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Abstract. Daily meteorological data from climate models is needed for many climate impact studies, e.g. in hydrology or

agriculture but direct model output can contain large systematic errors. Thus, statistical bias correcting is applied to correct

the raw model data. However, up to now no method has been introduced that fulfills the following demands simultaneously:

(1) The long term climatological trends (climate change signal) should not be altered during bias correction, (2) the model

data should match the observational data in the historical period as accurate as possible in a climatological sense and (3)5

models with too little wet days (precipitation above 0.1 mm) should be corrected accurately, which means that the wet day

frequency is conserved. We improve the already existing quantile mapping approach so that it satisfies all three conditions. Our

new method is called empirical percentile-percentile mapping (EPPM) which uses empirical distributions for meteorological

variables and is therefore computationally inexpensive. The correction of precipitation is particularly challenging so our main

focus is on precipitation where EPPM corrects the historical model data so that precipitation sums and wet days are equal to10

the observational data.

1 Introduction

Daily data from climate models are used for various applications, e.g. in hydrology, silviculture and for general climate risk

studies (e.g. Horton et al., 2017; Seidl et al., 2019). However, simulated outputs from global climate models (GCMs) and

regional climate models (RCMs) can exhibit large systematic biases relative to observational data sets (Mearns et al., 2013;15

Sillmann et al., 2013). These systematic errors can be statistically corrected with gridded observations. Those corrected data

sets are widely used (e.g. Bao and Wen, 2017; Thrasher et al., 2012; Chimani et al., 2016) but are controversial due to various

errors introduced by statistical correction. In the last two decades a series of methods for statistical bias correction were

presented:

A very simple approach is to correct the mean of the observations by adding the climate change signal "CCS" found in20

the model (i.e. the change of a meteorological variable over time) to the observations (Maraun, 2016), usually referred to as

delta change correction. Due to its simplicity, it is still in use (Navarro-Racines et al., 2020). Another simple yet conceptually

different approach is the mean bias correction where the present-day model bias is subtracted from the future time series. This

linear off-set method was used in Lafon et al. (2013). Higher moments of a distribution like variance and skewness in the
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observational data remain unchanged though these higher moments may be of importance in climate risk studies, where the25

exceedances of specific thresholds of temperature or precipitation are often relevant. Alternatively, as a different concept, one

can find the bias of the model by calculating the difference of the means between the observations and the model. This bias is

then applied to the future time periods by only changing the mean.

A more sophisticated approach is to change every percentile of the cumulative distribution functions (CDF) according to

the differences between daily modeled and observational data during a reference period. There are many different variations30

and names for this method in the literature: variable correction method (Déqué, 2007), distribution-based scaling (Yang et al.,

2010; Seaby et al., 2013), distribution mapping (Teutschbein and Seibert, 2012), statistical bias correction (Piani et al., 2010),

statistical transformation (Gudmundsson et al., 2012), quantile-quantile mapping (Hatchett et al., 2016; Potter et al., 2020;

Charles et al., 2020) or quantile mapping (QM) (Li et al., 2010; Themeßl et al., 2011; Maraun, 2016). QM usually outperforms

other simpler methods like mean bias correction as shown by Lafon et al. (2013) or Themeßl et al. (2011). The distribution of35

the meteorological variables can be described with empirical CDFs which is a non-parametric approach. Many QM methods

use a parametric approach instead, where statistical functions like gamma or normal distributions are fitted to the CDFs.

However, traditional QM may alter the raw CCS of the climate model (Maurer and Pierce, 2014; Maraun, 2013, 2016) and

therefore even introduce new biases that are comparable to the biases of the original model. To better preserve the CCS of the

models, modified QM methods were developed over the past years. One of them is detrended quantile mapping (DQM) (Bürger40

et al., 2013), where the change in mean is removed before bias correction with traditional QM. Similar to DQM, Hempel et al.

(2013) removed the change in mean before applying a form of parametric QM. However, the QM in Hempel et al. (2013) is done

with a linear regression (i.e. the model bias decreases or increases linearly with the variable e.g. temperature or precipitation,

so there is no exact correction for each quantile)

Moreover, DQM method does not preserve the climatological trend of extremes. Extending previous work, Cannon et al.45

(2015) developed an approach termed as quantile delta mapping (QDM). A very similar approach termed the equidistant

CDF matching method (EDCDFm) was introduced by Li et al. (2010). QDM respectively EDCDFm compare the CDF of the

historical and future model data. For each percentile, this difference is saved either as absolute difference (for temperature and

dew point) or as a ratio (for most variables like precipitation, wind speed, radiation). These values describe the CCS for each

percentile of the CDF. Finally, these values are applied on the observations to get to the bias corrected future model.50

Recently, Charles et al. (2020) applied QM on precipitation and extended QM with an additional rescaling after bias correc-

tion to match the raw model’s relative CCS . With this forced CCS, any (monthly, seasonal or annual) CCS of the raw model

can be reproduced with high accuracy.

Another method is the multi-segment statistical bias correction (MSBC) (Grillakis et al., 2013) optionally combined with

a normalization module (NM) (Grillakis et al., 2017). With this QM technique, in a first step every year’s CDF is transferred55

to the reference period’s CDF to remove long term trends. In a second step, the CDFs of both model and observations are

approximated by piecewise functions (making MSBC a parametric method) which has the ability to better represent the original

CDF than one single fit to the entire CDF. However, both studies did not compare with other bias correcting methods, so the

actual benefit compared to traditional QM remains unknown.
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Switanek et al. (2017) developed a new method called scaled distribution mapping (SDM), which fits parametric distribution60

functions to the data. SDM is based on QDM. The authors found a better representation of extreme values with SDM. One of the

key focuses of this work was the accurate correction of the number of wet days, which are defined as days with a precipitation

above a threshold. In this work, the threshold is equal to 0.1 mm. A downside of this method is the relatively high demand

of computational power, as the parameter fitting is iteratively done for each time step and each grid point. Furthermore, this

method does not take cases into account where the model has less wet days than the observation, which can lead to substantial65

biases in precipitation sums in some very dry climate models.

In general, all statistical bias correcting methods that use CDFs, can be grouped by following characteristics:

– Direct or indirect approaches (Maraun, 2016): The first one directly corrects the model output via the model bias, also

referred to as "bias correction" (Ho et al., 2012). For all direct methods we assume a temporal stationarity of the model

bias to be able to apply the bias to future model data, even though this assumption may not be fully valid (Chen et al.,70

2013; Ho et al., 2012; Teutschbein and Seibert, 2012). The indirect methods are applied to the observational data via

adding the model’s CCS (in Ho et al. (2012) named as "change factor").

– Quantile of the corrected result: The methods differ concerning to the quantiles of the raw model and the corrected

model. Most methods stay on the same quantiles after correction. In only a few methods the result is on a different

quantile with one of those being CDF-t (Michelangeli et al., 2009; Pierce et al., 2015).75

– Location of the correction term: The correction value can either be taken from the current quantile or from the corre-

sponding absolute value of a variable (e.g. 0.6 quantile or alternatively 10 mm absolute value). Methods that use absolute

values may need extrapolation at both ends of the CDF for values that were not observed in the observational time period.

– Last, some methods use a parametric approach, i.e. they fit functions to the distribution of variables (e.g. Hempel et al.,

2013; Piani et al., 2010; Switanek et al., 2017), while other methods use empirical distribution functions that is sampled80

with discrete intervals (e.g. Cannon et al., 2015).

Whether to use a nonparametric or a parametric approach is still in scientific discussion (Teng et al., 2015) but the non-

parametric approach is more common. Lafon et al. (2013) compared nonparametric (empirical) and parametric QM where the

empirical one is the most accurate. Also, Cannon et al. (2015) and Gudmundsson et al. (2012) prefer the empirical QM. The-

meßl et al. (2012) point out that parametric QM can introduce new biases, because the distribution of a meteorological variable85

is not fully known and also depends on the region and season. However, nonparametric QM depends more on the calibration

period than parametric QM. Switanek et al. (2017) argue that the correction of extremes is more robust if one uses a parametric

approach, as the return level of the most extreme event is somewhat random. This can be improved by fitting function to the

distributions.

Most of the bias correcting methods correct the wet day bias of climate model (i.e. the number of wet days above a specific90

precipitation threshold) only if the model has a positive wet day bias. The overestimation of wet days is very typical for

dynamical models and is known as the "drizzling effect" (e.g. Gutowski Jr. et al., 2003). However, in some rare cases the model
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may have too little wet days which have to be corrected separately. Only very few studies have focused on correcting a negative

wet day bias, with one of them being Themeßl et al. (2012). They use a simple linear interpolation to fill the gap of wet days in

the precipitation CDF. This removes the wet day bias but does not necessarily conserve precipitation sums, because the CDF95

of precipitation does not follow a linear curve.

However, up to now no method has been introduced that fulfills the following demands simultaneously: (1) The long term

climatological trends should not be altered during bias correction, (2) the model data should match the observational data in

the historical period and (3) models with too little wet days should be corrected accurately which means that dry days have to

be set to wet days. (2) and (3) are often neglected in comparison to (1).100

Almost all bias corrections are capable of (2) for temperature, but for precipitation new challenges arise: First, parametric

methods struggle to find an accurate function for daily precipitation values and second, (2) and (3) are linked, i.e. in models

with loo little wet days there are not enough wet days to correct and thus the precipitation sums are too low. Inaccurately

corrected model data can cause wrong conclusions from climate impact studies, when the future climate data is compared to

the historical data. We found that still after bias correction the data is biased (e.g. Chimani et al., 2016; ClimaProof; CCCA105

data server).

We present an improved method based on QM called empirical percentile-percentile mapping (EPPM). The basic assumption

of EPPM is that the model bias at each quantile or percentile is constant over time, either defined as absolute or relative bias.

Therefore, in contrast to traditional QM, EPPM corrects merely on constant percentiles, i.e. the correction value and the bias

corrected model value are at the same percentile as the raw model’s value. Thus, there is no need for an extrapolation method110

for new extremes in the future model. The assumption of climate stationarity like in traditional QM (Maurer and Pierce, 2014;

Switanek et al., 2017) is not necessary for EPPM.

EPPM uses a nonparametric approach, and can therefore be applied to every meteorological variable without knowing

the statistical distribution. This makes EPPM computationally inexpensive and usable for large domains or very high spatial

resolutions.115

2 Data and area of interest

This study focuses on Austria which is located in Central Europe. The topography is shown in Fig. 1. A large part of the Eastern

Alps are within the Austrian borders. The elevation reaches from 114 m in the East of Austria to 3798 m amsl on the highest

mountain. Because of the complexity of the topography, the spatial resolution of GCMs and also RCMs is not sufficient to

resolve mountain ridges and valleys. The climatologic properties can change within a few kilometers due to topographically120

induced effects (Stauffer et al., 2017).

Austria has a large number of high quality weather observations that are operated by Zentralanstalt für Meteorologie und

Geodynamik (ZAMG). Also, gridded observational data sets called SPARTACUS for minimum temperature, maximum tem-

perature and precipitation are available on a daily basis on a high spatial resolution of 1 km (Hiebl and Frei, 2016, 2018). The
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Figure 1. Area of interest with Austrian state borders. © European Union, Copernicus Land Monitoring Service 2020, European Environment

Agency (EEA).

time span reaches from the year 1961 to 2019. SPARTACUS mostly uses stations with long time series to provide robust trends125

for climate change.

For the observational data, SPARTACUS in its unchanged form is used (thereafter named OBS). For model data, synthetic

data is produced by smoothing SPARTACUS data with a running mean of 12 km. This is a typical spatial resolution of RCMs.

To get artificial dry model data, the data was further manipulated. This was done by multiplying the precipitation of each day

with a uniformly distributed random number between 0 and 1. Furthermore, a trend to even drier conditions was introduced130

by successively canceling more and more wet days going from 1961 to 2019. This artificial model data represents a dry model

with too little wet days and too low precipitation sums.

To show that the bias corrected historical model data do not always match the observations, we analyzed data sets in Austria

from the projects ÖKS15 (Chimani et al., 2016) and STARC-Impact (Chimani et al., 2019). In both projects, the model data

was bias corrected with SDM (Switanek et al., 2017). The data is freely available via the Climate Change Center Austria135

(CCCA) and consists of bias corrected temperature and precipitation data from several RCMs at a spatial resolution of 1 km.

The data is used for many climate impact studies in Austria (e.g. Jandl et al., 2018; Unterberger et al., 2018).

We calculated climatological annual precipitation sums for all models in ÖKS15 in the reference period 1971-2000 and

compared it with OBS. Fig. 2a shows the bias of the domain average annual precipitation for each model. The mean bias

ranges from approx. -2 % for the driest model to almost +6 % for the wettest model. The comparison on a grid cell basis on the140

right side in (Fig. 2b) shows biases of more than +50 % for the wettest 0.1 %, and a bias of approx. -25 % for the driest grid

cells. Outliers can reach up to +100 % compared to the observational precipitation (not shown). The median is approx. +4 %.
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Figure 2. Box and whisker plot for the relative annual precipitation bias (%) of the ÖKS15 and STARC-Impact models (a total of 35 models)

for the reference period 1971-2000. (a): Relative bias for the area mean for each climate models in Austria. (b): Relative bias on a grid cell

basis. The upper (lower) whisker shows the 99.9 (0.1) percentile. The box ranges from the 25 to the 75 percentile, the orange horizontal line

is the median.

3 Methods

Our study focuses on implementing a new method to bias correct data from climate models called EPPM. The method corrects

the CDF of a meteorological variable from a climate model to match the CDF of the observation. Each grid cell of the model is145

separately corrected with the observations on a monthly or seasonal basis. For the calibration data, a time interval of 30 years

is typical, since the statistical distribution of data of a shorter time period can be very noisy and a longer time period usually

has climatological trends.

3.1 Empirical percentile-percentile mapping (EPPM)

The basic assumption is that the model bias stays constant over time for each quantile or percentile of the model data. The terms150

quantile and percentile are almost synonymous, the only difference is that quantile uses a range of 0 to 1, whereas percentiles

range from 0 to 100 (percent). In accordance with the name of the method we use the term percentile.

In other words, we consider that the RCM is able to predict a ranked category of temperature or precipitation but not the

value for this variable (Déqué, 2007).

EPPM is divided into two parts. In the first part, the model bias is evaluated for a distinct number of quantiles of a variable’s155

CDF, thereafter named correction values (CVs). In the second part, the correction values are applied to any desired time interval.

Step (1): If the variable is not limited to non-negative values (like temperature or dew point), detrending should be applied to

the data before any further calculation is done. The 30 year data should be detrended for each month separately by subtracting

a linear trend. This trend is added again after bias correction. Without detrending, the CCS can be altered within the bias

correction.160
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Step (2): If the variable of interest is precipitation, the further procedure depends on the difference in wet days between the

model and the observation. If the model data has more wet days, all data is used. If the model data has less wet days than the

observational data (which is the rare case), then only wet days are used for further calculation. The threshold for wet days are

typically set at 0.1 mm precipitation per day.

Step (3): For the present-day calibration period, the empirical CDF (ECDF) is calculated for the model and the observational165

data. As data from 30 years for one single month is typically considered, there is a total of approximately 900 days for the

estimation of the CDF. The number of discrete values for the ECDF is usually set to 100 (equidistant from 0.5 % to 99.5 %)

which results in 100 CVs The number of 100 points was found via trial and error. A higher number of correction values would

be less robust, as especially the CVs of extremes would depend even more on single extreme events.

Step (4): The correction values (CVs) are calculated. The CVs for parameters like temperature and dew point are calculated170

as difference between the observational CDFobs and the model CDFmodp for the present-day climate:

CV = CDFobs −CDFmodp (1)

For parameters that have a meteorologically meaningful zero value that is the lower boundary, a multiplicative approach is

more useful, e.g. for precipitation, wind speed or global radiation. The CVs for those parameters are found by

CV = CDFobs/CDFmodp (2)175

If the model wind speed and global radiation should ever reach exact zero, Eq. 2 would not be defined. For this case. the CV

is manually set to 0. For precipitation, one has to distinguish between models with too many or too little wet days (described

in step (2) above and further information in Sect. 3.2 below). The CVs can be interpreted as the model bias for any quantile of

the model data at a given grid cell.

Step (5): For extreme data at both ends of the distribution, the CVs have to be extrapolated. This is done via constant180

extrapolation, i.e. the first (last) CV is used for correcting data below (above) the outermost CDF value. All model data values

below the 0.5 % percentile are corrected with the CV attached to the 0.5 % percentile and model data values above the 99.5 %

percentile are corrected with the CV attached to the 99.5 % percentile.

Step (6): Any desired time period is selected where the CDF is calculated for the model data. It is possible to choose the

calibration period itself. Again, if the variable is not limited to non-negative values, the linear trend has to be removed from the185

model data to avoid altering the CCS and added again after bias correction. The time period to be chosen is usually a 30-year

period like in the calibration time period.

Step (7): The CVs are added (for temperature and dew point) or multiplied (for precipitation, global radiation and wind

speed) to the model CDF calculated in step (5). This gives the CDF of the bias corrected model. The correction of the original

time series of the raw model is done by interpolating the time series from the original CDF from step (5) to the corrected CDF190

from this step. As the CDF is only defined at discrete values in an ECDF, data in between is linearly interpolated.
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Figure 3. Schematic of bias correction for temperature data. CDFs are shown for following data: Observational data (black), raw historical

model (orange), raw future model (red), future model corrected with EPPM (blue) and future model corrected with QM (purple). The arrows

illustrate the bias correction path for future model data. Panel (a) shows EPPM, where the model bias in the calibration period (left arrow) is

applied to the future model data (right arrow that has the same length as the left arrow). Panel (b) shows QM, where the correction value is

found at the model bias in the historical period of the same absolute value.

Step (8): If the data was detrended in step (6), the trend has to be added to the model data.

Step (9): Even after detrending, there could still be a non-linear trend in the data. Therefore, not all 30 years that were used

during bias correction are saved, but only the middle 10-year period. For this reason, the bias correction has to be calculated in

10-year steps.195

The graphical solution for bias correction for temperature data is shown in Fig. 3. The temperature data in this plot is

artificially created following a normal distribution, where the historical period is 1981-2010 and the future period is 2071-

2100. In this hypothetical case the present-day model has a significant bias in mean and variance:

– The observational data features a mean of 10 °C and a standard deviation of 3.1 °C.

– The raw historical model (1981-2010) has a cold bias in the data with a mean of 8 °C and a standard deviation of 1.8 °C.200

– The raw future model (2071-2100) is warmer with a mean of 12.4 °C but the standard deviation remains unchanged to

the historical model with a standard deviation of 1.8 °C.

For the raw historical model, these distributions result in too low temperatures in the upper end of the CDF and slightly too

high temperature in the lower end. During the bias correction of EPPM, this model bias of each quantile is added to the future

model resulting in the bias corrected model (purple line). In contrast, QM uses equivalent model values from the historical205

period. As during climate change higher temperatures occur more often, correction values from the upper part of the CDF are

used more often. As higher temperatures tend to have larger biases in the raw historical model, the correction with QM results

in a too warm bias corrected model.
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3.2 Precipitation: adding wet days after EPPM (EPPMd)

EPPM (along with other methods like QM and SDM) corrects by default the number of wet days if the model has more wet210

days than the observational data by multiplying the lower parts of the model CDF with 0. However, EPPM can not add wet

days that are initially not in the model. Therefore, an extension of EPPM called EPPMd (d for dry mode) is developed that

adjusts the wet day frequency of the model to match the observational wet day frequency. As second condition, the amount

that is added should reproduce the precipitation sum of the observational data.

The model bias in wet day frequency is defined as an absolute one, i.e. the number of wet days that have to be added to the215

model data. This is more practical regarding extremely dry models or extremely dry climates. For example, if there are only 3

wet days per month in the calibration period of model data but 12 wet days in the observational data, the absolute difference

is 9 days. In contrast, the relative bias is 400 %. In a future time period the model data may have 7 wet days per month. The

absolute bias correction adds 9 additional wet days to a total of 16 wet days per month, while the relative bias correction would

add 400 % and lead to 28 wet days per month. Eventually, an absolute definition of the model wet day bias leads to more robust220

results.

Most climate models have the Gregorian calendar with 365 or 366 days a year. In contrast, a few models have a 360-day

calendar, where each month is exactly 30 days. As the observations are always according to the Gregorian calendar, a simple

absolute difference in wet day frequency is not always reasonable. Thus, a normalized wet day frequency is defined as the ratio

between wet days and all days. The values ranges from 0 (only dry days) to 1 (only wet days).225

If the model has less wet days than the observations, EPPM only corrects the wet model days and leaves all other days at

0 mm. For the wet days that have to be added, the simplest approach is to draw a straight line (green line in Fig. 4) between the

lower point in the CDF, where wet days start in the observations (A in Fig. 4) to the point where the wet days start in the model

at the corresponding precipitation value of the observations (B in Fig. 4). This approach was chosen by Themeßl et al. (2012).

However, the shape of precipitation in an ECDF is far from linear. Thus, this method only reproduces the wet day frequency of230

the observations but not the precipitation sums. In fact, it produces more precipitation than the observed precipitation. However,

this method can deliver satisfactory results if the model bias in wet days is relatively low, e.g. well below 0.1 (i.e. 10 % of all

days) in the ECDF.

To preserve the precipitation sum of the observations, wet days can be added by piecewise linear interpolation with the

constraint that the precipitation sum has to match the observations in the historical period. As this method should be applicable235

in future as well, the missing precipitation sum is defined as a relative quantity, i.e. the ratio of the missing precipitation in the

lower part of the CDF and the whole precipitation (observational precipitation above 0.85 in the CDF in Fig. 4). This relative

quantity can also be used for future time periods, as the precipitation sum of the upper part of the CDF can be calculated from

the model after bias correction with EPPM. The algorithm to add wet days should be done between steps (2) and step (3) during

the EPPM method in Sect. 3.1:240

Step (1): The number of missing wet days is calculated. This number can also be expressed as the difference on the y axis in

the ECDF plot between Point A and B (Fig. 4).
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Figure 4. Schematic of two different methods to add wet days in the ECDF of precipitation. Themeßl et al. (2012) presented a simple linear

method (green line) that leads to too high precipitation sums and is only suitable if the wet day bias of the model is low (below 10 % of total

days). A more sophisticated method (blue lines) leads to very accurate precipitation sums that match the observations. The horizontal dashed

gray lines are equidistant in y-direction and indicate the trapezoids, which are used for the calculation of piecewise precipitation sums.

Step (2): The precipitation sum in the observations between Point A and B in Fig. 4 as ratio to the whole observed precipi-

tation is calculated.

Step (3): If the number of missing wet days exceeds a certain threshold, the Sect. between A and B is separated into equally245

sized segments on the y axis (Fig. 4). In this work, the threshold is defined as approximately 0.09 on the y axis in an ECDF,

i.e. more than 9 % of all days are wet days in the observations that are dry days in the raw model. The number of segments is

free to choose, but five parts are found to be a reasonable compromise between computational load and accuracy. For each of

those (five) segments, the precipitation sum as ratio to the total sum in the observations is calculated.

Step (4a): After the EPPM bias correction, wet days are added. The number of wet days is taken from step (1). If they are250

below the set threshold of step (3), the simple method is applied: The precipitation values are linearly interpolated between the

lower threshold (usually 0.1 mm) and the lowest value of the bias corrected model data (in the historical period point B in Fig.

4)

Step (4b): If the distance of point A to point B exceeds the threshold as defined in step (3) the adding of wet days is done in

(e.g. five) segments. The precipitation sum of each segment can be expressed as the area of a trapezoid:255

R=
(ulower +uupper) ·∆y

2
· ndays (3)

where R is the precipitation sum of each segment (R1, R2,...) which is the ratio calculated in step (3) multiplied with the

total precipitation sum. ulower (uupper) is the precipitation value at the lower (upper) end of the trapezoid. The height of the
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trapezoid is ∆y, ndays is the total amount of days. The calculation is done from bottom to top. In the example of Fig. 4 the

first trapezoid is:260

R1 =
(0.1 +uupper) · 0.1

2
· 900 (4)

As R1 is known, this gives the first uupper . For the next segment R2 , the uupper from R1 turns to ulower, where the next uupper

is calculated. For the last segment R5, uupper is defined in a different way. As a smooth transition to the upper (bias corrected)

part of the ECDF is preferable, uupper in R5 is defined as the lowest precipitation value from the bias corrected data (B in Fig.

4)265

Step (5): The precipitation values for each segment are found by linear values between ulower and uupper. Those wet days are

then randomly assigned to dry days in the bias corrected model.

Step (6): For any future time period, wet days are added with the number of missing wet days found in step (1) and the

missing amount of precipitation found in step (3).

3.3 Precipitation: conserving the CCS270

EPPM (section 3.1) conserves the raw model’s CCS on each quantile. For additive EPPM (used for temperature and dew point),

this is also valid for means and sums. However, relative EPPM does not conserve the relative CCS of means for precipitation.

As the precipitation sum (monthly sum, annual sum) is usually more important than the precipitation at a specific percentile

in the CDF, an additional algorithm is developed to reproduce the raw model’s change in means. This is referred to as the

conversation of the model CCS. Depending on the application of the corrected precipitation data, one can adjust the monthly275

or the annual CCS.

For a future time period, the CCS for precipitation for the raw model for one grid point is

CCSmod =
Rmod fut

Rmod hist
(5)

where Rmod fut is the mean precipitation of the model in the future time period and Rmod hist is the mean precipitation of

the model in the historical time period. The mean is either a monthly or annual climatological mean. The CCS for the bias280

corrected data after EPPM is

CCScorr =
Rcorr fut

Rcorr hist
(6)

The error E of the CCS of the corrected model compared to the CCS of the raw model (in %) is defined as

E =
CCScorr

CCSmod
· 100− 100, (7)
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where a value of 0 is a perfect bias correction method. The precipitation (daily data) of the bias corrected model data Rcorr fut, t285

for every day t is adjusted with

Rcorr CCS, t = Rcorr fut, t ·
CCSmod

CCScorr
(8)

to match the CCS of the raw model data. Equations 5 and 6 can be applied for either monthly or annual data or for both,

applied one after the other. However, monthly and annual CCS can not be exactly conserved at the same time, because the

second CCS (e.g. the annual one) alters the data from the first CCS correction (e.g. monthly).290

3.4 Scaled distribution mapping (SDM) and quantile mapping (QM)

To compare the performance of our new method EPPM, two other methods are also applied on the data. One of them is the

traditional QM in a non-parametric form, which is widely used (e.g. Piani et al., 2010; Themeßl et al., 2011). The other one

is the recently introduced parametric SDM that outperforms even improved methods of QM (Switanek et al., 2017). Both the

SDM and QM codes are available for via the pyCAT module.295

As SDM is a parametric method, it fits functions to CDFs. For precipitation, gamma distribution can be selected. The

parameters for the gamma distribution are found iteratively via the maximum likelihood function. Tests showed that the fitting

is sometimes defective. The bias of the corrected precipitation data is still around 4 % on average and exceeds 50 % for single

grid cells for the annual sum (Fig. 2). Hence, the SDM script is not always able to reproduce the past climate by correcting the

model according to the observations.300

Therefore, we generated several versions of SDM. For our work, we improved the fitting of the gamma functions by adding

initial guesses to the fitting function. According to the methods of moments (Thom, 1958; Wiens et al., 2003), the initial guess

for the scale parameter θ for the gamma distribution is defined as:

θ =
Var(X)
X̄

(9)

where X is the data to be fitted and X̄ is the mean of the data. Optionally also the shape parameter k can be used for the305

initial guess as

k =
X̄2

Var(X)
. (10)

We used four different versions of SDM which are as follows:

SDM(raw): This is the version of SDM as presented in Switanek et al. (2017). SDM(raw) lacks the correction of wet days, if

the model has too little wet days.310

SDM(0): In addition to SDM(raw) corrected wet days are interpolated to the expected number of wet days which corrects a

wet day bias. This algorithm was provided by the authors of Switanek et al. (2017).
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SDM(1): In addition to SDM(0), the shape parameter k is used as an initial guess for the gamma distribution of precipitation.

SDM(2): In addition to SDM(0), both shape parameter k and scale parameter θ are used in the initial guess.

4 Results315

EPPM is compared with QM and SDM with a focus on the three conditions expressed at the end of Sect. 1.

4.1 Conservation of historical climate

The four versions of SDM are compared with non-parametric QM and EPPMd to show the biases that are introduced by

the bias correction methods themselves. We already showed the biases in the ÖKS15 and STARC-Impact data (Fig. 2). To

reproduce some of the biases, we used the smoothed observational data is produced in Sect. 2. Depending on the method of320

bias correction, even after correction the bias can be significant (Fig. 5). Figure 5a is the average annual precipitation as in

OBS, Fig. 5b is the artificial smoothed model. When comparing area means of (a) and (b), the difference is negligible. The

only difference is the spatial resolution between OBS and the model. Figure 5c uses SDM(raw) which produces the largest

errors. The difference in annual precipitation exceeds 100 mm in parts of East Tyrol and Carinthia (southwest parts of Austria).

The errors produced with SDM(0) and SDM(1) (5d and e) are considerably smaller. The smallest errors are produced when325

using SDM(2) where the error is 10 mm or less in most parts of Austria. For comparison, the model data was corrected with

other methods like QM where the error is close to zero. This is because QM corrects with exact empirical CDFs of both model

and OBS which produces very accurate results in the reference period. QM outperforms all other methods. The remaining error

of our method EPPMd originates from the empirical CDF which is defined on 100 discrete values. Therefore, the most extreme

values can not be accurately reproduced which leads to small errors.330

4.2 Precipitation: performance on dry models

As already discussed in Fig. 5, parametric methods do not always reproduce the observational climate. Furthermore, very few

bias correction methods accurately bias correct climate models with a distinct dry bias. To show the skills of EPPMd, we

compare SDM, QM and EPPMd using the introduced model with a large dry bias in the order of hundreds of mm precipitation

per year (Fig. 6a and b). The difference of the model corrected with SDM(2) minus OBS shows feasible results, but overall the335

corrected data shows a slight wet bias that exceeds 25 mm at some grid cells (Fig. 6c). The area mean annual bias of SDM(2)

is 6 mm. QM corrects the precipitation at already existing wet days but cannot add wet days. Thus, there is still a dry bias after

bias correction (Fig. 6d) where the area mean is -48.5 mm. EPPM shows a similar pattern (Fig. 6e) as both methods is almost

identical in the historical period with the only difference that EPPM uses 100 discrete percentiles and QM uses all values for

the CDFs. EPPMd adds wet days and is able to accurately reproduce climatological precipitation sums in the historical period340

where the average annual precipitation bias is only 2.5 mm.
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Figure 5. Bias correction of precipitation data. The model is produced by smoothing OBS. (a): Observational annual precipitation. (b):

Raw model annual precipitation. (c)-(h): Difference in annual precipitation (model minus observational data) in mm for (c) SDM(raw), (d)

SDM(0), (e) SDM(1), (f) SDM(2), (g) QM and (h) EPPMd. ME: mean error. MAE: mean absolute error.

When it comes to wet days, SDM(2) tends to produce too many new precipitation days (Figure 7c). The average annual wet

day bias is 15.5 days. The reason for this positive wet bias is still in discussion We assume that it can be caused by the fitting

of gamma functions to the CDFs which introduces new errors. Both the QM and EPPM (Figure 7d and e) cannot change the

number of wet days, so the average annual wet day bias of -69.9 days of the raw model is unchanged. EPPMd (Figure 7f)345

performs best of all methods with an average bias of only -2.3 wet days per year. Only very few grid cells exceed a wet day

bias of +10 or -10 days.
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Figure 6. Climatological annual precipitation (mm) sum in the historical period for dry model data. (a): OBS annual precipitation. (b): Raw

model (dry) annual precipitation. (c)-(f): Difference in annual precipitation (model minus observed data) in mm for (c) SDM, (d) QM, (e)

EPPM and (f) EPPMd.

Fig. 8 shows the correction of the dry model with SDM and EPPMd on a single grid cell. In the observational data set (black

line), only 30 % of the days are without precipitation. In the raw model, more than 55 % are dry days (orange). In the future

period, there are even more dry days with almost 70 % or all days (red). EPPMd corrects the historical data so that is matches350

the CDF of the observations (blue). For the future period, EPPMd adds wet days according to the absolute difference of wet

days of observations and historical raw model (Fig. 8a). The shape of the EPPMd CDF is caused by the unsteadiness of the raw

future model and are more prominent due to the multiplication with CVs much larger than 1. In comparison, the data corrected

with SDM(2) slightly deviates from the observational data in the historical period. In the future period, SDM(2) is smoother

than EPPMd but the number of wet days is significantly higher which is caused by different definitions of the wet day bias.355

SDM uses the ratio of wet days between model and observations in the historical period, whereas EPPMd uses an absolute

difference of wet days.
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Figure 7. Wet days per year (> 0.1 mm) in the historical period for dry model data. (a): Annual wet days in OBS. (b): Raw model annual

wet days. (c)-(f): Difference in annual wet days (model minus observed data) for (c) SDM, (d) QM, (e) EPPM and (f) EPPMd.

4.3 Climate change signal (CCS)

One of the three main conditions for EPPM is that the CCS of the raw climate model should not be altered. As stated by Maraun

(2016) methods like standard QM can add a systematical error to the temperature CCS where the CCS is defined as an absolute360

value. Therefore, we show that EPPM automatically conserves the temperature CCS. As temperature data, we used the artificial

data as produced in Sect. 3.1. The corresponding CDFs are shown in Fig 3. Fig. 9 shows the increase of temperature in the raw

model of 0.42 °C each decade. Three bias correction methods (SDM, QM and EPPM) are compared. SDM and EPPM are able

to exactly conserve the CCS of the climate model which is a linear trend of 0.42 °C per decade. In contrast, QM inflates the

climate change signal with a linear trend of 0.71 °C per decade.365

For precipitation, the CCS is defined as a relative one, i.e. the precipitation mean of the future climate divided by the

precipitation in the historical climate. The relative CCS is greater than 1 in case of more precipitation of future. Figure 8 shows

a single grid cell with the CDFs for the observations and a raw model (with less wet days and less precipitation sum that the

observations). The model data was corrected with EPPMd and SDM. In the second line on top of Fig. 8 a ratio measure for the

conservation of the CCS is shown. It is the ratio between the CCS of the corrected model and the CCS of the raw model. A370
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   mod/OBS (best: 1): raw model: 0.322, EPPMd: 0.994, SDM(2): 0.975 
 CCS error (best: 0): EPPMd: -0.8 %, EPPMd (without CCS-corr.): 5.4 %, SDM(2): -5.2 %

Figure 8. Bias correction of precipitation data for a dry model with less wet days than the observations. Both panels: CDF of observations

(black), raw model data for the historical time period (orange) and the future time period (red). Left: Corrected model with EPPM (blue and

purple) and EPPMd (dashed purple). Right: Corrected model with SDM(2). First line on top: ratio of precipitation means from historical

model and observations. A perfect model equals a ratio of 1, i.e. the precipitation sums in model and observations are equal. Second line on

top: Error of CCS (Eq. 7). A perfect bias correction equals 0 %.
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Figure 9. Running means of temperature data of detrended observations, the raw model and 3 different bias correcting methods (QM, SDM

and EPPM). SDM and EPPM are almost identical. On top: linear trends in °C per decade for each bias correction method. The data is

identical to the data used in Fig. 3.

value close to 1 means that the bias correction method is able to conserve the CCS. For the data shown, SDM(2) and EPPMd

without the algorithm for correcting the CCS (see Sect. 3.3) perform almost equally with a ratio of 0.948 respectively 1.054.

When using the CCS correction after EPPMd, the best result is of all methods is achieved with a ratio of 0.992.

In Sect. 2 an artificial dry model was produced by drying OBS. Figure 10 shows again the ratio of the CCS of corrected

model data and raw model data for the dry model. As before, SDM generally underestimates the CCS while EPPMd (without375

the CCS correction) and QM generally overestimates the CCS. The overall bias of EPPMd is lower than the bias of SDM and
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QM. In Fig. 10d with EPPMd the CCS of the annual precipitation is forced to match the raw model CCS, therefore the ratio is

exactly 1.

Figure 10. Error of CCS compared to CCS of raw model (Eq. 7). (a): Raw model annual precipitation in historic period (mm). (b): Raw

model annual precipitation in future period (mm). (c) SDM, (d) QM, (e) EPPMd without additional correction of the CCS and (f) EPPMd. A

perfect bias correction equals 0 %.

5 Conclusions

Statistical bias correction methods are widely used to improve direct model output from climate models but can not fully380

remove all model errors. The corrected data is often used as input for climate impact studies where one has to be aware of

the limitations of the method. We introduced the new method EPPM that solves some of the known errors. EPPM statistically

corrects the output of climate models via adjusting the CDF of different model output variables (such as temperature and

precipitation) to match the observation’s CDF. Unlike most other existing methods this method merely corrects at constant

percentiles between model and observation, also in future time periods. EPPM corrects models that have large trends over time385

(CCS) and conserves the CCS of the raw model. When correcting the model with EPPM, it is assumed that the model bias stays

constant over time rather at certain percentiles than at specific absolute values of a meteorological variable (unlike traditional
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quantile mapping). Precipitation is particularly challenging to correct because the magnitude as well as the frequency of wet

days has to be corrected. An additional algorithm after EPPM (called EPPMd) takes account of dry day frequency biases by

adding wet days. EPPMd performs at least as good as other methods like QM or SDM, but exclusively unites the following390

features simultaneously:

– It hardly enhances or suppresses the CCS in contrast to traditional QM, i.e. EPPM explicitly reproduces the same CCS as

in the raw model. For additive EPPM (e.g. for temperature), this is valid without any limitation. If the correction factors

in EPPM are applied multiplicatively (e.g. for precipitation), the CCS is defined as a relative one. In general, the relative

CCSs of monthly and annual means differ from the relative trends at percentiles. Depending on the application one has395

to decide whether to conserve the relative CCS at percentiles or at means. For the former one, an algorithm adjusts after

EPPM adjusts monthly or annual means to force the raw model’s CCS.

– EPPM is capable of statistically correcting the model’s past climate to fit the observations accurately. This is mostly due

to the fact that it is a nonparametric method, i.e. it uses empirical distribution functions instead of fitted functions (for

variables like temperature, precipitation etc.) which allows the CDF to follow any possible shape. The fitting of functions400

will always produces errors which can be reduced to a minimum with a good fitting algorithm but can never be fully

removed.

– It preserves precipitation sums and wet days. If the model has too little wet days, an subsequent algorithm adds additional

wet days in order to reproduce the observation’s precipitation sums and wet day frequency. If the model has too many

wet days, the wet day frequency is automatically corrected with EPPM.405

Table 1 summarizes our main results on these three items. We assume that SDM can be seen as a representative of parametric

methods in general because the errors introduced with SDM are mainly due to the fitting of functions.

A good performance of the corrected data in any of those three conditions is crucial, as it is used as input for further

impact studies. Impact models (e.g. plant growth models) are often calibrated with bias corrected historical meteorological

data from a climate model. The focus of impact studies often lies on the CCS. If an impact model is calibrated with inaccurate410

meteorological data in the past, the impact of climate change can lead to wrong conclusions even if the CCS itself is accurate.

Compared to methods that fit functions for the CDFs of the variables (parametric methods), EPPM is computationally

inexpensive and can therefore be used for high resolutions and/or large domains. For instance, EPPM is 1 to 2 orders of

magnitude faster than SDM. This is of particular importance because data users often need high resolution data as input for

further studies (e.g. Seidl et al., 2019).415

EPPM corrects each pixel and each variable independently from others and therefore belongs to the group of univariate bias

correction algorithms. Like other univariate algorithms, it does not improve spatiotemporal statistics, i.e. the distribution of

precipitation fields on specific days in the model or the persistency of weather patterns (Pastén-Zapata et al., 2020; Potter et al.,

2020; Charles et al., 2020). Multivariate methods have already been introduced but suffer from disadvantages such as very

high computational demands or a limited measure of the full multivariate dependence of structure (e.g. Cannon, 2018; Bürger420

19

https://doi.org/10.5194/hess-2020-515
Preprint. Discussion started: 16 October 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 1. Qualitative comparison of bias correction methods for three conditions: (1) The conservation of the CCS (either absolute or relative)

compared to the raw model. The relative CCS (e.g. for precipitation) can either be conserved at percentiles or at (monthly, seasonal or annual)

means (see Sect. 3.3). (2) The capability of reproducing the historical climate of the observations and (3) the capability of correcting models

with less wet days than the observations.

Method
Absolute CCS

(temperature)

Relative CCS

(precipitation)
Historical Climate

Models with less wet

days than observations

SDM(raw) yes yes (only at percentiles) no no

SDM(0) yes yes (only at percentiles) no partially

SDM(2) yes yes (only at percentiles) partially partially

QM no no yes no

EPPM yes yes yes no

EPPMd yes yes yes yes

et al., 2011). For more realistic times series, a two-step approach is introduced by Volosciuk et al. (2017) that consists of QM

on the model’s spatial resolution in a first step and a downscaling with a stochastic regression-based model as a second step

which adds random small-scale variability. However, the added skill varies and may even increase the bias in certain cases.

Also, every statistical bias correction comes to its limits if the performance of the model in consideration is poor (garbage in -

garbage out).425
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