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Editorial comments: 

Thank you for submitting a revised version of the manuscript. Reviewer #1 has provided some 

important comments that need to be addressed before the manuscript can be suitable for 

publication. Mainly the reviewer would see further clarification on the part of evaluation of 

observed vs modeled LAI. 

 

Response: 

Thank you. We have addressed the comments given by reviewer #1 and have provided further 

clarification in the updated manuscript.  

Please see our response to reviewer’s comment below. 

 

 

Anonymous Reviewer’s comments #1 

The authors have done a commendable job in addressing most of the questions in the revised 

submission and the overall quality of the presentation has improved. I have only two major 

comments below: 

Response: 

Thank you for feedback. We have addressed these two major comments. 

 

1. Figure 3: I have trouble understanding what do the authors mean by spatiotemporal 

correlation? Does that mean the correlation coefficient for the shown scatter plot which 

includes monthly values across the time and space of the domain? If so, I don't think the 

values/pattern can inform much on the comparison. 

 

Response: 

Yes, in the previous manuscript, the mean correlation coefficient that was shown for 

spatiotemporal correlation includes monthly values across time and space of the domain.  

However, based on your suggestion, we have removed the spatiotemporal correlation plot. 

The same concerns for Figure 3 (Q) that the domain averaged annual LAI is not able to 

demonstrate whether the model is able to capture the interannual variability as compared to the 

observation. Besides, the ensemble spread is much larger than the variation of LAI time series, 

making the comparison less meaningful as well. 

 

Response: 

In the same vein, we have also removed the interannual variability that was shown in Figure 3 

(Q) from the revised manuscript. We have moved it to Fig. S8 in supplemental. 

I suggest the authors to calculate the correlation between GIMMS LAI and modelled LAI for 

both the original and deseasonalized time series for each grid point and show the correlation 
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maps rather than a spatiotemporal correlation. Disucssion on 1) how model captures the LAI 

seasonal/interannual variations in terms of bioms and models and 2) how that may indicate the 

difference between observed and modeled system regarding vegetation response to drought are 

needed. Please refine Figure 3 and the corresponding text to address the issue. 

 

Response: 

Thank you for your suggestion. 

Following your suggestion, we now show spatial maps of correlation between GIMMS LAI 

and modelled LAI for both the original and deseasonalized time series for each grid points. 

These are shown in Figure 3 as copied below. Please see Page 13, Section 3.2; Lines 399 – 

405. 
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Figure 3. Spatial seasonal distribution and inter-annual variability (IAV) of satellite-

calculated and modelled LAI (multi-model mean) over southern Africa. (A) – (D) show the 

difference (bias); (E) – (H) and (I) – (L) show their standard deviation (Stdev); (M) – (P) show 

the correlations between deseasonalized GIMMS LAI and modelled LAI; (Q) – (T) show their 

correlations for original GIMMS LAI and modelled LAI and (U) – (V) show correlations 

between GIMMS LAI and modelled LAI but for the period 1982 – 2011. The inter-annual 

variability for observed and modelled LAI for the period 1982 – 2011 is shown in Fig. S8. 

We have also provided discussion on how model captures the LAI seasonal/interannual 

variations of biomes and models, and how that may indicate the difference between observed 

and modelled system regarding vegetation response to drought. The texts are copied below. 
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Please see Section 3.2, Page 12, Lines 376 – 395; Section 4.5, Pg 30 - 31, Lines 806 - 834 and 

Section 4.6, Page 31, Lines 835 – 868. 

3.2 Seasonal and interannual variations of observed and modelled LAI 

 
The comparison of seasonal and interannual variation of observed and modelled LAI is given 

in Fig. 3. The model shows a stronger positive bias in JJA and SON in comparison to summer 

and winter months; and a negative bias over the tropical forest region of Madagascar (Figs. 

3A – 3D). In addition, model mostly overestimate the seasonal patterns of LAI in some regions 

during DJF and JJA, and underestimate LAI in MAM and SON (Figs. 3E – 3L). Over most 

parts of the region, there is a strong correlation and good agreement between observed and 

modelled LAI in DJF, MAM and JJA although it is weaker in SON (Figs. 3M – 3T). The strong 

correlation is more prevalent in JJA than other seasons (Fig. 3S); while it is weakest in 

southern parts of the region. However, the correlation is largely negative over Angola in DJF 

and SON (Figs. 3Q, 3T). Furthermore, the correlations between model and observed LAI is 

weaker in deseasonalized data (hereafter, Deseas. Correlation; Figs. 3M– 3P) than in original 

data (hereafter, ORIG. Correlation; Figs. 3Q– 3T), thereby showing the effects of seasonal 

patterns on time-series data. With respect to the period, 1982 – 2011 (hereafter, ANNUAL), 

the correlation between modelled and observed LAI are different for deseasonalized and 

original data (Figs. 3U – 3V). For the former (Fig. 3U), there is gradient in the correlation 

across the region, with higher values in central and southern parts than in Angola and 

Madagascar. However, with the original LAI data (Fig. 3V), the correlation is very high (about 

0.85) and more prevalent, except in eastern Madagascar and Western Cape Province of South 

Africa. 

4.5 How well the seasonal and interannual variations of LAI are captured in 

DGVM simulations 

 

The models exhibit biases in the simulation of seasonal and interannual variations of LAI over 

southern Africa. Two major factors may be given for performance of the models. First, the 

influence of precipitation forcing data largely affect the seasonal cycle of LAI as well as the 

interannual variability (see Figs. 3 & S8). Although the difference between the forcing data for 

observed and modelled LAI (i.e. CRU and CRUJRA respectively) is small, it still influences the 

simulations by the DGVMs. The precipitation uncertainty has larger influence in some regions 

and biomes than others. For instance, the overestimation of LAI by models in arid biome of 

Namibia and Mediterranean vegetation of South Africa may be due to the irregularity in 

precipitation, whereby the precipitation changes are too little to be identified (in CRUJRA), as 

well as due the large spatial variability (Fekete et al., 2004; Greve et al., 2014). On the other 

hand, over the savanna biome of Angola, the underestimation is likely because of the sparse 

distribution of precipitation data, which permeates to CRUJRA (Fekete et al., 2004). Secondly, 

the differences in observed and simulated LAI may be due to the impacts of land use and land 

cover change on the latter (LULCC) on simulation, through soil moisture as well as 

evapotranspiration (Piao et al., 2015). LULCC exerts strong influence on water consumption, 

nutrient cycling, and root depth (Piao et al., 2007; Mango et al., 2011), and the extent of the 

influence also varies across biomes. For example, in MAM, over temperate grassland biome 

of South Africa, where the model underestimates LAI, the bias is likely because the models fail 
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to simulate the frequency of evapotranspiration, which is about five times much less than the 

forest biome (Yang et al., 2015).  

However, over most parts of the region, the correlation between observed and modelled LAI is 

strong, except in JJA season. This means that the models generally simulate the pattern of LAI 

distribution in southern Africa. We also note that, the lower correlations between observed and 

modelled LAI when the data were deseasonalized, is due to the sensitivity of LAI to variability 

and seasonality. These differences between observed and modelled system have impacts on 

how vegetation response to drought is captured, which we discuss in Section 4.6. 

 

4.6 How well drought and LAI response is represented in DGVM simulations 

 

The observed LAI is simulated within the models and calculated by GIMMS based on Mao and 

Yan, 2019. Lu et al., 2011 found that DGVMs perform better against observations than Earth 

system models (ESM) because they use observational-derived climate and can include more 

complex representations of vegetation processes. The ESM is a coupled model simulating its 

own climate, while the individual DGVMS models used in the present study are standalone, i.e. 

are applied with observational based meteorological forcing, and thus we remove one 

uncertainty. Since offline studies target the DGVM itself, removing one possible issue 

(incorrect climate drivers), it became imperative to use DGVM to study drought impacts. 

 

DGVMs simulate the vegetation characteristics and impacts of climate on them. The validation 

of DGVM simulations of variables such as LAI is quite difficult. This is because of the 

unavailability of data on large spatiotemporal scale for the different vegetation classes (Potter 

and Klooster, 1998). Studies (e.g. Potter and Klooster, 1998) have also shown that errors 

present in the prediction of plant functional types (PFTs) tend to spread to biomass prediction 

in the model, thus possibly biasing estimates of carbon stored in terrestrial ecosystems. 

Nevertheless, the DGVMs used in this study simulate the spatial patterns of vegetation 

distribution though with a magnitude bias as shown in Fig. S2 in the supplementary material. 

 

TRENDY models mostly simulate the temporal patterns of global and regional distributions of 

LAI response to drought. The biases shown by the models have been attributed to the fact that 

the models do not factor land use changes (Ahlstrom et al., 2015). This is evident in the 

simulation of LAI (please see Fig. S2). 

The models’ weaker simullations might also be because some of the DGVMs do not well 

reproduce the LAI  magnitude. The negligible difference in the spatial distributions of SPEI of 

the models could be due to fact that the model PET does not play a strong role in drought 

occurent in the southern Africa and that precipitation is the main driver of drought in the 

region. The variations in the characterization of hydrological processes in the models are also 

a source of uncertainty because they reinforce the bifurcation in runoff outputs which has 

cascading effects on biospheric changes and evapotranspiration (Murray et al., 2011; Stewart 

et al., 2004). Also see Fig. S4 for correlations of the model ensemble median at different 

timescales. Another reason for the biases in the simulations may be to the design of the DGVM 

experimental set-up, which include the flux deviation between simulations without and with 

(Murray et al., 2011). 

 

https://journals.sagepub.com/doi/full/10.1177/0309133312460072
https://journals.sagepub.com/doi/full/10.1177/0309133312460072
https://journals.sagepub.com/doi/full/10.1177/0309133312460072
https://journals.sagepub.com/doi/full/10.1177/0309133312460072
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2. Figure 10/Section 3.8. Thanks to the authors for explaining the section. However, I think it 

is still unclear in terms of how the correlation is calculated and how the correlation difference 

can be made for each dry/wet years shown in Figure 10. Is the map showing the correlation 

difference or LAI difference? Please clarify. 

Response: 

To produce this figure, first, we identified extreme events (i.e. wet and dry years), and then 

computed the correlation between these events and LAI at the different time periods. The maps 

of the correlation were then plotted. In summary, the maps show the correlation for the 

corresponding extreme events at different years. We have provided further clarification on the 

method in the revised manuscript. Please see Section 3.9, Lines 613 – 629, Page 25. 


