
Dear anonymous referee #1:  

We thank you for the comments that were very insightful to improve our manuscript. We highlighted our replies in 

blue after each original comment in below. The sentences or paragraphs that were added to the revised manuscript are 

in red. 

 

 

General comment 

This paper presents a performance analysis using information theory to better understand the characterization 

potential of the data (TB) and the performance of the inversion algorithms (MCDA). To my knowledge it is a very 

original approach in the field of application which is targeted and the approach seems to be very relevant. As a 

naïve reader with regard to the analysis method used, I had a little difficulty to follow the details of the calculation 

(some quantities would gain to be defined), but the essence of the method is well restored and allows a non-

specialist reader to understand the approach. My main criticism lies in the scope of the data used to make the 

analysis Indeed, 58 data sets corresponding to 58 stations located in the USA are treated independently. It seems 

useful to me to recall that the MCDA method aims at exploiting the H and V polarizations in order to separate the 

reflectivity of the soil from the scattering phenomena linked to vegetation and roughness, the latter being 

represented by the difference between Tbh and Tbv. By working locally, the variability (humidity, vegetation) is 

only partially taken into account, taking into account only the annual variations which at the scale of a SMAP pixel 

present small variations. In fact, by limiting ourselves to a stationary analysis, we underestimate the interest of the 

MCDA algorithm which is applicable everywhere and allows an estimation of humidity whatever the vegetation 

cover. This leads to find that the quality of the estimates (here seen by the correlation coefficient between the 

moisture retrieved and the observed moisture) is all the better as the redundancy term is high, a criterion which is 

proposed for the following analysis of the quality of the algorithm. The interpretation of R could be better described 

in the material and method and in particular it is important to specify if a good model is characterized by large 

value of R, meaning that the model outputs and its input data are well interdependent. The largest R is probably 

found in low vegetation situations where the ranges of moisture and Tb are greatest. This is a known feature and it 

seems to me that the quality of the MCDA model is more in its ability to represent the diversity of ecosystems and 

the associated plant formations. Would it be possible to process a data set of all the stations? 

 

Response: We thank the reviewers for these overall constructive comments concerning this work. Following the 

reviewer’s suggestion, we have partitioned our study sites into different landcovers. The results after partitioned 

our study sites into different landcovers are shown Table 1 and Table 2 below. Additionally, we switched from 

9km SMAP datasets to 36km SMAP datasets to address comments from another reviewer who would like to know 

how the choice of different resolution of SMAP products may affect the overall analysis. Therefore, we obtained 

the 36km SMAP product and we found that the newly obtained 36km SMAP product no longer provides the MDCA 

soil moisture and has been replaced by the Dual Channel Algorithm (DCA) soil moisture with some data updates. 

Thus, we decided to switch to the newest 9km and 36km SMAP data products. We also included the soil effective 

temperature (Teff) in the uncertainty decomposition analysis because it constitutes a non-trivial information 

component of the model. We found that there’s no pronounced difference between 9km product and 36km product 

as shown in Figure 1 below (p > 0.05, based on two sample t-test). While there is no set in-stone interpretation of 

the redundant (R) components, we have expanded our description of this aspect of our study. Generally, it should 

be interpreted with respect to a specific system. For the SMAP DCA, we found that higher R is an indication of 

better model performances (better Pearson correlation between in situ and DCA soil moisture). Finally, more 

equations were provided in the revised manuscript regarding how we computed each of the quantity involved into 

this analysis.  



 

Figure 1. Informational uncertainty comparisons between 36km and 9km SMAP DCA products 

 

Detailed Comments L85 I think that part of uncertainty is due to the scale of the pixel with mixed surface and in 

situ moisture that is sparsely sampled (here I think it is local measurement) while the moisture is strongly variable 

within the pixel. 

Response: We agree and admit that part of the uncertainty is due to scale mismatch between point measurements 

of in situ and SMAP data product. We have added the following to our methods because this component is included 

in how we consider the random uncertainty values: 

  “It is important to acknowledge that we used the point based in situ soil moisture as the ground truth in this 

analysis. Due to course spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be 

able to represent the spatial averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil 

moisture is 5 cm, the penetration depth was found to be even shallower in wetter regions (Shellito et al., 2016). In 

fact, the L-band sensing depth was found to as little as ~1cm (Jackson et al., 2012) and can be more sensitive to 

surface meteorological conditions and more random than the actual in situ soil moisture. The heterogeneity in each 

pixel relative to the in situ observations together with the sensing depth disparity may negatively influence the 

results of this study result in an overestimate the actual informational uncertainties. We also acknowledge the 

existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al., 2012). 

However, most of upscaling methods are achieved under the assistance of additional reference soil moisture 

datasets. This process introduces additional pieces of information in the DCA system making the separation of the 

uncertainty induced by the upscaling algorithm or additional dataset from other informational uncertainties much 

harder. Additionally, we used the hourly in situ data to best match the SMAP DCA soil moisture retrievals in time 

(within an hour). Therefore, it is hard to find such reference dataset at such a high frequency time domain. Here we 

consider the informational uncertainty caused by the spatial mismatch and sensing depth mismatch between in situ 

and DCA soil moisture as part of the informational random uncertainty (IRnd). Because the DCA essential is a 

mathematical function and does not inherently requires the inputs of a specific resolution. The spatial resolution is 

often the inherent attribute of the data. The sensing depth is more of imperfection L-band sensor. The reader should 

also keep these in mind while interpreting and adopting the results in this study.” to the methodology to address 

this aspect.” 

 

Eq 5, I suggest to the equation I(TB H or V; Yobs) which is used In equations 7 and 8. It would help me to follow 

the text 

Response: We thank the reviewer for this comment. We did not change the representation I(TBh, TBv; Yobs) as 

suggested in the revised manuscript because we wish to follow standard mathematical notation for this quantities. 

The reason is that the I(A, B; C) represents the information of random variable A and B together (as a set of random 

variables {A, B}) shared with the random variable C, as denoted by the ‘;’. The notation in the manuscript follows 



the notation in other information studies and it also follow the convention (Cover and Thomas, 2005) and other 

information studies in earth sciences (Goodwell and Kumar, 2017a, 2017b). The notation proposed by the reviewer 

may interpreted differently since the “or” means the information specifically from TBh or TBv but it this information 

should be jointly in the notation of the manuscript. 

 

Eq 9: RMMI is not defined 

Response: We thank the reviewer for pointing out this. We now have added definition of RMMI as 

RMMI = min(I(TBh; DCA), I(TBv; DCA)) 

 

L209: an explanation how to interpret The quantity in the context of the study. A good model should lead to high 

or low values of U, R and S. At least for S which is the most commented quantity; 

Response: We thank the reviewer for this comment. In the context of this study, we found that R is has the largest 

values and mostly closely related to the performance of SMAP DCA. Therefore, we conclude that a good DCA 

model/performances should corresponded to higher values of R. Therefore, it is expected that higher R should also 

correspondent to smaller values of S, Uh and Uv. We have added 

“Good DCA model performance (as measured by Pearson correlation between in situ and DCA soil moisture) 

is more likely to be found in locations where the redundant information of brightness temperatures shared with 

DCA soil moisture is high and is more dominant relative to other components.” 

 

L245: I(h, v ; in situ)? rather than I(MCDA, insitu) 

Response: We thank the reviewer for this comment. In the original manuscript. Line 245 “The information gap 

between HCN(in situ) and I(MDCA; in situ) is the overall SMAP uncertainty in which 88% is contributed by the 

random uncertainty in the systems explanatory variables (Fig. 3)” The abbreviations in the original sentence are 

correct since the overall SMAP uncertainty is defined as HCN(in situ) - I(MDCA; in situ). In order to avoid this 

confusion, the following equations and paragraphs were added to the manuscript  

“ 

IRnd = HCN(in situ) – I(TBh, TBv, Teff; in situ), (1) 

IMod = I(TBh, TBv, Teff; in situ) – I(DCA; in situ), (2) 

and 

ITot = HCN(in situ) – I(DCA; in situ) = IRnd + IMod. (3) 

where IRnd is the informational random uncertainty, IMod is the informational model uncertainty, ITot is the 

informational total uncertainty, HCN(in situ) is the entropy of in situ soil moisture, I(TBh, TBv, Teff; in situ) is the 

mutual information between horizontally (TBh)- and vertically-polarized brightness temperature (TBv), I(DCA; in 

situ) is the mutual information between DCA soil moisture and in situ soil moisture.” 

 

L245 and 247: honestly i don’t see where 0.88 and 0.12% come from. Not evident to 

see such values in Fig3 

Response: We thank the reviewer for this comment. We have replaced the Figure 3 of the original manuscript with 

the figure below. A new table that contains these summary statistics is provided (Table 1 below).  

 



 
Figure 1. Entropy of in situ soil moisture against the entropies of DCA soil moisture, horizontally polarized 

brightness temperature (TBh), vertically polarized brightness temperature (TBv) and soil effective temperature (Teff) 

(a) and mutual information quantities (b) 

 

Landcover 

Informational random 

uncertainty, IRnd 

(and its % of ITot) 

Informational model 

Uncertainty, IMod 

(and its % of ITot) 

Informational total 

uncertainty, ITot 

(and its % of HCN(in situ)) 

Shrublands 0.22 (69%) 0.10 (31%) 0.32 (88%) 

Grasslands 0.20 (62%) 0.09 (38%) 0.29 (83%) 

Croplands 0.18 (65%) 0.10 (35%) 0.28 (79%) 

Mixed 0.20 (68%) 0.09 (32%) 0.29 (81%) 

Overall 0.18 (64%) 0.11 (36%) 0.29 (82%) 

Table 1 The amount of informational uncertainties in percentage. The values in the table are the average of each 

landcover. The values in “Overall” is the average of all the sites. 

 

L251: what are the fraction of model uncertainty 

Response: we thank the reviewer for this comment. In the original manuscript, we mean the proportion of model 

uncertainty to the overall uncertainty. We have corrected this in the revised manuscript.   

 

L261;263 : how I cand tale 0.55 of I 

Response: We thank the reviewer for this comment. We have provided a table for these summary statistics in the 

revised manuscript (Table 2 below) 

 

Landcover 

Unique information  

of TBh (Uh) (and its % 

I(TBh, TBv; DCA)) 

Unique information of 

TBv (Uv) (and its % 

I(TBh, TBv; DCA)) 

Synergistic information 

of TBh and TBv (S) (and its % 

I(TBh, TBv; DCA)) 

Redundant information of 

TBh and TBv (R) (and its % 

I(TBh, TBv; DCA)) 

Mutual information 

(I(TBh, TBv; DCA)) 

Shrublands 0.03 (27%) 0.017(15%) 0.03 (26%) 0.036 (32%) 0.113 

Grasslands 0.029 (21%) 0.014 (10%) 0.02 (14%) 0.077 (55%) 0.14 

Croplands 0.017 (12%) 0.013 (9%) 0.016 (12%) 0.095 (67%) 0.141 

Mixed 0.014 (12%) 0.007 (6%) 0.01 (8%) 0.091(74%) 0.122 

Overall 0.026 (19%) 0.013 (10%) 0.019 (14%) 0.08 (57%) 0.137 

Table 2 The partial information decomposition components. The values in the table are the average of each 

landcover. The values in “Overall” is the average of all the sites.   

 



L264 Uv likely takes greater value if data from different sites are merged 

Response: We thank the reviewer for this comment. The statistics of Uv are shown in Table 2. We found that Uv is 

consistently the smallest while compared with other components  

 

L266:268: yes but at local scale only. Independence of H and V will be much stronger 

when different location with different ecosystem are taken into account 

Response: We thank the reviewer for this comment. We have extended this analysis to some contrasted landcovers 

in the revised manuscript.  

 

L303:304 : not only : see comment on L85 

Response: We thank the reviewer for this comment. We have added a new paragraph in methodology to address 

this issue. 

 

L312:315: What are the parameter considered (tau is derived from H an V) here 

Response: We thank the reviewer for this comment. We consider the parameter such as vegetation single scattering 

albedo (ω), surface height standard deviation s etc. We have specified these parameters in the revised manuscript.  

 

L315:317: speculative ? references 

Response: We thank the reviewer for this comment. The study from (Konings et al., 2017) has been added as the 

reference. 

 

L332:332: I am not you can say date. The correlation between H and V is well known, the expected ortogonality 

is more on V-H and H, that is expressed using various ecosystems. Here we are lacking interpretation key. But 

correlation between inputs does not means that inputs and output are redundant, which my understanding of R.  

Response: We thank the reviewer for this comment. We have removed such statements in the revised manuscript.  

 

L355: making the analysis on individual station is a strong limitation, as MSDA capacity 

were not fully analysed 

Response: We thank the reviewer for the comment. The analysis has been extended to different landcovers in the 

revised manuscript. 

 

L358:361: speculative (reference – difficult to understands without additional information) 

Response: We thank the reviewer for this comment. We found that it may confuse the reader without providing 

specific information. Therefore, we decided to remove such statements.  

 

L370: I don’t what is the HESS policy. It would be better to have codes in open 

repository 

Response: We thank the reviewer for the comment. The python codes and datasets used in this study has been 

upload to https://github.com/libonancaesar/HESS_Information_Uncertainty.  

 

Figure 2 : remove MI in Y legend 

Response: Removed as suggested.  

 

Figure 7d : the y axis of the embedded graph is not described. The interest of th H V 

correlation is really limited (see comment above). I suggest to remove it. 

Response: We thank the reviewer for this comment. The embedded graph has been removed as suggested.  

 

https://github.com/libonancaesar/HESS_Information_Uncertainty


In conclusion beside the minor improvement suggested in my comment I expect the authors: 1) better defining the 

interpretation scheme of the R S and U quantity 2) extending the analyse to merged data set, or at least a subset 

gathering sites having contrasted ecosystems. This will give stronger overview of the MCDA models and its interes. 

This might have an impact on the discussion and conclusion. 

Response: We thank the reviewer for this comment. (1) the definition of these components has been defined in 

the methodology of the revised manuscript (2) Additional analysis regarding different landcovers has been added 
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Dear anonymous referee #2: 

Thank you for providing such valuable suggestions and comments on our manuscript. Please find the response to these 

comments (in blue). The sentences or paragraphs that were added to the revised manuscript are in red.  

 

 

The topic of the manuscript is certainly important and interesting for HESS readers. However, the manuscript 

contains a large number of typos, things that should be explained in more detail and assumptions that are not 

discussed and could affect the results. The authors cite (Lines 84-86) just two of the possible uncertainty sources 

of the retrieval model, however the method discussed in this manuscript is based on in situ measurements. Therefore, 

the uncertainty of in situ measurements must be taken into account, and it is not at all. In situ measurements are 

here considered as "ground truth". Unfortunately "ground truth" does not exist, as all measurements, they have 

errors. But probably more important is the uncertainty of the spatial representativeness (satellite Tbs are 

representative of a spatial scale of tens of kilometer while in situ measurements are single point measurements) and 

depth representativeness (sensors measure at a given depth while the Tbs are representative of a different/changing 

depth). These effects must be mentioned and discussed and their possible effects on the results should be analyzed. 

 

Response: We thank the reviewers for these overall constructive comments. We agree and admit that part of the 

uncertainty is due to scale mismatch between point measurements of in situ and SMAP data product. We also 

acknowledged that the sensing depth of the SMAP may vary, though the designated sensing depth is up to 5cm. In 

practice, the sensing depth may be even shallower. We have classified the uncertainty induced by the sensing depth 

and spatial mismatch as part of the informational random uncertainty. This is because the model does not contain 

the resolution itself and the uncertainty induced by sensing depth is more of imperfection of the sensor. We added 

the following paragraph  

“It is important to acknowledge that we used the point based in situ soil moisture as the ground truth in this 

analysis. Due to course spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be 

able to represent the spatial averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil 

moisture is 5 cm, the penetration depth was found to be even shallower in wetter regions (Shellito et al., 2016). In 

fact, the L-band sensing depth was found to as little as ~1cm (Jackson et al., 2012) and can be more sensitive to 

surface meteorological conditions and more random than the actual in situ soil moisture. The heterogeneity in each 

pixel relative to the in situ observations together with the sensing depth disparity may negatively influence the 

results of this study and result in an overestimate the actual informational uncertainties. We also acknowledge the 

existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al., 2012). 

However, most of upscaling methods are achieved under the assistance of additional reference soil moisture 

datasets. This process introduces additional pieces of information in the DCA system making the separation of the 

uncertainty induced by the upscaling algorithm or additional dataset from other informational uncertainties much 

harder. Additionally, we used the hourly in situ data to best match the SMAP DCA soil moisture retrievals in time 

(within an hour). Therefore, it is hard to find a reference dataset at with high frequency in time domain and good 

spatial coverage. Here we consider the informational uncertainty caused by the spatial mismatch and sensing depth 

mismatch between in situ and DCA soil moisture as part of the informational random uncertainty (IRnd). Because 

the DCA essential is a mathematical function and does not inherently require the inputs to be at a specific resolution. 

The spatial resolution is often the inherent attribute of the data. The sensing depth is more of imperfection L-band 

sensor. The reader should also keep these in mind while interpreting and adopting the results in this study.”  

 

In addition, why using 9km Tbs instead of the original Tbs in the 36 km grid which is closer to the instrument 

resolution (_ 50 km). The SM dataset that is provided in a grid with 9-km sampling has been obtained using a 

Backus-Gilbert interpolation. Surprisingly this is not mentioned at all in the manuscript. How could this choice 

affect the results as this is another uncertainty source that is not taken into account? 



Response: We thank the reviewer for this comment. We compared informational uncertainty from both the 9km 

SMAP datasets and 36km SMAP datasets to address the resolution effects. We found that the newly obtained 36km 

SMAP product no longer provides the MDCA soil moisture and is replaced by the Dual Channel Algorithm (DCA) 

soil moisture with some data updates when we were obtaining the 36km SMAP product. Thus, we decided to switch 

to the newest 9km and 36km SMAP data product for the comparisons of resolution effects. We have also included 

the soil effective temperature (Teff) in the uncertainty decomposition analysis since this information is important in 

the DCA modeling process. We found that the differences in informational uncertainties between SMAP DCA 

36km and 9km product are not pronounced (Figure 1 below). The results from a two-sample t-test between SMAP 

9km and SMAP 36km information uncertainties shown that there is no significant different between SMAP 9km 

and SMAP 36km in informational uncertainties (p > 0.05). Given no pronounced resolution effects on informational 

uncertainties, we decided to proceed by using the original SMAP 36km product for this study. 

 

Figure 1. Informational uncertainty comparisons between 36km and 9km SMAP DCA products 

 

If MDCA is better (at least taking into account that using together Tbh and Tbv adds 15 % of information) why 

SCA is the official SMAP algorithm and gives better results ? "There is strong interest in the MDCA approach 

because of its independent estimation of vegetation water status". I probably agree, but this if very very challenging 

using a single incidence angle. SMOS can do it because it provides multi-incidence angle Tbs. Konings et al. "How 

Many Parameters Can Be Maximally Estimated From a Set of Measurements?," in IEEE Geoscience and Remote 

Sensing Letters, vol. 12, no. 5, pp. 1081-1085 have already explained that not because there are two measurements 

it is possible to actually retrieve two parameters. 

Response: We thank the reviewer for this comment. We did not state that the MDCA/DCA perform better than the 

SCA. The objective of our study is to partition the overall informational uncertainty into the uncertainty caused by 

the DCA input data streams and that caused by the model itself. We also thank the reviewer for providing this 

valuable paper reference. We mentioned the dual channel is interesting not only because it provides soil moisture 

but provided vegetation optical depth estimation that cannot be independently estimated through the SCAs. It is 

reasonable to assume that the vegetation optical depth may not be accurate as there are large uncertainties in the 

DCA. Finding where the information is lost (informational uncertainties) in the DCA can be helpful for DCA soil 

moisture estimations and hence more accurate estimation of vegetation optical depth. We thank the reviewer for 

providing this valuable reference and have cited this reference in the following  

“There is strong interest in the DCA approach because of its independent estimation of vegetation opacity in 

lieu of the specified vegetation climatology employed by the SCA. Additionally, it has been suggested that using a 

time-integrated vegetation opacity, as is employed in the multi-temporal dual channel algorithm (MT-DCA) for 

instance (Piles et al., 2016), improves the estimates of soil and vegetation state. These contrasting approaches, as 

well as other studies on SMAP’s temporal polarized ratio algorithm (TPRA) (Gao et al., 2020) and regularized dual 

channel algorithm (RDCA) (Chaubell et al., 2019), suggested there is still uncertainty about how SMAP 



observations of horizontal and vertical brightness temperature can be best translated into estimates of surface 

properties. Although SMAP can provide spatially explicit soil moisture estimates that have been shown to be useful 

to understand a set of ecohydrological problems (Jadidoleslam et al., 2019), the soil moisture retrievals are still 

subject to significant amount of uncertainty due to the imperfection of the model and the forcing datasets. The 

success of retrieving soil moisture and vegetation opacity are interdependent (Konings et al., 2017) and it is 

important to consider the how the amount of duplicate information carried within a set of observations limits the 

number of parameters to be inferred (Konings et al., 2015). Therefore, it is critical to diagnosis and quantify the 

causality of the uncertainty caused by the SMAP algorithm in order to improve the soil moisture and vegetation 

opacity retrieval quality.” 

 

Other comments ————— 

Line 18: raw data here is undefined. The authors should be more specific so that the 

abstract is self-explicative 

Response: We thank the reviewer for this comment. The “raw data” has been explicitly replaced by “TBh, TBv and 

Teff” that are the inputs to the DCA.  

 

Line 21: "inadequacy" is not a scientific term. What is that inadequacy? Where does it 

come from? 

Response: We thank the reviewer for this comment. We have replaced “inadequacy” with the term “a lack of 

additional explanatory power beyond TBh, TBv and Teff” in the revised manuscript.  

 

Line 67: Peggy O’Neill et al. should be O’Neill et al. 

Response: We thank the reviewer for the comment. The citation style has been corrected as suggested.  

 

Line 79: 0.04 m3/m3 accuracy target? Which is the metric the authors refer to ? 

Response: We thank the reviewer for this comment. The metric that we are referring to is ubRMSE. We have 

specified the metric in the revised manuscript.  

 

Line 136: The tau-omega model is not inverted at all. It is used as a forward model and the modeled Tbs are 

compared to the observed ones varying parameters such as SM. When the Tb’s are similar to the observed ones, 

SM is assumed to be close the real value. There is no inversion of the model giving SM as a function of Tb. 

Response: We thank the reviewer for this comment. This sentence has been rephrased as “It requires the brightness 

temperatures as the main inputs, soil effective temperature as an ancillary input, and is parameterized based on 

overlaying vegetation and soil surface information. The DCA iteratively feeds the ‘tau-omega’ model with initial 

guesses of soil moisture and vegetation optical depth.” in the revised manuscript.  

 

Line 144: it is the uncertainty or the variable that is denoted as H(Yobs) ? 

Response: We thank the reviewer for this comment. We have dropped this term in the revised manuscript and have 

provide a more explicit definition.  

 

Line 150: The following sentence is meaningless "Although the detailed structure of best achievable model 

performance maybe remain unknown, mutual information, denoted as I(XInputs; Yobs) where XInputs are the 

available inputs and Yobs is the in situ measured variable of interest, can provide a good benchmark measure". 

Please, rephrase. 

Response: We thank the reviewer for this comment. The above statement has been rephrased to  

“Mutual information between the model inputs and in situ observations of model output can be used as a useful 

and effective measure of best achievable performance model because it links the model inputs and in situ 



observations only through the joint and marginal probability mass functions that do not involve any priori model 

assumptions (Gong et al., 2013).” 

 

Line 167: Eq. 2, what is the sense of writing an inequality comparing "mutual informations" (I) with the uncertainty 

of the variable of interest (H(Yobs))? H and I should not be in the same inequality.  

Response: We thank the reviewer for this comment. We found that these inequalities may introduce unnecessary 

confusions to the readers. Therefore, we have dropped this equation (1) and equation (2) in the revised manuscript. 

The explanation is that the entropy H(.) can be interpreted as the uncertainty inherent in a random variable or the 

amount of information requires to describe a random variable. The maximum information of another or other 

explanatory random variables can provided/capture the information about such random variable should be the 

entropy of this random variable. 

 

Furthermore, in the example of Eq.1 X is Tbs, Y is Ymodel and Z is Yobs as i) one measures the Tbs, ii) apply the 

model, iii) Compare to "ground truth". Therefore I(X,Y) >= I(X,Z) should be I(X_inputs, Ymodel) >= I(X_inputs, 

Yobs) instead of what is written 

in Eq. 2 

Response: We thank the reviewer for this comment. We have dropped this equation. The explanation of the 

inequalities can be found in this paper (Gong et al., 2013).  

 

Lines 175-180. The manuscript will be clearer if it is stated how to compute those quantities from the actual SM 

time series records (taking into account the uncertainties) 

Response: We thank the reviewer for this comment. The details about how we calculated entropy, mutual 

information and informational uncertainties in the DCA systems has been provided in the revised manuscript.   

 

Line 193 Eq. 5 Why the "mutual information" is compared to uncertainties? Why 

uncertainties are assumed to be additive? 

Response: We thank the reviewer for this comment. The reason why uncertainties is assumed to be additive is 

because the way informational random uncertainty and informational model uncertainty are defined in earlier 

studies such as (Gong et al., 2013). We have provided the following descriptions  

“For a given system in which the inputs and output are linked via mathematical functions, the mutual 

information between model outputs and in situ observation can never exceed the entropy of the in situ observations. 

This information gap is defined as informational total uncertainty (ITot). The mutual information between the in situ 

observations and the available explanatory variables is also always smaller than the entropy of in situ observations. 

This information gap, defined as informational random uncertainty (IRnd), is caused by the existence of inherent 

data uncertainty of the explanatory variables and a lack of complete explanatory variables to fully capture the 

information in the in situ observations.” 

 

Line 195: Eq. 5 expresses I as a function of HCN, how Hcn(Ymdca, Yobs) could be estimated by replacing anything 

in Eq. 5. Do the authors mean I(Ymdca, Yobs) can be ..." ? 

Response: We thank the reviewer for this comment. We have added the following equations to the revised 

manuscript “ 

H(X, Y) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑦𝜖𝑌 𝑝(𝑥, 𝑦)𝑥∈𝑋 , (1) 

where p(x, y) is the joint probability mass function associated with X and Y that is estimated by the same method 

mentioned above. The same normalization and correction method of eq. (2) is applied to joint entropy of eq. (3). 

The entropy after the correction and normalization is formulated as 



HCN (X, Y) =  
𝐻(X,Y) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (2) 

where HCN(X, Y) is the corrected and normalized joint entropy of random variable associated with {X, Y}, H(X, Y) 

is the uncorrected entropy from eq. (3), n is the number of data points that were used to calculate the normalized 

joint entropy (hereafter joint entropy), K is the number of non-zero joint probabilities based on the Freeman and 

Diaconis method (Freedman and Diaconis, 1981). All the joint entropies that are associated with two or more 

random variables in the later equations (i.e., HCN(in situ, DCA), HCN(TBh, TBv, DCA), HCN(TBh, TBv, Teff, in situ) etc.) 

are computed using the combination of eq. (3) and eq. (4) with the replacement of p(•) by their joint probability 

mass functions, respectively. ” 

  

Eq 10. What is -II ? 

Response: We thank the reviewer for this comment. II is the interaction information and -II is the negative number 

of II. An equation for II is now also given in the text. 

 

—- Typos Line 193 Eq. 5 TBv should be T_{B_v}. 

Response: We thank the reviewer for this comment. We have corrected the typo. 

 

Line 177. "is" and "the" are lacking. "Where p IS THE probability..." 

Response: We thank the reviewer for this comment. We have corrected the typo. 

 

Line 194: ... and H_CN() ARE the estimated joint ENTROPIES that ... 

Response: We thank the reviewer for this comment. We have corrected the typo. 

 

Line 196. It IS worth 

Response: We thank the reviewer for this comment. We have corrected the typo. 

 

Eq 8: U_1 should be U_2 

Response: We thank the reviewer for this comment. We have corrected the typo. 

 

Line 232: H_CN(h,v) should be H_CN(Tbh, Tbv) 

Response: We thank the reviewer for this comment. We have corrected this typo. 

 

Line 345. Please correct "theoretic" 

Response: We thank the reviewer for this comment. We have corrected this.  
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Dear anonymous referee #3: 

Thank you for your valuable comments. Below we respond (highlighted in blue) to the reviewer's comments. The 

text that were added to the revised manuscript are marked in red.  

 

 

The paper by Li and Good tackles a very important problem of trying to understand the contributions of the sources 

(observations and model) of uncertainty in SMAP soil moisture retrieval. In general I found the paper easy to read, 

typographic errors not withstanding, and as a non-expert in information theory I followed the logic of the arguments 

well. However, as an avid user of SMAP products, I would have like to have seen some attempt to translate the 

findings into the soil moisture units (mˆ3/mˆ3) and discussion of how the findings may be useful when next I 

process large time series of the SM estimates. 

Response: We thank the reviewers for these overall constructive comments concerning about this work. 

Unfortunately, this study cannot translate the information quantities into the specific soil moisture unit of (m3/m3). 

We did not observe a strong relationship between the RMSE and the information uncertainties/decomposed mutual 

information components, likely in part to the large differences in the soil moisture regimes at different sites. RMSE 

as an absolute metric is more sensitive to these absolute differences while the correlation coefficient, being 

normalized by the variance at the site itself is less sensitive and more comparable across sites. The redundant 

components can be very helpful for large time series processing. For instance, the larger the redundant components 

of TBh, TBv to the DCA algorithm, the more likely we can obtain high quality datasets. The tolerance of the data 

quality depends on the user’s need. In general, redundant information between TBh, TBv to the DCA of a value 

greater than 0.1 can be indicative of a better overall retrieval quality (~0.75 in Pearson correlation). We have added 

the following to the revised manuscript  

“Given the strength of this relationship, the R could be potentially used as a DCA evaluation metric that doesn’t 

depend on in situ measurement and ancillary dataset. It is also useful for SMAP DCA soil moisture users to have a 

rough estimation of how high the quality of the obtained DCA soil moisture without actually knowing the in situ 

soil moisture. However, this depends on specific user requirements for data quality. In general, the DCA soil 

moisture tends to be in high end in term retrieval quality (~ 0.75 in Pearson correlation) when the R is greater 0.1.”.  

 

Specific comments: 

Clarify the denominator in Eq. (4) 

Response: We thank the reviewer for this comment. We have clarified this in the revised manuscript.  

 

Scale disparity between in situ and image pixels resolution is not well addressed and I dare say a major contributor 

to the uncertainty. The conclusion that 88% of the uncertainty is attributable to uncertainty in Tb is a little hard to 

accept. 

Response: We thank the reviewer for this comment and now better clarify where this estimate comes from. We 

have switched the 9km SMAP datasets to 36km SMAP datasets to address the comments from another reviewer 

who would like to know how the different resolution of SMAP products may affect the overall analysis. Therefore, 

we obtained the 36km SMAP product and we found that the newly obtained 36km SMAP product no longer 

provides the MDCA soil moisture and is replaced by the Dual Channel Algorithm (DCA) soil moisture with some 

data updates. Thus, we decided to switch to the newest 9km and 36km SMAP data product. We have also found 

that we did not included the soil effective temperature (Teff) in the uncertainty decomposition analysis. Hence, the 

results from the updated manuscript are now based on the consideration of soil effective temperature. In general, 

we found that 64% percent of the information total uncertainty is caused by informational random uncertainty from 

the input datasets of DCA. For now, we have classified the uncertainty induced by the sensing depth and spatial 

mismatch as part of the informational random uncertainty. This is because the model does not contain the resolution 

itself and the uncertainty induced by sensing depth is more of imperfection of the sensor. However, it is extremely 



hard to sperate what’s the proportion of informational random uncertainty is specifically caused by spatial 

mismatch. We have added the following text in the revised manuscript  

“It is important to acknowledge that we used the point based in situ soil moisture as the ground truth in this 

analysis. Due to course spatial resolution of SMAP products, we acknowledge that in situ soil moisture may not be 

able to represent the spatial averaged soil moisture well. Although the nominal sensing depth of L-band SMAP soil 

moisture is 5 cm, the penetration depth was found to be even shallower in wetter regions (Shellito et al., 2016). In 

fact, the L-band sensing depth was found to as little as ~1cm (Jackson et al., 2012) and can be more sensitive to 

surface meteorological conditions and more random than the actual in situ soil moisture. The heterogeneity in each 

pixel relative to the in situ observations together with the sensing depth disparity may negatively influence the 

results of this study and result in an overestimate the actual informational uncertainties. We also acknowledge the 

existence of upscaling methods for matching the in situ soil moisture to satellite footprint (Crow et al., 2012). 

However, most of upscaling methods are achieved under the assistance of additional reference soil moisture 

datasets. This process introduces additional pieces of information in the DCA system making the separation of the 

uncertainty induced by the upscaling algorithm or additional dataset from other informational uncertainties much 

harder. Additionally, we used the hourly in situ data to best match the SMAP DCA soil moisture retrievals in time 

(within an hour). Therefore, it is hard to find a reference dataset at with high frequency in time domain and good 

spatial coverage. Here we consider the informational uncertainty caused by the spatial mismatch and sensing depth 

mismatch between in situ and DCA soil moisture as part of the informational random uncertainty (IRnd). Because 

the DCA essential is a mathematical function and does not inherently require the inputs to be at a specific resolution. 

The spatial resolution is often the inherent attribute of the data. The sensing depth is more of imperfection L-band 

sensor. The reader should also keep these in mind while interpreting and adopting the results in this study.” 

 

L251-258, Fig. 4, and L347-350: This was confusing and can do with greater clarification to aid in the interpretation 

of the results. As I read it, the fraction of model-to-overall uncertainty is negatively correlated with the cor(in 

situ,MDCA), while positively correlated with error(in istu,MDCA). What does this mean and what are the 

implications for model refinement? 

Response: We thank the reviewer for this comment. As we mentioned earlier, we changed the SMAP product in 

order to address the comment from the other reviewer. In the analysis of this new product, we found that there is 

no significant correlation between the RMSE and correlation between in situ soil moisture and DCA soil moisture. 

Therefore, we decided to exclude the RMSE plots. We have also plotted the actual informational model uncertainty 

against the Pearson correlation of in situ and DCA soil moisture. The implications of this analysis for model 

refinements are (1): more robust water body correction methods are needed for SMAP brightness temperature 

observations. The quality of the model effective soil temperature that goes to the SMAP DCA system need to be 

further evaluated (2): model uncertainties can be reduced potentially by a better parameterization scheme such as 

replacing time independent parameter with seasonal dependent parameters especially in locations where there are 

seasonal changes in landcover or vegetation phenology   
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