as a reliable method to estimate surface soil moisture at large scales 

(Petropoulos et al., 2015). It leverages the large discrepancies in dielectric properties between liquid water and dry soil that 

result in a high dependency of soil dielectric constants on soil moisture (Njoku and Entekhabi, 1996). Various microwave 

frequencies have been available to date, amongst which the L-band (1.4-1.427 GHz) microwave frequencies were found to be 55 

more desirable for soil moisture estimation because they can sense soil moisture at a relatively deeper layer (~5cm) and greater 

vegetation penetration (Njoku and Entekhabi, 1996). Though microwave remote sensing has been investigated for decades, 

significant uncertainties still exists in both microwave radiometry and in the algorithms used to translate microwave 

observations to soil moisture estimates. 

 60 

L-band remote sensing soil moisture estimation uses a radiometer to measure surface emission intensity, which is a linear 

function of brightness temperature. The brightness temperature is linked with soil moisture and vegetation opacity through the 

‘tau-omega’ emission model and parameterized by soil and vegetation functions (Njoku and Entekhabi, 1996). The ‘tau-omega’ 

model rationale has been adopted by NASA’s Soil Moisture Active-Passive (SMAP) missionSMAP, which is one of the earth 

observation missions dedicated to soil moisture estimation at L-band microwave frequency. SMAP implemented two primary 65 

algorithms: (1) single channel algorithm (SCA) that uses one polarized brightness temperature as primary input to retrieve soil 

moisture and (2) the dual channel algorithm (DCA) that can retrieve soil moisture and vegetation opacity simultaneously by 

taking the polarized brightness temperature information in both horizontal and vertical directions (O’Neill et al., 2020)(Peggy 

O’Neill et al., 2018). There is strong interest in the DCA approach because of  its independent estimation of vegetation opacity 

in lieu of the specified vegetation climatology employed by the SCAits independent estimation of vegetation water status. 70 

Additionally, it has been suggested that using a time-integrated vegetation opacity, as is employed in the multi-temporal dual 

channel algorithm (MT-DCA) for instance (Piles et al., 2016), improves the estimates of soil and vegetation state. These 
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contrasting approaches, as well as other studies on SMAP’s temporal polarized ratio algorithm (TPRA) (Gao et al., 2020) and 

regularized dual channel algorithm (RDCA) (Chaubell et al., 2019), suggested there is still uncertainty about how SMAP 

observations of horizontal and vertical brightness temperature can be best translated into estimates of surface properties. 75 

Although SMAP can provide spatially explicit soil moisture estimates that have been shown to be useful to understand a set 

of ecohydrological problems (Jadidoleslam et al., 2019), the soil moisture retrievals are still subject to significant amount of 

uncertainty due to the imperfection of the model and the forcing datasets. The success of retrieving soil moisture and vegetation 

opacity are interdependent (Konings et al., 2017) and it is important to consider the how the amount of duplicate information 

carried within a set of observations limits the number of parameters to be inferred (Konings et al., 2015). Therefore, it is critical 80 

to diagnosis and quantify the causality of the uncertainty caused by the SMAP algorithm in order to improve the soil moisture 

retrieval accuracy.  

 

SMAP soil moisture products have been extensively validated against well-calibrated in situ soil moisture using unbiased root 

mean square error (ubRMSE), bias, RMSE and Pearson correlation coefficients at ‘core’ and ‘sparse’ validation sites (Babaeian 85 

et al., 2019; Colliander et al., 2017). Additionally, the triple collocation method, which combines in situ measurements, SMAP 

observations, and model fields, has been used to characterize systematic biases and error variances (Chen et al., 2017, 2018). 

These validation investigations found that SMAP met the required accuracy target (ubRMSE 0.04 cm3/cm3) on average, while 

there exist some locations where the performance of SMAP did not met the expected performance. All these validation studies 

were focused on finding the general uncertainty of SMAP (which is the deviation of SMAP soil moisture from the in situ or 90 

reference soil moisture) and cannot diagnose and differentiate where the uncertainty arise. Indeed, the causality of uncertainty 

of SMAP soil moisture may arise from two aspects: (1) the uncertainty due to the inaccuracies from forcing the datasets and 

(2) the uncertainty due to poor model form structure and parameterizations. In addition, the evaluation metrics used in these 

evaluation studies are either heavily depend on in situ soil moisture or additional reference dataset, which does not allow for 

SMAP which challenges SMAP to be validated in some remote and inaccessible areas.   95 

 

The challenges faced by previous SMAP evaluation investigations can be resolved by leveraging two information quantities 

(Shannon, 1948): (1) Shannon’s entropy, which is the amount of information required to fully describe a random variable and 

(2) mutual information, which represents the amount information of knowing one variable given the knowledge of another or 

a set of random variables.(1) Shannon’s entropy, which describes the inherent uncertainty of a random variable and (2) mutual 100 

information, which represents the reduction in uncertainty of one random variable given the knowledge of another random 

variable. Gong et al. (2013) leveraged estimated these information quantities to partition overall uncertainty in the hydrological 

modeling process into two categories: (1) random uncertainty that arises by incompleteness of exploratory variable and/or 

inherent stochasticity of forcing datasets, and (2) model uncertainty that is contributed by poor model parameterization or 

formulation. The random uncertainty is not resolvable for the given system as it isthey are only related to the probability 105 

distribution of the forcing data itselfdensities, while the model uncertainty is reduceable by a better model parameterization.  

 

Given that both horizontal and vertical polarized brightness temperatures are measured by SMAP, it is unclear how each 

polarization contributes information to the overall performance of the DCA. Recent research on partial information 
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decomposition has provided tremendous opportunities for understanding the nuanced interactions among different variables 110 

and model structure. Initially proposed by Williams and Beer (2010) and further advanced by Goodwell and Kumar (2017), 

this approach has been used to understand environmental processes that links two source variables with a target variable by 

partitioning multivariate mutual information into unique, redundant and synergistic components.. It partitions multivariate 

mutual information into unique, redundant and synergistic components. The unique information represents the amount of 

information shared with the target variable from each individual source variable separatelyonly from each individual source 115 

variable. Synergistic information is the information provided to the target while both source variables act jointly. Redundant 

information is the overlapping information that both source variables redundantly provide to a target. Information partition 

brings a new insight into by unambiguously characterizing the interdependencies between source variables and a target variable 

without any underlying modeling assumption. The partitioned components hold potential may be used as a new model 

evaluation metric that can be used to assess SMAP algorithm performance in remote and inaccessible regions. 120 

 

In this study, we focus on (1) quantifying the random uncertainty and model uncertainty in SMAP’s Modified Dual Channel 

Algorithm (MDCA) and understand how model uncertainty is related to MDCA retrieval accuracyquality; (2) developing an 

in situ and ancillary data independent SMAP MDCA evaluation reference metric using partial information decomposition 

between SMAP MDCA soil moisture and horizontally polarized (TBh) and vertically polarized brightness temperature (TBv). 125 

 

2 Material and Methods 

2.1 In situ soil moisture 

The US Climate Reference Network (USCRN) is a systematic and sustained network that is operated and maintained by 

National Oceanic and Atmospheric Administration (NOAA) to support climate-impact research with continuous high-quality 130 

field observed soil moisture, soil temperature and windspeed at different temporal scales (Bell et al., 2013). The USCRN 

provides soil moisture observations at five different standard depth (5 cm, 10 cm, 20 cm, 50 cm and 100 cm) in 114 locations 

of Contiguous U.S. (CONUS). The in situ datasets have been used for a wide variety of research such as drought monitoring 

and satellite soil moisture evaluations (Mishra et al., 2017). The hourly soil moisture datasets at the depth of 5 cm wereas 

collected from 51 (12 croplands, 30 grasslands, 5 shrublands, 4 mixed)8 selected USCRN stations (Fig. 1) based on the 135 

availability in situ soil moisture dataset and the data quality of SMAP pixels in the study period of 03/31/2015 – 

10/01/20192020.  

 

2.2 MDCA soil moistureSMAP Level-2 datasets  

In this study, we acquired horizontally polarized brightness temperature (TBh), vertically polarized brightness temperature (TBv), 140 

and soil effective temperature (Teff), MDCA soil moisture and the fraction of landcover at each selected USCRN station from 

SMAP Level-2 Radiometer Half-Orbit 36 km EASE-Grid Soil moisture, Version 7 data product (O’Neill et al., P. E., S. Chan, 

E. G. Njoku, T. Jackson, R. Bindlish, 2020)t in the same period as the USCRN soil moisture at every stationhe SMAP Enhanced 

Level-2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture (https://nsidc.org/data/smap), Version 3 in the same period of 

the USCRN soil moisture at every station (Peggy O’Neill et al., 2018). The extracted data series were filter by the their 145 

respective quality flags ofand the TBh, TBv and MDCA soil moisture values were kept only when they all simultaneous pass 
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quality controsoil moisture quality flagsl. We only keep the data points when they all simultaneous pass quality control. MDCA 

retrieves soil moisture based on the ‘tau-omega’ model (O’Neill et al., , P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, 

2020), which is a well- known radiative transfer-based soil moisture retrieval algorithm in the passive microwave soil moisture 

community. It requires the brightness temperatures (TB) as the main inputs, soil effective temperature as an ancillary input, and 150 

is parameterized based onby overlaying vegetation and soil surface information. The MDCA iterativelyinvert feeds the ‘tau-

omega’ model with initial guesses of surface soil moisture and vegetation optical depth. The retrieved soil moisture is assumed 

to be close to the real value when the estimated brightness temperatures are similar to the satellite observed brightness 

temperature (Konings et al., 2015; O’Neill et al., P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, 2020) The guesses of 

soil moisture and vegetation optical depth are adjusted iteratively until they minimize the difference between satellite observed 155 

TB and inverted TB from a least square perspective. Compared to the SCAs, the MDCA uses a different polarization mixing 

factor function and different values of vegetation single scattering albedo updates roughness and the polarization mixing 

parameters (Chaubell et al., 2020).  

 

The SMAP fraction of landcover data field provides the fraction of top three dominate landcovers that were classified by 160 

International Geosphere – Biosphere Programme (IGBP) ecosystem surface classification scheme at each pixel (Seitzinger et 

al., 2015). The IGBP classified land surface into water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous 

needleleaf forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, woody savannas, savannas, 

grasslands, permanent wetlands, croplands, urban and built-up, croplands/natural vegetation mosaics, snow and ice, barren. In 

this study, the landcover of the study site was classified as the most dominate landcover if the fraction of the most dominate 165 

landcover was greater than 50%. Otherwise, the landcover of the study site is classified as the “mixed” landcover. Furthermore, 

the study sites that are dominated by woody savanna were classified as savannas, by closed/open shrublands were classified 

as shrublands, by cropland/natural vegetation mosaics were classified as croplands. 

 

 170 

2.3 Information - based uncertainty decomposition  

Shannon’s entropy is a quantity that express the inherent uncertainty associated with a random variable. Commonly, modeling 

efforts are focused on reducing the uncertainty in the variable of interest, which is denoted as H(Yobs), using other explanatory 

variables through some physically- or empirically- based models. Most of models being constructed of natural processes are 

not perfect, and the model outputs are often not capable of capturing the information of the “truth”. In theory, there exists a 175 

best achievable model performance that describe the variable of interest the best for a particular system given the available 

datasets (Gong et al., 2013); yet detailed structure of best achievable model performance is often unknown. Although the 

detailed structure of best achievable model performance maybe remain unknown, mutual information, denoted as I(XInputs; Yobs) 

where XInputs are the available inputs and Yobs is the in situ measured variable of interest, can provide a good benchmark measure. 

The quantity I(•;•) represents the amount of uncertainty reduced due to the knowledge of either variable in this function.  180 

It should be noted that a model is a formal hypothesis that maps input datasets space to output dataset space in the form 

of a mathematical function. Therefore, the model hypothesis (function), at least, cannot provide new information. This is 

expressed as the data processing inequality which states that “no clever manipulation of the data can improve the inferences 
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that can be made from the data” (Cover and Thomas, 2005). Formally, if random variables X, Y, Z are said to form a Markov 

chain (denoted by X→Y→Z), wherein the conditional distribution of Z only depends on Y and is conditionally independent of 185 

X, then X can only influence Z via the knowledge of Y and knowing Z can only decrease the amount of X tells about Y. The 

formula of data processing inequality is defined as: 

 

I(X, Y)  ≥  I(X, Z) (1) 

 

Hence, given the measure of best achievable model performance and data processing inequality, the relationship between input, 190 

output, and in situ measurements in any modeling processes can be expressed as follows: 

 

H(Yobs) ≥  I(XInputs; Yobs)  ≥  I(Ymodel; Yobs) (2) 

 

The relationship equation (2) allow us to differentiate two types of uncertainties, (1) random uncertainty, which unresolvable 

due to the randomness of the input datasets, that is the difference between H(Yobs) and I(XInputs;Yobs); (2) model uncertainty, 195 

which is resolvable due to the inadequacy of model, that is the information gap between and I(XInputs; Yobs) and I(Ymodel;Yobs).  

In our case, XInputs are TBh and TBv, Yobs is the in situ surface soil moisture, Ymodel is MDCA soil moisture. The H(Yobs) can 

be calculated as: 

 

𝐻(𝑌obs) =  − ∑ 𝑝(𝑦) log2 𝑝(𝑦)

𝑦∈𝑌𝑜𝑏𝑠

 (3) 

 200 

Where p(y) probability mass function of Yobs that is estimated by a fixed bin method (Freedman and Diaconis, 1981). This 

method calculates H(Yobs) in unit of bits. Previous study has indicated that this method may underestimates the true entropy 

(Paninski, 2003). Therefore, we leveraged the simple Miller-Madow corrected entropy estimator (Chen et al., 2018a) and 

applied a normalization method to remove the bias that may cause by the heterogeneity in length of available datasets across 

all stations. We acknowledge that there exist several entropy correction and estimation methods. However, we pick this Miller-205 

Madow correction based on its simplicity and effectiveness. The corrected and normalized entropy is then expressed as follows:  

 

HCN (Yobs) =  
𝐻(𝑌obs)+ 

𝐾− 1

2𝑛

𝑙𝑜𝑔2
𝑛  

(4) 

 

Where HCN(Yobs) is the Miller-Madow corrected and normalized entropy, hereafter entropy, n is the number of data points that 

were used to calculate the normalized entropy, K is the number of non-zero probabilities associate based on the fixed binned 210 

method.  

The computation of two types of uncertainties require the estimation of I(TBv, TBh; Yobs) and I(YMDCA; Yobs), which can be 

computed via the following equation:  

 



7 

 

I(TBh, TBv; Yobs) = HCN(TBh, TBv) + HCN(Yobs) - HCN(TBh, TBv, Yobs) (5) 

 215 

Where HCN(TBh, TBv) and HCN(TBh, TBv, Yobs) the estimated joint entropy that describes the uncertainty associated with a set of 

variables. HCN(YMDCA; Yobs) can be estimated by replacing the TBh, TBv with YMDCA on both side of the equation. It worth noting 

that the joint entropies are estimated using equation (3) except they require the estimation of joint probability mass functions 

that are also estimated using the fixed bin method (Freedman and Diaconis, 1981). 

 220 

The fundamental quantity of information theory is Shannon’s entropy, which represents the amount of information required to 

fully describe a random variable (Cover and Thomas, 2005). Shannon’s entropy is the basic building block of computing 

mutual information and the informational uncertainties. The entropy of a single random variable is defined as 

H(X) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑥 ∈𝑋 𝑝(𝑥), (1) 

where p(x) is the probability mass function of random variable X. The estimation of p(x) often involves discretizing the values 

of X into a set of bins and then the p(x) of a specific bin is computed by dividing the total number of datapoints within a 225 

specific bin by the total of number of data points of X. The number of bins in this study is estimated by Freedman-Diaconis 

binning method (Freedman and Diaconis, 1981). The entropy calculated by eq. (1) is in unit of bits.  

 

Previous study has indicated that this method (eq. (1)) may underestimate the true entropy (Paninski, 2003). Therefore, we 

leveraged the simple Miller-Madow corrected entropy estimator (Zhang and Grabchak, 2013) and applied a normalization 230 

method to remove the bias that may cause by the heterogeneity in length of available datasets across all stations. We 

acknowledge that there exist several entropy correction and estimation methods. However, we select the Miller-Madow 

correction based on its simplicity and effectiveness. The corrected and normalized entropy is then expressed as 

HCN (X) =  
𝐻(X) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (2) 

where HCN(X) is the Miller-Madow corrected and normalized entropy of random variable X (hereafter entropy), H(X) is the 

uncorrected entropy from eq. (1), n is the number of data points of X , K is the number of non-zero probabilities (bins contains 235 

more than one data point) based on the fixed binned method (Freedman and Diaconis, 1981). In this study, all entropies of 

single random variables in the later equations (i.e., HCN(TBh), HCN(TBv), HCN(in situ) etc.) are computed using the combination 

of eq. (1) and eq. (2) with the replacement of p(•) by their individual probability mass functions. 

 

The joint entropy is a critical intermediate information quantity to calculate these informational uncertainties. It represents the 240 

amount of information required to describe a set of random variables. The joint entropy for two random variables is defined 

as 

H(X, Y) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑦𝜖𝑌 𝑝(𝑥, 𝑦)𝑥∈𝑋 , (3) 

where p(x, y) is the joint probability mass function associated with X and Y that is estimated by the same method mentioned 
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above. The same normalization and correction method of eq. (2) is applied to joint entropy of eq. (3). The entropy after the 

correction and normalization is formulated as 245 

HCN (X, Y) =  
𝐻(X,Y) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (4) 

where HCN(X, Y) is the corrected and normalized joint entropy of random variable associated with {X, Y}, H(X, Y) is the 

uncorrected entropy from eq. (3), n is the number of data points that were used to calculate the normalized joint entropy 

(hereafter joint entropy), K is the number of non-zero joint probabilities based on the Freeman and Diaconis method (Freedman 

and Diaconis, 1981). All the joint entropies that are associated with two or more random variables in the later equations (i.e., 

HCN(in situ, DCA), HCN(TBh, TBv, DCA), HCN(TBh, TBv, Teff, in situ) etc.) are computed using the combination of eq. (3) and eq. 250 

(4) with the replacement of p(•) by their joint probability mass functions, respectively.  

 

Commonly, modeling efforts are focused on capturing the information of a random variable of interest via other explanatory 

variables through some physically- or empirically- based models. However, most of models being constructed of natural 

processes are not perfect, and the model outputs are often not capable of capturing the exact relationship between the available 255 

input variables and the variable of interest (Gupta et al., 1998). In theory, there exists a maximum achievable performance of 

a model that describes the variable of interest the best for a particular system given the available datasets (Gong et al., 2013); 

yet the detailed structure of this model is often unknown. Mutual information (Cover and Thomas, 2005), for instance I(A; B), 

is a measure of the amount information due to the knowledge of knowing either random variable A or B in the function  I(•;•). 

Mutual information between model inputs and in situ observations of model output (hereafter in situ observations) can be used 260 

as a useful and effective measure of best achievable performance model because it links the model inputs and in situ 

observations only through the joint and marginal probability mass functions that do not involve any priori model assumptions 

(Gong et al., 2013). 

 

The mutual information is defined based on entropy and joint entropy. The mutual information between TBh and DCA, and the 265 

mutual information between TBv and DCA, are computed as

and 

The mutual information between in situ and DCA soil moisture is computed as 

The mutual information between DCA and in situ soil moisture is calculated as 

I(TBh; DCA) = HCN(TBh) + HCN(DCA) - HCN(TBh, DCA) (5) 

I(TBv; DCA) = HCN(TBv) + HCN(DCA) - HCN(TBv, DCA). (6) 

I(DCA; in situ) = HCN(DCA) + HCN( in situ ) - HCN(DCA, in situ ). (7) 
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I(TBh, TBv; DCA) = HCN(TBh, TBv) + HCN(DCA) - HCN(TBh, TBv, DCA). (8) 

The mutual information between TBh, TBv, Teff and in situ soil moisture is computed as:  270 

I(TBh, TBv, Teff; in situ) = HCN(TBh, TBv, Teff) + HCN(in situ) - HCN(TBh, TBv, Teff, in situ). (9) 

 

For a given system in which the inputs and output are linked via mathematical functions, the mutual information between 

model outputs and in situ observation can never exceed the entropy of the in situ observations. This information gap is defined 

as informational total uncertainty (ITot). The mutual information between the in situ observations and the available explanatory 

variables is also always smaller than the entropy of in situ observations. This information gap, defined as informational random 275 

uncertainty (IRnd), is caused by the existence of inherent data uncertainty of the explanatory variables and a lack of complete 

explanatory variables to fully capture the information in the in situ observations. Furthermore, the mutual information between 

model inputs and in situ observations should equal to the mutual information between in situ observations and model output if 

the model hypothesis completely captures or correctly expresses the true relationship between model inputs and in situ 

observations. However, it’s commonly known that “All models are wrong, but some are useful” (Peters and Kok, 2016) and  280 

model assumptions typically cannot fully express the true relationship between the explanatory variables and in situ 

observations. Hence, the mutual information between model output and in situ observation is expected to be smaller than the 

mutual information between model inputs and in situ observations. This information gap, defined as informational model 

uncertainty (IMod) is induced by poor model assumption, formulations, and/or inappropriate model parameterizations. Therefore, 

the informational total uncertainty (ITot) is the sum of the informational random uncertainty and informational model 285 

uncertainty come naturally given the explicitly definition of these informational uncertainties. In this study, the explanatory 

variables of DCA are TBh, TBv and the Teff. The in situ observation and model output are in situ USCRN soil moisture and DCA 

soil moisture, respectively.  

 

Leveraging eq. (7) and eq. (9), the DCA informational random uncertainty (IRnd), DCA informational model uncertainty (IMod), 290 

and DCA total informational uncertainty (ITot) calculated are calculated as: 

IRnd = HCN(in situ) – I(TBh, TBv, Teff; in situ), (10) 

IMod = I(TBh, TBv, Teff; in situ) – I(DCA; in situ), (11) 

and 

ITot = HCN(in situ) – I(DCA; in situ) = IRnd + IMod. (12) 

 

2.4 Partial information decomposition  
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This method partitions multivariate shared information to unique, redundant and synergistic components. The decomposed 295 

information components on the model inputs and outputs maybe indicative on understand informational loss as model inputs 

are translated to end user products and these components may have the potential for evaluating model performance. The partial 

information decomposition of MDCA can be expressed as follows:  

 

I(TBh, TBv; YMDCA) = U1(TBh; YMDCA) + U2(TBv; YMDCA) +  

R(TBh, TBv; YMDCA) + S(TBh, TBv; YMDCA) 

(6) 

 300 

Where U1 and U2 are unique information of TBh and TBv shared with YMDCA, respectively. S and R are the synergistic information 

and redundant information that TBh and TBv shared with YMDCA, respectively. All the decomposed components are non-negative 

real values. 

 The individual mutual information between TBh, TBv and YMDCA can be expressed as follows:  

 305 

I(TBh; YMDCA) = U1(TBh; YMDCA) + R(TBh,TBv; YMDCA) (7) 

 

 

U1, U2, S and 

R are unknowns in the systems of equations (6) - (8). Therefore, additional information is need  to fully estimated one of these 

unknowns. We used the approach proposed by Goodwell and Kumar (2017) to estimate R as follows:  310 

 

R = Rmin + Is*(RMMI - Rmin) (9) 

 

Where Rmin is represents a lower bound for R that is expressed as: 

 

Rmin = max(0, -II) (10) 

 315 

The inter-dependency of TBh and TBv represented by Is and computed as:   

 

Is = 
𝐼(TBh;TBv)

min {𝐻(TBh); 𝐻(TBv)}
 

(11) 

 

II is interaction information that can be positive or negative. II is computed as:  

 320 

II = I(TBh; YMDCA|TBv) - I(TBh; YMDCA) (12) 

The distinct informational contributions of TBh and TBv to the DCA outputs are be assessed through a decomposition of the 

information. This method partitions multivariate mutual information to unique, redundant and synergistic components 

(Williams and Beer, 2010). The decomposed information components on the DCA model inputs and outputs are expected to 

I(TBv; YMDCA) = U1(TBv; YMDCA) + R(TBh,TBv; YMDCA) (8) 
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indicative of informational flow as model inputs are translated to end user products, and these components may have potential 

for evaluating model performance. The partial information decomposition of I(TBh, TBv; DCA) can be expressed as 325 

I(TBh, TBv; DCA) = U1(TBh; DCA) + U2(TBv; DCA) +R(TBh, TBv; DCA) + S(TBh, TBv; DCA), (13) 

where U1 and U2 are unique information of TBh and TBv shared with DCA, respectively. S and R are the synergistic information 

and redundant information that TBh and TBv shared with DCA estimates, respectively. All the decomposed components are non-

negative real values. 

 

The mutual information between TBh and DCA and mutual information between TBv and DCA were defined as  330 

I(TBh; DCA) = U1(TBh;DCA) + R(TBh,TBv; DCA) (14) 

and 

I(TBv; DCA) = U2(TBv; DCA) + R(TBh,TBv; DCA), (15) 

where U1, U2, S and R are unknowns in the systems of equations (13) - (15). Goodwell and Kumar (2017) showed that the R 

can be formulated as 

R = Rmin + Is*(RMMI - Rmin), (16) 

where 

Is = 
𝐼(TBh;TBv)

min {𝐻𝐶𝑁(TBh); 𝐻𝐶𝑁(TBv)}
, (17) 

RMMI = min(I(TBh; DCA), I(TBv; DCA)) (18) 

and 335 

Rmin = max(0, -II) (19) 

The II is the interaction information of TBh, TBv, DCA and can be computed as:  

II = I(TBh; DCA| TBv ) - I(TBh; DCA) = HCN(TBh, DCA) + HCN(TBv, DCA) +  

HCN(TBh, TBv) – HCN(TBh) - HCN(TBv) - HCN(DCA) – HCN(TBh, TBv, DCA) 
(20) 

 

It is important to acknowledge that we used the point based in situ soil moisture as the ground truth in this analysis. Due to 

course spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be able to represent the spatial 

averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil moisture is 5 cm, the penetration depth 340 

was found to be even shallower in wetter regions (Shellito et al., 2016). In fact, the L-band sensing depth was found to as little 

as ~1cm (Jackson et al., 2012) and can be more sensitive to surface meteorological conditions and more random than the actual 

in situ soil moisture. The heterogeneity in each pixel relative to the in situ observations together with the sensing depth disparity 
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may negatively influence the results of this study and result in an overestimate the actual informational uncertainties. We also 

acknowledge the existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al., 2012). 345 

However, most of upscaling methods are achieved under the assistance of additional reference soil moisture datasets. This 

process introduces additional pieces of information in the DCA system making the separation of the uncertainty induced by 

the upscaling algorithm or additional dataset from other informational uncertainties much harder. Additionally, we used the 

hourly in situ data to best match the SMAP DCA soil moisture retrievals in time (within an hour). Therefore, it is hard to find 

a reference dataset at with high frequency in time domain and good spatial coverage. Here we consider the informational 350 

uncertainty caused by the spatial mismatch and sensing depth mismatch between in situ and DCA soil moisture as part of the 

informational random uncertainty (IRnd). Because the DCA essential is a mathematical function and does not inherently require 

the inputs to be at a specific resolution. The spatial resolution is often the inherent attribute of the data. The sensing depth is 

more of imperfection L-band sensor. The reader should also keep these in mind while interpreting and adopting the results in 

this study. 355 

 

3 Results  

3.1 Information quantities and system informational uncertainties    

Figure 2 shows the estimated entropiesy and mutual information quantities across all the study sites while Figure 3 shows the 

mutual information quantities. The HCN(TBh) and HCN(TBv) general follow the same pattern with both having an average value 360 

of ~0.37. Although the patterns of HCN(TBh) and HCN(TBv) are similar, the HCN(TBh ) is slightly more variable than HCN(TBv) 

with the coefficients of variation (CV) being 0.05 and 0.04, respectively. HCN(Teff) shares the same average with HCN(TBh) and 

HCN(TBv), whereas the patterns of HCN(Teff) is quite different (Fig. 2). On average, the HCN(in situ) is 0.35, while HCN(DCA) 

and 0.38. In general, HCN(DCA) follows the pattern of HCN(in situ) with the CV of HCN(DCA) (0.05) being smaller than the 

CV of HCN(in situ) (0.08). As shown in Figure 4a, HCN(TBh), HCN(TBv) and HCN(DCA) are significantly correlated with HCN(in 365 

situ), while no significant correlation is found between HCN(in situ) and HCN(Teff). The HCN(DCA) has the strongest correlation 

strength with HCN(in situ) compared with other entropy quantities (Fig. 4a).  

It is shown that the joint entropy of TBh and TBv (HCN(h,v)) are always the largest compared to other information quantities. On 

average, HCN(h,v) is 0.53 bits, which is greater than the entropies of MDCA soil moisture, HCN(MDCA), and in situ soil 

moisture, HCN(in situ), (0.38 and 0.35, respectively). Although the pattern of HCN(MDCA) and HCN(in situ) are similar, the 370 

HCN(in situ) is more variable than HCN(MDCA) with the coefficients of variation (CV) being 0.08 and 0.05, respectively. 

Mutual information between TBh, TBv and in situ soil moisture, I(h,v; In situ), and mutual information between MDCA soil 

moisture and in situ soil moisture, I(MDCA; In situ), are the least information quantities, as they are expected to be. I(h,v; In 

situ) follows the pattern of I(MDCA; In situ) with the mean values being 0.09 and 0.06, respectively.  

The mutual information quantities (Fig. 3) are shown to be generally smaller than the entropy quantities (Fig. 2). On average, 375 

I(TBh,TBv; DCA) is 0.14, while the I(DCA; in situ) and I(TBh,TBv, Teff; in situ) are 0.06 and 0.17 (Fig. 3), respectively. I(TBh,TBv, 

Teff; in situ) is significantly correlated (0.58) with HCN(in situ), while no significant correlation is found for other two mutual 

information quantities (Fig. 4b). It is noticeable that there exists a large information gap (Fig. 2 and Fig. 3) between HCN(in 

situ) and I(TBh,TBv, Teff; in situ) and I(TBh,TBv, Teff; in situ) and I(DCA; in situ). These information gaps confirm the existence 

of informational random uncertainty (IRnd) and informational model uncertainty (IMod) in the SMAP DCA system. On average, 380 
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the SMAP DCA explains 18% of the HCN(in situ) leaving 82% of the HCN(in situ) that is unexplained (Table 1) as informational 

total uncertainty (ITot). 36% (Table 1) of the ITot is caused by IMod, while the rest is induced by IRnd. The information uncertainties 

vary slightly across different landcovers. On average, the SMAP DCA system is capable of capturing more information of 

HCN(in situ) at croplands (Table 1). Grasslands and Mixed landcover have largest absolute IRnd (0.20) than other landcovers, 

while shrublands has the largest proportion of IRnd to ITot (Table 1). The shrublands have the largest IMod in absolute value, while 385 

grasslands have the largest proportion of IMod to ITot (Table 1). 

It is noticeable that there exists large information gaps (Fig. 2) between HCN(in situ) and I(h,v; in situ) and I(h,v; In situ) and 

I(MDCA; in situ). HCN(in situ) represent the amount of information that is required to fully characterize the “true ”soil moisture, 

while I(h,v; in situ) indicates the available information contained in the system input variable about the “true” soil moisture. 

The information gap between HCN(in situ) and I(MDCA; in situ) is the overall SMAP uncertainty in which 88% is contributed 390 

by the random uncertainty in the systems explanatory variables (Fig. 3). The information gap between I(h,v; In situ) and 

I(MDCA; in situ) represents the MDCA model uncertainty, which contributes 12% of the total uncertainty (Fig. 3). 

 

3.2 Model uncertainty and retrieval accuracyInformational uncertainties and retrieval quality  

The relationship between different informational uncertainties and the Pearson correlation coefficients between in situ and 395 

SMAP DCA output, a commonly adopted relative model evaluation metric in SMAP studies (Chen et al., 2017; Colliander et 

al., 2017), was evaluated. Figure 4 shows the relationship between the fraction of model uncertainty against different 

commonly adopted absolute (Fig. 4a) and relative model evaluation metrics (Fig. 4b). The model uncertainty is shown to be 

tightly related to these metrics.The ITot, IMod and IRnd are shown to be related how well the SMAP DCA soil moisture is 

correlated with in situ soil moisture (Fig. 5). ITot is found to be negatively correlated (r = -0.66, Fig. 5a) with the Pearson 400 

correlation between in situ soil moisture and SMAP DCA soil moisture. Similarly, IMod and IRnd are also shown to be negatively 

(-0.51 and -0.37 respectively) related to the Pearson correlation between in situ soil moisture and SMAP DCA soil moisture 

with IMod being more influential than IRnd (Fig. 5b - 5c). The negative relationship between SMAP DCA informational 

uncertainties are in line with general expectations since SMAP tends to capture more information about the in situ soil moisture 

when it retrieves high quality datasets. It is observed that the fraction of MDCA induced uncertainty is positively correlated (r 405 

= 0.28) with RMSE of in-situ soil moisture and MDCA soil moisture (Fig. 4a). An obvious negative relationship is found when 

it comes to the relationship between the fraction of MDCA induced uncertainty and r of MDCA soil moisture and in situ soil 

moisture (r = -0.48). Both the positive and negative relationship are in line with general expectations since model uncertainty 

should go up when the retrieval accuracy is poor and vice versa. 

 410 

3.3 Partial information decomposition of MDCA  

The partial information decompositions were assessed on a site basis and are shown in Figure 6. The fractional contribution of 

each component to that site’s mutual information between brightness temperatures and DCA estimates, I(TBh,TBv; DCA), was 

also calculated and are given in Table 2. Generally, the majority of I(TBh,TBv; DCA) is redundantly (R) shared by TBh and TBv, 

which is about 0.08 (57% of I(TBh,TBv; DCA)) on average (Table 2). The mean values of unique information of TBh (Uh) and 415 

synergistic information (S) of TBh and TBv are 0.026 (19% of I(TBh,TBv; DCA)) and 0.019 (14% of I(TBh,TBv; DCA)), 

respectively (Table 2). Compared to other decomposed information components, Uv is the smallest, but is of similar magnitude 
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with S, with its mean being 0.013 (10% of I(TBh,TBv; DCA)). Croplands have the highest R in absolute value 0.095 (68% of 

I(TBh,TBv; DCA)), while mixed landcover has the highest fraction of R (74% of I(TBh,TBv; DCA)) (Table 2). In general, the 

DCA system is mainly dominated by R. This indicates that both TBh and TBv provide similar information within the DCA. 420 

Figure 5 illustrates that majority of the mutual information between TBh, TBv and MDCA (I(TBh,TBv; MDCA)) is redundantly 

shared by TBh and TBv, which take about 0.55 of I(TBh,TBv; MDCA) on average (Fig. 5). Uh is comparable to S with a mean 

value of 0.15, respectively. Compared to other decomposed information components, Uv is the smallest but is of similar 

magnitude with Uh and S with mean being 0.14. Although the R is the largest information component, it has the smallest CV 

(0.35) compared to Uh (CV = 0.58), Uv (CV = 0.52) and S (CV = 0.63). In general, the MDCA system is dominated by R. This 425 

indicates that both TBh and TBv provide information regarding the soil moisture estimations, but these two variables are 

themselves highly dependent.   

 

3.4 Partial information decomposition and retrieval accuracy  

Through this analysis, it is shown (Fig. 7) that there are strong relationships between SMAP retrieval quality and decomposed 430 

information components. In general, the DCA tends to retrieve high quality soil moisture when Uh, Uv and S are low (Fig. 7a 

– Fig. 7c). This is demonstrated by a negative correlation of these component with the Pearson correlation between in situ and 

DCA soil moisture (Fig. 7a – Fig. 7c). In contrast, R shows the strongest positive correlation (Fig. 7d) with the relative model 

evaluation metric (r = 0.83). This indicates that R could potentially be a reference metric for DCA evaluation that does not 

require in situ and ancillary datasets. 435 

Figure 6 shows the relationship between different decomposed information components and the RMSE of in situ and MDCA 

soil moisture. In general, only Uh is significantly negatively correlated (r = -0.28) with the RMSE of in situ and MDCA soil 

moisture (Fig. 6a), while relationships between RMSE and other components are not statistically significant (Fig. 6b – Fig. 

6d). Figure 7 shows the relationship between different information components and the r of in situ and MDCA soil moisture. 

This demonstrates that all the information components are significantly correlated with the correlation, r, of in situ and MDCA 440 

soil moisture. Uh, Uv and S are negatively (Fig. 7a – Fig. 7c) correlated with r, while R is positively correlated with r. R shows 

the strongest correlation (Fig. 7d) with the relative model evaluation metric (r = 0.7). This indicates that R could potentially 

be a reference metric for MDCA evaluation. It does not require in situ soil moisture and shows a better performance than 

simply using r (Fig. 7d inset). 

 445 

4 Discussion 

4.1 Random uncertainty and model uncertaintyDCA informational uncertainty   

The first objective of this study is to leverage information theory to quantitatively decompose the informational total 

uncertainty into informational random uncertainty and informational model uncertainty in the DCA as an approach to 

understand where retrieval errors arise.the overall uncertainty to random uncertainty and model uncertainty in the MDCA as 450 

an approach to understand where retrieval errors arise. This information theory approach can add considerable power to SMAP 

modeling diagnosis. Mutual information can provide a way to unambiguously define the best achievement performance of a 

model model performance that is able to completely transform the available information to the desired target given a set of the 

input data. 
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 455 

In this study, anyAny model based on the MDCA model structure is a hypothesis that relates the input datasets TBh and TBv to 

soil moisture based on prior physical knowledge. The essence of the model is a procedure of processing the input dataset in 

order TBh and TBv to estimate get soil moisture. Thus, models, even the one performs the best, can only reduce the available 

information in its inputs and are not capable of adding new information about the “true” soil moisture. The modeled soil 

moisture is deemed as an estimate of “true” soil moisture and a Markov chain is formed from TBh, TBv via MDCA soil moisture 460 

to in situ soil moisture. Any model, even the one performs the best, can only reduce the available information in its primary 

inputs (TBh and TBv) and is not capable of add new information about the “true” soil moisture. Hence, there is no chance of 

building a model that is better than the one with the best achievable performance of the input data themselves benchmark one 

(yet even achieving this theoretically limit is nearly impossible) if no freedom is given to the available datasets. If, however, 

given more freedom on available datasets to incorporate is given, it is possible to build models that outperform the 465 

aforementioned best achievable model performance by adding new explanatory variables which will may lead to a family of 

models that have completely different model structure. Based on Table 1, we found that the DCA has more informational 

uncertainty in shrublands than grasslands and croplands which is consistent with previous study (Zhang et al., 2019). This 

might be due to stronger variability in vegetation types for shrublands while grasslands and croplands tend to be more uniform 

and homogeneous. Furthermore, shrublands tend to be relatively less sensitive to changes in water availability while grasslands 470 

are more sensitive to the soil moisture dynamics in the condition of drought (Geruo et al., 2017). It is worth to noting that these 

finding are based on lumping our studied sites into different landcover categories, and results may be different while comparing 

two specific sites from different landcovers.   

Additionally, the fraction that random uncertainty contributes to the overall uncertainty is quite significant (88% on average) 

in this study. The random uncertainty in the system may arises from the inherent error due to calibration of TBh and TBv in the 475 

locations and the presence water body. If poorly calibrated, the soil moisture estimations can be exacerbated due to the error 

propagation that hinders the correct information being transformed. Therefore, for example, a better and robust calibration 

strategy of TBh and TBv to the presence of water body might need. Furthermore, a better quality-control method or additional 

data screening metric with respect to water corrected TBh and TBv is also required to further reduce the random uncertainty.  

The fraction that informational random uncertainty contributes to the informational total uncertainty is quite significant (64% 480 

on average) in this study. The informational random uncertainty in the system may arises from the inherent error due to 

calibration of TBh and TBv in the locations, the mismatch in the scale of observations, and the presence water bodies. If poorly 

calibrated, the soil moisture estimations can be exacerbated due to the error propagation that hinders the correct information 

being expressed. Furthermore, SMAP attempts to use the Teff to capture both soil and canopy temperature because the 

differences between canopy and soil temperature are minimized in the morning and dawn. The Teff is computed based on a 485 

model that uses the information from average soil temperature of first layer (5cm -15cm) and second layer (15cm - 35cm) and 

interpolated in time in order to match SMAP morning and dawn observations (O’Neill et al., 2020). These interpolation and 

modeling processes may produce erroneous Teff dataset and hence contribute the informational random uncertainty of DCA. 

Therefore, a better and robust calibration strategy of TBh and TBv to the presence of water bodies and a comprehensive 

assessment of Teff may be needed to reduce some of the information random uncertainty. 490 
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Apart from random uncertainty, the model uncertainty contribution is also a significant amount the total (12% on average). 

This model uncertainty may arise from poor model parameterizations. It’s known that the ‘tau-omega’ model in MDCA is 

parameterized by landcover based parameters. The values of these parameters are derived from past studies, past experience 

and some information discussions with subject matter experts, which could be biased and inaccurate (Peggy O’Neill et al., 495 

2018). In addition, these parameter values are differentiated by landcover and do not vary in time and microwave polarization 

directions. In fact, these parameters may not vary in short time (days or weeks) but could vary from a long-term perspective 

(month or years) and the parameter associated with vegetation structure may vary correspondent to different phenology phases.  

Informational model uncertainty contributes an unneglectable portion to the informational total uncertainty (36% on average). 

This model uncertainty may arise from poor model parameterizations. It’s known that DCA is parameterized with a set of 500 

surface and vegetation parameters such as vegetation single scattering albedo (ω), surface height standard deviation s, etc. 

These parameter values are landcover dependent are derived from past studies as well as prior experience and some information 

discussions with experts, all of which could be biased and inaccurate (O’Neill et al., 2020). These parameter values also are 

differentiated by landcover microwave polarization directions (Wigneron et al., 2004) and were assumed to be constant in time. 

It is possible that these parameters (such as ω) vary in time and shift during senescence or harvesting seasons (Konings et al., 505 

2017). It is observed that the proportion of the informational model uncertainty is slightly smaller in shrublands (Table 1), 

while these proportions are larger in croplands and grasslands (Table 1). This might because the model parameterizations are 

more reasonable in shrublands than other landcovers. In addition, croplands and grasslands may have seasonal harvesting and 

therefore may more subject to changes in these values, while shrublands may not. 

 510 

To summarize, this is the first attempt of leveraging mutual information approach to quantitively analyze the uncertainty 

components in microwave remote sensing models. The results of this study can be further used as a foundation guidance of 

SMAP algorithm assessing approach that can quantitively identify where information lost in the process of SMAP soil moisture 

modeling. This analysis, though focused on MDCA soil moisture, can be transferred and extended to analyze any other remote 

sensing algorithms.models. 515 

 

4.2 Model evaluation from another perspective  

The second objective of this study was to was to demonstrate is that partitioned information components can be used as a new 

MDCA model evaluation metric that does not depend on in situ soil moisture and other ancillary datasets. We found a strong 

linear relationship between redundant information ( R ) of the polarized brightness temperatures and Pearson correlation 520 

between r of MDCA and in situ soil moisture, which indicated that TBh and TBv are highly dependent. R is also the dominant 

component relative to others quantified here. In general, it is more likely to observe higher R in the less woody landcovers 

(croplands and grasslands) where the range of brightness temperature may possible be greater. From an information perspective, 

higher or complete R indicates that one variable is a function of the other, or they share the same source. TBv and TBh are known 

to be highly correlated. It’s important to note that the decomposed information component R is dependent on the DCA 525 

parameterizations that determines how strong the TBh and TBv are linked with the DCA. This stronger linkage is indicated by 

a higher value of R relative to other components. From an information perspective, higher or complete R indicates that one 

source variable is a function of the other, or they share the same source. It can be observed from Figure 7d (inset) that there is 
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a strong linear relationship between TBv and TBh (r ≥ 0.94). Therefore, it is expected that a higher redundancy in the MDCA 

system. The MDCA takes TBv and TBh as primary inputs while TBh and TBv share a lot of redundancy. Therefore, it is not 530 

surprising that the MDCA soil moisture underperforms SMAP SCA soil moisture due to the error accumulation and error 

propagation from both channels. 

 

 

We found that DCA model performance, as characterized by the correlation between Person correlation between DCA and in 535 

situ soil moisture, improves with larger values of R that TBh and TBv share with DCA estimates. Given the strength of this 

relationship, the R could be potentially used as a DCA evaluation metric that doesn’t depend on in situ measurement and 

ancillary dataset. It is also useful for SMAP DCA soil moisture users to have a rough estimation of how high the quality of the 

obtained DCA soil moisture without actually knowing the in situ soil moisture. However, this depends on specific user 

requirements for data quality. In general, the DCA soil moisture tends to be in high end in term retrieval quality (~ 0.75 in 540 

Pearson correlation) when the R is greater 0.1. 

To summarize, the redundant information shown a strong correlation with r, which could be potentially used as a MDCA 

evaluation metric. This metric only involves TBh, TBv and MDCA soil moisture and doesn’t depend on in situ measurement and 

ancillary dataset. Compared to another in situ independent metric, such as pearson r of TBh and TBv, it shows a better 

performance (0.70 vs 0.52). This is potentially due to numerous non-linear processes acting within the MDCA, which are not 545 

well captured by linear metrics such as the pearson r of TBh and TBv  

 

5 Conclusion and Approach Limitations   

 While we expect that this approach can be generalized to analyze other remote sensing models, it may be difficult to 

compute the joint probability density functions for models with high-dimensional inputs. Difficulty in determining the joint 550 

probability density functions hinders the estimation of high dimensional joint entropy and mutual information components. 

Although there exist serval data dimension reduction techniques, these dimension reduction techniques are mostly based some 

assumptions (Xu et al., 2019). In practice, most of the systems with high dimension inputs tend to be complex. Therefore, there 

is a strong risk of introducing additional uncertainty if one chooses an inappropriate technique.  

 555 

This study was conducted only at locations where in situ soil moisture is readily available. The problem of how to leverage 

information theory to evaluate the error components in the locations without in situ soil moisture measurements is challenging 

and could be an interesting topic for future works. Finally, we would expect the informational uncertainty analysis to provide 

asymptotic estimation of random and model uncertainties. The best performance we can expect from this current uncertainty 

analysis is to use all of the available datasets we have; yet we believe that uncertainty estimations of this approach should be 560 

stabilized given adequate representative locations and data records. 

This study attempts to differentiate and quantify the uncertainty sources in MDCA using information theoretic. We found that 

on average 88% of the uncertainty is contributed by the inadequacy of explanatory variables of SMAP or uncertainties in the 

estimated brightness temperature, while the rest of the uncertainty is induced by inaccurate MDCA parameterizations. The 

fraction of the model uncertainty to the overall uncertainty is negatively correlated with the pearson r of in situ and MDCA 565 
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soil moisture (r = -0.48) while positively correlated with the error between in situ and MDCA soil moisture (r = 0.28). The 

decomposition of the mutual information has shown that all decomposed components are correlated with the pearson r between 

in situ and MDCA soil moisture with the redundant information being the tightest (r = 0.7). The uncertainty decomposition 

analysis opens a new window for SMAP algorithm uncertainty diagnosis. The result of mutual information decomposition 

analysis can be adopted as a new in situ independent SMAP soil moisture evaluation reference metric.  570 

We acknowledge the existence of limitations of this study. First, we expect that this approach can be generalized to analyze 

other remote sensing models. However, it may be difficult to compute the joint probability density function for models with 

high-dimensional inputs, and thus also difficult to estimate the joint entropy and mutual information components. Though there 

exist several approaches for computing joint entropy and mutual information, the caveat here is that it is not guaranteed that 

the estimated mutual information can be exactly the entropy and joint entropy that fulfils the equality of, for instance, equation 575 

(5). Second, this study was conducted at locations where in situ soil moisture readily available. The problem of how to leverage 

information theory to evaluate the error components in the locations without in situ soil moisture measurements is challenging 

and could be an interesting topic for future works. Third, we would expect that the information theoretic to provide asymptotic 

estimation of random and model uncertainties, the best performance we can expect from this current uncertainty analysis is to 

use all of the available datasets we have; yet we believe that uncertainty estimations of this approach should be stabilized given 580 

adequate representative locations and data records.  
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 715 

Figure 1 Spatial distribution of selected USCRN stations classified by landcoversfrom west to east. See figure 2 caption for 

names of individual sites based on numbering. 

 

 

 720 



23 

 

 

 

 

 

725 



24 

 

 

Figure 2 Entropies of in situ soil moisture, horizontally polarized brightness temperature (TBh), vertically polarized brightness 

temperature (TBv), soil effective temperature (Teff) and DCA soil moisture across the study sites.  
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 740 

Figure 3 Mutual information between horizontally polarized brightness temperature (TBh), vertically polarized brightness 

temperature (TBv), soil effective temperature (Teff) and in situ soil moisture, mutual information between horizontally 

polarized brightness temperature (TBh), vertically polarized brightness temperature (TBv) and DCA soil moisture, mutual 

information between DCA soil moisture and in situ soil moisture.  

 745 

Information quantities of in situ soil moisture, TBh, TBv and MDCA soil moisture across the study sites. 
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Figure 3 Mutual information between MDCA soil moisture and in situ soil moisture against mutual information 

between TBh, TBv and in situ soil moisture. 
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Figure 4 Entropy of in situ soil moisture against the entropies of DCA soil moisture, horizontally polarized brightness 

temperature (TBh), vertically polarized brightness temperature (TBv) and soil effective temperature (Teff) (a) and mutual 

information quantities (b).  760 
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Figure 5 SMAP informational total uncertainty (a), SMAP informational model uncertainty (b) and SMAP informational 

random uncertainty against Pearson correlation between in situ soil moisture and DCA soil moisture. 780 
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Figure 6 Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized brightness 

temperature and DCA soil moisture. The colored labels of the horizontal axis represent different landcover of the study 785 

sites (blue: Shrublands, green: Grasslands, red: Croplands, black: Mixed).  
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Figure 4 Fraction of MDCA model uncertainty against RMSE of MDCA soil moisture and in situ soil moisture (a) and 

fraction of MDCA model uncertainty against pearson r of MDCA soil moisture and in situ soil moisture (b). 

 795 

Figure 5 The normalized partial information decomposition components between TBh, TBv and MDCA soil 

moisture. 
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Figure 7 Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized 805 

brightness temperature against Pearson correlation coefficient between in situ and DCA soil moisture. 
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Landcover 

Informational random 

uncertainty, IRnd 

(and its % of ITot) 

Informational model 

Uncertainty, IMod 

(and its % of ITot) 

Informational total 

uncertainty, ITot 

(and its % of HCN(in situ)) 

Shrublands 0.22 (69%) 0.10 (31%) 0.32 (88%) 

Grasslands 0.20 (62%) 0.09 (38%) 0.29 (83%) 

Croplands 0.18 (65%) 0.10 (35%) 0.28 (79%) 

Mixed 0.20 (68%) 0.09 (32%) 0.29 (81%) 

Overall 0.18 (64%) 0.11 (36%) 0.29 (82%) 

Table 1 The amount of informational uncertainties in percentage. The values in the table are the average of each landcover. 

The values in “Overall” is the average of all the sites. 
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Landcover 

Unique information  

of TBh (Uh) (and its % 

I(TBh, TBv; DCA)) 

Unique information of 

TBv (Uv) (and its % 

I(TBh, TBv; DCA)) 

Synergistic information 

of TBh and TBv (S) (and its % 

I(TBh, TBv; DCA)) 

Redundant information of 

TBh and TBv (R) (and its % 

I(TBh, TBv; DCA)) 

Mutual information 

(I(TBh, TBv; DCA)) 

Shrublands 0.03 (27%) 0.017(15%) 0.03 (26%) 0.036 (32%) 0.113 

Grasslands 0.029 (21%) 0.014 (10%) 0.02 (14%) 0.077 (55%) 0.14 

Croplands 0.017 (12%) 0.013 (9%) 0.016 (12%) 0.095 (67%) 0.141 

Mixed 0.014 (12%) 0.007 (6%) 0.01 (8%) 0.091(74%) 0.122 

Overall 0.026 (19%) 0.013 (10%) 0.019 (14%) 0.08 (57%) 0.137 

Table 2 The partial information decomposition components. The values in the table are the average of each landcover. The 

values in “Overall” is the average of all the sites.   
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Figure 6 Normalized partial information decomposition components against RMSE of MDCA and in situ soil moisture. 
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Figure 7 Normalized partial information decomposition components against pearson r of MDCA and in situ soil moisure. 
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