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Abstract. Climate classification systems are useful for investigating future climate scenarios, water availability, and even 

socioeconomic indicators as they relate to climate dynamics. There are several classification systems that apply water and energy 

variables to create zone boundaries, although there has yet to be a simultaneous comparison of the structure and function of multiple 

existing climate classification schemes. Moreover, there are presently no classification frameworks that include evapotranspiration 

(ET) rates as a governing principle. Here, we developed a new system based on precipitation and potential evapotranspiration rates, as 10 

well as three systems based on ET rates, which were all compared against four previously established climate classification systems. 

The within-zone similarity, or coherence, of several long-term hydroclimate variables was evaluated for each system based on the 

premise that the application and interpretation of classification framework should correspond to variables that are most coherent. 

Additionally, the shape complexity of zone boundaries was assessed for each system, assuming zone boundaries should be drawn 

efficiently such that shape simplicity and hydroclimate coherence are balanced for consistent boundary interpretation and application. 15 

The most frequently used climate classification system, Kӧppen-Geiger, had high hydroclimate coherence overall but also high shape 

complexity. When compared to the Kӧppen-Geiger framework, the Water-Energy Clustering classification system introduced here 

showed overall improved or equivalent coherence for hydroclimate variables, yielded lower spatial complexity, and required only two, 

compared to 24, parameters for its construction. 

1 Introduction 20 

A variety of classification schemes have been introduced to categorize specific biophysical characteristics of Earth systems, 

including those based on climatic behavior (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967), biodiversity (Olson et 

al., 2001), plant-climate interactions (Papagiannopoulou et al., 2018), and plant hardiness (Magarey et al., 2008; McKenney et al., 

2007). These frameworks classify elements of a system based on common atmospheric or terrestrial characteristics to maximize their 

within-zone similarity, or coherence, which allows for a transfer of understanding across zones of similar attributes (Lanfredi et al., 25 

2019). This study focuses specifically on climate classification schemes, which have provided a climatic context for a variety of 

applications, including socioeconomic assessments of human health conditions (Boland et al., 2017; Jagai et al., 2007; Lloyd et al., 

2007), economic development (Mellinger et al., 2000; Richards et al., 2019), and evaluating anticipated terrestrial and climatic changes 

(Chen and Chen, 2013; Tapiador et al., 2019).  

Different climate classification systems have emerged based on framework-specific suites of hydroclimatic variables used to 30 

define zone boundaries. Therefore, users should consider how potential classification system application corresponds to the variables 

used to create it (Knoben et al., 2018; Meybeck et al., 2013). Climate classification systems are usually based in part on annual and 

seasonal water-energy budgets (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 

2013). The Kӧppen-Geiger classification system, the most widely used climate framework, was developed to regionalize climatic 

variables (specifically accounting for seasonal precipitation and temperature) and is often employed to compare the output of global 35 

climate models (Peel et al., 2007; Tapiador et al., 2019). Another common system is the Holdridge Life Zones scheme, which was 
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created to classify land area with respect to vegetation and soil (Holdridge, 1967). This system subdivides zones based on thresholds 

of annual precipitation (P), potential evapotranspiration (PET), biotemperature (growing season length and temperature), and latitude 

and altitude.  

Recent work has extended climate classification frameworks to specifically encompass hydrological attributes, since water 40 

resources-based analyses should take place within relevant hydrologic boundaries (Knoben et al., 2018; Meybeck et al., 2013). For 

example, Meybeck et al. (2013) proposed a global zoning system that was primarily based on the mean temperatures and gauged runoff 

(Q) of river basins. They compared the resulting boundaries against the Kӧppen-Geiger and Holdridge frameworks to assess zone 

boundary overlaps. The authors also evaluated the within-zone coherence of mean annual temperature, P, and Q, concluding that the 

latter two were most coherent in dry zones and least coherent in equatorial zones, while temperature was most coherent in equatorial 45 

zones. However, Meybeck et al. (2013) did not compare their zone coherence to that of previously established systems. Similarly, 

Knoben et al. (2018) formed zone boundaries based on climate indices (average aridity, seasonality of aridity, and P as snow) with the 

objective of minimizing within-zone Q variability (i.e., maximizing Q coherence). Those authors compared their results to the Kӧppen-

Geiger framework and found theirs to be more coherent with respect to flow regime, but they did not compare other water budget 

components nor additional climate classification systems.  50 

Although the P and Q components of the long-term water budget have been extensively considered in climate classification 

schemes (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 2013), notably absent 

is a system that is directly based on actual evapotranspiration (ET) rates. This gap is likely because ET traditionally has been the least 

empirically identified element of regional to global water budgets (Zhang et al., 2016). In addition to the absence of a zoning system 

that accounts for ET dynamics, there has been no comparison of within-zone hydroclimate coherence across multiple climate 55 

classification systems, with evaluation particularly lacking in considering ET rates. Furthermore, the spatial complexity of climate 

classification systems has not been systematically examined across multiple frameworks, although Guan et al., 2020 quantified the 

changing spatial structure of the Kӧppen-Geiger framework over time. Assessing the structure of a biophysical system is a concept that 

most notably originates from landscape ecology (O’Neill et al., 1988) and provides a suite of shape metrics that can be cross-

disciplinarily applied. Quantifying shape pattern and spatial contouring of climate classification systems is important for understanding 60 

interactions between governing hydroclimatic characteristics as well as anticipating socioecological consequences that result from 

changing atmospheric configurations (Guan et al., 2020).  

This work seeks to provide empirical support for application-dependent selection among candidate climate classification 

systems. We suggest that a successful classification system should have high within-zone coherence for variables that are related to the 

system’s intended use, combined with relatively low shape complexity across zones, which is best for ease of interpretation within 65 

management and policy contexts. As such, we postulate that for a given climate classification system, within-zone hydrologic coherence 

and inter-zone shape complexity will be closely related to the organizing principle of that system. For example, the Kӧppen-Geiger and 

Meybeck et al. (2013) systems are based in large part on P and Q, respectively, and therefore these systems should show high coherence 

for these variables. Similarly, zone shape complexity will be lower in classification systems that include spatial contiguity in the 

organizing criteria (e.g., Meybeck et al., 2013). Given the major gap regarding the inclusion of ET in climate classification systems, 70 

we also created a series of ET-based global classifications that were expected to yield comparatively higher ET coherence than other 

systems.  

We evaluated within-zone coherence of long-term water budget components (mean annual ET, P, and Q) and synchronous P 

and PET seasonality, as well as zone shape complexity for four new global classification systems and compared these against four 

previously established systems (Beck et al., 2018; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 2013). The primary zone 75 

shape complexity metrics were distribution of zone area (km2), mean zone fragmentation (i.e., mean number of patches comprising 
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each zone), and the number of zones required to effectively form hydroclimate boundaries. This work presents novel approaches to 

determine appropriate applications and boundary complexities of classification frameworks. Understanding the relevance of a climate 

classification system is important since such frameworks are used in multi-disciplinary contexts to examine hydrological, ecological, 

and societal phenomena.  80 

2 Methods 

2.1 Coherence and complexity metrics 

Variable coherence is defined by within-zone variability, represented by the intra-zone coefficient of variation (CV) of the 

hydroclimate variable of interest. Lower CV values correspond to higher coherence, meaning that regions delineated by zone boundaries 

that yield low CV values are more spatially homogenous and therefore more hydroclimatically continuous. An additional important 85 

component of this analysis is the evaluation of the tradeoff between hydroclimate coherence and the spatial complexity of zone 

boundaries. It is valuable to consider the structural attributes of zone boundaries because these boundaries are expected to change over 

time (Beck et al., 2018; Knoben et al., 2018). Building more precise boundaries may better delineate similar hydroclimate processes, 

but overly precise geographic specificity may compromise ease of interpretation, communication, and relevant application for 

management purposes (Knoben et al., 2018).  90 

Classification system complexity metrics were primarily based on three principles: 1) Classification systems should consist of 

a relatively even area distribution across zones, avoiding disproportionately large or small zones, 2) Zones should be as hydrologically 

continuous as possible (Meybeck et al., 2013), minimizing patchiness or fragmentation, and 3) Classification systems should comprise 

less than or equal to the number of zones in the Kӧppen-Geiger framework, which is used here as the standard to which other systems 

are compared. Therefore, complexity was assessed based on the inter-zone distribution of area (km2) as defined by CV, the mean 95 

number of patches in each zone (zone fragmentation), and the number of needed zones to bound hydroclimatically similar areas. The 

mean number of patches per zone was determined using the R function lsm_c_np in package landscapemetrics (Hesselbarth, et al., 

2019). For each hydroclimate and complexity variable, statistical differences between classification systems were determined based a 

series of two-sided Kolmogorov-Smirnov (K-S) tests, which compares probability distributions to a reference distribution.  

2.2 Database construction 100 

Several open access datasets were compiled to create the database used for climate classification system calibration and 

validation. We evaluated global gridded monthly P and PET and mean annual ET and Q between 1980 and 2014 at a 0.5° x 0.5° spatial 

resolution. The Climate Research Unit TimeSeries V4.04 supplied monthly P and PET (Harris et al., 2020), while mean annual ET and 

Q were constructed from aggregated TerraClimate monthly data (Abatzoglou et al., 2018) by summing long-term mean monthly values. 

In this case, long-term mean values muted interannual variability. Annual ET and Q were resampled from their original 1/24° x 1/24° 105 

resolution to the 0.5° x 0.5° resolution of P and PET.  

Additional ET and Q datasets were used for independent validation purposes. Observation-based monthly Q from 1980-2014 

were obtained at 0.5° x 0.5° resolution from monthly global gridded runoff data (GRUN, Ghiggi et al., 2019). The Global Lobal 

Evaporation Amsterdam Model (GLEAM) produced terrestrial daily ET for 1980-2020 at 0.25° x 0.25° resolution, which was also 

resampled to 0.5° x 0.5° resolution. Here, we used the updated GLEAM version 3.5a, which is based on ERA5 net radiation (satellite) 110 

and air temperature (reanalysis) datasets, downloadable at a monthly timestep (Martens et al., 2017). The GLEAM ET and GRUN Q 

datasets were independent from TerraClimate ET and Q datasets both temporally (Figures S1 and S3) and spatially (Figures S2 and 

S4). The two ET datasets were more similar than the two Q datasets, based on monthly linear models (R2 ranging from 0.78 to 0.87 for 
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ET and 0.47 and 0.84 for Q), and both ET and Q datasets showed spatially consistent seasonal differences. Hereafter, TerraClimate ET 

and Q are simply referred to as “ET” and “Q” unless otherwise noted. 115 

Spatial analysis R packages raster (Hijmans, 2017), sp (Bivand et al., 2013) and ncdf4 (Pierce, 2017) were used to build the 

database of long-term monthly and annual averages. The spatial extent of this study comprised all global land areas, excluding 

Antarctica, which resulted in a total of 60,726 pixels. 

2.3 Sinusoidal functions as descriptors of seasonality 

The seasonal dynamics of monthly P and PET were additionally considered in this analysis, as they are also included in the 120 

Kӧppen-Geiger framework, which considers temperature as a general proxy for PET (Beck et al., 2018). Sine functions and their 

corresponding parameters can be used to describe intra-annual climate behavior. Sine functions were fitted to the long-term monthly 

distribution (following Berghuijs and Woods, 2016) 

 

                    𝑦𝑚 = �̅� [1 + 𝑟𝑦 sin (
2𝜋(𝑚−𝑡𝑦)

12
)]    (1) 125 

 

where 𝑦 is either P or PET (mm month-1) for each month, 𝑚, with overall monthly mean (i.e., mean of the 12 long term monthly means) 

denoted by the overbar, 𝑟 is dimensionless amplitude, and t is the phase offset (months) from the reference time, January (𝑚 = 1). 

Phase difference, ∆𝑡, measures the synchronization of P and PET throughout the year, is determined as the difference 𝑡𝑃𝐸𝑇 − 𝑡𝑃, and is 

constrained −6 ≤ ∆𝑡 ≤ 6 (more detail in SI).  130 

Figure 1A shows the overall global distribution of Δt (Equation S1), where some banding around the Tropics as well as the 

Middle East can be seen. Equation 1 yielded overall good fits to the long-term mean monthly distributions of P and PET, with 

R2=0.67±0.28 and 0.84±0.18, respectively (mean±standard deviation across all pixels). These sine fits to monthly PET were statistically 

significant (p-value ≤ 0.05) in 97% of pixels, while fits to monthly P were statistically significant in 85% of pixels (Figure 1B-C). 

Cumulative distribution functions of both R2 and p-value for PET and P sine fits can be seen in Figure S5. Similar to Berghuijs and 135 

Woods (2016), P fits were good in South America, and not as good in parts of the Sahara (Figure 1C). Our P fits were good in East 

Asia and not as good in the southern United States, while Berghuijs and Woods (2016) had more error in East Asia and less error in 

the United States. Lastly, compared to the performance of our PET fits shown in Figure 1B, the temperature fits of Berghuijs and 

Woods (2016) were overall much less spatially homogeneous than ours.  
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 140 

Figure 1:  Global spatial distributions of Δt (A) and of performance of monthly P (B) and PET (C) sine fits represented by p-value.  

2.4 Established climate classification systems 

Four previously established climate classification schemes were assessed in this analysis. We included two legacy schemes, 

Kӧppen-Geiger (KPG, Beck et al., 2018) and Holdridge Life (HDL, Holdridge, 1967) zoning systems, and two recently proposed 

frameworks, here referred to as Meybeck Hydroregion (MHR, Meybeck et al., 2013) and Knoben Hydroclimate (KHC, Knoben et al., 145 

2018) systems. Note that the original KHC zones created by Knoben et al. (2018) were not delineated by discrete boundaries but were 

instead represented as pixels with a corresponding probability continuum of belonging to a zone. However, Knoben et al., 2018 chose 

to bound 18 zones using their provided climate indices (aridity index, seasonal aridity index, and precipitation as snow) for inter-system 

comparison purposes. In the present study, 18 KHC boundaries were re-created using a clustering approach similar to the clustering 

methodology of Knoben et al., 2018. Here we applied a k-means, multi-start clustering method (n=80 starts), which was also used to 150 

form boundaries in two of our proposed frameworks described below. This k-means clustering approach, based on the Hartigan and 

Wong (1979) algorithm, was employed using the kmeans function in the R package stats (R Core Team, 2018). Note that the very small 

KPG zones “Csc” and “Cwc” did not appear in the 0.5° x 0.5° resolution KPG output created by Beck et al. (2018) that was used in 

this study, resulting in 28 KPG presently analyzed zones. As in other climate classification studies (Knoben et al., 2018; Meybeck et 

al., 2013), KPG was considered here to be the standard to which other systems are primarily compared and evaluated for performance.  155 
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2.5 Novel univariate ET climate classification systems 

This study establishes and verifies ET-relevant climate classification frameworks by creating zones primarily based on ET 

rates and comparing ET coherence between systems. Three of the four systems developed in this study were univariate (formatted from 

global mean annual ET rates) and uni-conditional (incorporating an additional system-dependent single condition). The additional 

conditions were included to emphasize a specific optimization goal.  160 

The first two novel univariate classification systems were based on the global ET empirical cumulative distribution function 

(CDF). The first classification system, ET Area-optimizing (ETA), was created with the additional condition of having an equal number 

of pixels in each ET-based zone. This was motivated by the first complexity principle described in Section 2.1, which states zones 

should not be meaninglessly small nor disproportionately large. The KPG system has relatively high spatial non-uniformity (Figure 

S10B), resulting in highly variable relevance for regional analyses. A classification system that is more spatially uniform can better 165 

inform large spatial scale understanding as well as the application of regional to semi-continental management strategies. Additionally, 

it is useful to have a simple baseline framework upon which to compare the other ET-based systems. In this case, ETA is a system that 

seeks to additionally maximizes area efficiency. This type of spatial condition is similar to the prioritizations of the MHR framework 

that state zones should ideally be “delineated in one piece,” although this is not a physical reality (Meybeck et al., 2013). The cumulative 

probability interval [0,1] was divided into 15 equal parts, each corresponding to a separate zone, and the upper and lower bounds of ET 170 

thresholds for each zone were determined from the CDF of mean annual ET for all global land pixels (Figure S6A). The number of 

ETA zones was chosen based on the number of zones in previously established systems and the relative improvement of ET coherence 

with the addition of more zones (Figure S6B). 

The second proposed classification system, ET Variability-optimizing (ETV), was based on the principle of maximizing 

within-zone ET coherence subject to the tradeoff of increasing complexity by adding zones. By fitting the empirical CDF with a 175 

continuous distribution, zone boundaries can be determined analytically for the minimum desired CVmin. For simplicity, and also 

supported by empirical evidence (Figure S7), we fitted a uniform distribution, which is characterized by lower and upper bounds a and 

b, with CV = (𝑏 − 𝑎)/[√3(𝑏 + 𝑎)]. The ET limits defining each zone, i, were then determined directly from this relation as 

 

                                                                           𝑎𝑖 =
𝑏𝑖(1−√3CVmin)

1+√3CVmin
     (2) 180 

 

where the upper and lower limits of sequential zones are shared (i.e., 𝑏𝑖−1 = 𝑎𝑖). The largest value of b = 1,454 mm yr-1 was based on 

the maximum ET for all pixels, and CVmin = 0.075 was chosen based on marginal CV decrease with increasing number of zones (Figure 

S7-B), which resulted in 29 zones. This method produces nearly equal CV in all zones. Corresponding ET limits for each zone are 

shown in Figure S7-A. 185 

The third univariate scheme proposed here is the ET Clustering (ETC) classification system, in which the k-means clustering 

approach was applied. This is justified by previous analyses that have used clustering techniques for climate classification purposes 

(Knoben et al., 2018; Tapiador et al., 2019). Zones were built using a multi-start framework (n=80 starts) by forming clustering centers 

iteratively until the within-zone sum of squares of mean annual ET, based on Euclidean distances, was reduced. This method 

encompasses aspects of both ETA and ETV, in which ET variability and area distribution are considered. The ETC approach also 190 

compares a clustering methodology against the previously described analytical ET-based zoning frameworks. The final number of 20 

clustering centers (i.e., zones) was selected based on the smallest number of zones with CV of mean annual ET below a low threshold, 

selected here as 0.1 (Figure S8).  
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2.6 Novel multivariate climate classification system 

The final developed system in this study is a multivariate climate clustering framework, which was created from the same k-195 

means clustering method as the ETC framework. This new climate classification system included two hydroclimate variables (mean 

annual P and PET) and was designed for comparison against the univariate ET classification frameworks, as well as previously 

established systems that were similarly formed from multiple variables. This final system is herein referred to as the Water-Energy 

Clustering (WEC) climate classification system. 

Since the KPG is the standard framework to which other systems were compared, a main objective was to create a classification 200 

scheme that was at least as good as KPG, while also using fewer biophysical parameters to draw zone boundaries. The final number of 

proposed WEC zones was chosen based on the common “elbow method” for visually determining the optimal number of clusters, or 

zones (Syakur et al., 2018). Within the context of the presently applied k-means clustering method, the elbow method seeks to efficiently 

minimize the total within-zone sum of squares (TSS), such that the optimal number of zones exists where the rate of TSS change starts 

to decrease with the addition of more zones. According to the goal of efficiently minimizing TSS, about 5 zones would be best (Figure 205 

S9). However, the aim of this study was to optimize zones based on hydroclimate coherence and zone shape complexity. Based on this 

premise, the “elbow” of hydroclimate coherence (i.e., low CV values) with respect to number of zones is around 10 to 20 zones for all 

hydroclimate variables, except for Δt (Figure 2). Similarly, the elbow denoting the efficient minimization of mean number of patches 

across zones is approximately 15 to 25 WEC zones, but CV of zone area was relatively constant between 10 and 30 zones (Figure S10). 

A WEC system consisting of at least 10 zones yielded mean coherence values that were better than those mean coherence values of 210 

KPG for PET, P and Q, as denoted by dark blue dots in Figure 3. It should also be noted that although there was no number of WEC 

zones that provided a lower mean number of patches than KPG, most possible numbers of WEC zones yielded mean values that were 

within one standard deviation of the KPG mean (Figure S10A). Also, all possible numbers of WEC zones allowed for a more equal 

distribution of zone areas compared to the CV of zone area for KPG (Figure S10B). We chose to include both 15 and 20 possible WEC 

zones (compared to KPG’s 30 zone system) for further evaluation across all climate classification systems. However, the results for 15 215 

WEC zones will be presented henceforth, since the K-S test showed no statistical difference in coherence nor complexity between 15 

and 20 zones (the coherence and complexity results for 20 WEC zones can be seen in Table S1). 
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Figure 2: Hydroclimate coherence with respect to number of possible zones within the WEC framework for all hydroclimate variables: PET 220 
(A), P (B), Δt (C), ET (D), and Q (E). For independent validation, ET and Q are also included from secondary gridded data sources, GLEAM 

and GRUN, respectively, and are differentially illustrated by triangles. Number of zones that yielded a mean CV value lower than that of 

KPG (gridded horizontal line) are shown in dark blue, number of zones that yielded a mean CV value that was lower than that of KPG plus 

one standard deviation (σ) are shown in light blue, number of zones that yielded a mean CV value that was higher than that of KPG plus σ 

are shown in light grey, and the final number of zones chosen for further evaluation are in red. 225 

3 Results 

This study compared four previously established climate classification systems (KPG, HDL, MHR, KHC) and four potential 

new climate classification systems (ETA, ETV, ETC, and WEC) to assess for hydroclimate coherence as well as zone boundary 

complexities. The coherence of hydroclimate variables, PET, P, Δt, ET (TerraClimate), and Q (TerraClimate) for each evaluated climate 

classification system is shown in Figure 3. Figure S11 illustrates the coherence of GLEAM ET and GRUN Q, which were variables 230 

used to augment independent validation. A two-sided K-S test was conducted to determine differences between the cumulative 

distributions of CVs compared to a reference system for each variable. The WEC system was used as the reference system, since WEC 

is the novel multivariate system proposed in this study.  
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 235 

Figure 3: Boxplots of hydroclimate coherence, quantified as intra-zone CV (A-E), for each assessed climate classification system, with KPG 

shown in gold and WEC in light beige. The results of the K-S test were used to determine statistical difference of distributions compared to 

WEC. Systems whose distributions were not statistically different from that of WEC are underlined. 

 

Figure 4 showed MHR was the least fragmented system overall, although the KPG system also was characterized by low 240 

patchiness when compared to the distributions of the other systems (Figure 4A). The KPG system also had relatively high hydroclimate 

coherence for most variables, including validation datasets GLEAM ET and GRUN Q (Figure S11), appearing as the best system (i.e., 

low CV values) for Δt and not statistically different from the best system for PET and Q (Figure 3B). However, it did not have the 

highest P or ET coherence. The high Δt coherence of KPG is sensible, because KPG zones are built using intra-annual P and temperature 

(i.e., PET) dynamics. While the KPG system showed overall high coherence, which supports its status as the most widely used climate 245 

classification system, it was not the highest for all variables, and it also exhibited high complexity with respect to zone area distribution 

and number of zones used in its framework (Figure 4B-C).  Lastly, the number of biophysical parameters required to construct KPG 

zone boundaries (monthly P and temperature, n =24) is much higher than the novel systems presented here (n=2 for WEC and n=1, 

mean annual ET, for ETA-based systems).  

The coherence of hydroclimate drivers, PET, P, and Δt, as well as hydroclimate response variables, ET and Q, were variable 250 

across systems (Figure 3). The variable that was overall least coherent was Q (Figures 3E and S11B), with both TerraClimate and 

GRUN Q CV values ranging beyond 1.50 for most classification systems, while the variable that was generally most coherent was Δt 

(Figure 3C), with CV values generally between 0.10 and 0.30 for all assessed classification systems. Of all variables, Δt yielded the 

greatest number of systems not statistically different from WEC, based on the K-S test for differences in CV distributions (Figure 3C). 

Additionally, the three novel ETA, ETV, and ETC systems had better TerraClimate ET coherence than the other classification systems 255 

(Figure 3D). The ETA system, along with WEC, also had the fewest number of zones and provided the most uniform zone size 

distribution but was not as coherent with respect to hydroclimate variables apart from ET.  

The WEC system had the lowest median CV for PET, P, and both TerraClimate Q (Figure 3A- B and E) and GRUN Q (Figure 

S11B). It is reasonable that the WEC system is the most PET and P coherent, since these were the variables used to form the zone 

boundaries of the system. The high coherence of GRUN Q serves as an independent validation of the WEC framework, such that it can 260 

be concluded that the WEC system most effectively bounds zones that capture water availability drivers. Although the ET-based 
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systems were best at bounding within-zone ET similarities and yielding high coherence, WEC did not perform worse than KPG in ET 

coherence, according to the K-S test (Figure 3D). The WEC system was also relatively less complex compared to most other systems, 

including KPG, with respect to zone area distribution and number of zones required to draw hydroclimatically coherent boundaries 

(Figure 4B-C). The WEC distribution of the mean number of patches in each zone was statistically different from that of KPG, and the 265 

WEC system had the next lowest median value following KPG (Figure 4A). Since the proposed WEC system had similar or better 

performance than the KPG system in most coherence and complexity metrics (except for ∆t coherence and mean number of patches), 

and required 2 compared to 24 parameters to construct, the evaluated WEC framework was selected as the overall best hydroclimate 

classification system. 

 270 

Figure 4: Boxplots of mean number of patches per zone (A), barplots of CV of zone areas (B), and barplots of number of constructed zones 

(C) for each assessed climate classification system, with KPG shown in gold and WEC in light beige. The results of the K-S test were used to 

determine statistical difference of distributions compared to WEC. Systems whose distributions of mean number of patches were not 

statistically different from that of WEC are underlined.  
  275 

The KPG system qualitatively groups 30 zones into 5 primary categories (Tropical, Arid, Temperate, Boreal, and Polar), and 

here the 15 WEC zones were also divided into 5 primary groups by ranking zones based on increasing zone mean aridity index (𝜑 = 

𝑃𝐸𝑇̅̅ ̅̅ ̅̅

�̅�
). The zones were then evenly grouped, resulting in five primary categories: Superhumid (𝜑 = 0.39), Humid (𝜑 = 0.59), Temperate 

(𝜑 = 1.1), Arid (𝜑 = 2.5), and Hyperarid (𝜑 = 62). Note that the single WEC zone with highest aridity encompasses the Sahara and 

parts of Saudi Arabia and western Australia, for which 𝜑 = 121. Maps of the boundaries for the proposed WEC system and the standard 280 

KPG framework are compared in Figure 5. While there are some spatial similarities (e.g., see the Iberian Peninsula in Figure 5), most 

regions are divided differently. For example, parts of northern Europe are mainly divided into three KPG zones but four WEC zones. 

Similarly, the southeastern United States, excluding south Florida, is mostly one KPG zone, but is separated in the WEC system into 

two distinct zones. The KPG framework conversely divides eastern and western Europe in respective temperate and boreal zones, while 

WEC treats western Europe as more heterogeneous. Clustering centers, which are the arithmetic means of each of the clusters, for the 285 

WEC climate classification system are listed in Table S2. 
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Figure 5.  Spatial distribution of WEC (A) and KPG (B) classification systems. Europe and North America are magnified. 

4 Discussion 

We hypothesized that variable coherence and zone shape complexity would be related to the governing principles of the 290 

classification systems, which was mostly supported by the results of this study. Of the four previously established systems, KPG was 

the most hydroclimatically coherent, but had high zone area variability (Figure S10), even with the omission of the two small KPG 

zones when resampled to 0.5° x 0.5° resolution in this study. The KPG framework had the overall highest ∆t coherence of the eight 

total compared systems, which is reasonable since KPG was the only system that accounted for monthly variability of water (P) and 

energy (temperature), resulting in 24 biophysical parameters (Beck et al., 2018). The KHC framework similarly accounted for the long 295 

term mean monthly ratio of P and PET, but it was not particularly high in ∆t coherence (Figure 3C). The WEC system was also based 

on water (P) and energy (PET), but from a mean annual perspective, thus requiring only two biophysical parameters as input variables. 

It is important to highlight that all novel systems presented here required fewer input variables, a notable aspect of system complexity, 

than any other evaluated previously established climate classification system, and substantially fewer than KPG. 

When comparing all eight systems, WEC had the highest P, PET, and Q coherence and similar ET coherence to KPG. Although 300 

it was not surprising that the WEC classification systems yielded the highest P and PET coherence, given these were the variables used 

to draw its zone boundaries, WEC also had much more uniform zone area distribution, half the number of zones, and required 

substantially fewer parameters when compared to KPG. Areas of similar water availability rates, as defined by low CV of Q, was best 

delineated by WEC, given that this system yielded the highest coherence for both TerraClimate Q and the independent validation 

source, GRUN Q. The MHR system used long term mean Q as a governing principle (Meybeck et al., 2013), while the KHC framework 305 

considered the Q regime as independent validation for their zones (Knoben et al., 2018). Although the MHR system used mean annual 

Q in their framework, it was not comparatively high in mean annual Q coherence, perhaps because their relatively larger zones did not 

reduce within-zone Q variability as much, or because the present analysis considers locally-generated Q (P – ET) and not gauged 

streamflow as they did. However, the KHC framework used gauged streamflow data for system evaluation (Knoben et al., 2018), and 

this system yielded a distribution of CV of Q not statistically different than that of WEC, which yielded the lowest median CV of Q. 310 

Additionally, the principle of contiguity in the MHR system led to the lowest patchiness of all systems evaluated, so this system could 

be useful when continuous boundaries are important for ease of implementation or interpretation purposes. Lastly, concordant with the 
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objectives of each ET-based framework, the three univariate ET-based classification systems had the highest ET coherence, while ETA 

(which additionally optimized equal zone area) also had the most uniform area distribution across zones.  

Optimizing ET variability was a previously unconsidered objective in creating and validating climate classification schemes. 315 

The climate classification system comparison presented here supports the longstanding assertion that the primary mean ET drivers, 

water and energy (i.e., P and PET), are important considerations for broad hydroclimate analyses. To delineate the landscape based on 

ET dynamics, the Budyko framework is a longstanding, well-vetted mechanism for estimating the evaporative index (ET/P) using the 

primary drivers of the water budget, PET and P, as represented by the aridity index (Budyko, 1974; Milly, 1994; Reaver et al., 2020a; 

Reaver et al., 2020b; Zhang et al., 2004). We conclude that hydroclimate coherence is best achieved when P and PET are the governing 320 

principles of a zoning framework. However, when specifically evaluating ET dynamics, applying an ET-based delineation could be 

useful, especially if the objective of such a study is to distinctively evaluate factors that influence ET. It should be noted that boundaries 

created by ET drivers and not ET rates may influence the determined importance of such drivers, since intra-zone driver variability is 

likely to be reduced. Based on both ET coherence and spatial complexity, the ETA system established here is suggested for ET-focused 

questions such as large-scale assessments of ET drivers or of crop productivity (Howell et al., 2015).  325 

This study is limited by a few factors. First, distinct climate zone boundaries, although useful in practice, do not exist in the 

physical system (Knoben et al., 2018). Second, this study compared averaged metrics that were applied across zones within each 

classification system and did not distinguish between individual zones, which could be evaluated in subsequent studies. Third, the focus 

on long-term mean annual hydroclimate attributes for zone formation does not account for interdecadal climate dynamics. Last, the 

TerraClimate ET and Q data used to assess the suite of classification systems was in part formed using the same CRU climate data used 330 

here to create the WEC boundaries (Abatzoglou et al., 2018). However, GLEAM ET and GRUN Q were also used as independent 

datasets and did not yield different results, which is likely due to two primary reasons: 1) the spatial scope of this analysis is sufficiently 

large such that calibrated rates for all hydroclimate variables are regionally representative (Abatzoglou et al., 2018), and 2) similarly, 

long term hydrologic dynamics are not as subject to interannual variability, since these effects are more muted across longer timescales. 

In this way, the broad spatiotemporal nature of this analysis makes it reasonable that all available P, ET, Q, and PET data are appropriate 335 

metrics for forming more robust hydroclimate boundaries and subsequently assessing the water (and energy) budget therein.  

5 Conclusions 

The KPG system is the most widely used climate classification system, and this analysis revealed that it indeed has relatively 

high hydroclimatic coherence with respect to several variables, but it also has high spatial complexity as evidenced by multiple metrics, 

in addition to its 24-parameter requirement. It was concluded that WEC was either better than or not statistically different from all other 340 

previously established systems, including the KPG framework, in all assessed coherence metrics apart from Δt. Moreover, compared 

to KPG, WEC builds half the number of zones using only two parameters as input variables and delineates a more uniform zone area 

distribution to better facilitate meaningful spatial interpretations.  

It is widely accepted that water and energy, chiefly in the form of precipitation and solar radiation, govern long term 

socioecological water availability at large spatiotemporal scales (Budyko, 1974; Berghuijs and Woods, 2016; Knoben et al., 2018; 345 

Sanford and Selnick, 2013). Several previous climate classification systems aimed to represent this water-energy interaction within 

bounded zones that encompass similar hydroclimatic sensitivities (Knoben et al., 2018; Meybeck et al., 2013). It was concluded here 

that WEC, using water and energy in the form of P and PET rates, was the best overall system for building zones that encompass similar 

Q rates. This suggests that the WEC scheme is valuable for assessing and predicting water availability changes given changes in water 
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and energy. Therefore, WEC is the most relevant system for direct management understanding and application as it relates to 350 

hydroclimate dynamics.  

This study proposes WEC as a new framework for large-scale hydroclimate inquiries and other large spatial scale research 

endeavors that may be influenced by hydroclimate systems that vary across the landscape. The WEC system is robust, since it is based 

on long-term mean annual rates that have low susceptibility to interannual and seasonal variability. This work is a promising pathway 

to regionalization within many different biophysical and socioeconomic contexts, clustering drivers to form zones of similar response 355 

variable sensitivities in order to more accurately extrapolate locally derived results and regional impacts of local management practices. 

The WEC framework can thus inform regional to national scale management strategies in the effort to account for potential 

hydroclimate zone-dependent responses to climate and land cover changes. 
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