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Abstract. Climate classification systems are useful for investigating future climate scenarios, water availability, and even 

socioeconomic indicators as they relate to climate dynamics. There are several classification systems that apply water and 

energy variables to create zone boundaries, although there has yet to be a simultaneous comparison of the structure and function 

of multiple existing climate classification schemes. Moreover, there are presently no classification frameworks that include 

evapotranspiration (ET) rates as a governing principle. Here, we developed a new system based on precipitation and potential 10 

evapotranspiration rates, as well as three systems based on ET rates, which were all compared against four previously 

established climate classification systems. The within-zone similarity, or coherence, of several long-term hydroclimate 

variables was evaluated for each system based on the premise that the application and interpretation of classification framework 

should correspond to variables that are most coherent. Additionally, the shape complexity of zone boundaries was assessed for 

each system, assuming zone boundaries should be drawn efficiently such that shape simplicity and hydroclimate coherence 15 

are balanced for consistent boundary interpretation and application. The most frequently used climate classification system, 

Kӧppen-Geiger, had high hydroclimate coherence overall but also high shape complexity. When compared to the Kӧppen-

Geiger framework, the Water-Energy Clustering classification system introduced here showed overall improved or equivalent 

coherence for hydroclimate variables, yielded lower spatial complexity, and required only two, compared to 24, parameters 

for its construction. 20 

1 Introduction 

A variety of classification schemes have been introduced to categorize specific biophysical characteristics of Earth 

systems, including those based on climatic behavior (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967), 

biodiversity (Olson et al., 2001), plant-climate interactions (Papagiannopoulou et al., 2018), and plant hardiness (Magarey et 

al., 2008; McKenney et al., 2007). These frameworks classify elements of a system based on common atmospheric or terrestrial 25 

characteristics to maximize their within-zone similarity, or coherence, which allows for a transfer of understanding across 

zones of similar attributes (Lanfredi et al., 2019). This study focuses specifically on climate classification schemes, which have 

provided a climatic context for a variety of applications, including socioeconomic assessments of human health conditions 

(Boland et al., 2017; Jagai et al., 2007; Lloyd et al., 2007), economic development (Mellinger et al., 2000; Richards et al.,  

2019), and evaluating anticipated terrestrial and climatic changes (Chen and Chen, 2013; Tapiador et al., 2019).  30 
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Different climate classification systems have emerged based on framework-specific suites of hydroclimatic variables 

used to define zone boundaries. Therefore, users should consider how potential classification system application corresponds 

to the variables used to create it (Knoben et al., 2018; Meybeck et al., 2013). Climate classification systems are usually based 

in part on annual and seasonal water-energy budgets (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben 

et al., 2018; Meybeck et al., 2013). The Kӧppen-Geiger classification system, the most widely used climate framework, was 35 

developed to regionalize climatic variables (specifically accounting for seasonal precipitation and temperature) and is often 

employed to compare the output of global climate models (Peel et al., 2007; Tapiador et al., 2019). Another common system 

is the Holdridge Life Zones scheme, which was created to classify land area with respect to vegetation and soil (Holdridge, 

1967). This system subdivides zones based on thresholds of annual precipitation (P), potential evapotranspiration (PET), 

biotemperature (growing season length and temperature), and latitude and altitude.  40 

Recent work has extended climate classification frameworks to specifically encompass hydrological attributes, since 

water resources-based analyses should take place within relevant hydrologic boundaries (Knoben et al., 2018; Meybeck et al., 

2013). For example, Meybeck et al. (2013) proposed a global zoning system that was primarily based on the mean temperatures 

and gauged runoff (Q) of river basins. They compared the resulting boundaries against the Kӧppen-Geiger and Holdridge 

frameworks to assess zone boundary overlaps. The authors also evaluated the within-zone coherence of mean annual 45 

temperature, P, and Q, concluding that the latter two were most coherent in dry zones and least coherent in equatorial zones, 

while temperature was most coherent in equatorial zones. However, Meybeck et al. (2013) did not compare their zone 

coherence to that of previously established systems. Similarly, Knoben et al. (2018) formed zone boundaries based on climate 

indices (average aridity, seasonality of aridity, and P as snow) with the objective of minimizing within-zone Q variability (i.e., 

maximizing Q coherence). Those authors compared their results to the Kӧppen-Geiger framework and found theirs to be more 50 

coherent with respect to flow regime, but they did not compare other water budget components nor additional climate 

classification systems.  

Although the P and Q components of the long-term water budget have been extensively considered in climate 

classification schemes (Beck et al., 2018; Berghuijs and Woods, 2016; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 

2013), notably absent is a system that is directly based on actual evapotranspiration (ET) rates. This gap is likely because ET 55 

traditionally has been the least empirically identified element of regional to global water budgets (Zhang et al., 2016). In 

addition to the absence of a zoning system that accounts for ET dynamics, there has been no comparison of within-zone 

hydroclimate coherence across multiple climate classification systems, with evaluation particularly lacking in considering ET 

rates. Furthermore, the spatial complexity of climate classification systems has not been systematically examined across 

multiple frameworks, although Guan et al., 2020 quantified the changing spatial structure of the Kӧppen-Geiger framework 60 

over time. Assessing the structure of a biophysical system is a concept that most notably originates from landscape ecology 

(O’Neill et al., 1988) and provides a suite of shape metrics that can be cross-disciplinarily applied. Quantifying shape pattern 

and spatial contouring of climate classification systems is important for understanding interactions between governing 
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hydroclimatic characteristics as well as anticipating socioecological consequences that result from changing atmospheric 

configurations (Guan et al., 2020).  65 

This work seeks to provide empirical support for application-dependent selection among candidate climate 

classification systems. We suggest that a successful classification system should have high within-zone coherence for variables 

that are related to the system’s intended use, combined with relatively low shape complexity across zones, which is best for 

ease of interpretation within management and policy contexts. As such, we postulate that for a given climate classification 

system, within-zone hydrologic coherence and inter-zone shape complexity will be closely related to the organizing principle 70 

of that system. For example, the Kӧppen-Geiger and Meybeck et al. (2013) systems are based in large part on P and Q, 

respectively, and therefore these systems should show high coherence for these variables. Similarly, zone shape complexity 

will be lower in classification systems that include spatial contiguity in the organizing criteria (e.g., Meybeck et al., 2013). 

Given the major gap regarding the inclusion of ET in climate classification systems, we also created a series of ET-based 

global classifications that were expected to yield comparatively higher ET coherence than other systems.  75 

We evaluated within-zone coherence of long-term water budget components (mean annual ET, P, and Q) and 

synchronous P and PET seasonality, as well as zone shape complexity for four new global classification systems and compared 

these against four previously established systems (Beck et al., 2018; Holdridge, 1967; Knoben et al., 2018; Meybeck et al., 

2013). The primary zone shape complexity metrics were distribution of zone area (km2), mean zone fragmentation (i.e., mean 

number of patches comprising each zone), and the number of zones required to effectively form hydroclimate boundaries. This 80 

work presents novel approaches to determine appropriate applications and boundary complexities of classification frameworks. 

Understanding the relevance of a climate classification system is important since such frameworks are used in multi-

disciplinary contexts to examine hydrological, ecological, and societal phenomena.  

2 Methods 

2.1 Coherence and complexity metrics 85 

Variable coherence is defined by within-zone variability, represented by the intra-zone coefficient of variation (CV) 

of the hydroclimate variable of interest. Lower CV values correspond to higher coherence, meaning that regions delineated by 

zone boundaries that yield low CV values are more spatially homogenous and therefore more hydroclimatically continuous. 

An additional important component of this analysis is the evaluation of the tradeoff between hydroclimate coherence and the 

spatial complexity of zone boundaries. It is valuable to consider the structural attributes of zone boundaries because these 90 

boundaries are expected to change over time (Beck et al., 2018; Knoben et al., 2018). Building more precise boundaries may 

better delineate similar hydroclimate processes, but overly precise geographic specificity may compromise ease of 

interpretation, communication, and relevant application for management purposes (Knoben et al., 2018).  

Classification system complexity metrics were primarily based on three principles: 1) Classification systems should 

consist of a relatively even area distribution of pixels across zones, avoiding disproportionately large or small zones, 2) Zones 95 
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should be as hydrologically continuous as possible (Meybeck et al., 2013), minimizing patchiness or fragmentation, and 3) 

Classification systems should comprise less than or equal to the number of zones in the Kӧppen-Geiger framework, which is 

used here as the standard to which other systems are compared. Therefore, complexity was assessed based on the inter-zone 

distribution of areathe number of pixels (km2zone area evenness, CVz) as defined by CV,  and the mean number of patches in 

each zone (zone fragmentation), and the number of needed zones to bound hydroclimatically similar areas. Note that the 100 

subscript z is added to differentiate between-zone complexity from the above metrics which emphasize intra-zone coherence. 

The number of patches is the only primary coherence or complexity metric in which CV is not used, since the objective here 

was to minimize the degree of fragmentation, and not the similarity of fragmentation across zones. The mean number of patches 

per zone was determined using the R function lsm_c_npClassStat in package landscapemetricsSDMTools (Hesselbarth, et al., 

2019VanDerWal et al., 2019). For each hydroclimate and complexity variable, statistical differences between the KPG 105 

framework and the other classification systems were determined based a series of two-sided Kolmogorov-Smirnov (K-S) tests, 

which compares probability distributions to a reference distribution.  

2.2 Database construction 

SWe everal open access datasets were compiled to create the database used for climate classification system 

calibration and validation. We evaluated global gridded  monthly P and PET and mean annual ET and Q between 1980 and 110 

2014 at a 0.5° x 0.5° spatial resolution. The Climate Research Unit TimeSeries V4.04 supplied monthly P and PET (Harris et 

al., 2020), while mean annual ET and Q were constructed from aggregated TerraClimate monthly data (Abatzoglou et al., 

2018) by summing long-term mean monthly values. In this case, long-term mean values muted interannual variability. Annual 

ET and Q were resampled from their original 1/24° x 1/24° resolution to the 0.5° x 0.5° resolution of P and PET.  

Additional ET and Q datasets were used for independent validation purposes. Observation-based monthly Q from 115 

1980-2014 were obtained at 0.5° x 0.5° resolution from monthly global gridded runoff data (GRUN, Ghiggi et al., 2019). The 

Global Lobal Evaporation Amsterdam Model (GLEAM) produced terrestrial daily ET for 1980-2020 at 0.25° x 0.25° 

resolution, which was also resampled to 0.5° x 0.5° resolution. Here, we used the updated GLEAM version 3.5a, which is 

based on ERA5 net radiation (satellite) and air temperature (reanalysis) datasets, downloadable at a monthly timestep (Martens 

et al., 2017). The GLEAM ET and GRUN Q datasets were shown to be sufficiently different independent from TerraClimate 120 

ET and Q datasets both temporally (Figures S1 and S3) and spatially (Figures S2 and S4). The two ET datasets did not have 

as much variability aswere more similar than the two Q datasets, based on monthly linear models (R2 ranging from 0.78 to 

0.87 for ET and 0.47 and 0.84 for Q), and both ET and Q datasets showed spatially consistent seasonal differences. Hereafter, 

TerraClimate ET and Q are simply referred to as “ET” and “Q” unless otherwise noted. 

Spatial analysis R packages raster (Hijmans, 2017), sp (Bivand et al., 2013) and ncdf4 (Pierce, 2017) were used to 125 

build the database of long-term monthly and annual averages. The spatial extent of this study comprised all global land areas, 

excluding Antarctica, which resulted in a total of 60,726 pixels. 
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2.3 Sinusoidal functions as descriptors of seasonality 

The seasonal dynamics of monthly P and PET were additionally considered in this analysis, as they are also included 

in the Kӧppen-Geiger framework, which considers temperature as a general proxy for PET (Beck et al., 2018). Sine functions 130 

and their corresponding parameters can be used to describe intra-annual climate behavior. Sine functions were fitted to the 

long-term monthly distribution (following Berghuijs and Woods, 2016) 

 

              𝑦𝑚 = �̅� [1 + 𝑟𝑦 sin (
2𝜋(𝑚−𝑡𝜃𝑦)

12
)]    (1) 

 135 

where 𝑦 is either P or PET (mm month-1) for each month, 𝑚, with overall monthly mean (i.e., mean of the 12 long term monthly 

means) denoted by the overbar, 𝑟 is dimensionless amplitude, and t is the p. Phase angle, 𝜃, is the offset (months) from the 

reference time, January (𝑚 = 1). Phase difference, ∆𝑡, measures the synchronization of P and PET throughout the year, is 

determined as the difference 𝑡𝑃𝐸𝑇 − 𝑡𝑃 , and , is with absolute value of phase difference |∆𝜃| ≤ 6 ). Phase difference 

(constrained −6 ≤ ∆𝑡𝑡 ≤ 6 (as more detail described in the SI).) measures the synchronization of P and PET throughout the 140 

year Phase difference, ∆θ, describes the synchronization of P and PET throughout the year as 

 

                                                 ∆𝜃 = {

𝜃𝑃𝐸𝑇 − 𝜃𝑃 , −6 ≤ 𝜃𝑃𝐸𝑇 − 𝜃𝑃 ≤ 6 
𝜃𝑃𝐸𝑇 − 𝜃𝑃 − 12, 𝜃𝑃𝐸𝑇 − 𝜃𝑃 > 6 
𝜃𝑃𝐸𝑇 − 𝜃𝑃 + 12, 𝜃𝑃𝐸𝑇 − 𝜃𝑃 < 6

   (2) 

 

 145 

Figure 1A shows the overall global distribution of Δt (Equation S1), where some banding around the Tropics as well 

as the Middle East can be seen. Equation 1 yielded overall good fits to the long-term mean monthly distributions of P and PET, 

with R2=0.67±0.28 and 0.84±0.18, respectively (mean±standard deviation across all pixels). These sine fits to monthly PET 

were statistically significant (p-value ≤ 0.05) in 97% of pixels, while fits to monthly P were statistically significant in 85% of 

pixels (Figure 1B-C). Cumulative distribution functions of both R2 and p-value for PET and P sine fits can be seen in Figure 150 

S5. Similar to Berghuijs and Woods (2016), P fits were good in South America, and not as good in parts of the Sahara (Figure 

1C). Our P fits were good in East Asia and not as good in the southern United States, while Berghuijs and Woods (2016) had 

more error in East Asia and less error in the United States. Lastly, compared to the performance of our PET fits shown in 

Figure 1B, the temperature fits of Berghuijs and Woods (2016) were overall much less spatially homogeneous than ours.  

To constrain −6 ≤ ∆𝜃 ≤ 6, 12 was either added to or subtracted from ∆θ values outside of these bounds (e.g., ∆𝜃 = 8 155 

months is translated to -4 months). Because a constant reference time of January does not describe the water year for each 
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zone, the ∆θ distributions were normalized by centering around the mode and correcting to contain only positive values (0 to 

12 months).  

Figure 1:  Global spatial distributions of Δt (A) and of performance of monthly P (B) and PET (C) sine fits represented by p-value.  

2.4 Established climate classification systems 160 

Four previously established climate classification schemes were assessed in this analysis. We included two legacy 

schemes, Kӧppen-Geiger (KPG, Beck et al., 2018) and Holdridge Life (HDL, Holdridge, 1967) zoning systems, and two 

recently proposed frameworks, here referred to as Meybeck Hydroregion (MHR, Meybeck et al., 2013) and Knoben 

Hydroclimate (KHC, Knoben et al., 2018) systems. Note that the original KHC zones created by Knoben et al. (2018) were 

not delineated by discrete boundaries but were instead represented as pixels with a corresponding probability continuum of 165 

belonging to a zone. However, Knoben et al., 2018 chose to bound 18 zones using their provided climate indices (aridity index, 
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seasonal aridity index, and precipitation as snow) for inter-system comparison purposes. In the present study, 18 KHC 

boundaries were re-created using a clustering approach similar to the clustering methodology of Knoben et al., 2018. Here we 

applied a k-means, multi-start clustering method (n=80 starts), which was also used to form boundaries in two of our proposed 

frameworks described below. This k-means clustering approach, based on the Hartigan and Wong (1979) algorithm, was 170 

employed using the kmeans function in the R package stats (R Core Team, 2018). Note that the very small KPG zones “Csc” 

and “Cwc” did not appear in the 0.5° x 0.5° resolution KPG output created by Beck et al. (2018) that was used in this study, 

resulting in 28 KPG presently analyzed zones. As in other climate classification studies (Knoben et al., 2018; Meybeck et al., 

2013), KPG was considered here to be the standard to which other systems are primarily compared and evaluated for 

performance.  175 

2.5 NovelProposed univariate ET climate classification systems 

This study establishes and verifies ET-relevant climate classification frameworks by creating zones primarily based 

on ET rates and comparing ET coherence between systems. Three of the four systems developed in this study were univariate 

(formatted from global mean annual ET rates) and uni-conditional (incorporating an additional system-dependent single 

condition). The additional conditions were included to emphasize a specific optimization goal.  180 

The first two novelproposed univariate classification systems were based on the global ET empirical cumulative 

distribution function (CDF). The first classification system, ET Area-optimizing (ETA), was created with the additional 

condition of having an equal number of pixels in each ET-based zone. This was motivated by the first complexity principle 

described in Section 2.1, which states zones should not be meaninglessly small nor disproportionately large. The KPG system 

has relatively high spatial non-uniformity (Figure S10B1), resulting in highly variable relevance for regional analyses. A 185 

classification system that is more spatially uniform can better inform large spatial scale understanding as well as the application 

of regional to semi-continental management strategies. Additionally, it is useful to have a simple baseline framework upon 

which to compare the other ET-based systems. In this case, ETA is a system that seeks to additionally maximizes area 

efficiency. This type of spatial condition is similar to the prioritizations of the MHR framework that state zones should ideally 

be “delineated in one piece,” although this is not a physical reality (Meybeck et al., 2013). The cumulative probability interval 190 

[0,1] was divided into 15 equal parts, each corresponding to a separate zone, and the upper and lower bounds of ET thresholds 

for each zone were determined from the CDF of mean annual ET for all global land pixels (Figure S61-A). The number of 

ETA zones was chosen based on the number of zones in previously established systems and the relative improvement of ET 

coherence with the addition of more zones (Figure S61-B). 

The second proposed classification system, ET Variability-optimizing (ETV), was based on the principle of 195 

maximizing within-zone ET coherence subject to the tradeoff of increasing complexity by adding zones. By fitting the 

empirical CDF with a continuous distribution, zone boundaries can be determined analytically for the minimum desired CVmin. 

For simplicity, and also supported by empirical evidence (Figure S72), we fitted a uniform distribution, which is characterized 
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by lower and upper bounds a and b, with CV = (𝑏 − 𝑎)/[√3(𝑏 + 𝑎)]. The ET limits defining each zone, i, were then 

determined directly from this relation as 200 

 

                                                                      𝑎𝑖 =
𝑏𝑖(1−√3CVmin)

1+√3CVmin
     (2) 

 

where the upper and lower limits of sequential zones are shared (i.e., 𝑏𝑖−1 = 𝑎𝑖). The largest value of b = 1,454 mm yr-1 was 

based on the maximum ET for all pixels, and CVmin = 0.075 was chosen based on marginal CV decrease with increasing 205 

number of zones (Figure S72-B), which resulted in 29 zones. This method produces nearly equal CV in all zones. 

Corresponding ET limits for each zone are shown in Figure S72-A. 

The third univariate scheme proposed here is the ET Clustering (ETC) classification system, in which the k-means 

clustering approach was applied. This is justified by previous analyses that have used clustering techniques for climate 

classification purposes (Knoben et al., 2018; Tapiador et al., 2019). Zones were built using a multi-start framework (n=80 210 

starts) by forming clustering centers iteratively until the within-zone sum of squares of mean annual ET, based on Euclidean 

distances, was reduced. This method encompasses aspects of both ETA and ETV, in which ET variability and area distribution 

are considered. The ETC approach also compares a clustering methodology against the previously described analytical ET-

based zoning frameworks. The final number of 20 clustering centers (i.e., zones) was selected based on the smallest number 

of zones with CV of mean annual ET below a low threshold, selected here as 0.1 (Figure S83).  215 

2.6 NovelProposed multivariate climate classification systems 

The final developed system in this study is a multivariate climate clustering framework, which was created from the 

same k-means clustering method as the ETC framework. This new climate classification system included two hydroclimate 

variables (mean annual P and PET) and was designed for comparison against the univariate ET classification frameworks, as 

well as previously established systems that were similarly formed from multiple variables. This final system is herein referred 220 

to as the Water-Energy Clustering (WEC) climate classification system. 

Since the KPG is the standard framework to which other systems were compared, a main objective was to create a 

classification scheme that was at least as good as KPG, while also using fewer biophysical parameters to draw zone boundaries. 

The final number of proposed WEC zones was chosen based on the common “elbow method” for visually determining the 

optimal number of clusters, or zones (Syakur et al., 2018). Within the context of the presently applied k-means clustering 225 

method, the elbow method seeks to efficiently minimize the total within-zone sum of squares (TSS), such that the optimal 

number of zones exists where the rate of TSS change starts to decrease with the addition of more zones. According to the goal 

of efficiently minimizing TSS, about 5 zones would be best (Figure S9). However, the aim of this study was to optimize zones 

based on hydroclimate coherence and zone shape complexity. Based on this premise, the “elbow” of hydroclimate coherence 

(i.e., low CV values) with respect to number of zones is around 10 to 20 zones for all hydroclimate variables, except for Δt 230 
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(Figure 2). Similarly, the elbow denoting the efficient minimization of mean number of patches across zones is approximately 

around 15 to 25 WEC zones, but CV of zone area was relatively constant between 10 and 30 zones (Figure S10). A WEC 

system consisting of at least 10 zones yielded mean coherence values that were better than those mean coherence values of 

KPG for PET, P and Q, as denoted by dark blue dots in Figure 3. It should also be noted that although there was no number of 

WEC zones that provided a lower mean number of patches than KPG, most possible numbers of WEC zones yielded mean 235 

values that were within one standard deviation of the KPG mean (Figure S10A). Also, all possible numbers of WEC zones 

allowed for a more equal distribution of zone areas compared to the CV of zone area for KPG (Figure S10B). We chose to 

include both 15 and 20 possible WEC zones (compared to KPG’s 30 zone system) for further evaluation across all climate 

classification systems. However, the results for 15 WEC zones will be presented henceforth, since the K-S test showed no 

statistical difference in coherence nor complexity between 15 and 20 zones (the coherence and complexity results for 20 WEC 240 

zones can be seen in Table S1). 

 

 

Figure 2: Hydroclimate coherence with respect to number of possible zones within the WEC framework for all 

hydroclimate variables: PET (A), P (B), Δt (C), ET (D), and Q (E). For independent validation, ET and Q are also included from 245 
secondary gridded data sources, GLEAM and GRUN, respectively, and are differentially illustrated by triangles. Number of zones 

that yielded a mean CV value lower than that of KPG (gridded horizontal line) are shown in dark blue, number of zones that yielded 

a mean CV value that was lower than that of KPG plus one standard deviation (σ) are shown in light blue, number of zones that 

yielded a mean CV value that was higher than that of KPG plus σ are shown in light grey, and the final number of zones chosen for 

further evaluation are in red. from aA suite of potential candidate multivariate systems that wasas generated using mean annual 250 
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P, PET, ∆θ, ET, and Q. These potential candidate classification systems were evaluated based on elimination thresholds that.  

were primarily based on water budget coherence (mean CV of ET, P, and Q) and zone complexity (number of zones, number 

of input variables, pixel distribution, and mean zone patchiness). Since KPG is the standard framework to which other systems 

are compared, these potential candidate multivariateProposed systems  were eliminated if their complexity metrics exceeded 

the mean KPG complexityvalues (excluding mean number of patches, in which a 50% threshold was allowed) or if their water 255 

budget coherence metrics were more than 50% greater than the KPG water budget coherencevalues (Table 1)Since the KPG 

system is the most widely used classification system, the specific thresholds of elimination corresponded to the mean values 

of KPG water budget coherence and complexity (KPG values listed in Table 1). There was some flexibility with the water 

budget coherence thresholds, where the new system was allowed mean coherence values that did not exceed 50% those of 

KPG. Some allowance for reduced water budget coherence was made in favor ofs reduced complexity. Here, the tradeoffs 260 

between precise hydroclimate bounding (i.e., maximum coherence) and minimizing zone shape complexity (e.g., fewest 

possible number of zones) are assessed for efficient balance. The best performing One multivariate classification scheme was 

chosen from the batch of potential systems by evaluating criteria corresponding to KPG system characteristics. The primary 

criteria considered were water budget coherence (mean CV of ET, P, and Q) and zone complexity. Some water budget 

coherence flexibility was allowed for the final multivariate system, with water budget coherence constrained to be so conditions 265 

were based on maintaining at least a within 50% range in relation to of KPG coherence values. The specific values for these 

elimination thresholds are listed in Supporting Information, and the resulting eligibility of the full suite of multivariate climate 

classification systems is shown in Tables S1 and S2, where Table S1 indicates the full suite of assessed multivariate systems, 

and with Table S2 shows the final two candidate multivariate systems in Table S2.  

The final two compared systems were chosen, because 1) they only required only two input variables and 2) they met all 270 

conditions of coherence and complexity as described by the elimination thresholds (Table S1). Ultimately, the final system 

was chosen primarily based its relatively higher mean water budget coherence (CV of ET, P, and Q), and the fewest number 

of zones within that system was selected (n=22, Table S2). Therefore, the Ultimately, the climate classification system formed 

from clustering mean annual P and mean annual PET was  chosen as the representative multivariate framework proposed here, 

and is herein referred to which. This classification scheme was named as the Water-Energy Clustering (WEC) climate 275 

classification system. 

3 Results 

This study compared four previously established climate classification systems (KPG, HDL, MHR, KHC) and four 

potential new climate classification systems (ETA, ETV, ETC, and WEC) to assess for hydroclimate coherence as well as zone 

boundary complexities. The coherence of hydroclimate variables, PET, P, Δt, ET (TerraClimate), and Q (TerraClimate) and 280 

complexity metrics for the KPG systemfor each evaluated climate classification system is, the standard used in this study, are 

shown in Figure 31 for all zones.. Figure S11 illustrates the coherence of GLEAM ET and GRUN Q, which were variables 

used to augment independent validation. A two-sided K-S test was conducted to determine statistical differences across 

systems, which compared between the cumulative distributions of CVs compared to a reference system values for each 

variable, using WEC20 as the reference distribution system. The WEC system was used as the reference system, since WEC is 285 

the novel multivariate system proposed in this study (SIxxx).  
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Figure 3: Boxplots of hydroclimate coherence, quantified as intra-zone CV (A-E), for each assessed climate classification system, 

with KPG shown in gold and WEC in light beige. The results of the K-S test were used to determine statistical difference of 290 
distributions compared to WEC. Systems whose distributions were not statistically different from that of WEC are underlined. 

 

Figure 4 showed MHR was the least fragmented system overall, although the KPG system also was characterized by 

low patchiness when compared to the distributions of the other systems (Figure 4A). The KPG system also had relatively high 

hydroclimate coherence for most variables, including validation datasets GLEAM ET and GRUN Q (Figure S11), appearing 295 

as the best system (i.e., low CV values) for Δt and not statistically different from the best system for PET and Q , in the case 

of P coherence,  except Q (Figure 3B1). However, it did not have the highest P or ET coherence. The high Δt coherence of 

KPG is sensible, because KPG zones are built using intra-annual P and temperature (i.e., PET) dynamics. While tThe KPG 

system showed overall high coherence, which supports its status as the most widely used climate classification system, it was 

not the highest for all variables, and it but also exhibited high complexity with respect to zone area distribution and number of 300 

zones used in its framework (Figure 4B-C).  Lastly, the number of biophysical parameters required to construct KPG zone 

boundaries (monthly P and temperature, n =24) is much higher than those novel systems presented here (n=2 for WEC and 

n=1, mean annual ET, for ETA-based systems).  

The coherence of hydroclimate drivers, PET, P, and Δt, as well as hydroclimate response variables, ET and Q, wereas 

variable across systems (Figure 3). The variable that was overall least coherent was Q (Figures 3E and S11B), with both 305 

TerraClimate and GRUN Q CV values ranging beyond 1.50 for most classification systems, while the variable that was 

generally most coherent was Δt (Figure 3C), with CV values generally between 0.10 and 0.30 for all assessed classification 

systems. Of all variables, Δt yielded the greatest number of systems not statistically different from WEC, based on the K-S 
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test for differences in CV distributions (Figure 3C). Additionally, the three novel ETA, ETV, and ETC systems had better 

TerraClimate ET coherence than the other classification systems (Figure 3D). The ETA system, along with WEC, also had the 310 

fewest number of zones and provided the most uniform zone size distribution but was not as coherent with respect to 

hydroclimate variables apart from ET.  

The WEC system had the lowest median CV value for PET, P, and both TerraClimate Q (Figure 3A- B and E) and 

GRUN Q (Figure S11B). It is reasonable that the WEC system is the most PET and P coherent, since these were the variables 

used to form the zone boundaries of the system. The high coherence of GRUN Q serves as an independent validation of the 315 

WEC framework, such that it can be concluded that the WEC system most effectively bounds zones that capture water 

availability drivers. Although the ET-based systems were best at bounding within-zone ET similarities and yielding high 

coherence, WEC did not perform worse than KPG in ET coherence, according to the K-S test (Figure 3D). The WEC system 

was also relatively less complex compared to most other systems, including KPG, with respect to zone area distribution and 

number of zones required to draw hydroclimatically coherent boundaries (Figure 4B-C). The WEC distribution of the mean 320 

number of patches in eachper zone was statistically different from that of KPG, and the WEC system had the next lowest 

median value following KPG (Figure 4A). Since the proposed WEC system had similar or better performance than the KPG 

system in most coherence and complexity metrics (except for ∆t coherence and mean number of patches), and required 2 

compared to 24 parameters to construct, the evaluated WEC framework was selected as the overall best hydroclimate 

classification system. 325 

 

Figure 4: Boxplots of mean number of patches per zone (A), barplots of CV of zone areas (B), and barplots of number of 

constructed zones (C) for each assessed climate classification system, with KPG shown in gold and WEC in light beige. The results 

of the K-S test were used to determine statistical difference of distributions compared to WEC. Systems whose distributions of 

mean number of patches were not statistically different from that of WEC are underlined.  However, the KPG spatial 330 

complexity was also relatively high. Zones in the KPG system had high variability in the number of pixels, with several 

Boreal zones less than 5% the size of the largest zone, polar tundra zone “ET” (Figure 1E). all and  
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Figure 1:  Water budget coherence, quantified as intra-zone CV (A-D), and complexity metrics of zone size and patchiness (E-335 

F) for each zone for the Kӧppen-Geiger climate classification system. Mean hydroclimate values for each zone are also shown 

(circles, A-D). Zone size (number of pixels) and patchiness (number of patches) are normalized to their maximum values. 

 

Coherence and complexity results for the six best performing of the eight climate classification systems are shown in 

Table 1. The performance compared to KPG, in order of worst-to-best, was generally HDL, ETV, KHC, MHR, ETC, ETA, 340 

and WEC. The HDL and ETV systems performed either worse than or not statistically different from KPG in all metrics, 

except higher ET coherence for ETV, and these results are therefore not shown in Table 1 (see Table S3). The established 

KHC and MHR systems were also poor-performing, with overall worse or similar hydroclimate coherence compared to KPG. 

However, KHC and MHR had improved pixel coherence and fewer patches, respectively (Table 1). The proposed ETA and 

ETC systems had much better ET coherence than KPG and similar P coherence to KPG (based on the K-S test). The ETA 345 

system also had the fewest number of zones and very high coherence for zone size (by far the lowest CVz), but both ETA and 
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ETC had lower coherence than KPG for the remaining hydroclimate variables. Finally, the proposed WEC system had similar 

or better performance than the KPG system in all coherence and complexity metrics, except for ∆θ coherence . The WEC 

framework is, and  thereforecan be concluded selected as a strong contender for the overall best hydroclimate classification 

system. 350 

 

Table 1: Hydroclimate coherence (intra-zone CV for mean annual ET, P, Q, ∆θ, and PET) and complexity (inter-zone CVz for pixels, 

and numbers of patches and zones) in established and proposed climate classification systems. Mean(standard deviation), with 

significantly higher (ꜛ) or lower (ꜜ) values than KPG determined based on K-S tests. Bold indicates the best overall system for each 

metric (more than one system had statistically similar results for some metrics). 355 

 Established systems Proposed systems 

Metric KPG MHR KHC ETA ETC WEC 

CV(ET) 0.27(0.21) 0.44(0.26)ꜛ 0.48(0.30)ꜛ 0.12(0.17)ꜜ 0.08(0.15)ꜜ 0.31(0.23) 

CV(P) 0.38(0.20) 0.55(0.24)ꜛ 0.41(0.16) 0.56(0.42) 0.47(0.35) 0.25(0.23)ꜜ 

CV(Q) 0.88(0.30) 1.30(0.57)ꜛ 0.78(0.26) 1.45(0.50)ꜛ  1.29(0.53)ꜛ 0.75(0.38) 

CV(∆θ) 0.24(0.18) 0.31(0.14)ꜛ 0.36(0.16)ꜛ 0.38(0.08)ꜛ 0.37(0.09)ꜛ 0.33(0.14)  

CV(PET) 0.20(0.13) 0.20(0.09) 0.31(0.12)ꜛ 0.53(0.24)ꜛ 0.42(0.25)ꜛ 0.14(0.06)ꜜ 

CVz(zone areas) 1.241 0.78 0.54ꜜ 0.1002 ꜜ 0.478 ꜜ 0.55 ꜜ 

patches 46(36) 10(9)ꜜ 97(41)ꜛ 153(70)ꜛ 1510(52)ꜛ 59(36) 

zones 28 27 18 15 20 22 

  

 

The coherence and complexity metrics for the WEC system are shown in Figure 2 for all zones. Like KPG, coherence 

was high (CV < 1) in all zones for each hydroclimate variable apart from Q, but WEC had even higher hydroclimate coherence 

than KPG overall. Zone area was more equally distributed in WEC, but with similar patchiness to KPG (Table 1). The KPG 360 

system qualitatively groups 30 zones into 5 primary categories (Tropical, Arid, Temperate, Boreal, and Polar), and here the 15 

WEC zones were also divided into 5 primary groups by ranking zones based on increasing zone mean aridity index (𝜑 = 
𝑃𝐸𝑇̅̅ ̅̅ ̅̅

�̅�
). 

The zones were then evenly grouped, resulting in five primary categories: Superhumid (𝜑 = 0.39), Humid (𝜑 = 0.59), 

Temperate (𝜑 = 1.10), Arid (𝜑 = 2.548), and Hyperarid (𝜑 = 62). Note that the single WEC zone with highest aridity 

encompasses the Sahara and parts of Saudi Arabia and western Australia, for which 𝜑 = 121. (Figure 3). These zone groupings 365 

were, organized around 1) zonedered by  based on their mean aridity index (�̅�𝜙 = P/PET) and 2) distributing zones such that 

each group, denoted G1-G5, had a similar number of total pixelsminimizing the variability of zone areas (Figure 3). Zone 

aridity indices were arranged in decreasing order, with G1 to G5 �̅� = {2.4, 1.1, 0.83, 0.46, 0.12}, resulting inGroups were 
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organized to  comprise near-equal pixel distributions (11,367 to 13,895 pixels in each group.) across zones of decreasing aridity 

index, with G1 to G5 �̅� = {2.4, 1.1, 0.83, 0.46, 0.12}. In WEC zones, there were positive linear relationships (p<0.05) between 370 

aridity index and CV of each water budget variable: ET (R2=0.25), P (R2=0.53), and Q (R2=0.69), indicating higher spatial 

variability (lower coherence) with increasing ariditysuggesting that as zones become drier, hydrologic regimes become more 

spatially variable, or less coherent. While WEC groups represented similar total areas, they comprised different numbers of 

zones, from G3 with only two large zones, to G1 with 7 zones.  

 375 

 

Figure 2.  Water budget coherence (intra-zone CV, A-D) and complexity metrics (zone size and patchiness, E-F) for each zone 

for the Water-Energy Clustering (WEC) climate classification system. Mean hydroclimate values for each zone are also shown (circles, 

A-D). Zone size (number of pixels) and patchiness (number of patches) are normalized to their maximum values. 

  380 
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 Maps of the boundaries for the proposed WEC system and the standard KPG framework are compared in 

Figure 53. While there arewere some spatial similarities (e.g., see the Iberian Peninsula in Figure 53), most regions areare 

divided differently. For example, parts of northern Europe are mainly divided into three KPG zones but fourfive WEC zones. 

Similarly, the southeastern United States, excluding south Florida, is mostly one KPG Temperate zone, but is separated in the 

WECEC system into two distinct G2 zones. The KPG framework conversely divides eastern and western Europe from Russia 385 

in respective temperate and boreal zones, while WEC treats western Europe as more heterogeneousconsolidates much of this 

area along with parts of western Europe into one G2 zone. Clustering centers, which are the arithmetic means of each of the 

clusters, for the WEC climate classification system are listed in Table S24. 

 

 390 
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Figure 53.  Spatial distribution of WEC (A) and KPG (B) classification systems. Europe and North America are magnified. 

4 Discussion 

We hypothesized that variable coherence and zone shape complexity would be related to the governing principles of 395 

the classification systems, which was mostly supported by the results of this study. Of the four previously established systems, 
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KPG was the most hydroclimatically coherent, but had high zone area variability in pixel distribution across zones (Figure 

S10Table 1), even with the omission of the two small KPG zones when resampled to 0.5° x 0.5° resolution in this study. The 

KPG and WEC frameworks had the overall highest ∆θt coherence of the eighteight total compared systems, which is reasonable 

since KPG was the only system that accounted for monthly variability of water (P) and energy (temperature), resulting in 24 400 

biophysical parameters (Beck et al., 2018). The KHC framework similarly accounted for the long term mean monthly ratio of 

P and PET, but it was not particularly high in ∆t coherence (Figure 3C). The WEC system was also based on water (P) and 

energy (PET), but from a mean annual perspective, thus requiring only two biophysical parameters as input variables. It is 

important to highlight that all novel systems presented here required fewer input variables, a notable aspect of system 

complexity, than any other evaluated previously established climate classification system, and substantially fewer than KPG. 405 

When comparing all eight systems, WEC had the highest P,  and PET, and Q coherence and similar ET, ∆θ, and Q 

coherence to KPG. Although it was not surprising that the WEC classification systems yielded the highest P and PET 

coherence, given these were the variables used to draw its zone boundaries, WEC also had much more uniform zone areapixel 

distribution, similar zone fragmentation, half the number offewer zones, and required substantially fewer parameters when 

compared to KPG. Areas of similar water availability rates, as defined by low CV of Q, was best delineated by WEC, given 410 

that this system yielded the highest coherence for both TerraClimate Q and the independent validation source, GRUN Q. The  

MHR system used long term mean Q as a governing principle (Meybeck et al., 2013), while the KHC framework considered 

the Q regime as independent validation for their zones (Knoben et al., 2018). Although the MHR system used mean annual Q 

in their framework, it was not comparatively high in mean annual Q coherence, perhaps because their relatively larger zones 

did not reduce within-zone Q variability as much, or because the present analysis considers locally-generated Q (P – ET) and 415 

not gauged streamflow as they did. However, the KHC framework used gauged streamflow data for system evaluation (Knoben 

et al., 2018), and this system yielded a distribution of CV of Qwas not statistically different than that of WEC, which yielded 

the lowest median CV of Q. one of the three highest for Q coherence.. Additionally, the principle of contiguity in the MHR 

system led to the lowest patchiness of all systems evaluated, so this system could be useful when continuous boundaries are 

important for ease of implementation or interpretation purposes. Lastly, concordant with the objectives of each ET-based 420 

framework, the three univariate ET-based classification systems had the highest ET coherence, while ETA (which additionally 

optimized equal zone area) also had the most uniform areapixel distribution across zones.  

Evaluating hydroclimate coherence is important for understanding water availability distribution within a group of 

related zones and within individual zones to make informed management decisions. While land cover and land use impact the 

hydrologic cycle (Sterling et al., 2013), hydroclimate factors are the primary water budget drivers, especially at larger spatial 425 

scales where land cover effects are more muted (Sanford and Selnick et al., 2013). For KPG, hydroclimate dynamics are most 

uniform in Tropical zones and least coherent in Polar and Arid zones (Table S5). Arid zones had the most uniform pixel 

distribution, while the Boreal group was least fragmented with the lowest mean number of patches, suggesting these zones are 

interrupted neither by other zones nor by water bodies. For WEC, group G1 had the highest mean P and Q coherence, but also 

the lowest mean PET coherence. The latter is likely because of the temperature variation across G1 zones, which encompass 430 
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both equatorial and subarctic regions (Figure 3). Group G5, comprising the most arid zones, had the lowest water budget (ET, 

P, and Q) and ∆θ coherence butand highest PET coherence, indicating relative uniformity in (low) rainfall and (high) 

temperature. Pixel distribution was most uniform in G3 and G5, while G5 was least fragmented. It is valuable to note the 

structural attributes of zone boundaries because these boundaries are expected to change over time (Beck et al., 2018; Knoben 

et al., 2018).  435 

Of the water budget components, Q was the least coherent while ET was the most coherent across all systems except 

KHC and WEC (Table 1). This overall high coherence suggests that the variability of the drivers of ET (water and energy 

budget components) are mostly captured, even if ET itself is not a governing principle in the framework. However, there was 

still room for improvement within the established classification systems with respect to optimizing ET variability was a 

previously unconsidered objective in creating and validating climate classification schemes. The climate classification system 440 

comparison presented here supportssBased on the climate classification system comparison presented here, theit can be 

longstanding assertionconclu ded that the primary mean ET drivers,  water and energy (i.e., P and PET), ET drivers are 

important considerations for broad hydroclimate analyses. To delineate the landscape based on ET dynamics, the Budyko 

framework is a longstanding, well-vetted mechanism for estimating the evaporative index (ET/P) using the primary drivers of 

the water budget, PET and P, as represented by the aridity index (Budyko, 1974; Milly, 1994; Reaver et al., 2020a; Reaver et 445 

al., 2020b; Zhang et al., 2004). We conclude that, since hydroclimatewater budget coherence is bemostly achieved when P and 

PET are theincluded as governing principles of a zoning framework. However, when specifically evaluating ET dynamics, 

applyingusing an ET-based delineationframework could be usefulis most, especially if the objective of such a study is to 

distinctively evaluate factors that influence ET. It should be noted that boundaries created by ET drivers and not ET rates may 

influence the determined importance of such drivers, since intra-zone driver variability is likely to be reduced appropriate. 450 

Depending on which spatial complexity metric is favored, MHR (mean zone patches = 10) and ETA (CVz = 0.02) were the 

least complex systems. Based on both ET coherence and spatial complexity, the ETA system established here is suggested for 

ET-focused questions such as large-scale assessments of ET drivers or of  crop productivity (Howell et al., 2015).  

This study is limited by a few factors. First, distinct climate zone boundaries, although useful in practice, do not exist 

in the physical system (Knoben et al., 2018). Second, this study compared averaged metrics that were applied across zones 455 

within each classification system and did not distinguish between individual zones, which could be evaluated in a follow-up 

studysubsequent studies. Third, the focus on long-term mean annual hydroclimate attributes for zone formation does not 

account for interdecadal climate dynamics. Last, the TerraClimate ET and Q data used to assess the suite of classification 

systems was in part formed using the same CRU climate data used here to create the WEC boundaries (Abatzoglou et al., 

2018). However, GLEAM ET and GRUN Q were also used as independent datasets and did not yield different results, which 460 

is likely due tothe use of this data is justifiable in the context of this study for two primary reasons: 1) the spatial scope of this 

analysis is sufficiently large such that calibrated rates for all hydroclimate variables are regionally representative (Abatzoglou 

et al., 2018), and 2) similarly, long term hydrologic dynamics are not as subject to interannual variability, since these effects 

are more muted across longer timescales. In this way, the broad spatiotemporal nature of this analysis makes it reasonable that 
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all available P, ET, Q, and PET data are appropriate metrics for forming more robust hydroclimate boundaries and subsequently 465 

assessing the water (and energy) budget therein. It is also important to recall that Q here is based on locally generated runoff 

(P – ET-ET), rather than the accumulated runoff from upstream contributing areas, which would be representative of gaged 

streamflow. 

5 Conclusions 

The KPG system is the most widely used climate classification system, and this analysis revealed that it indeed has 470 

relatively high hydroclimatic coherence with respect to several variables, but it also has high spatial complexity as evidenced 

by multiple metrics, in addition to its 24-parameter requirement. It was concluded that WEC was either better than or not 

statistically different from all other previously established systems, including the KPG framework, in all assessed coherence 

metrics apart from Δt. Moreover, compared to KPG, WEC builds half the number of zones using only two parameters as input 

variables and delineates a more uniform zone area distribution to better facilitate meaningful spatial interpretations.  475 

It is widely accepted that water and energy, chiefly in the form of rainfall precipitation and solar radiation, govern 

long term socioecological water availability at large spatiotemporal scales (Budyko, 1974; Berghuijs and Woods, 2016; 

Knoben et al., 2018; Sanford and Selnick, 2013). Several previous cClimate classification systemsschemes aimedseek to 

represent It is important that boundaries representative of this water-energy interaction within bounded zones that are drawn 

in order to encompass similar hydroclimatic sensitivities (Knoben et al., 2018; Meybeck et al., 2013). The KPG system is the 480 

most widely used climate classification system, and this analysis revealed that it indeed has high hydroclimatic coherence, but 

xxx. However, it was concluded that WEC was either better than or not statistically different from the KPG framework in all 

assessed metrics.It was concluded here that WEC, using water and energy in the form of P and PET rates, was the best overall 

system for building zones that encompass similar Q rates. This suggests that the WEC scheme is valuable for assessing and 

predicting water availability changes given changes in water and energy. Therefore, WEC is the most relevant system for direct 485 

management understanding and application as it relates to hydroclimate dynamics.  

This study proposes WEC as a new framework for large -scale hydroclimatewater budget inquiries, and other large 

spatial scale research endeavors that may be influenced by hydroclimate systems that vary across the landscape.  based on 

overall increased within-zone water budget coherence and reduced complexity (i.e., more even zone area distribution and 

fewer required input variables), which allows for more direct management interpretation and application. The WEC  system is 490 

robust, since it is based on long- term mean annual rates that have low are less susceptibileity to interannual and seasonal 

variability. This framework is thus useful for regional to national scale management strategies to account for potential 

hydroclimate zone-dependent responses to climate and land cover change. This work is a promising pathway to regionalization 

within many different biophysical and socioeconomic contexts, clustering drivers to form zones of similar response variable 

sensitivities in order to more accurately extrapolate locally derived results and regional impacts of local management practices. 495 
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The WEC framework can thus inform regional to national scale management strategies in the effort to account for potential 

hydroclimate zone-dependent responses to climate and land cover changes. 
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