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Abstract. Climate classification systems are useful for investigating future climate scenarios, water availability, and even 

socioeconomic indicators as they relate to climate dynamics. There are several classification systems that apply water and 

energy variables to create zone boundaries, although there has yet to be a simultaneous comparison of the structure and function 

of multiple existing climate classification schemes. Moreover, there are presently no classification frameworks that include 

evapotranspiration (ET) rates as a governing principle. Here, we developed a new system based on precipitation and potential 10 

evapotranspiration rates, as well as three systems based on ET rates, which were all compared against four previously 

established climate classification systems. The within-zone similarity, or coherence, of several long-term hydroclimate 

variables was evaluated for each system based on the premise that the interpretation and application of a classification 

framework should correspond to the variables that are most coherent. Additionally, the shape complexity of zone boundaries 

was assessed for each system, assuming zone boundaries should be drawn efficiently such that shape simplicity and 15 

hydroclimate coherence are balanced for meaningful boundary implementation. The most frequently used climate 

classification system, Kӧppen-Geiger, generally had high hydroclimate coherence but also had high shape complexity. When 

compared to the Kӧppen-Geiger framework, the Water-Energy Clustering classification system introduced here showed overall 

improved or equivalent coherence for hydroclimate variables, yielded lower spatial complexity, and required only two, 

compared to 24, parameters for its construction. 20 

1 Introduction 

A variety of classification schemes have been introduced to categorize specific biophysical characteristics of Earth 

systems, including those based on climatic behavior (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967), 

biodiversity (Olson et al., 2001), plant-climate interactions (Papagiannopoulou et al., 2018), and plant hardiness (Magarey et 

al., 2008; McKenney et al., 2007). These frameworks classify elements of a system based on common atmospheric or terrestrial 25 

characteristics to maximize their within-zone similarity, or coherence, which allows for a transfer of understanding across 

zones of similar attributes (Lanfredi et al., 2019). This study focuses specifically on climate classification schemes, which have 

provided a climatic context for a variety of applications, including socioeconomic assessments of human health conditions 

(Boland et al., 2017; Jagai et al., 2007; Lloyd et al., 2007), economic development (Mellinger et al., 2000; Richards et al., 

2019), and the evaluation of anticipated terrestrial and climatic changes (Chen and Chen, 2013; Tapiador et al., 2019).  30 
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Different climate classification systems have emerged based on framework-specific suites of hydroclimatic variables 

used to define zone boundaries. Therefore, users should consider how potential classification system application corresponds 

to the variables used to create it (Knoben et al., 2018; Meybeck et al., 2013). Climate classification systems are usually based 

in part on annual and seasonal water-energy budgets (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben 

et al., 2018; Meybeck et al., 2013). The Kӧppen-Geiger classification system, the most widely used climate framework, was 35 

developed to regionalize climatic variables (specifically accounting for seasonal precipitation and temperature) and is often 

employed to compare the output of global climate models (Peel et al., 2007; Tapiador et al., 2019). Another common system 

is the Holdridge Life Zones scheme, which was created to classify land area with respect to vegetation and soil (Holdridge, 

1967). This system subdivides zones based on thresholds of annual precipitation (P), potential evapotranspiration (PET), 

biotemperature (growing season length and temperature), and latitude and altitude.  40 

Recent work has extended climate classification frameworks to specifically encompass hydrologic factors, since water 

resources-based analyses should take place within relevant hydrologic boundaries (Knoben et al., 2018; Meybeck et al., 2013). 

For example, Meybeck et al. (2013) proposed a global zoning system that was primarily based on the mean temperatures and 

gauged runoff (Q) of river basins. They compared the resulting boundaries against the Kӧppen-Geiger and Holdridge 

frameworks to assess zone boundary overlaps. The authors also evaluated the within-zone coherence of mean annual 45 

temperature, P, and Q, concluding that the latter two were most coherent in dry zones and least coherent in equatorial zones, 

while temperature was most coherent in equatorial zones. However, Meybeck et al. (2013) did not compare their zone 

coherence to that of previously established systems. Similarly, Knoben et al. (2018) formed zone boundaries based on climate 

indices (average aridity, seasonality of aridity, and P as snow) with the objective of minimizing within-zone Q variability (i.e., 

maximizing Q coherence). Those authors compared their results to the Kӧppen-Geiger framework and found theirs to be more 50 

coherent with respect to flow regime, but they did not compare other water budget components nor additional climate 

classification systems.  

Although the P and Q components of the long-term water budget have been extensively considered in climate 

classification schemes (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 

2013), notably absent is a system that is directly based on actual evapotranspiration (ET) rates. This gap is likely because ET 55 

traditionally has been the least empirically identified element of regional to global water budgets (Zhang et al., 2016). In 

addition to the absence of a zoning system that accounts for ET dynamics, there has been no comparison of within-zone 

hydroclimate coherence across multiple climate classification systems, with evaluation particularly lacking in considering ET 

rates. Furthermore, the spatial complexity of climate classification systems has not been systematically examined across 

multiple frameworks, although Guan et al., 2020 quantified the changing spatial structure of the Kӧppen-Geiger framework 60 

over time. Assessing the structure of a biophysical system is a concept that most notably originates from landscape ecology 

(O’Neill et al., 1988) and provides a suite of shape metrics that can be cross-disciplinarily applied. Quantifying shape pattern 

and spatial contouring of climate classification systems is important for understanding interactions between governing 
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hydroclimatic characteristics as well as anticipating socioecological consequences that result from changing atmospheric 

configurations (Guan et al., 2020).  65 

This work seeks to provide empirical support for application-dependent selection among candidate climate 

classification systems. We suggest that a successful classification system should have high within-zone coherence for variables 

that are related to the system’s intended use, combined with relatively low shape complexity across zones, which is best for 

ease of interpretation within management and policy contexts. As such, we postulate that for a given climate classification 

system, within-zone hydrologic coherence and inter-zone shape complexity will be closely related to the organizing principle 70 

of that system. For example, the Kӧppen-Geiger and Meybeck et al. (2013) systems are based in large part on P and Q, 

respectively, and therefore these systems should show high coherence for these variables. Similarly, zone shape complexity 

will be lower in classification systems that include spatial contiguity in the organizing criteria (e.g., Meybeck et al., 2013). 

Given the major gap regarding the inclusion of ET in climate classification systems, we also created a series of ET-based 

global classifications that were expected to yield comparatively higher ET coherence than other systems.  75 

We evaluated within-zone coherence of long-term water budget components (mean annual ET, P, and Q) and 

synchronous P and PET seasonality, as well as zone shape complexity for four new global classification systems and compared 

these against four previously established systems (Beck et al., 2018; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 

2013). The primary zone shape complexity metrics were the distribution of zone area (km2), mean zone fragmentation (i.e., 

mean number of patches comprising each zone), and the number of zones required to effectively form hydroclimate boundaries. 80 

This work presents novel approaches to identify boundary complexities and determine appropriate applications of classification 

frameworks. Understanding the relevance of a climate classification system is important since such frameworks are used in 

multi-disciplinary contexts to examine hydrological, ecological, and societal phenomena.  

2 Methods 

2.1 Coherence and complexity metrics 85 

Variable coherence is defined by within-zone variability, represented by the intra-zone coefficient of variation (CV) 

of the hydroclimate variable of interest. Lower CV values correspond to higher coherence, meaning that regions delineated by 

zone boundaries that yield low CV values are more spatially homogenous with respect to hydroclimate variables and are 

therefore more hydroclimatically continuous. An additional important component of this analysis is the evaluation of the 

tradeoffs between hydroclimate coherence and the shape complexity of zone boundaries. It is valuable to consider the structural 90 

attributes of zone boundaries because these boundaries are expected to change over time (Beck et al., 2018; Knoben et al., 

2018). Building more precise boundaries may better delineate similar hydroclimate processes, but overly exact geographic 

specificity may compromise ease of interpretation, communication, and relevant application for management purposes 

(Knoben et al., 2018).  
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Classification system complexity metrics were primarily based on three principles: 1) classification systems should 95 

consist of a relatively even area distribution across zones, avoiding disproportionately large or small zones, 2) zones should 

be as hydrologically continuous as possible (Meybeck et al., 2013), minimizing patchiness or fragmentation, and 3) 

classification systems should comprise less than or equal to the number of zones in the Kӧppen-Geiger framework, which is 

used here as the standard to which other systems are compared. Therefore, complexity was assessed based on the inter-zone 

distribution of area (km2) as defined by CV, the mean number of patches in each zone (zone fragmentation), and the number 100 

of needed zones to bound hydroclimatically similar areas. The mean number of patches per zone was determined using the R 

function lsm_c_np in package landscapemetrics (Hesselbarth, et al., 2019). For each hydroclimate and complexity variable, 

statistical differences between classification systems were determined based on a series of two-sided Kolmogorov-Smirnov 

(K-S) tests, which compares probability distributions to a reference distribution.  

2.2 Database construction 105 

Several open access datasets were compiled to create the database used for climate classification system calibration 

and validation. We evaluated global gridded monthly P and PET and mean annual ET and Q between 1980 and 2014 at a 0.5° 

x 0.5° spatial resolution. The Climate Research Unit TimeSeries V4.04 supplied monthly P and PET (Harris et al., 2020), 

while mean annual ET and Q were constructed from aggregated TerraClimate monthly data (Abatzoglou et al., 2018) by 

summing long-term mean monthly values. In this case, long-term mean values muted interannual variability. Annual ET and 110 

Q were resampled from their original 1/24° x 1/24° resolution to the 0.5° x 0.5° resolution of P and PET.  

Additional ET and Q datasets were used for independent validation purposes. Observation-based monthly Q from 

1980-2014 were obtained at 0.5° x 0.5° resolution from monthly global gridded runoff data (GRUN, Ghiggi et al., 2019). The 

Global Lobal Evaporation Amsterdam Model (GLEAM) produced terrestrial daily ET for 1980-2020 at 0.25° x 0.25° 

resolution, which was also resampled to 0.5° x 0.5° resolution. Here, we used the updated GLEAM version 3.5a, which is 115 

based on ERA5 net radiation (satellite) and air temperature (reanalysis) datasets, downloadable at a monthly timestep (Martens 

et al., 2017). The GLEAM ET and GRUN Q datasets were independent from TerraClimate ET and Q datasets both temporally 

(Figures S1 and S3) and spatially (Figures S2 and S4). The two ET datasets were more similar than the two Q datasets, based 

on monthly linear models (R2 ranging from 0.78 to 0.87 for ET and 0.47 and 0.84 for Q), and both ET and Q datasets showed 

spatially consistent seasonal differences. Hereafter, TerraClimate ET and Q are simply referred to as “ET” and “Q” unless 120 

otherwise noted. 

Spatial analysis R packages raster (Hijmans, 2017), sp (Bivand et al., 2013) and ncdf4 (Pierce, 2017) were used to 

build the database of long-term monthly and annual averages. The spatial extent of this study comprised all global land areas, 

excluding Antarctica, which resulted in a total of 60,726 pixels. 
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2.3 Sinusoidal functions as descriptors of seasonality 125 

The seasonal dynamics of monthly P and PET were additionally considered in this analysis, as they are also included 

in the Kӧppen-Geiger framework, which considers temperature as a general proxy for PET (Beck et al., 2018). Sine functions 

and their corresponding parameters can be used to describe intra-annual climate behavior. Sine functions were fitted to the 

long-term monthly distribution (following Berghuijs and Woods, 2016) 

 130 

              𝑦𝑚 = �̅� [1 + 𝑟𝑦 sin (
2𝜋(𝑚−𝑡𝑦)

12
)]    (1) 

 

where 𝑦 is either P or PET (mm month-1) for each month, 𝑚, with overall monthly mean (i.e., mean of the 12 long term monthly 

means) denoted by the overbar, 𝑟 is dimensionless amplitude, and t is the phase offset (months) from the reference time, 

January (𝑚 = 1). Phase difference, ∆𝑡, measures the synchronization of P and PET throughout the year, is determined as the 135 

difference 𝑡𝑃𝐸𝑇 − 𝑡𝑃, and is constrained −6 ≤ ∆𝑡 ≤ 6 (more detail in SI).  

Figure 1A shows the overall global distribution of Δt (Equation S1), where some banding around the Tropics as well 

as the Middle East can be seen. Equation 1 yielded overall good fits to the long-term mean monthly distributions of P and PET, 

with R2=0.67±0.28 and 0.84±0.18, respectively (mean±standard deviation across all pixels). These sine fits to monthly PET 

were statistically significant (p-value ≤ 0.05) in 97% of pixels, while fits to monthly P were statistically significant in 85% of 140 

pixels (Figure 1B-C). Cumulative distribution functions of both R2 and p-value for PET and P sine fits can be seen in Figure 

S5. Similar to Berghuijs and Woods (2016), P fits were good in South America, and not as good in parts of the Sahara (Figure 

1C). Our P fits were good in East Asia and not as good in the southern United States, while Berghuijs and Woods (2016) had 

more error in East Asia and less error in the United States. Lastly, compared to the performance of our PET fits shown in 

Figure 1B, the temperature fits of Berghuijs and Woods (2016) were overall much less spatially homogeneous than ours.  145 
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Figure 1:  Global spatial distributions of Δt (A) and of performance of monthly P (B) and PET (C) sine fits represented by p-value.  

2.4 Established climate classification systems 

Four previously established climate classification schemes were assessed in this analysis. We included two legacy 

schemes, Kӧppen-Geiger (KPG, Beck et al., 2018) and Holdridge Life (HDL, Holdridge, 1967) zoning systems, and two 150 

recently proposed frameworks, here referred to as Meybeck Hydroregion (MHR, Meybeck et al., 2013) and Knoben 

Hydroclimate (KHC, Knoben et al., 2018) systems. Note that the original KHC zones created by Knoben et al. (2018) were 

not delineated by discrete boundaries but were instead represented as pixels with a corresponding probability continuum of 
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belonging to a zone. However, Knoben et al., 2018 chose to bound 18 zones using their provided climate indices (aridity index, 

seasonal aridity index, and precipitation as snow) for inter-system comparison purposes. In the present study, 18 KHC 155 

boundaries were re-created using those climate indices in a clustering approach similar to the clustering methodology of 

Knoben et al., 2018. Here we applied a k-means, multi-start clustering method (n=80 starts), which was also used to form 

boundaries in two of our proposed frameworks described below. This k-means clustering approach, based on the Hartigan and 

Wong (1979) algorithm, was employed using the kmeans function in the R package stats (R Core Team, 2018). Note that the 

very small KPG zones “Csc” and “Cwc” did not appear in the 0.5° x 0.5° resolution KPG output created by Beck et al. (2018) 160 

that was used in this study, resulting in 28 KPG presently analyzed zones. As in other climate classification studies (Knoben 

et al., 2018; Meybeck et al., 2013), KPG was considered here to be the standard to which other systems are primarily compared 

and evaluated for performance.  

2.5 Novel univariate ET climate classification systems 

This study establishes and verifies ET-relevant climate classification frameworks by creating zones primarily based 165 

on ET rates and comparing ET coherence between systems. Three of the four systems developed in this study were univariate 

(formatted from global mean annual ET rates) with a single condition to emphasize a specific optimization goal. A fourth 

multivariate system is described below.  

The first two novel univariate classification systems were based on the empirical cumulative distribution function 

(CDF) for global long-term mean annual ET rates. The first classification system, ET Area-optimizing (ETA), was created 170 

with the condition of having nearly equal area in each ET-based zone. This was motivated by the first complexity principle 

described in Section 2.1, which states zones should not be meaninglessly small nor disproportionately large. The KPG system 

has relatively high spatial non-uniformity, resulting in highly variable relevance for regional analyses. A classification system 

that is more spatially uniform can better inform large spatial scale understanding as well as the application of regional to semi-

continental management strategies. Additionally, it is useful to have a simple baseline framework upon which to compare the 175 

other ET-based systems. Ultimately, ETA is a system that seeks to maximize area efficiency. This type of spatial condition is 

similar to the prioritizations of the MHR framework that state zones should ideally be “delineated in one piece,” although this 

is not a physical reality (Meybeck et al., 2013). The cumulative probability interval [0,1] was divided into 15 equal parts, each 

corresponding to a separate zone, and the upper and lower bounds of ET thresholds for each zone were determined from the 

CDF of mean annual ET for all global land pixels (Figure S6A). The number of ETA zones was chosen based on the number 180 

of zones in previously established systems and the relative improvement of ET coherence with the addition of more zones 

(Figure S6B). 

The second proposed classification system, ET Variability-optimizing (ETV), was based on the principle of 

maximizing within-zone ET coherence subject to the tradeoff of increasing complexity by adding zones. By fitting the 

empirical CDF with a continuous distribution, zone boundaries can be determined analytically for a minimum desired CVmin. 185 

For simplicity, and supported by empirical evidence (Figure S7), we fitted a uniform distribution, which is characterized by 
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lower and upper bounds a and b, with CV = (𝑏 − 𝑎)/[√3(𝑏 + 𝑎)]. The ET limits defining each zone, i, were then determined 

directly from this relation as 

 

                                                                      𝑎𝑖 =
𝑏𝑖(1−√3CVmin)

1+√3CVmin
     (2) 190 

 

where the upper and lower limits of sequential zones are shared (i.e., 𝑏𝑖−1 = 𝑎𝑖). The largest value of b = 1,454 mm yr-1 was 

based on the maximum ET for all pixels, and CVmin = 0.075 was chosen based on marginal CV decrease with increasing 

number of zones (Figure S7-B), which resulted in 29 zones. This method produces nearly equal CV in all zones. Corresponding 

ET limits for each zone are shown in Figure S7-A. 195 

The third univariate scheme proposed here is the ET Clustering (ETC) classification system, in which the k-means 

clustering approach was applied. Previous analyses have used clustering techniques for climate classification purposes 

(Tapiador et al., 2019), including for the construction of the KHC boundaries (Knoben et al., 2018). Zones were built using a 

multi-start framework (n=80 starts) by forming clustering centers iteratively until the within-zone sum of squares of mean 

annual ET, based on Euclidean distances, was reduced. This method encompasses aspects of both ETA and ETV, in which ET 200 

variability and area distribution are considered. The ETC approach serves to compare a clustering methodology against the 

previously described analytical ET-based zoning frameworks. The final number of 20 clustering centers (i.e., zones) was 

selected based on the smallest number of zones with CV of mean annual ET below a low threshold, selected here as 0.1 (Figure 

S8).  

2.6 Novel multivariate climate classification system 205 

The final system developed in this study is a multivariate climate clustering framework, which was created from the 

same k-means clustering method described for the ETC framework. This new climate classification system included two 

hydroclimate variables (mean annual P and PET) and was designed for comparison against the univariate ET classification 

frameworks, as well as previously established systems that were similarly formed from multiple variables. This final system 

is herein referred to as the Water-Energy Clustering (WEC) climate classification system. 210 

Since the KPG is the standard framework to which other systems were compared, a main objective was to create a 

classification scheme that was at least as good as KPG, while also using fewer biophysical parameters to draw zone boundaries. 

The final number of proposed WEC zones was chosen based on the common “elbow method” for visually determining the 

optimal number of clusters, or zones (Syakur et al., 2018). Within the context of the presently applied k-means clustering 

method, the elbow method seeks to efficiently minimize the total within-zone sum of squares (TSS), such that the optimal 215 

number of zones exists where the rate of TSS change starts to decrease with the addition of more zones. According to the goal 

of efficiently minimizing TSS, about 5 zones would be best (Figure S9). However, the aim of this study was to optimize zones 

based on hydroclimate coherence and zone shape complexity. Considering this premise, the “elbow” of hydroclimate 
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coherence (i.e., low CV values) with respect to number of zones was between 10 and 20 zones for all hydroclimate variables, 

except for Δt (Figure 2). Similarly, the elbow denoting the efficient minimization of mean number of patches across zones was 220 

approximately 15 to 25 WEC zones, but CV of zone area was relatively constant between 10 and 30 zones (Figure S10B). A 

WEC system consisting of at least 10 zones yielded mean coherence values that were better than those mean coherence values 

of KPG for PET, P and Q, as denoted by dark blue dots in Figure 2. It should also be noted that although there was no number 

of WEC zones that provided a lower mean number of patches than KPG, most possible numbers of WEC zones yielded mean 

values that were within one standard deviation of the KPG mean (Figure S10A). Also, all possible numbers of WEC zones 225 

allowed for a more equal distribution of zone areas compared to the CV of zone area for KPG (Figure S10B). We evaluated 

both 15 and 20 possible WEC zones (compared to KPG’s 30 zone system) against all climate classification systems. However, 

the results for 15 WEC zones will be presented henceforth, since the K-S test showed no statistical difference in coherence nor 

complexity between 15 and 20 zones (the coherence and complexity results for 20 WEC zones can be seen in Table S1). 

 230 

 

Figure 2: Hydroclimate coherence with respect to number of possible zones within the WEC framework for all hydroclimate 

variables: PET (A), P (B), Δt (C), ET (D), and Q (E). For independent validation, ET and Q are also included from secondary gridded 

data sources, GLEAM and GRUN, respectively, and are differentially illustrated by triangles. Number of zones that yielded a mean 

CV value lower than that of KPG (gridded horizontal line) are shown in dark blue, number of zones that yielded a mean CV value 235 
that was lower than that of KPG plus one standard deviation (σ) are shown in light blue, number of zones that yielded a mean CV 

value that was higher than that of KPG plus σ are shown in light grey, and the final number of zones chosen for further evaluation 

are in red. 
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3 Results 

This study compared four previously established climate classification systems (KPG, HDL, MHR, and KHC) and 240 

four potential new climate classification systems (ETA, ETV, ETC, and WEC) to assess for hydroclimate coherence as well 

as zone boundary complexities. The coherence of hydroclimate variables, PET, P, Δt, and TerraClimate ET  and Q for each 

evaluated climate classification system is shown in Figure 3. Figure S11 illustrates the coherence of GLEAM ET and GRUN 

Q, which were variables used to augment independent validation. A two-sided K-S test was conducted to determine differences 

between the cumulative distributions of CVs compared to a reference system for each variable. The WEC system was used as 245 

the reference system, since WEC is the novel multivariate system proposed in this study.  

 

 

Figure 3: Boxplots of coherence, quantified as intra-zone CV for hydroclimate variables of interest (A-E), for each assessed climate 

classification system. In each panel KPG is shown in gold and WEC in light beige. The K-S test was used to determine whether the 250 
distributions were different from WEC. Systems whose coherence distributions were not statistically different from that of WEC 

are underlined. 

 

Figure 4 showed MHR was the least fragmented system overall, although the KPG system also was characterized by 

low patchiness when compared to the distributions of the other systems (Figure 4A). The KPG system also had relatively high 255 

hydroclimate coherence for most variables, including validation datasets GLEAM ET and GRUN Q (Figure S11), appearing 

as the best system (i.e., low CV values) for Δt and not statistically different from the best system for PET and Q (Figure 3). 

However, it did not have the highest P or ET coherence. The high Δt coherence of KPG is sensible, because KPG zones are 

built using intra-annual P and temperature (i.e., PET) dynamics. While the KPG system showed overall high coherence, which 
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supports its status as the most widely used climate classification system, it was not the highest for all variables, and it also 260 

exhibited high complexity with respect to zone area distribution and number of zones used in its framework (Figure 4B-C).  

Lastly, the number of biophysical parameters required to construct KPG zone boundaries (monthly P and temperature, n =24) 

is much higher than the novel systems presented here (n=2 for WEC and n=1, mean annual ET, for ETA-based systems).  

The coherence of hydroclimate drivers, PET, P, and Δt, as well as hydroclimate response variables, ET and Q, were 

variable across systems (Figure 3). The variable that was overall least coherent was Q (Figures 3E and S11B), with both 265 

TerraClimate and GRUN Q CV values ranging beyond 1.50 for most classification systems, while the variable that was 

generally most coherent was Δt (Figure 3C), with CV values generally between 0.10 and 0.30 for all assessed classification 

systems. Of all variables, Δt yielded the greatest number of systems not statistically different from WEC, based on the K-S 

test for differences in CV distributions (Figure 3C). Additionally, the three novel ETA, ETV, and ETC systems had better ET 

coherence than the other classification systems (Figure 3D). The ETA system, along with WEC, also had the fewest number 270 

of zones and provided the most uniform zone size distribution (Figure 4B-C) but was not as coherent with respect to 

hydroclimate variables apart from ET (Figure 3).  

The WEC system had the lowest median CV for PET, P, and both TerraClimate Q (Figure 3A-B and E) and GRUN 

Q (Figure S11B). It is reasonable that the WEC system is the most PET and P coherent, since these were the variables used to 

form the zone boundaries of the system. The high coherence of GRUN Q serves as an independent validation of the WEC 275 

framework, such that it can be concluded that the WEC system most effectively bounds zones that capture water availability 

drivers. Although the ET-based systems were best at bounding within-zone ET similarities and yielding high coherence, WEC 

did not perform worse than KPG in ET coherence, according to the K-S test (Figure 3D). The WEC system was also relatively 

less complex compared to most other systems, including KPG, with respect to zone area distribution and number of zones 

required to draw hydroclimatically coherent boundaries (Figure 4B-C). The WEC distribution of the mean number of patches 280 

in each zone was statistically different from that of KPG, and the WEC system had the next lowest median value following 

KPG (Figure 4A). Since the proposed WEC system had similar or better performance than the KPG system in most coherence 

and complexity metrics (except for ∆t coherence and mean number of patches), and required 2 compared to 24 parameters to 

construct, the evaluated WEC framework was selected as the overall best hydroclimate classification system. 
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 285 

Figure 4: Boxplots of mean number of patches per zone (A), barplots of CV of zone areas (B), and barplots of number of constructed 

zones (C) for each assessed climate classification system, with KPG shown in gold and WEC in light beige. The results of the K-S 

test were used to determine statistical difference of distributions compared to WEC. Systems whose distributions of mean number 

of patches were not statistically different from that of WEC are underlined.  
  290 

The KPG system qualitatively groups 30 zones into 5 primary categories (Tropical, Arid, Temperate, Boreal, and 

Polar), and here the 15 WEC zones were also divided into 5 primary groups by ranking zones based on increasing zone mean 

aridity index, 𝜑 =
<𝑃𝐸𝑇>

<𝑃>
, where brackets indicate spatial average within a zone and �̅� is the mean across zones within a group. 

The ranked zones were evenly grouped into the five categories: Superhumid (�̅� = 0.39), Humid (�̅� = 0.58), Temperate (�̅� =

1.07), Arid (�̅� = 2.05), and Hyperarid (�̅� = 9.56). Note that the single WEC zone with highest aridity encompasses the 295 

Sahara, parts of Saudi Arabia, and western Australia, for which 𝜑 = 14.8. Maps of the boundaries for the proposed WEC 

system and the standard KPG framework are compared in Figure 5. While there were some spatial similarities (e.g., see the 

Iberian Peninsula in Figure 5), most regions were divided differently. For example, parts of northern Europe were mainly 

divided into three KPG zones but four WEC zones. Similarly, the southeastern United States, excluding south Florida, was 

mostly one KPG zone, but was separated in the WEC system into two distinct zones. The KPG framework conversely divided 300 

eastern and western Europe in respective temperate and boreal zones, while WEC treated western Europe as more 

heterogeneous. Clustering centers, which are the arithmetic means of each of the clusters, for the WEC climate classification 

system are listed in Table S2. 
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 305 

Figure 5.  Spatial distribution of WEC (A) and KPG (B) classification systems. Europe and North America are magnified. 

4 Discussion 

We hypothesized that variable coherence and zone shape complexity would be related to the governing principles of 

the classification systems, which was mostly supported by the results of this study. For example, the principle of contiguity in 

the MHR system led to the lowest patchiness of all systems evaluated, so this system could be useful when continuous 310 

boundaries are important for ease of implementation or interpretation purposes. Additionally, concordant with the objectives 

of each ET-based framework, the three univariate ET-based classification systems had the highest ET coherence, while ETA 

(which additionally optimized equal zone area) also had the most uniform area distribution across zones. The KPG framework 

had the overall highest ∆t coherence of the eight total compared systems, which is reasonable since KPG was the only system 

that accounted for monthly variability of water (P) and energy (temperature), which results in 24 biophysical parameters (Beck 315 

et al., 2018). The KHC framework similarly accounted for the long term mean monthly ratio of P and PET, but it was not 

particularly high in ∆t coherence (Figure 3C). The WEC system was also based on water (P) and energy (PET), but from a 

mean annual perspective, thus requiring only two biophysical parameters as input variables. It is important to highlight that all 

novel systems presented here required fewer input variables, a notable aspect of system complexity, than any other evaluated 

previously established climate classification system, and substantially fewer than KPG. 320 

Of the four previously established systems, KPG was the most hydroclimatically coherent but had high zone area 

variability (Figure S10), even with the omission of the two small KPG zones when resampled to 0.5° x 0.5° resolution in this 
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study. When comparing all eight systems, WEC had the highest P, PET, and Q coherence and similar ET coherence to KPG. 

Although it was not surprising that the WEC classification systems yielded the highest P and PET coherence, given these were 

the variables used to draw its zone boundaries, WEC also had much more uniform zone area distribution, half the number of 325 

zones, and required substantially fewer parameters when compared to KPG. Areas of similar water availability rates, as defined 

by low CV of Q, was best delineated by WEC, given that this system yielded the highest coherence for both TerraClimate Q 

and the independent validation source, GRUN Q. The MHR system used long term mean Q as a governing principle (Meybeck 

et al., 2013), while the KHC framework considered the Q regime as independent validation for their zones (Knoben et al., 

2018). Although the MHR system used mean annual Q in their framework, it was not comparatively high in mean annual Q 330 

coherence, perhaps because their relatively larger zones did not reduce within-zone Q variability as much, or because the 

present analysis considers locally-generated Q (P – ET) and not gauged streamflow as they did. However, the KHC framework 

used gauged streamflow data for system evaluation (Knoben et al., 2018), and this system yielded a distribution of CV of Q 

not statistically different than that of WEC, which yielded the lowest median CV of Q.  

Optimizing ET variability was a previously unconsidered objective in creating and validating climate classification 335 

schemes. The climate classification system comparison presented here supports the longstanding assertion that the primary 

mean ET drivers, water and energy (i.e., P and PET), are important considerations for broad hydroclimate analyses. To 

delineate the landscape based on ET dynamics, the Budyko framework is a longstanding, well-vetted mechanism for estimating 

the evaporative index (ET/P) using the primary drivers of the water budget, PET and P, as represented by the aridity index 

(Budyko, 1974; Milly, 1994; Reaver et al., 2020a; Reaver et al., 2020b; Zhang et al., 2004). We conclude that hydroclimate 340 

coherence is best achieved when P and PET are the governing principles of a zoning framework. However, when specifically 

evaluating ET dynamics, applying an ET-based delineation could be useful, especially if the objective of such a study is to 

distinctively evaluate factors that influence ET. It should be noted that boundaries created by ET drivers and not ET rates may 

influence the determined importance of such drivers, since intra-zone driver variability is likely to be reduced. Based on both 

ET coherence and spatial complexity, the ETA system established here is suggested for ET-focused questions such as large-345 

scale assessments of ET drivers or of crop productivity (Howell et al., 2015).  

This study is limited by a few factors. First, distinct climate zone boundaries, although useful in practice, do not exist 

in the physical system (Knoben et al., 2018). Second, this study compared averaged metrics that were applied across zones 

within each classification system and did not distinguish between individual zones, which could be evaluated in subsequent 

studies. Third, the focus on long-term mean annual hydroclimate attributes for zone formation does not account for interdecadal 350 

climate dynamics. Last, the TerraClimate ET and Q data used to assess the suite of classification systems was in part formed 

using the same CRU climate data used here to create the WEC boundaries (Abatzoglou et al., 2018). However, GLEAM ET 

and GRUN Q were also used as independent datasets and did not yield different results, which is likely due to two primary 

reasons: 1) the spatial scope of this analysis is sufficiently large such that calibrated rates for all hydroclimate variables are 

regionally representative (Abatzoglou et al., 2018), and 2) similarly, long term hydrologic dynamics are not as subject to 355 

interannual variability, since these effects are more muted across longer timescales. In this way, the broad spatiotemporal 
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nature of this analysis makes it reasonable that all available P, ET, Q, and PET data are appropriate metrics for forming more 

robust hydroclimate boundaries and subsequently assessing the water and energy budgets therein.  

5 Conclusions 

The KPG system is the most widely used climate classification system, and this analysis revealed that it indeed has 360 

relatively high hydroclimatic coherence with respect to several variables, but it also has high spatial complexity as evidenced 

by multiple metrics, in addition to its 24-parameter requirement. It was concluded that WEC was either better than or not 

statistically different from all other previously established systems, including the KPG framework, in all assessed coherence 

metrics apart from Δt. Moreover, compared to KPG, WEC builds half the number of zones using only two parameters as input 

variables and delineates a more uniform zone area distribution to better facilitate meaningful spatial interpretations.  365 

It is widely accepted that water and energy, chiefly in the form of precipitation and solar radiation, govern long term 

socioecological water availability at large spatiotemporal scales (Budyko, 1974; Berghuijs and Woods, 2016; Knoben et al., 

2018; Sanford and Selnick, 2013). Several previous climate classification systems aimed to represent this water-energy 

interaction within bounded zones that encompass similar hydroclimatic sensitivities (Knoben et al., 2018; Meybeck et al., 

2013). It was concluded here that WEC, using water and energy in the form of P and PET rates, was the best overall system 370 

for building zones that encompass similar Q rates. This suggests that the WEC scheme is valuable for assessing and predicting 

water availability changes given changes in water and energy. Therefore, WEC is the most relevant system for direct 

management understanding and application as it relates to hydroclimate dynamics.  

This study proposes WEC as a new framework for regional hydroclimate inquiries and other large spatial scale 

research endeavors that may be influenced by hydroclimate systems that vary across the landscape. The WEC system is robust, 375 

since it is based on long-term mean annual rates that have low susceptibility to interannual and seasonal variability. This work 

is a promising pathway to regionalization within many different biophysical and socioeconomic contexts, clustering drivers to 

form zones of similar response variable sensitivities in order to more accurately extrapolate locally derived results and regional 

impacts of local management practices. The WEC framework can thus inform regional to national scale management strategies 

in the effort to account for potential hydroclimate zone-dependent responses to climate and land cover changes. 380 
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