
Dear anonymous referee #3: 

Thank you for your valuable comments. Below we respond (highlighted in blue) to the reviewer's comments. The 

text that were added to the revised manuscript are marked in red.  

 

 

The paper by Li and Good tackles a very important problem of trying to understand the contributions of the sources 

(observations and model) of uncertainty in SMAP soil moisture retrieval. In general I found the paper easy to read, 

typographic errors not withstanding, and as a non-expert in information theory I followed the logic of the arguments 

well. However, as an avid user of SMAP products, I would have like to have seen some attempt to translate the 

findings into the soil moisture units (mˆ3/mˆ3) and discussion of how the findings may be useful when next I 

process large time series of the SM estimates. 

Response: We thank the reviewers for these overall constructive comments concerning about this work. 

Unfortunately, this study cannot translate the information quantities into the specific soil moisture unit of (m3/m3). 

We did not observe a strong relationship between the RMSE and the information uncertainties/decomposed mutual 

information components, likely in part to the large differences in the soil moisture regimes at different sites. RMSE 

as an absolute metric is more sensitive to these absolute differences while the correlation coefficient, being 

normalized by the variance at the site itself is less sensitive and more comparable across sites. The redundant 

components can be very helpful for large time series processing. For instance, the larger the redundant components 

of TBh, TBv to the DCA algorithm, the more likely we can obtain high quality datasets. The tolerance of the data 

quality depends on the user’s need. In general, redundant information between TBh, TBv to the DCA of a value 

greater than 0.1 can be indicative of a better overall retrieval quality (~0.75 in Pearson correlation). We have added 

the following to the revised manuscript “Given the strength of this relationship, the R could be potentially used as 

a DCA evaluation metric that doesn’t depend on in situ measurement and ancillary dataset. It is also useful for 

SMAP DCA soil moisture users to have a rough estimation of how high the quality of the obtained DCA soil 

moisture without actually knowing the in situ soil moisture. However, this depends on specific user requirements 

for data quality. In general, the DCA soil moisture tends to be in high end in term retrieval quality (~ 0.75 in Pearson 

correlation) when the R is greater 0.1.”.  

 

Specific comments: 

Clarify the denominator in Eq. (4) 

Response: We thank the reviewer for this comment. We have clarified this in the revised manuscript.  

 

Scale disparity between in situ and image pixels resolution is not well addressed and I dare say a major contributor 

to the uncertainty. The conclusion that 88% of the uncertainty is attributable to uncertainty in Tb is a little hard to 

accept. 

Response: We thank the reviewer for this comment and now better clarify where this estimate comes from. We 

have switched the 9km SMAP datasets to 36km SMAP datasets to address the comments from another reviewer 

who would like to know how the choice of different resolution of SMAP products may affect the overall analysis. 

Therefore, we obtained the 36km SMAP product and we found that the newly obtained 36km SMAP product no 

longer provides the MDCA soil moisture and is replaced by the Dual Channel Algorithm (DCA) soil moisture with 

some data updates. Thus, we decided to switch to the newest 9km and 36km SMAP data product. We have also 

found that we did not included the soil effective temperature (Teff) in the uncertainty decomposition analysis. Hence, 

the results from the updated manuscript are now based on the consideration of soil effective temperature. In general, 

we found that 64% percent of the information total uncertainty is caused by informational random uncertainty from 

the input datasets of DCA. For now, we have classified the uncertainty induced by the sensing depth and spatial 

mismatch as part of the informational random uncertainty. This is because the model does not contain the resolution 

itself and the uncertainty induced by sensing depth is more of imperfection of the sensor. However, it is extremely 



hard to sperate what’s the proportion of informational random uncertainty is specifically caused by spatial 

mismatch. We have added the following text in the revised manuscript “It is important to acknowledge that we 

used the point based in situ soil moisture as the ground truth in this analysis. Due to course spatial resolution of 

SMAP products, we acknowledge that in situ soil moisture may not be able to represent the spatial averaged soil 

moisture well. Although the nominal sensing depth of L-band SMAP soil moisture is 5 cm, the penetration depth 

was found to be even shallower in wetter regions (Shellito et al., 2016). In fact, the L-band sensing depth was found 

to as little as ~1cm (Jackson et al., 2012) and can be more sensitive to surface meteorological conditions and more 

random than the actual in situ soil moisture. The heterogeneity in each pixel relative to the in situ observations 

together with the sensing depth disparity may negatively influence the results of this study and result in an 

overestimate the actual informational uncertainties. We also acknowledge the existence of upscaling methods for 

matching the in situ soil moisture to satellite footprint (Crow et al., 2012). However, most of upscaling methods 

are achieved under the assistance of additional reference soil moisture datasets. This process introduces additional 

pieces of information in the DCA system making the separation of the uncertainty induced by the upscaling 

algorithm or additional dataset from other informational uncertainties much harder. Additionally, we used the 

hourly in situ data to best match the SMAP DCA soil moisture retrievals in time (within an hour). Therefore, it is 

hard to find a reference dataset at with high frequency in time domain and good spatial coverage. Here we consider 

the informational uncertainty caused by the spatial mismatch and sensing depth mismatch between in situ and DCA 

soil moisture as part of the informational random uncertainty (IRnd). Because the DCA essential is a mathematical 

function and does not inherently require the inputs to be at a specific resolution. The spatial resolution is often the 

inherent attribute of the data. The sensing depth is more of imperfection L-band sensor. The reader should also keep 

these in mind while interpreting and adopting the results in this study.” 

 

L251-258, Fig. 4, and L347-350: This was confusing and can do with greater clarification to aid in the interpretation 

of the results. As I read it, the fraction of model-to-overall uncertainty is negatively correlated with the cor(in 

situ,MDCA), while positively correlated with error(in istu,MDCA). What does this mean and what are the 

implications for model refinement? 

Response: We thank the reviewer for this comment. As we mentioned earlier, we changed the SMAP product in 

order to address the comment from the other reviewer. In the analysis of this new product, we found that there is 

no significant correlation between the RMSE and correlation between in situ soil moisture and DCA soil moisture. 

Therefore, we decided to exclude the RMSE plots. We have also plotted the actual informational model uncertainty 

against the Pearson correlation of in situ and DCA soil moisture. The implications of this analysis for model 

refinements are (1): more robust water body correction methods are needed for SMAP brightness temperature 

observations. The quality of the model effective soil temperature that goes to the SMAP DCA system need to be 

further evaluated (2): model uncertainties can be reduced potentially by a better parameterization scheme such as 

replacing time independent parameter with seasonal dependent parameters especially in locations where there are 

seasonal changes in landcover or vegetation phenology   
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