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Abstract. In this paper, we present the Catchments Attributes for Brazil (CABra), which is a large-sample dataset for 

Brazilian catchments that includes long-term data (30 years) for 735 catchments in eight main catchment attribute classes 

(climate, streamflow, groundwater, geology, soil, topography, land-cover, and hydrologic disturbance). We have collected 10 

and synthesized data from multiple sources (ground stations, remote sensing, and gridded datasets). To prepare the dataset, 

we delineated all the catchments using the Multi-Error-Removed Improved-Terrain Digital Elevation Model and the 

coordinates of the streamflow stations provided by the Brazilian Water Agency, where only the stations with 30 years (1980-

2010) of data and less than 10% of missing records were included. Catchment areas range from 9 to 4,800,000 km² and the 

mean daily streamflow varies from 0.02 to 9 mm day-1. Several signatures and indices were calculated based on the climate 15 

and streamflow data. Additionally, our dataset includes boundary shapefiles, geographic coordinates, and drainage area for 

each catchment, aside from more than 100 attributes within the attribute classes. The collection and processing methods are 

discussed along with the limitations for each of our multiple data sources. The CABra intends to improve the hydrology-

related data collection in Brazil and pave the way for a better understanding of different hydrologic drivers related to climate, 

landscape, and hydrology, which is particularly important in Brazil, having continental-scale river basins and widely 20 

heterogeneous landscape characteristics. In addition to benefitting catchment hydrology investigations, CABra will expand 

the exploration of novel hydrologic hypotheses and thereby advance our understanding of Brazilian catchments’ behavior. 

The dataset is freely available at https://doi.org/10.5281/zenodo.4070146 and https://thecabradataset.shinyapps.io/CABra/.    

1 Introduction 

The integrated assessment of large-sample catchment attributes is fundamental for the description and classification of 25 

landscape properties, leading to an improved understanding of similarities (or dissimilarities) between catchments. Large-

sample catchment hydrology is essential in terms of hydrological processes understanding (Addor et al., 2020; Beven et al., 

2020). It provides an attractive venue for general inferences that would otherwise be impossible to study based on individual 

or small groups of catchments, aside from allowing the testing of new and existing hypotheses in hydrologic sciences (Addor 

et al., 2017; Gupta et al., 2014; Lyon and Troch, 2010; Wagener et al., 2007).  30 

https://doi.org/10.5281/zenodo.4070147
https://thecabradataset.shinyapps.io/CABra/
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A classic example of a large catchment-scale dataset is the Model Parameter Estimation Experiment (MOPEX) (Duan et al., 

2006; Schaake et al., 2006), with hydrologic time series from 438 catchments located within the continental US (CONUS). 

The MOPEX dataset has been used in several studies supporting theoretic and modeling advances in hydrologic sciences 

(Ao et al., 2006; Ren et al., 2016; Sawicz et al., 2011). A more recent example is the Catchment Attributes and 

MEteorological for Large-sample Studies (CAMELS, Addor et al. (2017)) consisting of a set of daily hydrometeorological 35 

time series data for 671 small- to medium-sized catchments for the CONUS, aside from several landscape and climate 

related attributes. The CAMELS initiative has been widely used and other large-sample datasets have been recently 

developed following the CAMELS format, such as CAMELS-GB for Great Britain, covering 671 catchments and, 

CAMELS-CL for Chile, covering 516 catchments, and CAMELS-BR for Brazil, covering 897 catchments. A list of available 

large-sample datasets can be found in Addor et al. (2020). 40 

Brazil is a country with continental dimensions, hosting a wide range of climates, soils, geology, and land-cover types. 

Despite covering almost 50% of South America and hosting between 12% and 18% of the world’s renewable freshwater  

(Rodrigues et al., 2015; UNEP and ANA, 2007), Brazil suffers from scarce allocation of funds for hydrological monitoring 

services, which creates great challenges for the proper monitoring of the quality and quantity of its water resources. While 

the density of streamflow gauges falls below the standards than recommended by the World Meteorological Organization 45 

(WMO) of 1 station for each 1,000 km², hydrologic observations are often discontinued and lack proper length (ANA, 

2019a; WMO, 2010). Additionally, there is no repository for other relevant landscape-related variables (e.g., land-cover, 

groundwater, geology, or soil type). An integrated dataset containing multiple levels of environmental information can be of 

extreme importance to leverage investigations in hydrology and related disciplines within the Brazilian territory. 

Recently, two large-sample datasets for catchment attributes have been simultaneouslywere developed for Brazil: the 50 

Catchment Attributes for Brazil (CABra) (introduced in Oliveira et al., 2020)(first introduced in Oliveira et al., 2020) and the 

Catchment Attributes and MEteorology for Large-sample Studies (CAMELS-BR) (Chagas et al., 2020). Even though both 

datasets aim to fill the lack of hydrological data access in Brazil, the data sources, quality control, number, and types of 

attributes differ significantly. To address the similarities and differences between both datasets, an extensive discussion 

comparing CAMELS-BR and CABra is also presented in our study. 55 

In this paper, we present the CABra dataset, which is a comprehensive, large-sample dataset for catchment attributes in 

Brazil. We have synthesized several multi-source data from eight main attribute classes (topography, climate, streamflow, 

groundwater, soil, geology, land-use and land-cover, and hydrologic disturbance) for 735 catchments in Brazil. Our dataset 

covers all Brazilian administrative and hydrographic regions as well as its biomes. We have delimited all the catchments 

using an error-corrected digital elevation model employing automatic drainage area delineation methods. For the area-60 

averaged attributes, we have used national datasets from the Brazilian Water Agency (ANA), Brazilian Agricultural 

Research Corporation (EMBRAPA), and Xavier et al. (2016), and widely used global datasets, such as ERA5, SoilGrids250, 

Global Land Evaporation Amsterdam Model (GLEAM), Global Lithologic Map (GLiM), and GLobal HYdrogeology MaPS 
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(GLHYMPS). Additionally, a hydrologic disturbance index was created to indicate the most human-impacted catchments. 

Finally, we discuss the spatial variabilities of the attributes and their limitations of application. 65 

2 The CABra dataset 

2.1 Overview 

The CABra dataset is a multi-source, multi-temporal, and multi-spatial resolution large-sample dataset for catchment 

attributes for Brazilian catchments. Using an extensive local/global high-quality data collection, we developed CABra 

considering eight main classes of attributes: topography, climate, streamflow, groundwater, soil, geology, land-cover, and 70 

hydrological disturbance. Gridded datasets of various kinds were averaged onto the selected catchments located over Brazil 

and neighboring countries, in the case of transboundary catchments. Moreover, we provide daily time series from climate 

and streamflow variables for a 30-year period, covering the hydrological years from 1980 to 2010, as described in Fig. 1. 

 
Figure 1: Study delineation for the CABra dataset organization. From 1,444 catchments from ANA’s database, 735 were selected 75 
to integrate our dataset due to its high consistency and long time series of streamflow. 

 

The CABra dataset is recommended for a wide range of users for decision-making at multiple scales – local, national, or 

regional – covering all Brazilian biomes (Amazon, Cerrado, Atlantic Forest, Pantanal, Caatinga, and Pampa). CABra was 
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created to ensure easy access to its information and provide high-quality data, with attributes useful for a variety of 80 

hydrometeorological modeling and assessments. Each catchment presents several attributes, ranging from the file 

information described in Table 1 to the attributes described throughout this article. Moreover, we made available all the 

geospatial data (shapefile of the boundaries) for the users. 

Table 1: General attributes of the CABra catchments. 

Type Attribute Long name Unit 

Identification 
cabra_id CABra's identification code of the streamflow gauge - 

ana_id ANA's identification code of the streamflow gauge - 

Location 

longitude Longitude coordinate of the streamflow gauge dd 

latitude Latitude coordinate of the streamflow gauge dd 

gauge_hreg The Brazilian hydrographic region of the streamflow gauge location - 

gauge_biome The Brazilian biome of the streamflow gauge location - 

gauge_state The Brazilian state of the streamflow gauge location - 

Quality 

missing_data Percentage of missing data % 

series_length Timeseries length of the streamflow gauge years 

quality_index Quality index of the CABra catchment records - 

- Means dimensionless 85 

 

2.2 Catchment delineation and topography 

Brazil does not have an official database for the national catchments boundaries, and the Brazilian Water Agency (ANA) 

does not make available its geospatial database. Because of this and to avoid uncertainties in the existing datasets for South 

America, we freshly generated all the CABra catchments boundaries used in this study. Digital Elevation Model (DEM) 90 

quality and resolution are crucial at this stage since all the post-analysis with the multi-source information utilized in the 

CABra dataset are area-averaged. For example, is well-known that errors in topographic indices, e.g., slope and catchment 

area and boundary, are dependent on and highly sensitive to DEM resolution and accuracy, and it is suggested that, if 

available, a high-resolution DEM should be used instead of a low-resolution DEM due the negative effects of terrain 

generalization caused by them (Mukherjee et al., 2012; Vaze et al., 2010; Wechsler, 2007; Zhou and Liu, 2004). We 95 

delineated the CABra catchments following the procedure described in Maidment (2002), using streamflow gauges location 

information from the ANA’s database and a high-resolution elevation product, i.e., the Multi-Error-Removed Improved-

Terrain Digital Elevation Model with a 90-m spatial resolution at Equator (Yamazaki et al., 2017)  (Fig. 2). 
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Figure 2: Location map of the streamflow gauges and CABra catchments. a. Streamflow gauges coordinates of CABra catchments; 100 
b. The 735 CABra catchments boundaries; c. The 12 hydrographic regions of Brazil; d. The six main biomes of Brazil; e. Level of 

consistency of the streamflow gauges records for each biome. 

 

In the first stage, which we call “terrain processing”, the DEM was sink-filled to avoid possible errors due to peaks or 

depressions. Then, the flow direction and flow accumulation were calculated, which indicates the direction and accumulation 105 

of flow, respectively, in each grid cell within the catchment. The next step was to define the stream network in the 

catchment. For the definition of a river stream, we considered a threshold of 100 cells accumulating water, and this value 

was chosen considering the DEM spatial resolution and the range of the size of the catchments. All the previous steps were 

run for the South America extension. Even though all outlets are located in the Brazilian territory, some of the drainage areas 

embrace larger areas outside of it. 110 
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The second step was catchment delineation, where the products generated in the previous step and the coordinates of the 

streamflow gauges were used. Each streamflow gauge coordinate was first plotted as a point and the position of it to the 

stream network was checked and corrected, if necessary. The correction procedure was performed for 132 out of CABra 

catchments. Then, each corrected point was used as an outlet of the catchment and the delineation of the drainage area was 

performed using the ArcHydro tool. Aside from the catchments limits, perimeters, and areas, we also extracted the stream 115 

information, such as the stream network and hierarchy (Strahler, 1952, 1957). It is important to highlight that we manually 

inspected each catchment outlet and area to overcome the limitation of unchecked boundaries of another existing catchment 

dataset in Brazil (CAMELS-BR, by Chagas et al., 2020) and South America (Do et al., 2018), which were based on a DEM 

with a spatial resolution of 500-m.It is important to highlight that we manually inspected each catchment outlet and area to 

overcome the limitation of unchecked boundaries of another existing catchment datasets, such as Do et al. (2018), which is 120 

based on a DEM with a spatial resolution of 500-m. Moreover, this presented itself as a crucial procedure for an accurate 

delineation since several outlets’ positions needed to be corrected to represent the real expected catchment boundary. 

Once the catchment boundaries were delimited, we calculated six seven attributes related to the topography of each 

catchment: area, slope, maximum, minimum, and mean elevation, and streamflow gauge elevation, and catchment order. The 

catchment boundaries and drainage network are also provided in CABra dataset. 125 

 

    Table 2: Topography attributes of the CABra catchments. 

Type Attribute Long name Unit 

Elevation 

elev_mean Mean elevation of the catchment m 

elev_max Maximum elevation of the catchment m 

elev_min Minimum elevation of the catchment m 

elev_gauge Elevation of the streamflow gauge m 

Area catch_area Area of the catchment km² 

Slope catch_slope Mean slope of the catchment % 

Drainage catch_order Strahler Oorder of the catchment based on the Strahler method - 

 

Figure 3 summarizes the topographic attributes for the CABra catchments. Catchment areas ranged from 9 to 4.8106 km² 

(Fig. 3a). This large range of areas shows how Brazilian hydrology can be, at the same time, local and continental, 130 

necessitating a better understanding of hydrologic processes on different scales. Many of the largest catchments are in the 

mainstream of one of the 12 hydrologic regions of Brazil, especially in the Amazon, Tocantins/Araguaia, São Francisco, 

Paraguay, and Paraná. The mean elevation of CABra catchments ranges from close to zero to up to 2000 m, with the highest 

values found in the southern and south-eastern portions. 
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In turn, steepen areas can be found in the coastal and mountainous areas of the southeast and south (Fig. 3b and Fig. 3c). 135 

Most of the Brazilian catchments have a flat topography though, with a mean slope up to 10%. Figure 3d shows the gauge 

elevation. Note the difference between the gauge elevation and the mean catchment elevation in Fig. 3b. The gauge elevation 

considers only the elevation at the gauge position in the landscape, thereby proving only the local information, while the 

mean catchment elevation considers the average elevation for the entire catchment. An example of this difference is the 

largest CABra catchment, i.e., the Amazon. The mean elevation in the Amazon basin would be low, however, the western 140 

part of the basin has some of the highest peaks of the Andes, where the gauge elevation would be much higher. 
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Figure 3: Spatial distribution of the topography attributes of the CABra catchments. a. Stream order of Brazilian rivers; b. Area 

of the catchments, in km²; c. Mean elevation of the catchments, in m; d. Mean slope of the catchments, in percentage; e. Elevation 

of the streamflow gauge, in m. 145 
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2.2.1 Uncertainty and limitations 

The uncertainties related to the topography attributes are mainly related to the model terrain and streamflow gauges 

coordinates. The digital elevation model adopted for CABra catchments, developed by Yamazaki et al. (2017) is an 

improved product based on the composition of another baseline terrain products, such as the SRTM3 DEM, AW3D-30m 

DEM, and Viewfinder Panoramas DEM. Moreover, theres are gaps in high-relief mountains and water bodies that were 150 

filled manually for the final MERIT-DEM product, leading to 72% of mapped area with height accuracy better than 2 m 

when slope < 10%. Regarding to streamflow gauges coordinates, there were inconsistences between the location provided by 

ANA and the stream network generated using the MERIT-DEM. We corrected the pair of coordinates, by matching the point 

to the nearest stream network, in a way that the area error against ANA’s area was minized. Regarding to the catchment 

delineation, the uncertainty related to the automatic procedure conducted at the SIG environment is mainly dependent on the 155 

accucarcy, but some authors found that channels heads (1st order catchments) are the most subjected to greatest uncertainties 

(Zandbergen, 2011). 

2.3 Climate 

2.3.1 Methodology 

We present daily time series of area-averaged precipitation, minimum, maximum, and mean temperatures, solar radiation, 160 

relative humidity, wind speed, evapotranspiration, and potential evapotranspiration (calculated by Penman-Monteith, 

Priestley-Taylor, and Hargreaves methods). Moreover, we calculated several core climate indices, defined by the Climate 

and Ocean: Variability, Predictability, and Change project from the World Climate Research Programme (WCRP). Two 

main climate datasets were used in CABra. The first one, a high-resolution meteorological gridded dataset (0.25ºx0.25º), 

developed by Xavier et al. (2016) (here referred to as “REF”) is based on the spatial interpolation of meteorological data 165 

from ~4,000 rain gauges and wheatear stations in Brazil, from the ANA, Brazilian Institute for Meteorology (INMET, in 

Portuguese), and Water and Power Department of São Paulo (DAEE/SP, in Portuguese), covering the period from 1980 to 

2015. From these sets of meteorological gauges, 2890 are limited to precipitation data. This dataset is available at 

http://careyking.com/data-downloads/. This product has a much finer spatial resolution and is based on a higher number of 

rain gauge stations than other widely used products (~4,000 stations for Brazil, in comparison to ~600 stations for South 170 

America in CRU TS3.1 product). However, the REF dataset covers only the Brazilian territory, while the CABra dataset has 

20 catchments with upstream areas outside Brazil. To overcome this, we incorporated the ERA5 (Hersbach et al., 2020) 

climate data into the CABra dataset (here referred to as “ERA5”). 

 ERA5 is the most recent version of climate reanalysis from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and provides hourly, daily, and monthly data on several atmospheric, sea, and land variables in a 0.25ºx0.25º 175 

spatial resolution grid, from 1950 to the present. As a reanalysis dataset, the ERA5 uses past observations and models to 

generate accurate and consistent time series of climate variables and parameters, being one of the widely used datasets in 

http://careyking.com/data-downloads/
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geosciences (Hersbach et al., 2020). To incorporate and produce a more reliable product for all the CABra catchments, we 

have generated an ensemble mean product (here referred to as “ENS”) using both datasets beforementioned, i.e., REF and 

ERA5 climate products. The procedure was conducted in the Climate Data Operators (CDO, Schulzweida, 2019) and aimed 180 

to a better characterization and representation of the climate based on the two independent estimations, which generally 

imply in a more robust reproducibility of the phenomenon than in a single-member analysis (Abramowitz et al., 2018). 

Newman et al. (2015b) also found that ensemble product of precipitation and temperature still capture the main features of 

the variables and, moreover, improves the identification of extreme event frequency, and it is know that an ensemble usually 

outperforms individual forecasts (Bellucci et al., 2015; Solman et al., 2013; Tebaldi et al., 2005), being capable to detect 185 

internal variability and seasonal patterns. The ENS dataset generated here can be useful for climate-related analysis through 

the Brazilian territory, since it merges two high-resolution and high-quality products. 

The precipitation seasonality (Woods, 2009), which indicates the timing of the precipitation seasonal cycle and the 

temperature seasonal cycle – values close to +1 indicates summer precipitation and values close to -1 indicates winter 

precipitation – was calculated for the ensemble product. 190 

The actual evapotranspiration adopted in CABra is derived from the Global Land Evaporation Amsterdam Model version 3 

(GLEAM v3, Martens et al., 2017), which is a set of algorithms that estimates the many components of land evaporation 

based on satellite observations of climatic and environmental variables. The calculations of the actual evapotranspiration by 

GLEAM v3 take into account a potential evapotranspiration module (by Priestley and Taylor method), an interception loss 

module (by a Gash analytical model), and a stress module (by a semi-empirical relationship to root-zone moisture and 195 

vegetation optical depth). The GLEAM dataset is one of the most commonly used datasets on evapotranspiration 

applications (Forzieri et al., 2018; Schumacher et al., 2019; Zhang et al., 2016). 

Even though the REF dataset presents a reference evapotranspiration product (calculated by Penman-Monteith method 

following the FAO-56 guidelines), it embraces only the Brazilian territory and did not comprise all the areas of the 

catchments included in the CABra dataset. To overcome this limitation, we calculated the daily potential evapotranspiration 200 

(PET) by three different widely used methods based on energy balance and transfer mass, radiation, and temperature, using 

meteorological variables from the ERA5 and the ensemble products as inputs. These three newly products are, for our 

knowledge, the most extent datasets of potential evapotranspiration for Brazil, covering a larger period than existent 

products, such the one introduced in Althoff et al. (2020) and Xavier et al. (2016). 

The first method was the FAO-56 Penman-Monteith equation (Allen et al., 1998), which is the standard for reference 205 

evapotranspiration, and assumes a hypothetical crop similar to a surface of small grass of uniform grass, actively growing 

and sufficiently watered. The FAO Penman-Monteith (PM) equation considers the energy budget and the aerodynamic and 

surface resistances of the crop and uses as inputs the solar radiation, air temperature, humidity, and 2m wind speed data 

(Equation 1). 
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𝑃𝐸𝑇𝑃𝑀 =  
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
1 210 

 ,         (1) 

where 𝑃𝐸𝑇𝑃𝑀 is the reference evapotranspiration, in mm day-1, 𝑅𝑛 is the net radiation, in MJ m-2 day-1, 𝐺 is the soil heat flux, 

in MJ m-2 day-1, 𝑇 is the mean daily temperature at 2m height, in ºC, 𝑢2 is the wind speed at 2m height, in m s-1, 𝑒𝑠 is 

saturation vapor pressure, in kPa, 𝑒𝑎 is the actual vapor pressure, in kPa, ∆ is the slope vapor pressure curve, in kPa ºC-1, and 

𝛾 is the psychrometric constant, in kPa ºC-1. 215 

The radiation-based method chosen for the CABra dataset is the Priestley-Taylor equation (PT) (Priestley and Taylor, 1972). 

The PT considers that when large areas, such as catchments, are saturated, the main force that governates the evaporation is 

the net radiation, and under certain conditions, the knowledge of net radiation and the ground dryness is enough to determine 

the vapor and sensible heat fluxes at the surface. Moreover, is one of the most commonly used models to estimate 

evapotranspiration due to its low number of inputs requirement (Maes et al., 2018; McMahon et al., 2013; Shuttleworth, 220 

1996). The PT equation takes the following form: 

𝑃𝐸𝑇𝑃𝑇 = 𝛼
∆

∆ + 𝛾
(𝑅𝑛 − 𝐺) 2 

 

 ,           (2) 

where 𝑃𝐸𝑇𝑃𝑇 is the potential evapotranspiration, in mm day-1, 𝛼 is the Priestley-Taylor constant, dimensionless, 𝑅𝑛 is the net 225 

radiation, in MJ m-2 day-1, 𝐺 is the soil heat flux, in MJ m-2 day-1, ∆ is the slope vapor pressure curve, in kPa ºC-1, and 𝛾 is the 

psychrometric constant, in kPa ºC-1. Considering that PT only considers daytime evapotranspiration and 𝐺  is negligible 

during the daytime, we used 𝐺 = 0 in our calculations. 

The main limitation on the application of the PT method is the requirement of the Priestley-Taylor constant α, which is 

related to the ratio between the actual evapotranspiration and the equilibrium evaporation rate (Eichinger et al., 1996). 230 

Priestley & Taylor (1972) empirically determined α for many locations and conditions in the world, ranging between 1.08 

and 1.34. The authors concluded the best estimation for α should be an overall mean of 1.26. However, it is known that the α 

value is scenario-dependent and its variability is not taken into account when using the mean value proposed in its 

development (Guo et al., 2007). 

The third method adopted here is the Hargreaves equation. The method was developed by Hargreaves (1975) for irrigation 235 

planning and design and it is a temperature-based equation widely used to calculate the potential evapotranspiration due to 

its easy application and low inputs requirement (Equation 3). 
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𝑃𝐸𝑇𝐻𝐺 = 0.0135 𝑅𝑠(𝑇𝑎 + 17.8) 3 

 

,          (3) 240 

where 𝑃𝐸𝑇𝐻𝐺 is the potential evapotranspiration, in mm day-1, 𝑅𝑠 is the solar radiation, in MJ m-2 day-1, and 𝑇𝑎 is the daily 

mean temperature, in ºC. 

The main limitation of this equation is the estimative are subject to error due to a large range of temperatures caused by 

weather fronts on a daily scale. On the other hand, it is a less biased model, when compared to other methods, when applied 

to small and not well-watered catchments (Hargreaves and Allen, 2003). 245 

From the climatic variables and attributes, we carried out an analysis of the annual water balance in the Budyko space, an 

empirical approach applied to the study of the hydrological behavior of catchments. The Budyko hypothesis (Budyko, 1948, 

1974) considers that the ratio between the long-term annual actual evapotranspiration (ET) and precipitation (P) is a function 

of the ratio between the long-term potential evapotranspiration (PET) and precipitation (P). The Budyko framework has been 

used to assess global impacts of climate change on water resources (Berghuijs et al., 2017; Roderick et al., 2014), and to gain 250 

further insight on water balance controls at mean annual timescales (Donohue et al., 2007; Berghuijs et al., 2017; Meira Neto 

et al., 2020). 
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Table 3: Daily series of meteorological variables and climate indices for the CABra catchments. 

Type Attribute Long name Unit 

Precipitation 

p_ref DMean daily precipitation from the REF dataset mm day-1 

p_era5 DMean daily precipitation from the ERA5 dataset mm day-1 

p_ens DMean daily precipitation from the ENS dataset mm day-1 

Temperature 

tmax_ref DMax daily maximum temperature from the REF dataset ⁰C 

tmin_ref Min dDaily minimum temperature from the REF dataset ⁰C 

tmax_era5 Max dDaily maximum temperature from the ERA5 dataset ⁰C 

tmin_era5 Min dDaily minimum temperature from ERA5 dataset ⁰C 

tmax_ens Max dDaily maximum temperature from the ENS dataset ⁰C 

tmin_ens Min dDaily minimum temperature from the ENS dataset ⁰C 

Solar radiation 

srad_ref DMean daily mean solar radiation from the REF dataset MJ m² day-1 

srad_era DMean daily mean solar radiation from the ERA5 dataset MJ m² day-1 

srad_ens Mean dDaily mean solar radiation from the ENS dataset MJ m² day-1 

Wind 

wnd_ref Daily mean 2m mean wind speed from the REF dataset m s-1 

wnd_ era5 Daily mean 2m 2m mean wind speed from the ERA5 dataset m s-1 

wnd_ ens Daily mean 2m 2m mean wind speed from the ENS dataset m s-1 

Evaporation 

et_act Mean dDaily actual evapotranspiration from the GLEAM v3 mm day-1 

pet_pm Mean dDaily potential evapotranspiration (Penman-Monteith 

method) 

mm day-1 

pet_pt Mean dDaily potential evapotranspiration (Priestley and Taylor 

method) 

mm day-1 

pet_hg Mean dDaily potential evapotranspiration (HargreavesG method) mm day-1 

Climate Indices 

clim_p Long-term mean daily precipitation (1980-2010) mm day-1 

p_seasonality Seasonality and timing of precipitation (1980-2010) - 

clim_rh Long-term mean daily relative humidity (1980-2010) % 

clim_tmin Long-term mean daily minimum temperature (1980-2010) ⁰C 

clim_tmax Long-term mean daily maximum temperature (1980-2010) ⁰C 

clim_et Long-term mean daily actual evapotranspiration (1980-2010) mm day-1 

clim_pet Long-term mean daily potential evapotranspiration (1980-2010) mm day-1 

aridity_index Aridity index (clim_p/clim_pet) of the catchment - 

clim_srad Long-term mean daily solar radiation (1980-2010) MJ m² day-1 

clim_quality Quality index of climate indices (indicates the source - 
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meteorological daily series used for long-term mean calculation) 

- Means dimensionless 255 

2.3.2 Results and discussion 

Figure 4 shows some of the climate attributes for the CABra dataset. Regarding the precipitation derived from our ensemble 

of Xavier et al. (2016) and ERA5 (Fig. 4a), we found the highest values, reaching up to 10 mm day-1, in the northern portion, 

and the lowest values, below 1 mm day-1, in the north-eastern portion. Despite the wide range in the daily precipitation, most 

of the catchments (~80%) presented area-averaged precipitation between 3 and 6 mm day-1. 260 

Figure 4d shows the area-averaged solar radiation reaching the surface, ranging from 10 to 20 MJ m2 day-1, with most of the 

catchments with daily values higher than 15 MJ m2 day-1. The spatial distribution of solar radiation is reflected in the 

temperature values in CABra catchments (Fig. 4e and Fig. 4f). The southern and south-eastern portions present the lowest 

values of both the maximum and minimum temperatures. This is due to the lower values of solar radiation and high altitudes 

found in these regions of Brazil. Other areas of Brazil are located in higher latitudes and are subject to higher solar radiation, 265 

and due to its flat relief, the temperatures are higher than in the south. Figure 4b indicates that, in most of CABra catchments 

(~85%), the precipitation seasonal cycle is in timing with the temperature seasonal dynamics, which means that most of the 

precipitation occurs in the summer (seas > 0). There are only a few catchments in the northern portion of Brazil that have 

precipitation in the winter (seas < 0), and this can be explained by the high influence of sea breeze on convective 

precipitation in this region. According to Ahrens (2010) and Kousky et al. (1984), the Amazonian coastal area is highly 270 

influenced by the sea breeze, which can occur in 3 out of every 4 days, with the formation of convective activity inland. 
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Figure 4: Spatial distribution of climate indices of the CABra catchments. a. Mean daily precipitation, in mm day-1; b. 

Precipitation seasonality, dimensionless; c. Aridity index, dimensionless; d. Mean daily solar radiation, in MJ m2 day-1; e. Mean 

daily minimum temperature, in ºC; f. Mean daily maximum temperature, in ºC. 275 

 

Our results of the computed potential evapotranspiration are presented in Fig. 5a, Fig. 5b, and Fig. 5c. They are related to 

three different methods for PET calculation, being: potential evapotranspiration for a reference crop using the Penman-

Monteith equation; potential evapotranspiration by the Priestley-Taylor equation; and potential evapotranspiration by the 

Hargreaves equation. All the equations generated similar results of PET ranging from 3 to 6 mm day-1, with similar spatial 280 

variability. The highest values were found for the north-eastern portion of Brazil, with the Penman-Monteith results being 

slightly higher than other equations. This could be related to the wind component in the method, which is not taken into 

account in the Priestley-Taylor and Hargreaves methods. 
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Figure 5: Spatial distribution of the PET calculated from three different methods of the CABra catchments. a. Penman-Monteith 285 
method; b. Priestley and Taylor method; c. Hargreaves method. 

 

The Budyko framework (Budyko, 1948, 1974) shows that half of CABra catchments are water-limited and the other half are 

energy limited (Fig. 6). The lowest aridity index values are found in the Amazon and the Atlantic Forest, while the warmer 

and drier climate can be found in the Cerrado and Caatinga biomes. This may be correlated with the physiognomies of 290 

vegetation found in these biomes: tropical forests for the first group and grass and shrub for the second one, and especially, 

to the water availability and radiation incidence on these abovementioned biomes. Although we have found some outliers 

which are not explained by the Budyko hypothesis, most of the CABra catchments follow the expected behavior to the long-

term mean water balance proposed by Budyko (1948, 1974). Moreover, we can note that the main climate features are 

captured by all the datasets, with catchments in Caatinga being more arid, followed by the Cerrado. The Atlantic Forest is in 295 

the same location at the Budyko space, while some catchments in Amazon only appears on ERA5 and ENS dataset, due to 

its extension outside REF. This shows the consistency between all datasets adopted in CABra. 

 

 

Figure 6: Distribution of the CABra catchments in the Budyko framework. The values of PET and P are from the three different 300 
climate ensembledataset of CABra: REF, ERA5 and ENS. Values of E were estimated from the relation P = E + Q, considering 

long-term means. 
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2.3.3 Uncertainty and limitations 

The climate data provided by CABra dataset has limitations related to the number and spatial distribution of rainfall gauges 305 

in Brazilian territory that must be pointed. Since REF and ERA5 datasets are, respectively, ground-based and reanalysis 

gridded data, they are subject to uncertainties on the density of rainfall gauges network and in its post-processing procedures, 

which includes geospatial interpolation and data modelling and assimilation. In addition, REF dataset is not present in all of 

the 735 catchments due to its spatial extent, covering only the Brazilian territory. The quality of the data is presented for the 

users with a flag in the data though. 310 

The potential evapotranspiration calculed for the CABra catchments are also subjected to uncertainties related to the 

equations chosen for the study and propagation of erros of input variables from climatic data. The golden standard for 

reference potential evapotranspiration ins the Penman-Monteith method, and the main limitations are related to the other two 

methods: on the application of the Pristley & Taylor method, the requirement of the Priestley-Taylor constant α, which is 

related to the ratio between the actual evapotranspiration and the equilibrium evaporation rate (Eichinger et al., 1996), is one 315 

of the greatest sources of uncertainty because it is scenario-dependent and its variability is not considered by using the mean 

value (α = 1.26) proposed in its development (Guo et al., 2007). On the other hand, the main limitation of Hargreaves 

equation for potential evapotranspiration is that the estimatons are subject to error due to a large range of temperatures 

caused by weather fronts on a daily scale. On the other hand, it is a less biased model, when compared to other methods, 

when applied to small and not well-watered catchments (Hargreaves and Allen, 2003). 320 

 

2.4 Streamflow and hydrologic signatures 

2.4.1 Methodology 

The CABra dataset provides daily streamflow records for 735 catchments in Brazil. We used data from streamflow gauges of 

ANA, where each gauge is related to one of the abovementioned catchments. This dataset is available in the HIDROWEB 325 

database (see http://www.snirh.gov.br/hidroweb/). ANA’s database contains raw time series of dozens of thousands of 

gauges of streamflow, precipitation, water quality, and sediment discharge, with a consistency level for each observation. 

Due to the inconsistencies and missing records in the streamflow data provided by ANA, we implemented filters to take into 

account only the reliable data for the CABra dataset. 

During our analysis, we found four main issues with ANA’s database collected from HIDROWEB: (a) missing streamflow 330 

values for a period of the time series; (b) duplicate streamflow values with different consistency levels; (c) duplicate values 

with the same consistency level, and (d) duplicate dates with different values and consistent levels. In the first filter step, we 

overcame the last three issues by picking up only one of the duplicated values/dates based on the best level of consistency. 

The first issue is more complex and difficult to overcome as in some cases the missing data reaches almost 100% for some 

gauges. Since long time series of streamflow is needed for reliable hydrologic investigations, we defined a threshold for the 335 

http://www.snirh.gov.br/hidroweb/
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selection of the streamflow gauges considered in the CABra dataset based on the following conditions: at least 30 years of 

data, comprising the hydrologic years from 1980 to 2010, with up to 10% of missing data. The application of these filters led 

to 735 streamflow gauges, and consequently, 735 catchments. During the analysis, we also noted inconsistences on 

streamflow gauges data, such as extremely high values (up to 1,000 mm day-1) and unexpected changes on daily streamflow 

values. Such inconsistences can lead to an under/overestimation of signatures based on mean values (e.g., mean daily flow, 340 

aridity index, runoff ratio) and, when repeated for a long time, it can modify signatures based on the frequency and dynamics 

of streamflow (e.g., flow duration curve, high and low flows frequency and duration). To avoid carrying these issues to the 

signatures calculation, we checked for outliers on the streamflow data by comparing each value to its neighbours. Elements 

with value larger than five times the median of a sliding ten-elements window (centred in ‘x’) were considered as an invalid 

value (NaN). 345 

After the employment of the filters, we calculated for the 735 selected catchments, a variety of hydrological signatures, 

which can provide a better understanding of the patterns of functionality and behavior of the catchments. From the 

quantification of hydrological characteristics, it is possible to explain the variability in responses to climate forcings. We 

selected hydrological signatures obtained from widely available hydrological series (see Table 4), as well as Sawicz et al. 

(2011) e Westerberg e McMillan (2015). A list with more hydrological signatures can be found in Yadav et al. (2007). All 350 

the hydrological signatures were calculated considering the hydrological years (October 1st – September 30th) from 1980 to 

2010, as adopted by the Brazilian Water Agency in their annual reports (ANA, 2020a). 

 

 

Table 4: Hydrological signatures of the CABra dataset. 355 

Type Attribute Long name Unit 

Distribution 

q_mean Mean daily streamflow mm day-1 

q_1 Streamflow Very low streamflow (1st quantile) mm day-1 

q_5 Streamflow Low streamflow (5th quantile) mm day-1 

q_95 Streamflow High streamflow (95th quantile) mm day-1 

q_99 Streamflow Very high streamflow (99th quantile) mm day-1 

Frequency 

and duration 

q_hf Frequency of Maxhigh  streamflow frequencyevents days y-1 

q_hd Duration of Maxhigh  streamflow events duration days 

q_lf Frequency of Minlow  streamflow frequencyevents days y-1 

q_ld Duration of Minlow  streamflow durationevents days 

q_hfd Half-flow date day of the year 

q_zero Frequency of zero-flow events days y-1 

Dynamics baseflow_index Baseflow index - 
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q_cv Flow cCoefficient of variation of daily streamflow - 

q_lv Min flow cCoefficient of variation of low-flows - 

q_hv CMax flow coefficient of variation of high-flows - 

q_elasticity SElasticity of daily streamflow elasticity - 

fdc_slope 
The sSlope of theflow flow duration curve (between 33th and 

66th percentiles) 

- 

Runoff runoff_coef Runoff ratio - 

- Means dimensionless 

 

The hydrological signatures based on the distribution of the streamflow, we have used the daily streamflow and its quantiles 

to define the mean daily streamflow, very low-, low-, high-, and very high-flows. For the calculation of frequency and 

duration of the streamflow, besides the number of days with no flow, there was identified the number of days with 0.2 and 9 360 

times the mean daily streamflow (low-flows and high-flows) and its number of days in sequency. The half-flow date 

corresponds to the day of the year in which the cumulated annual streamflow reaches half of the annual totals. The baseflow 

index was calculated using a recursive digital filter proposed by Lyne and Hollick (1979), presented in Ladson et al. (2013). 

Additionally, regarding to the dynamics of streamflow, we calculated the coefficients of variation of the streamflow (mean, 

low, and high), the streamflow elascticity proposed by (Sankarasubramanian et al., 2001), which indicates the impact of 365 

changes in precipitation to the streamflow, and the slope of flow duration curve between 33th and 66th quantiles, which is a 

good indicator of the perennial/non-perennial condition of the catchment. We also calculated the runoff coefficient for each 

catchment, which indicates how much of the precipitated water becomes streamflow by the simple ratio between mean daily 

streamflow and mean daily precipitation. 

2.4.2 Results and discussion 370 

Figure 7 shows the hydrologic signatures calculated for the CABra catchments for the period between the hydrologic years 

1980 and 2010. The mean daily flow for the Brazilian catchments ranges from less than 1 mm day-1 to up to 9 mm day-1, 

with an overall mean of 2 mm day-1. The highest values were found in the extreme north of Amazon, where the daily flows 

reached 8 mm day-1 due to high amounts of precipitation through the all the year, and in the Atlantic Forest, in the southeast, 

where we also have steepness relief with higher values of the slope, providing the runoff instead of infiltration process. This 375 

can be showed seen in Fig. 7b, related to the runoff coefficient, where we noted the high values in the southern and north-

western portions of Brazil. Most of the CABra catchments presented a runoff coefficient up to 0.5 though.  

Our results also revealed that the Brazilian catchments to be mainly dependent on the baseflow since all of it presented a 

baseflow index greater than 70%. The lowest values were found in the Caatinga biome, where we also found the lowest 

mean daily flows. The half-flow date (considering October 1st as the beginning of the hydrologic year) indicates that ~80% 380 
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of Brazilian catchments reach the half of total accumulated annual flow in less than 200 days (Fig. 7d), showing the high 

correlation with the seasonal cycle of precipitation. The catchments with later dates of the half-flow day can be found in the 

Pampa biome, where there is no well-defined rainy/dry season, and in the Amazon, where the amounts of accumulated 

annual streamflow are too high and the peak of precipitation is near the end of the hydrologic year (Almagro et al., 2020). 

The analysis of the slope of the flow duration curve, in Fig. 7e, shows the lowest values in a great portion of Brazil, ranging 385 

from the Cerrado to the Atlantic Forest and Pampa biomes.  

In our analyses, we also found zero values between the 33rd and 66th percentiles of the slope of flow duration curve 

reaching infinity in the north-eastern portion of Brazil, in the Caatinga biome, which indicates the existence of catchments 

with ephemeralnon-perennial rivers in that region, which are mainly dependent on direct runoff of rainfall. This can be also 

seen when analyzing Fig. 7f, related to the streamflow elasticity. The highest values, up to 4, are located in catchments 390 

within the same abovementioned region, indicating the strong dependence of those catchments on precipitation events to 

generate its streamflow. Moreover, we can note that most Brazilian catchments are inelastic to changes in precipitation. This 

fact can be explained by the high values of the baseflow index, which maintain the streamflow through the year. Fig. 7g, Fig. 

7h, and Fig. 7i show the results related to the low flows of CABra catchments.  

In general, Brazilian catchments present a low flow (5th quantile) lower than 1 mm day-1, up to 50 days through the year, 395 

with a mean duration of up to 25 following days. Despite the mean values, we can note high values (up to 3 mm day-1) in the 

Amazon. Additionally, higher values of frequency and duration of low flows can be found in the north-eastern portion of 

Brazil, with mean frequency reaching 150 days and mean duration reaching 100 days for some catchments. In turn, Fig. 7j, 

Fig. 7k, and Fig. 7l show the information about high flows in CABra catchments. Most CABra catchments present high 

flows up to 10 mm day-1, but in some catchments, this value can reach 30 mm day-1. As seen in the low flow analyses, the 400 

mean frequency of high flow does not exceed 50 days per year for most of the catchments. The frequency, instead, lasts for 

lower time, up to 10 days. It is important to note the values of frequency and duration of high flows for the Caatinga biome, 

where the mean streamflow values are too low that the high flow (95th quantile) is easily overcome through the year, leading 

those catchments to present the highest values of frequency and duration of high flows in Brazil. 
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 405 
Figure 7: Spatial distribution of the hydrological signatures of the CABra catchments. a. Mean daily streamflow, in mm day-1; b. 

Runoff ratio, dimensionless; c. Baseflow index, dimensionless; d. half-flow day, in day of the year; e. The slope of the flow duration 

curve, dimensionless; f. Elasticity of daily streamflow, dimensionless; g. Low streamflow, in mm day-1; h. Frequency of low 

streamflow events, in days year-1; i. Duration of low streamflow events, in days; j. High streamflow, in mm day-1; k. Frequency of 

high streamflow events, in days year-1; l. Duration of high streamflow events, in days. 410 
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2.4.3 Uncertainty and limitations 

Uncertianties in the hydrologic signatures are mainly related to the daily streamflow data, which is, in turn, mainly related to 

the river discharge measurements and database maintence by the ANA. Data collection and stramflow measurements are not 

the same in all catchments, varying from current meter to most advanced acoustic doppler profilers. The daily discharge of 

sections with well-stablished beds and long enough series of measurements are estimated by rating-curves, which are more 415 

susceptible to errors than direct measurements (Tomkins, 2014). Despite of this, daily streamflow records are provided with 

a consistence level, which can be “raw”, meaning that data was not quality checked, or “consistent”, meaning that data was 

quality checked. The consistence level is provided along with each daily record in CABra dataset, allowing the user to 

identify best and worst periods of streamflow measurements in each catchment. Although it is impossible to accurate 

measure the uncertainties (as much as eliminate them) in a large-sample dataset such as CABra dataset, it is important to 420 

indicate the possible sources of them, since they are widespread in any hydrological modeling. This way we can indicate best 

periods for calibration/validation, increasing the reliability of the dataset and its application. 

2.5 Groundwater 

2.5.1 Methodology 

The CABra dataset presents eigth attributes regarding the groundwater at the catchments (Table 5). They are related to the 425 

water table (water table depth and height above the nearest drainage) and to the aquifer where the catchment is within 

(aquifer name and rock type). The first attribute is the area-averaged water table depth. This information was extracted from 

Fan et al. (2013), which is a global water table depth map generated using a climate-sea-terrain coupled model. The results 

were validated against observations and show the global patterns of shallow groundwater, making possible the understanding 

of how groundwater affects terrestrial ecosystems, such as the soil moisture and land hydrology, in a deficiency of rain (Fan 430 

et al., 2013; Lo et al., 2010).  

The second attribute is the Height Above Nearest the Drainage (HAND), also related to the water table but is an indirect way 

to infer the water table depth. The HAND is a normalized drainage version of a digital elevation model, where the height is 

defined as the vertical distance from a hillslope (at the surface cell) to a respective “outlet-to-the-drainage” cell, as defined 

by Nobre et al. (2011). Considering the local gravitational potential, the HAND model shows robust correlations between 435 

soil water conditions and its values. Additionally, the authors created three classes to easily infer about the water table depth 

(if at the surface, shallow or deep) only using a digital elevation model, which is commonly a piece of difficult and scarce 

information on a large scale. We also present the aquifer in which the catchment is within (most of the area) and the most 

common type of rock of the aquifer. This information was provided by the ANA database and it is important to the 

knowledge of the aquifer geology and its implication to the groundwater storage and recharge. We also have included data 440 

from experimental wells on the CABra catchments, when available. The data was provided by the Integrated Groundwater 
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Monitoring Network (RIMAS) from the Geological Survey of Brazil (CPRM), and includes the location of each well and its 

static and dynamic levels. 

Table 5: Groundwater attributes of the CABra catchments. 

Type Attribute Long name Unit 

Water table catch_wtd Water table depth m 

Height above 

nearest drainage 

catch_hand Height above the nearest drainage m 

hand_class Class of the height above the nearest drainage - 

Aquifers 
aquif_name Aquifer name - 

aquif_type Aquifer rock type - 

 well_number Number of experimental wells - 

Wells well_static Static level of water table depth m 

 well_dynamic Dynamic level of water table depth m 

- Means dimensionless 445 

2.5.2 Results and discussion 

Our analyses showed a close relationship between the water table depth from Fan et al. (2013) and the HAND. In the 

northern portion of Brazil, especially in the Amazon, we can find shallow water table depths, while in the south-eastern, 

especially in the Atlantic Forest, we noted the deepest values for the water table depths (see Fig. 8a and Fig. 8b). This could 

be related to the altitudes of each catchment since the HAND is a product derived from a digital elevation model. As a 450 

catchment lies at a high elevation, the water table depth is deeper than the other catchments in low elevations. This is 

particularly noted in the coastal area of the Atlantic Forest, which presents high altitudes and at the same time, is close to the 

sea level. Values of water table depth and HAND are also in accordance to the experimental wells for catchments where this 

analysis were possible to carry. Despite this, the low density of experimental wells shows the lack of field data abour 

groundwater in Brazil. 455 

Figure 8c shows that most of the CABra catchments are dominated by fractured and porous rocks. The fractured rocks store 

the water in fractures, creating large pockets of water, and due to the nature of the rock, it is hard to drill. The porous rocks 

store water in the soil pores (especially in sandy soils originated by sedimentary rocks), and it is common to find large 

amounts of water in them. Moreover, it is easier to drill than other types, which leads to more exploration of its water. The 

two of the world’s largest aquifers are in Brazil and are porous, the Guarani Aquifer in the Cerrado biome, and the Alter do 460 

Chão Aquifer in the Amazon biome. The third aquifer type found in CABra catchments is the karstic one. This kind of 

aquifer is like the fractured one, but the fractures are much bigger, thereby forming subsurface rivers and lakes. This can be 

found in the São Francisco River Basin. 
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Figure 8: Spatial distribution of the groundwater attributes of the CABra catchments. a. Water table depth, in m; b. Height Above 465 
Nearest Drainage, in m; c. Type of aquifer bedrock. d. Number of experimental wells; e. Static level, in m; f. Dynamic level, in m. 

 

2.5.3 Uncertainty and limitations 

Due to the lack of a robust monitoring network for groundwater resources in Brazil, most of data Fan et al. (2013) for 

covering the Brazilian territory is based on in situ observations of water table depth and groundwater model forced by 470 

climate, terrain and sea levels, only up the 2013 year. For South America, there were 34,508 observation sites, most of them 

in Brazil, but they are concentred in the Atlantic coastal area, with few observations in most of Brazilian area. Moreover, the 

global dataset provided by Fan et al. (2013) neglects local perched aquifers, groundwater pumping, irrigation, drainage, and 

any other complexity of human interation. The HAND product, in turn, is not based on observations, but it is a simplified 

way to correlate the water table depth with terrain elevation, and it is mainly subject to errors in the digital elevation model 475 

used as input, especially in flat areas, where there are uncertainties during the flow direction determination (Nobre et al., 

2011). 

The information of aquifers presented in the CABra dataset, provided by the Brazilian Water Agency, was developed with a 

previous and rigorous consistency analysis of geological and hydrogeological studies in Brazil, followed by the classification 

in three main classes, as fractured, carstic or porous. The mapping of aquifers systems was based on the analysis of 480 

consistency, adequacy and reclassification of existing geological and hydrogeological information. The reclassification of 
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polygons from geological units and their groupings, according to their hydrogeological characteristics. Data sources with 

different scales, which might a uncertainty source for the aquifers data. The sources and spatial map of the aquifers is not 

available through CABra dataset, where we only present the most common aquifer in each catchment. 

 485 

2.6 Soil 

2.6.1 Methodology 

The CABra dataset has eight attributes related to the soil type, properties, and texture (Table 6). The soil type of the 

catchment presented here is the most common type for each catchment (bigger percentage of the different types) derived 

from the Brazilian soil map developed by the Brazilian Agricultural Research Corporation (EMBRAPA, in Portuguese) 490 

(Santos et al., 2011). To meet with the international standards for soil classification, we converted the classes to the widely 

used World Reference Base (WRB) (FAO, 2014). Due to the high importance of the knowledge of the soil depth, density, 

texture, and organic matter to the understanding of soil-water dynamics and root grow (Dexter, 2004; Saxton et al., 1986; 

Saxton and Rawls, 2006; Shirazi and Boersma, 1984), we also present the mean areal attributes for them. These fields were 

taken from the SoilGrids250m, a global high-resolution gridded soil information based on field measurements, data 495 

assimilation, and machine learning. This is the most detailed and accurate global soil product and is crucial for the 

development of large-scale studies in many fields (ecology, climate, hydrology). However, despite all the improvements 

brought by SoilGrids250m, the data still have limitations, and one of the biggest is the high uncertainty levels for some of its 

products, such as the depth to bedrock and coarse fragments. Besides, we also employed the United States Department of 

Agriculture (USDA) soil texture classification, which is a widely used method for soil definition based on the mechanical 500 

limits of soil particles. Moreover, previous studies showed that the USDA soil texture classification can potentially reflect 

other soil parameters and characteristics (Groenendyk et al., 2015; Twarakavi et al., 2010), making it a powerful tool with a 

low input requirement. 

 

Table 6: Soil attributes of the CABra catchments. 505 

Type Attribute Long name Unit 

Soil type soil_type Most common Ssoil type - 

Soil depth soil_depth Soil depth to bedrock (m) m 

Soil density soil_bulkdensity Soil bulk density g cm-³ 

Soil texture 

soil_sand Sand portion on soil first layer(0cm) % 

soil_silt Silt portion on soil first layer (0cm) % 

soil_clay Clay portion on soil first layer (0cm) % 

soil_textclass Soil texture classification (USDA) - 
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Organic content soil_carbon Soil oOrganic carbon contentcontent on soil first layer ‰ 

- Means dimensionless 

2.6.2 Results and discussion 

The catchments presented 12 main soil classes, with the Ferrasols, Acrisols, and Nitisols being the most common soil types 

in more than 90% of the CABra catchments (Fig. 9a). The Ferrasols were the dominant soil type in approximately 75% of 

the catchments, typical of equatorial and tropical regions, which have an advanced stage of weathering of their constitutive 510 

material, being normally deep (>1m), well-drained, and acidic soils (high pH levels can occur in areas with a strong dry 

season, such as observed in the Caatinga biome). Acrisols are formed mainly by minerals, with an evident increase in the 

clay content from the surface to horizon B, with variable depth and drainage, but always with high acidity. The third most 

common soil type is the Nitisols, which have a clay texture, with a well-developed B horizon structure, and are usually deep 

and well-drained with moderate acidity (EMBRAPA, 2018). 515 

We noted that most of the catchments present soil texture dominated by sand and clay (Fig. 9c, Fig. 9d, and Fig. 9e). South-

eastern, northern, and central regions of Brazil are dominated by sandy clay loam soils, while the southern portion is 

dominated by clay, which can reach up to 80%, making this region one of the most productive in terms of agriculture in 

Brazil. By the employment of the USDA texture triangle, we found 6 classes: clay, clay loam, loam, sandy clay, sandy clay 

loam, and sandy loam (see Fig. 9b). The soils presenting a clay and clay loam texture are in the southern portion, especially 520 

where the Nitisols occur, which is also the region with a significant portion of the Brazilian agricultural production.  

Most of the catchments present a mix of texture, the sandy clay loam, which covers from the south through the central to the 

northern regions of Brazil. There is a spatial correlation between the soil organic carbon, bulk density, and the distance to the 

bedrock, as we can see in Fig. 9f, Fig. 9g, and Fig. 9h. In the southern and south-eastern portions, especially in the Atlantic 

Forest biome, we havethere is a combination of high soil organic carbon, low bulk density, and low distance to the bedrock. 525 

These characteristics, allied to the favorablefavourable climate, turned this kind of soilregion attractive to agriculture. On the 

other hand, other Brazilian regions present the opposite. 
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Figure 9: Spatial distribution of the soil attributes of the CABra catchments. a. The most common type of soil in the catchment; b. 

The class of texture based on USDA classification; c. The clay fraction of the soil, in percentage; d. The sand fraction of the soil, in 530 
percentage; e. The silt fraction of the soil, in percentage; f. The organic carbon content of the soil, in permille; g. The bulk density 

of the soil, in g cm-3; h. The depth to soil bedrock, in m. 
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2.6.3 Uncertainty and limitations 

The main limitation of the database used in CABra dataset as the source for soil attributes, the SoilGrids250 (Hengl et al., 535 

2017), is related to the interpolation of a predicted data (through machine learning algorithms), which is based on soil 

profiles observed data. In this aspect, Brazil has a good starting point, with a dense and uniform distribution of in situ 

samples. However, authors state that, although most of properties are unbiased, coarse fragments and depth to bedrocks 

present relatively high uncertainties, as well overestimations in low values of organic carbon contente. Uncertainties are also 

related to the need of translation from the Brazilian classification system to the World Reference Base and USDA 540 

classification systems, where some information could be missed or misunderstood. 

 

2.7 Geology 

2.7.1 Methodology 

The CABra dataset presents four attributes related to the geology of the catchments (Table 7), being the predominant 545 

lithology class, the subsurface porosity, the subsurface saturated permeability, and the saturated hydraulic conductivity. The 

lithology class is derived from the Global Lithologic Map (GLiM) (Hartmann and Moosdorf, 2012). The GLiM is a high-

resolution global dataset that describes the geochemical, mineralogical, and physical properties of the rocks in 16 main 

lithological classes. Moreover, GLiM allows us to better understand the geology of smaller areas, such as our CABra 

catchments. Also, we are using a GLiM-derivate product of subsurface porosity and saturated permeability named GLobal 550 

HYdrogeology  MaPS (GLHYMPS), developed by Gleeson et al. (2014). The GLHYMPS is the first large-scale high-

resolution mapping of porosity and permeability and fills a lack of robust and spatially distributed subsurface geology map.  

The porosity is the void spaces in a material (soil in our case) controls how much fluid (water) can be stored in this material, 

or in the soil subsurface. The movement of the stored water in the soil is controlled by the permeability, which is the capacity 

of a porous material (again, soil) to transmit fluids. Both parameters are fundamental to the knowledge of fluid rate and its 555 

impacts on Earth’s subsurface. When using this kind of high-resolution data for large-scale studies, we can improve our 

understanding of the dynamics between groundwater and land surface. Considering the saturated hydraulic conductivity as 

one of the most important physical properties on the quantitative and qualitative assessment of the water movement in the 

soil, we presented its values in the CABra dataset. Following the assumption that the hydraulic conductivity is separable into 

the contributions of the porous matrix of the soil, and the density and viscosity of the fluid, we also estimated the saturated 560 

hydraulic conductivity of the CABra catchments using its relation to the permeability (Equation 4), as described in Grant 

(2005). 

𝐾 =  
𝑘𝜌𝑔

𝜇
4 

 ,            (5) 
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where K is the subsurface saturated hydraulic conductivity, k is the subsurface saturated permeability, ρ is the density of the 565 

fluid, g is the gravitational constant (9.8 m s-2), and µ is the viscosity of the fluid. In our study, we have considered the water 

as the fluid, so we have used ρ = 999.97 kg m-3, and µ = 0.001 kg m-1 s-1. 

 

Table 7: Geology attributes of CABra catchments. 

Type Attribute Long name Unit 

Lithology catch_lith Dominant Most common lithology class - 

Subsurface 

geology 

sub_porosity Subsurface pPorosity - 

satub_permeability Subsurface Saturated permeability m² 

satub_hconduc Subsurface Saturated hydraulic conductivity m s-1 

- Means dimensionless  570 

2.7.2 Results and discussion 

Related to the lithology class, the catchments present 10 different classes according to the GLiM dataset: siliciclastic 

sedimentary rocks, acid volcanic rocks, unconsolidated sediments, acid plutonic rocks, metamorphic rock, mixed 

sedimentary rocks, basic volcanic rocks, carbonate sedimentary rocks, intermediate volcanic rocks, and pyroclastic rocks 

(Fig. 10). We found that 35% of the catchments have the metamorphic rocks as the most common lithologic class, a result of 575 

continuous weathering on the original rock. These catchments are located especially in the southern portion of Brazil, in 

mountainous areas. Approximately 39% of CABra catchments are formed by sedimentary rocks, considering its subdivision 

in siliciclastic, unconsolidated, and mixed resulted from sediment deposition. They are mostly located in flat areas, such as in 

the Paraná River Basin and São Francisco River Basin, in the central and north-eastern portion of Brazil. 25% of catchments 

presents igneous rocks (plutonic and volcanic) as the most common lithology class, resulted from volcanic eruptions. These 580 

catchments are located mainly in the Atlantic Forest biome, although we can find some catchments in the Amazon.  

In respect to the subsurfaceporosity, most CABra catchments presented values lower than 20%, with a mean value of 10%. 

Catchments in the Atlantic Forest presented the lowest values of the catchments set. Results regarding the subsurface 

saturated permeability and hydraulic conductivity reinforce the heterogeneity and random occurrence of these soil properties. 

As we can see in Fig. 10c and Fig. 10d, there is no well-defined spatial behavior for them. Subsurface Saturated permeability 585 

ranges from -14 to -12 m² in log scale, with a mean of -13.4 m², while the subsurface saturated hydraulic conductivity 

presented a mean value of -6.4 m s-1 in log scale, vary between -10 to -4 m s-1 in log scale. 
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Figure 10: Spatial distribution of geology attributes of the CABra catchments. a. Most common lithology class in the catchment; b. 

Porosity, dimensionless; c. Subsurface Saturated permeability, in m2; d. Subsurface Saturated hydraulic conductivity, in m s-1. 590 

2.7.3 Uncertainty and limitations 

The geological map of the CABra dataset is derived from the GLiM dataset (Hartmann and Moosdorf, 2012), which is, in 

turn, the main source for the development of the hydrologeological map used in CABra dataset, the GLHYMPS (Gleeson et 

al., 2014). Authors state that the global lithological map is still subject to significant uncertainty in rock properties in some of 

its lithological classes, mainly because of the scale of the maps. About 14,6% of map’s area are covered by mixed sediments, 595 

explicating the large amount of area subject to undistinguishable properties. In addition, quality of literature used to identify 

lithology in rare locations may have introduced some uncertainty level on GLiM. As mentioned before, the GLiM map was 

employed as a basemap for GLHYMPS permeability product, implying that all uncertainty associated to GLiM might be 

propagated to it. Moreover, Gleeson et al. (2014) presents a uncertainty map of permeability, showing high standard 

deviation values for central portions of Brazil, especially in Tocantins-Araguaia catchments. Finally, authors also 600 

recommend a careful use of the dataset where unsaturated zone processes are domintant, since GLHYMPS only takes in 

account saturated permeability. 



31 

 

2.8 Land-cover 

2.8.1 Methodology 

The CABra dataset presents 14 15 attributes regarding the land-cover and land-use of the Brazilian catchments (Table 8). 605 

They are related to the area-averaged land-cover and land-use itself (dominant cover type, and the cover fractions of 9 main 

classes of use: bare soil, forest, grass, shrub, moss, crops, urban, snow, and water) and to the area-averaged intra-annual 

variability of the vegetation biomass, here represented by the Normalized Difference Vegetation Index. The land-cover and 

land-use map used in the CABra dataset is the Copernicus Global Land Cover, which has 100-m spatial resolution, is a result 

of a classification of the PROBA-V satellite observations of the year 2015 and follows the UN FAO Land Cover 610 

Classification System (Buchhorn et al., 2019) available at https://land.copernicus.eu/global/lcviewer. 

As an indicator for the vegetation biomass of the land-cover through the year, we are using the seasonal NDVI for each 

CABra catchment,. The NDVI is widely-used, easily accessible, and with high-temporal availability which can be useful for 

many purposes on hydrology, since from as an annual precipitation cycle indicator to a input for soil erosion assessments. 

We adopted a product derived from the Long Term Statistics (LTS) based on the Normalized Difference Vegetation Index 615 

(NDVI) from the Copernicus Global Land services. This dataset is an NDVI mean for each month of the year during the 

1999-2017 period, obtained from the SPOT-VGT and PROBA-V sensors in a 1-km spatial resolution, available at 

https://land.copernicus.eu/global/products/ndvi. The NDVI is obtained by calculating the spectral reflectance difference 

between red and near-infrared bands of the satellite image (Tucker, 1979) (Equation 5) and ranges from -1 to +1, with the 

highest values attributed to areas with greater vegetation cover. 620 

NDVI =  (
NIR − RED

NIR + RED
) 5 

,           (4) 

where NIR is the surface spectral reflectance in the near-infrared band and RED is the surface spectral reflectance in the red 

band. 

  625 

https://land.copernicus.eu/global/lcviewer
https://land.copernicus.eu/global/products/ndvi
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Table 8: Land-cover attributes of CABra catchments. 

Type Attribute Long name Unit 

Land-cover and 

land-use 

cover_main Dominant cover type - 

cover_bare Bare soil fraction of cover % 

cover_forest Forest fraction of cover % 

cover_grass Grass fraction of cover % 

cover_shrub Shrub fraction of cover % 

cover_moss Moss fraction of cover % 

cover_crops Crops fraction of cover % 

cover_urban Urban fraction of cover % 

cover_snow Snow fraction of cover % 

cover_waterp Water fraction of cover (permanent) % 

cover_waters Water fraction of cover (seasonal) % 

Vegetation 

ndvi_djf DJF normalized difference vegetation index - 

ndvi_mam MAM normalized difference vegetation index - 

ndvi_jja JJA normalized difference vegetation index - 

ndvi_son SON normalized difference vegetation index - 

- Means dimensionless  

 

2.8.2 Results and discussion 630 

We observed that most of the Brazilian catchments are covered by forest and grassgrassland (Fig. 11). The shrub is the 

dominant cover for most of Caatinga catchments, while the grass is the dominant one in the Cerrado (tropical savannah). The 

forest cover is dominant especially in the Amazon and Atlantic Forest, as these two biomes are known by tropical forest 

occurrence, but even though the forest cover is not the most common for all the CABra catchments, ~85% of them present at 

least 20% of it (Fig. 11b). The grass cover fraction presented values up to 40% of the area for most of the catchments but 635 

reached 60% in some cases (Fig. 11c). The highest values were found in the Cerrado and Atlantic Forest biomes, in central 

and south-eastern portions of Brazil.  

Large areas of natural cover were converted to agricultural lands (including crops and pasture) in past years (Gibbs et al., 

2010, 2014), and satellite sensors and classifiers algorithms cannot separate natural grassland and pasture/managed 

grasslands, as described in the PROBA-V documentation. Figure 11d gives us a better idea of this. Probably the fraction of 640 

the shrub cover of the Cerrado is the natural cover remaining for this biome since this is the expected type of vegetation. As 
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seen in Fig. 11e, a few numbers of catchments present the crops as the dominant cover type, mostly in the central and 

southern region, but we can also see the great fraction of crop cover in the MATOPIBA region, one of the largest agriculture 

frontiers in Brazil (Gibbs et al., 2014; Pires et al., 2016; Spera et al., 2016). Figure 11f shows that there are only a few cases 

of urban catchments, within or close to major Brazilian cities that present this type of cover, showing that the CABra dataset 645 

is mainly composed of either natural or minimally (hydrologically) modified catchments. 

 

Figure 11: Spatial distribution of the land-cover and land-use attributes of the CABra catchments. a. The most common land-

cover type in the catchment; b. Forest fraction of land-cover, in percentage; c. Grass fraction of land-cover, in percentage; d. 

Shrub fraction of land-cover, in percentage; e. Crops fraction of land-cover, in percentage; f. Urban fraction of land-cover, in 650 
percentage. 

 

The seasonal variability of the NDVI can be seen in Fig. 12. Although the mean seasonal values for the entire country are 

similar (0.65 for DJF, 0.69 for MAM, 0.64 for JJA, and 0.56 for SON), the spatial variability of the NDVI values are 

noticeable. There is a clear relationship with the annual cycle of precipitation, and that is why it is so important to consider 655 

the seasons to analyze the NDVI. Higher values were foundof NDVI occurs in timing with the accordance to the seasonal 

cycle of precipitation cycle in all the biomes, especially in DJF and MAM months. Even in the Amazon, we can see a 

considerable decrease in the NDVI values for the catchments in the dry seasons (JJA and SON) as well as the other biomes 

and regions of Brazil. NDVI reaches the lowest values at the end of the hydrological year and then starts to increase the 

values only at the beginning of the rainy season, i.e., DJF season. Intermediate values in the central portion of Brazil are 660 

much likely to be linked to agricultural production, leading the values to be lower than the natural cover. 
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Figure 12: Spatial distribution of the seasonal NDVI of the CABra catchments. a. NDVI in summer season (DJF); b. NDVI in 

autumn season (MAM); c. NDVI in the winter season (JJA); d. NDVI in the spring season (SON). 

2.8.3 Uncertainty and limitations 665 

Although the CABra dataset presents one of the most high-accucary spatial resolutions in a global scale, the data is related to 

the 2015 year, which is not within the 1980-2010 period adopted in the hydrological analyses. 

As authors from the Copernicus Global Land Cover (Buchhorn et al., 2019) states, the global land-cover data should be used 

with confidence but with careful and critical analysis by the users, due to the land changes commissions and omissions. 

Uncertainty analyses conducted in three aggregated classes (forest, crops and natural vegetation) showed high accuracy in all 670 

regions of the world, when compared with more than 200,000 samples points. Eventhough, there is some level of 

overestimation in the forest class, leading to a careful assessment of land-cover in Amazon and Atlantic Forest catchments. 

At the same time, due to the 100 m spatial resolution, small villages and highly fragmented landscapes might be 

indistinguishable and/or mixed with different classes. 

NDVI dataset, also provided by Copernicus Global Land Cover, should be used as a qualitative indication of the biomass in 675 

the catchment, due to it relatively low spatial resolution (300 m). There are also uncertainties related to the radiometric 

calibration of the images, anisotropic surfaces, aside from the fact of the products did not considered adjacency effects and 

slope correction. 
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2.9 Hydrologic disturbance 

2.9.1 Methodology 680 

The CABra dataset presents 6 10 attributes related to the hydrologic disturbances on catchments water fluxes (Table 9). 

Anthropic changes in water flux patterns, which happens outside the range of natural flow and climate extremes, can directly 

impact the water availability and quality, stream channel geometry and sedimentation, and the equilibrium of ecosystems 

(Boulton et al., 1992; Coleman et al., 2011; Whited et al., 2007). Natural conditions of catchments are constantly modified 

by human interactions such as land-cover and land-use changes, flow regulation, water abstractions, soil impermeabilization, 685 

and many others, which can drastically alter the way hydrologic fluxes in the catchments respond.  Then, our goal was to 

create a simple index, with easily accessible inputs, that is capable to measure how much disturbed a catchment is in relation 

to its hydrology. Since the beginning of CABra development, it was known that most of the catchments were minimally 

urbanised, but with some of them with changes in the original land-cover (conversion of natural vegetation to 

cropland/pasture). Some studies conducted in Brazil found that, besides the fact of the interference by the conversion of 690 

natural vegetation to pasture, this led to minimal changes in the surface hydrology of the catchment, being more relevant to 

groundwater recharge and soil chemistry (Bacellar, 2005; Lanza, 2015; Nepstad et al., 1994; Salemi et al., 2012). 

Additionally, it has been seen that the human-induced impact of the reservoirs can be more relevant than the natural ones, 

and can significantly alter natural hydrological processes (Zhao et al., 2016), leading to an increase/decrease of streamflow 

and hydrological droughts characteristics (Wanders and Wada, 2015; Ye et al., 2003; Zhang et al., 2015). Moreover, Zhang 695 

et al. (2015) found that hydrologic vulnerability is also directly related to human water abstractions, but this can be 

compensated by streamflow regulation of the reservoirs. This led us to an integrated analysis of the reservoir regulation and 

human water abstract to reach the optimal balance on our index. 

Considering the relevance of the abovementioned human interactions, we provided information about the number and 

volume of the reservoirs (which can regulate streamflow), water demand extracted from ANA (2017), and using some of the 700 

CABra attributes, we have created a hydrologic disturbance index, which will easily provide for CABra users the degree of 

human interactions that can modify water fluxes in each catchment. Based on the abovementioned, we have decided to use 

weighted information about the land-cover, reservoirs, and water demand of each catchment. We considered the reservoir-

based information with more impact: regulation capacity with 40%, number of reservoirs and its percentage of catchment 

area with 5% each. The second most impacting factor of the index is the non-natural land-cover in the catchment, which can 705 

lead to modify hydrological surface and subsurface processes, with 40% of the weights. Finally, the water abstraction of the 

catchment was pondered with 10%. 

In the development of this index, we have considered fraction of urban cover in each catchment, the distance to the nearest 

urban area of each catchment, (considering any pixel of urban area), the number of reservoirs in each catchment (ANA, 

2020b),, the total volume of reservoirs in each catchment, (ANA, 2020b), and its flow regulation capacity, the fraction of 710 
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reservoir area of each catchment area, (ANA, 2020b), and the annual water demand. (ANA, 2019b). The equation related to 

the hydrologic disturbance index can be found in the following Equation 6: 

𝐻𝐷𝑖𝑛𝑑𝑒𝑥 =  0.4([𝑈𝐶 . 𝑈𝐷] + 𝐶𝑅𝐶) +  0.05𝑅𝑁 + 0.05𝑅%𝐴 +  0.4𝑅𝑅 +  0.1𝑊𝐷 6 

,     (6) 

where 𝐻𝐷𝑖𝑛𝑑𝑒𝑥 is the hydrologic disturbance index, dimensionless; 𝑈𝐶  is the normalized fraction of urban cover; 𝑈𝐷 is the 715 

normalized distance to the nearest urban area; 𝐶𝑅𝐶  is the normalized fraction of crops cover; 𝑅𝑁 is the normalized number of 

reservoirs; 𝑅%𝐴 is the normalized percentage of catchment’s area covered by reservoirs; 𝑅𝑅  is the normalized reservoirs’ 

regulation capacity of catchment’s mean annual flow; and 𝑊𝐷  is the normalized catchment’s annual water demand. 

 

Table 9: Hydrologic disturbance attributes of CABra catchments. 720 

Type Attribute Long name Unit 

Reservoirs 

res_number Number of catchment’s reservoirs - 

res_area TThe total area of catchment’s reservoirs km² 

res_area_% Catchment’s area percentage covered by reservoirs % 

res_volume TThe total volume of catchment’s reservoirs hm³ 

res_regulation Reservoir’s regulation capacity of the mean annual flow - 

Water demand water_demand Water demand in the catchment mm year-1 

Land-cover 

cover_urban Urban fraction of cover % 

cover_crops Crops fraction of cover % 

dist_urban Distance from gauge to nearest urban cover km 

Hydrologic 

disturbance index 
hdisturb_index Index of hydrologic disturbance in the catchment - 

- Means dimensionless 

The result is the hydrologic disturbance index (HDI), which will easily provide for CABra users the degree of human 

interactions that can modify water fluxes in each catchment. Additionally, we also applied a random forest algorithm for a 

regression analysis to show if and how the hydrological signatures are captured by the HDI. 

2.9.2 Results and discussion 725 

The results of the spatial distribution of the hydrological disturbance index and its components are shown in Fig. 13. Most 

CABra catchments are close to an urban cover (it can be a large city or a small village), with a distance of up to 10 km. 

However, we also could find catchments with up to 100 km of distance to the urban cover. As seen in Fig. 13b and Fig. 13c, 

most CABra catchments present a fraction of urban cover up to 10%, with high values close to large cities, and a fraction of 
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crops cover up to 40%, with the highest values in central and southern portions. As these factors present a high weight on the 730 

hydrological disturbance index, they are a good clue of the most disturbed catchments.  

Results from the reservoirs in CABra catchments are shown in Fig. 13d, Fig. 13e, Fig. 13f, and Fig. 13g. The number of 

reservoirs in the catchment ranges from zero to 48,404. Even though we found the largest number of reservoirs in a large 

catchment, this relationship is not linear. There are some catchments, especially in the São Francisco River Basin, which 

presents an extremely high number of reservoirs due to the low amounts of annual precipitation and intensive drought in the 735 

region. Moreover, catchments in the São Francisco River Basin presents the highest values of the total volume of reservoirs. 

These reservoirs are used for many anthropogenic purposes, such as hydroelectric power plants, irrigation, drinking water 

supply, fish-farming, and recreation. These high values of the total volume of reservoirs, especially in the drier regions, 

could lead to a strong streamflow regulation, as seen in Fig. 13g. In most of the CABra catchments, reservoirs can regulate 

up to 25% of the annual flow, but there are some cases in the Caatinga biome where the regulation capacity reaches up to ten 740 

times the annual flow, making these catchments susceptible to non-natural events.  

The water demand on CABra catchments ranges from zero (in Amazon) to 171 mm year-1 (in Caatinga) and it is related to 

drinking water supply and irrigation of agricultural areas (Fig. 13h). The integrated analysis of the above-mentioned 

attributes is shown in Fig. 13i, as the new hydrological disturbance index. Most of the CABra catchments present an index 

value of up to 0.2, indicating a low anthropic interference on water fluxes. Higher values, above 0.4, indicate catchments 745 

with some significant interference on water fluxes, which may be related to one or more terms of the equation. High values 

of the hydrological disturbance index in the central and southern portion of Brazil may be related to agriculture development, 

while in the south-eastern part, they may be related to urbanization, and in the north-eastern part, they may be related to the 

presence of numerous voluminous reservoirs. As expected, in the Amazon and mountainous areas of Atlantic Forest, low 

values were found. The creation of the hydrological disturbance index can be especially useful for the users of the CABra 750 

dataset, allowing them to quickly view the general state of the anthropogenic interferences on water fluxes, which is an 

important consideration in a wide range of studies. 
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Figure 13: Spatial distribution of the hydrologic disturbance attributes of CABra catchments. a. Distance from urban cover to the 

streamflow gauge, in km; b. Urban fraction of land-cover, in percentage; c. Crops fraction of land-cover, in percentage; d. The 755 
number of reservoirs in the catchment; e. Reservoir fraction of land-cover, in percentage; f. The total volume of the reservoirs in 

the catchment, in km³; g. The capacity of the reservoirs in the catchment to regulate the mean annual streamflow, dimensionless; 

h. Multi-purpose water demand in the catchment, in mm year-1; i. Hydrologic disturbance index (HDI) of the catchment, 

dimensionless. The HDI is a weighted relationship between all the anthropogenic factors of the catchments. 

The random forest regressor algorithm (Figure 14) showed us the most relevant hydrological signatures captured by the 760 

Hydrologic Disturbance Index. About 25% of the variance of the HDI is explained by the Half-flow day and the Streamflow 

Elasticity, which are two signatures extremely sensitive to streamflow regulation and to the generation of runoff in the 

catchment. Our results show us that the index is capable to capture what it was intended to: catchments with higher values 

presents a large number or high regulation capacity of reservoirs, or a great percentage of non-natural areas. Medium values 
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present some level of non-natural areas (pasture or crops), but there is not a high hydrological disturbance. Finally, lower 765 

values of HDI indicates minimally human-impacted catchments. 

 

Figure 14: Hydrological signatures as predictors of the Hydrological Disturbance Index. The random forest regressor algorithm 

assess how much each signature increase the error of a HDI prediction when randomly sorted. The higher the deviaton caused by 

a predictor, the higher is the influence of the hydrological signature on the HDI. 770 

2.9.3 Uncertainty and limitations 

Uncertainties in hydrological disturbance are mainly related to the components of the index. As mentioned before, there is a 

limitation of use in the land-cover maps for small villages, urban areas, fragmented areas, and transitional areas of croplands, 

due to the spatial resolution of the land-cover maps. Because of this, small areas of urban fraction (UC), and consequently the 

distance to the urban area (UD), and crops area (CRC), might be undetected and this fraction of the index – representing 40% 775 

– disconsidered or underestimated. Another 50% of the HDI is derived from reservoir data, from the ANA database. 

Although the reservoirs data have been extensively improved through the years, there are still uncertainties related to the 

many sources of them. Different sources does not use the same satellite products or methodology to identify and catalog the 

reservoirs. Additionally, latest inclusions of reservoirs were automatically made and there were not a quality check of these 

data. Due to the crucial importance of reservoirs to the HDI, unrealistic number, areas and volumes of reservoirs can lead to 780 

unrealistic values of the index. The last component considered here is the water demand (WD), is a area-averaged estimation, 

which accounts to both consumptive and non-consumptive water abstractions, possible leading to higher values than real 

abstractions. Even representing, 10% of HDI composition, it should be taken in account in post-processing. 
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3 Comparison with the CAMELS-BR and broader implications for hydrological studies 

The CABra and the CAMELS-BR (Chagas et al., 2020) contain both large samples of hydroclimatic, landscape, and other 785 

attributes for Brazilian catchments. Their striking similarities in concept and goals highlight nothing but the urgent need for 

the creation of such a database for Brazilian catchments. However, it is important to notice that multiple differences between 

both datasets exist, as we will discuss below. 

The first main difference between CABra and CAMELS-BR is related to the catchment delineation procedures adopted. 

CAMELS-BR uses the basin masks from the GSIM (Do et al., 2018) product, where a 500-m digital elevation model was 790 

used for the delineation of catchment boundaries and extraction of topographic indices. GSIM has a quality filter allowing 

for up to 50% of error in the catchment area when compared with ANA’s value, as described in Do et al. (2018). As 

previously explained, the CABra catchment boundaries (delineated using streamflow gauge location from ANA), uses a 

high-definition (90-m) elevation product. We have manually inspected each of the 735 catchments to minimize further 

errors, correcting the geographic position of the outlet to coincide with the stream network, achieving a mean error of 2% 795 

against ANA’s areas. It is important to highlight that a suitable watershed delineation is of paramount importance for 

catchment hydrology studies because errors in these processes are further propagated for all computed attributes dependents 

on area and location. In addition, we provide the drainage network or CABra catchments. 

Related to the daily streamflow data, in the CABra dataset we have retained catchments with less than 10% missing 

streamflow records over 30 hydrologic years (1980-2010) which resulted in the final selection of 735 catchments. On the 800 

other hand, CAMELS-BR contains 897 catchments with less than 5% missing data, while considering 20 hydrologic years, 

(1990-2009). Additionally, CAMELS-BR also provide longer timeseries when available for the gauge. Our choice for a 

longer time series was predicated on the commonly adopted rationale which assumes 30 years as the basis for establishing 

long-term climatology as well as hydrologic indices (Huntingford et al., 2014; Tetzlaff et al., 2017), which we in turn believe 

will lead to better characterization of hydrological and climatological processes taking place. A correlation test between 805 

hydrological signatures of 607 overlapping catchments in CABra and CAMELS-BR datasets is shown in Figure 15. The 

signatures based only in daily streamflow values, such as daily mean streamflow (q_mean), 5th and 95th quantiles of daily 

streamflow (q_5 and q_95), are quite similar between CABra and CAMELS-BR, showing that both periods of analysis were 

capable to capture the streamflow patterns of the catchments. When comparing signatures related to frequency and duration 

of low and high streamflow events, we can note little variation but still good agreement between datasets. In this case, the 810 

distinct period for hydrological signatures calculation (1980-2010 in CABra, and 1990-2009 in CAMELS-BR) might be the 

cause of deviations. The slope of flow duration curve and runoff coefficient are in a very good agreement (r² > 0.95), 

demonstrating that both datasets are using precipitation products with good reliability. The streamflow elasticity and 

baseflow index have presented notable differences between CABra and CAMELS-BR. This might be due to the different 

components adopted in the equations of Woods (2009) and Ladson et al. (2013), which were implemented for elasticity and 815 

baseflow index calculations. 
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Figure 15: Scatter plots and correlation coefficients between hydrological signatires of CABra and CAMELS-BR catchments. 

There was 607 catchmnets and 13 hydrological signatures overlapped in both datasets. 

 820 

Another important difference between both datasets is related to the choice of databases used for providing the daily 

meteorological time series and estimated the related indices. While CAMELS-BR uses three widely used gridded datasets 

(based on remote sensing/reanalysis/gauge blends of rainfall), i.e., the CHIRPS v2.0, CPC, and MSWEP v2.2, being the first 

one the chosen for the climatic indices (because of its spatial resolution of 0.05ºx0.05º), the CABra uses the Xavier et al. 

(2016) dataset and the ERA5 reanalysis. The Xavier et al. (2016) dataset was produced based on observations from 3,625 825 
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rain gauges and 735 wheatear stations in the Brazilian territory and is extensively used as the ground-truth reference for the 

validation of precipitation products, including the CHIRPS, MSWEP, and the soil moisture satellite-corrected estimates 

(SM2RAIN, Brocca et al. (2014)) (Paredes-Trejo et al., 2018), the Global Precipitation Measurement (GPM, Hou et al. 

(2014)) (Gadelha et al., 2019), the Tropical Rainfall Measuring Mission (TRMM, Huffman et al. (2007)) (Melo et al., 2015). 

Other uses of this dataset include the evaluation of precipitation from downscaled-global circulation models (Almagro et al., 830 

2020), as well as other meteorological variables used in regional studies (Battisti et al., 2019; Bender and Sentelhas, 2018; 

Monteiro et al., 2018), aside from being widely used for hydrological studies (Almagro et al., 2017; Avila-Diaz et al., 2020; 

Lima and AghaKouchak, 2017; Souza et al., 2016). The main limitation of Xavier’s dataset it that it covers only Brazil. 

Additional differences belonging to the meteorological time-series section are also worth noting. CAMELS-BR provides the 

model-based PET estimates extracted from the GLEAM product (Martens et al., 2017), while daily temperatures (maximum, 835 

minimum, and average) are the only PET-related variable provided in a daily time series format. The CABra dataset provides 

the computed PET following 3 widely used methods, along with all necessary variables for its computation, such as solar 

radiation, wind speed, temperature, and relative humidity. Our choice for the computation of PET instead of using model-

based estimates should allow for more transparency and reproducibility of results obtained using our dataset. Also, the 

choice of providing a wider range of meteorological variables allows the user to estimate PET based on different methods 840 

while enhancing the reach of our dataset for studies that might benefit from additional meteorological variables. 

While the soil and geology attributes of from both CABra and CAMELS-BR are derived from the same data sources, (i.e., 

the SoilGrids250, the GLiM, and the GLHYMPS v2.0),  CABra provides the following additional variables not available in 

CAMELS-BR: subsurface saturated permeability (subsurface saturated hydraulic conductivity for geology attribute), soil 

type, textural class, and soil bulk density – which can be used to estimate soil porosity. Regarding groundwater attributes, 845 

CABra contains rock type and name of the aquifer and water table depths from Fan et al., (2013) and the HAND estimates, 

while CAMELS-BR contains only the water table depth estimates from Fan et al., (2013). 

In terms of land-cover attributes, CABra and CAMELS-BR present similar attributes, but the data source is different. CABra 

adopted a product with a higher spatial resolution (100-m against 300-m) and more recent observation (2015 against 2009) 

than in CAMELS-BR. Due to this better spatial resolution. we chose to use a most recent land cover, even it being outside of 850 

the timespan of hydrologic time series. CABra also brings information about the seasonal vegetation biomass of the 

catchment, in terms of NDVI, which is not present in CAMELS-BR. 

Finally, both datasets take into account the human influence within each catchment, which is essential to a holistic 

understanding of the catchment behavior due to anthropogenic interactions and a lack of most of the large-sample datasets 

(Addor et al., 2020). CAMELS-BR presents data about water use, the volume of reservoirs, and the degree of regulation of 855 

the reservoirs. However, there is no combination or integration of these attributes in a specific index or approach. On the 

other hand, CABra presents eight attributes, i.e., distance to urbanization, the fraction of non-natural land-cover (crops and 

urban areas), water demand, reservoirs’ count, area, volume, and streamflow regulation capacity (the last two are also found 

in CAMELS-BR), which can affect the hydrologic behavior of the catchment in terms of water quantity, quality and 
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regulation. Additionally, we developed a new hydrologic disturbance index (HDI), which considers all these eight attributes 860 

above-mentioned. The HDI is a quantitative index of the level of anthropization, being reproducible and practical to identify 

a more or less human-impacted catchment. 

4 Conclusions 

In this study, we have collected, synthesized, organized, and made available more than 100 topography, climate, streamflow, 

groundwater, soil, geology, land-use, and land cover, and hydrologic disturbance attributes for 735 catchments in Brazil. To 865 

do so, we have used several sources, such as observed time series, observed and modeled gridded data, remote sensing data, 

and reanalysis data. Moreover, we have calculated some attributes for providing more accurate data than those available in 

the literature, including potential evapotranspiration, and providing inexistent data, such as the hydrological disturbance 

index. As this dataset deals with catchment-scale averaged attributes, we have paid particular attention to DEM resolution, 

catchment delineation, while also manually inspecting each of the CABra catchments. 870 

The development of the CABra dataset opens up several opportunities to test and develop a hypothesis in a unique 

environment like Brazil, with its vast and rich diversity in hydrology and landscapes. Finding relationships between the 

catchments’ attributes will enable hydrologists to identify the drivers of the water fluxes in the catchment. We hope our 

dataset will aid catchment classification efforts that will ultimately unravel the underlying dominant controls of Brazilian 

regional hydrology across space and time. At the same time, the CABra dataset covers fundamentally different 875 

hydroclimatologic and ecologic regions than those covered by other similar large-sample datasets (United States, Great 

Britain, Chile, etc.), being a complement for global assessments and expanding the possibility of the use of our dataset for 

multiple scientific areas, such as geology, agronomy, ecohydrology. 

We intend to expand the CABra dataset in the future. Information and attributes related to relevant fields of work, such as 

soil erosion, ecology, biology, and chemistry, as well as climate change projections, will be added to the CABra dataset in 880 

future updates release. Thus, CABra represents a robust multi-source data collection effort for Brazil and is intended to play 

a key role in advancing the scientific understanding of climate-landscape-hydrology interactions. As such, we hope it will 

guide large-sample hydrology investigations and pave the way for testing novel hypotheses by both the Brazilian and the 

international scientific community. 

 885 

Data availability 

The datasets underlying the CABra dataset are available at 

https://doi.org/10.5281/zenodo.4070146https://doi.org/10.5281/zenodo.4070147. We also developed a website with a 

friendly interface for easy access by users: https://thecabradataset.shinyapps.io/CABra/. 
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