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Abstract. Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the world, chiefly caused 

by the use of highly salinity irrigation water, compounded by excessive evapotranspiration. Given this threat, efficient field 

assessment methods are needed to monitor the dynamics of soil salinity in salt-affected irrigated lands and evaluate the 

performance of management strategies. In this study, we report on the results of an irrigation experiment with the main 15 

objective of evaluating time-lapse inversion of electromagnetic induction (EMI) data and hydrological modelling in field 

assessment of soil salinity dynamics. Four experimental plots were established and irrigated twelve times during a two-

month period, with water at four different salinity levels (1, 4, 8 and 12 dSm-1) using a drip irrigation system. Time-lapse 

apparent electrical conductivity (σa) data were collected four times during the experiment period using a CMD Mini-

Explorer. Prior to inversion of time-lapse σa data, a numerical experiment was performed by 2D simulations of the water and 20 

solute infiltration and redistribution process in synthetic transects, generated by using the statistical distribution of the 

hydraulic properties in the study area. These simulations gave known spatio-temporal distribution of water contents and 

solute concentrations, and thus of bulk electrical conductivity (σb), which in turn were used to obtain known structures of 

apparent electrical conductivity, σa. These synthetic distributions were used for preliminary understanding of how the 

physical context may influence the EMI-based σa readings carried out in the monitored transects, as well as to optimize the 25 

smoothing parameter to be used in the inversion of σa readings. With this prior information at hand, we inverted the time-

lapse field σa data and interpreted the results in terms of concentration distributions over time. The proposed approach, using 

preliminary hydrological simulations to understand the potential role of the variability of the physical system to be 

monitored by EMI, may actually allow a better choice of the inversion parameters and interpretation of EMI readings, thus 

increasing the potentiality of using the electromagnetic induction technique for rapid and non-invasive investigation of 30 

spatio-temporal variability in soil salinity over large areas.  
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1. Introduction 

Soil salinization may be of a primary nature, when salt accumulation arises through pedogenetic processes, or of secondary 

origin, due either to abiotic factors such as excessive evaporation or sea-water infiltration, or resulting from human 

intervention, chiefly use of saline water irrigation (Geeson et al., 2002). Approximately 20% of irrigated land (45 million ha) 35 

that produces one-third of the world’s food, is salt-affected (Shirvastava and Kumar, 2015) and it is estimated that soil 

salinity affects 1 million hectares in the European Union, mainly in the Mediterranean countries (Toth et al., 2008). 

Effective agricultural management in many areas relies on a good understanding of the effects of irrigation on the spatial and 

temporal variability of soil salinity (Coppola et al., 2015). However, it is very difficult to assess soil salinity on a 

management scale using traditional methods. Soil salinity is traditionally assessed by measuring the electrical conductivity of 40 

a saturated soil paste (ECe) in the laboratory; however, this technique is labour intensive, time-consuming and costly, given 

the large number of soil samples that need to be collected. Alternatively, Time Domain Reflectometry (TDR), a non-

destructive electromagnetic technique, can be used in the field for simultaneous measurements of water content, θ, and bulk 

electrical conductivity, σb (Coppola et al., 2011b). While the TDR method can provide accurate information from the local 

measurements, the measurement support volume of sensors is limited to a few centimetres, thus extension of the information 45 

to a large area can be problematic (Coppola et al., 2016; Gonçalves et al., 2017, Dragonetti et al., 2018).  

The electromagnetic induction (EMI) technique is widely used as an alternative to traditional techniques for soil salinity 

assessment. It allows rapid non-invasive, reliable and repeatable measurements at a smaller cost than traditional methods. 

This technique measures the soil electrical conductivity which is primarily a function of soil salinity, soil texture, moisture 

content, and cation exchange capacity; however, in a saline soil, the salinity is generally the dominant factor responsible for 50 

the spatio-temporal variability of soil electrical conductivity (Corwin and Lesch, 2005).  

In the last few decades, EMI techniques have been used increasingly to estimate soil salinity from apparent electrical 

conductivity (σa) measurements (Lesch et al., 1995; Triantafilis et al., 2000; Corwin et al., 2006; Ganjegunte et al., 2014). σa 

is the weighted average of the soil electrical conductivity distribution in the soil volume. In order to obtain the depth-

distribution of σb from σa, a site-specific empirical calibration between σa and soil salinity measured at different depths can 55 

be applied by different approaches such as multiple regression (Triantafilis et al., 2000; Amezketa, 2006; Yao and Yang, 

2010; Coppola et al., 2016), modelled coefficients (Slavich and Petterson, 1990), theoretical coefficients calculated with 

theoretical EMI depth response functions (Cook and Walker, 1992) or empirical-mathematical coefficients (Corwin and 

Rhoades, 1984). 

Alternatively, to assess the distribution of σb with depth, σa data collected in the field can be modelled through an inversion 60 

process. Several inversion methods have been proposed to obtain the σb from the measured σa data, including the gradient-

based inversion technique (Monteiro Santos, 2004; von Hebel et al., 2014; Schamper et al., 2012; Farzamian et al., 2015a) 

and probabilistic inversion (Jadoon et al., 2017; Moghadas, 2019; Shanahan et al., 2015). Recently, multi-coil EMI 

measurements and inversion algorithms have been widely used for mapping soil salinity and sodicity distribution in quasi 2D 
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(e.g. Goff et al., 2014; Farzamian et al., 2019; Paz et al., 2019, 2020a) and 3D (e.g. Huang et al., 2017). However, the 65 

potential of this method in assessing temporal variability of soil salinity has not been fully explored. Several time-lapse 

inversion methods for direct-current resistivity methods have been developed. These include the ratio method (Daily et al., 

1992), the difference inversion (LaBrecque and Yang, 2001) and more recently, 4-D space–time algorithms (Kim et al., 

2009). A number of studies have also demonstrated how the use of time-lapse inversion algorithms can reduce the inversion 

artefacts (e.g. Hayley et al., 2011) and improve the quantitative investigations of geophysical monitoring (e.g. Farzamian et 70 

al., 2015b). However, the usefulness of the time-lapse inversion algorithms in modelling EMI data has not been attempted 

yet to assess soil salinity dynamic and only few studies have been conducted to estimate soil water content changes (Huang 

et al., 2016; Whalley et al., 2017). Besides, a prerequisite for such an approach concerns the reliability of the inversion of the 

EMI result. In fact, inverting profile-integrated EMI data to obtain the vertical distribution of σb is an ill-posed problem, 

suffering from non-uniqueness (the problem has more than one solution) and instability (incomplete data and measurement 75 

errors can lead to large changes in the parameters (e.g. Tarantola, 1987). Ill-posedness is generally treated by regularizing the 

inverse solution. However, different regularization schemes and parameters can have a significant impact on the results (e.g. 

Dragonetti et al., 2018; Zare et al., 2020), thus, inversion results of EMI data are always affected by uncertainties, which can 

be minimized in case of prior information from the experiment.  

In this direction, preliminary numerical simulations of the same hydrological processes to be monitored by an EMI sensor, 80 

by applying real boundary conditions measured during an EMI sensor monitoring campaign, may be especially helpful to 

figure out the response to be expected by the sensor and its variability in the space and time, and may allow for a more 

rational choice of the EMI inversion parameterization. In other words, hydrological simulations may help provide an "a 

priori" knowledge of "where the EMI inversion has to go". In any case, this would require the actual distribution of the 

hydraulic properties along the transect or, more in general, in the field to be monitored by the EMI. One can immediately 85 

realize that this is quite utopian, especially when the area to be monitored is relatively large (as previously recalled in the 

case of EMI measurements). By contrast, it is more common that, for the study area, one has available the statistical 

distribution of hydraulic properties. Thus, the statistical distribution of the hydraulic properties may be used for generating 

synthetic (but realistic in a probabilistic view) equiprobable realizations of the physical conditions the EMI sensor will 

potentially experience during the monitoring, which may be used for addressing the inversion of EMI reading.  90 

The main objective of this paper is to propose an approach to improve the parameters optimization and the constrains in 
time-lapse EMI inversion using soil water and solute modelling. In the paper we will show how the synthetic tests may be 
used to guide the optimization of inversion parameters and understanding of the impact of solute concentration and water 
content variations on EMI σa readings.  
The key features of this study are: i) performing a controlled irrigation experiment, allowing the simulation of the spatial and 95 

temporal variability of soil salinity during the irrigation experiment; ii) monitoring of σa using a multi-coil CMD Mini-

Explorer EMI sensor which takes σa measurements over six different depth sensitivity ranges; iii) running numerical 

simulations by a physically-based hydrological model to study how well the EMI survey and time-lapse inversion can 
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resolve the σb distribution in space and time in our experimental set up and to infer the best inversion parameters; iv) 

inverting time-lapse field σa to map the spatio-temporal variability of σb and to interpret them in terms of concentration 100 

distributions over time. 

2. Material and Methods 

2.1. Experimental set-up 

The experiment was carried out at the Mediterranean Agronomic Institute of Bari in south-eastern Italy. The soil is classified 

as Colluvic Regosol, consisting of silty-loam material of an average thickness of 0.7 m lying on fractured calcarenite 105 

bedrock. Figure 1 shows the experimental set-up, consisting of four experimental plots each of 30 m length and 3.6 m width, 

equipped with a drip irrigation system with nine irrigation dripper lines placed 0.40 m apart and characterized by an inter-

dripper distance of 0.20 m. Pressure self-compensating drippers were used and the Emission Uniformity was over 90%. The 

soil was bare during the experiment period to avoid the effect of root uptake on the interpretation of the results. The four 

experimental plots were irrigated with water at four different salinity levels. Experimental plot 1: water at 1 dSm-1 (hereafter 110 

referred to as P1); experimental plot 2: water at 4 dSm-1 (hereafter P2); experimental plot 3: water at 8 dSm-1 (hereafter P3); 

experimental plot 4: water at 12 dSm-1 (hereafter P4).  

The soil-bedrock depth was measured in 40 points by augering and the resulting spatial distribution is shown in Fig. 2. An 

apparent variability in the depth to bedrock was revealed, which may have significant impacts on spatio-temporal 

distribution of water and solute concentration.  115 

Irrigations were started on 30 September 2016 and all experimental plots were irrigated 12 times until 21 November 2016 

with the same amount of water and delivering day. Water salinity was induced by adding calcium chloride (CaCl2) to well 

water having a salinity of about 1 dSm-1. Twelve injections of saline water were applied. Water salinity was induced by 

adding calcium chloride (CaCl2) to well water having a salinity of about 1 dSm-1. Each saline application was of about 18 

mm with a Cl- concentration of about 0.1 mmol cm-3. The volumes of supplied water were calculated according to the 120 

differences between two consecutive level measurements in a Class A evaporimeter. The details of irrigation events and 

precipitation information are given in Fig. 3. EMI measurements were taken four times during the experiment period in each 

experimental plot along three transects, 1.2 m apart and at 2 m spacing, as shown in Fig. 1. All measurements were taken 1-3 

days after the irrigations, allowing relatively time-stable water contents to be assumed at each site throughout the monitoring 

phases. 125 

2.2. EMI analysis 

2.2.1. Characteristics of the EMI sensor 

σa data were collected using a CMD Mini-Explorer device (GF Instruments, Brno, Czech Republic). The characteristics of 

this device make it especially suitable for monitoring electrical conductivity at relatively shallow depths. The CMD Mini-
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Explorer was used to measure σa in VCP (vertical coplanar, i.e. horizontal magnetic dipole configuration) mode and then 130 

HCP (horizontal coplanar, i.e. vertical magnetic dipole configurations) mode by rotating the probe 90° axially to change the 

orientation from VCP to HCP mode. The probe has three receiver coils with 0.32 (ρ32), 0.71 (ρ71) and 1.18 (ρ118) m 

distances from the transmitter coil and operates at 30 kHz frequency. With the largest coil spacing, the instrument has an 

effective depth investigation of 1.8 m in the HCP mode and 0.9 m in the VCP mode. 

2.2.2. Electromagnetic Forward Model 135 

The electromagnetic forward modelling is solved by applying the full solution of the Maxwell equations to calculate the σa 

responses of a 1D model. The response of a layered media (secondary magnetic field) excited by a small horizontal 

transmitter loop, above the ground surface can be expressed in terms of Hankel transform (Zhang et al., 2000): 

𝐇𝐳 =
𝐌
𝟒𝛑 ∫ (𝐑𝐓𝐄𝐞-𝛃(𝟐𝐳𝐬-𝐳𝐫)4𝛃𝟐𝐉𝐨(𝛃𝐫)𝐝𝛃,

9
𝟎          (1) 

where M is the moment of the transmitter loop emitting at an angular frequency	𝜔, zs and zr are the heights of the transmitter 140 

and receiver loops, respectively. 𝑟 is the transmitter-receiver distance and 𝐽? is the Bessel function of first kind and order 

zero.  

The kernel function 𝑅AB  is defined as: 

𝐑𝐓𝐄 =
𝐙	𝟏-	𝐙𝟎
𝐙	𝟏E	𝐙𝟎

,            (2) 

where 𝑍G is the intrinsic impedance of free space, 𝑍H	is the input impedance at the first layer calculated by a recursive 145 

procedure. Similar equations can be written for vertical coplanar loops. In such case the secondary magnetic field is: 

𝐇𝐲 =
𝐌

	𝟒	𝛑	𝐫 ∫ (𝐑𝐓𝐄𝐞-𝛃(𝟐𝐳𝐬-𝐳𝐫)4𝛃𝐉𝟏(𝛃𝐫)𝐝𝛃,
9
𝟎          (3) 

where 𝐽H is the first-order Bessel function.  

σa (mSm-1) is usually calculated assuming the low induction number (LIN) approximation using the formula: 

𝛔𝐚 =
𝟒𝟎𝟎𝟎	
𝛚𝛍𝐨	𝐫𝟐

N𝐇𝐬
𝐇𝐩
P
𝐐

,           (4) 150 

where µ0 is permeability of free space and Q denotes the out-phase component of the secondary to primary magnetic field 

coupling ratio. 

2.2.3. Time-lapse inversion 

With the time-lapse inversion, one seeks to calculate the temporal variation of the conductivity along a transect. The quasi-

2D inversion algorithms based on Monteiro Santos (2004) with a modification of the algorithm proposed by Kim et al. 155 

(2009) were used in this study. The problem is resolved in both algorithms iteratively starting from a uniform model. Two 

different levels of constraints, S1 and S2, were applied. In the S1 option, the corrections to the model parameters at each 

iteration are calculated by solving the system of equations: 
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(𝐉𝐓𝐉	 + 	𝛌𝐂𝐓𝐂	 + 	𝛂𝐌𝐓𝐌)𝛅𝐩WW⃗ = 𝐉𝐓𝐛⃗ 	− 	𝛂𝐌𝐓𝐌	𝐩WW⃗ ,        (5) 

In the S2 option, the corrections of the parameters at each iteration are calculated solving the equations:  160 

(𝐉𝐓𝐉	 + 	𝛌𝐂𝐓𝐂	 + 	𝛂𝐌𝐓𝐌)𝛅𝐩WW⃗ = 𝐉𝐓𝐛⃗ 	+ 𝛌𝐂𝐓𝐂	(𝐩WW⃗ − 𝐩WW⃗ 𝐨)	𝛂𝐌𝐓𝐌	(𝐩WW⃗ − 𝐩WW⃗ 𝐨),      
 (6) 

where 𝛿𝑝 is the vector comprising corrections of the parameters (logarithm of conductivities, pj) of an initial model; po refers 

to a reference model; b is the vector containing the differences between the logarithm of the observed and calculated 

apparent conductivities. J is the Jacobian matrix with elements given by ]𝑗
𝜎𝑎𝑖
𝑐
𝜕𝜎𝑎𝑖𝑐

𝜕𝜎𝑗
.	𝜆 is a Lagrange multiplier and determines the 165 

amplitude of the parameter corrections in the space domain and the regularisation matrix C stores the coefficients of the 

spatial roughness of the model parameters at time t which is defined as: 

𝛅𝐫𝐣 = 𝛅𝐏𝐣𝐄 + 𝛅𝐏𝐣𝐖 − 𝟒𝛅𝐏 + 𝛅𝐏𝐣𝐍 + 𝛅𝐏𝐣𝐒,         (7) 

where the elements of matrix C are 1 or -4 according to the position of the neighbours. 𝛼 is a parameter that determines the 

amplitude of the parameter corrections in the time domain, and M is a square matrix that accounts for the temporal 170 

continuity of the model parameters.  

The elements of matrix M are defined in terms of models at time t-dt and t+dt. The model Misfit is calculated using the 

following equation:  

𝐌𝐢𝐬𝐟𝐢𝐭 = n𝟏
𝐍
∑ 𝐥𝐧(𝛔𝐚𝐨 − 𝛔𝐚𝐜)𝟐𝐍
𝐢s𝟏 ,          (8) 

where N is the number of apparent conductivity value, with 𝜎t?  and 𝜎tu  a representing observed and calculated σa, 175 

respectively.  

In this algorithm, two regularizations are imposed in both space and time domains. Consequently, the spatial and temporal 

Lagrangian multipliers have to be optimized. The spatial Lagrangian multiplier (λ) controls the relative importance of spatial 

model smooth and data-response misfit and decreases gradually during the inversion process to resolve more detailed model 

parameters. Larger λ tends to generally produce a model with a larger misfit error but smooth variation of conductivity 180 

values. Larger λ is usually acceptable if the soil conductivity changes in a smooth manner and allows producing a model that 

is reasonably more realistic. In contrast, a smaller λ is usually required when sharper soil conductivity changes are expected 

in order to resolve the sharp boundaries. A suitable λ value is usually determined empirically based on the expected 

distribution of σb and by performing inversions with different values. The second regularization, temporal Lagrangian 

multiplier (α), is the temporal damping factor that gives the weight for minimizing the temporal changes in the conductivity 185 

along the time axis. α is a constant value and is defined by the similarity of the two consecutive reference times. The larger 

the α value, the more similar are the reference models that result from the inversion; a value of zero means no temporal 

constraints are applied (i.e. a traditional non-time-lapse inversion). The misfit function in this algorithm is the square root of 

the sum of the squares of the differences divided by the number of the measurements and is expressed in mSm−1. 
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 190 

2.3. Synthetic experiment 

2.3.1. Hydraulic properties data set 

A large dataset of hydraulic properties was already available from the experimental site, which was obtained by previous 

laboratory and field hydraulic characterizations carried out during several measurement campaigns (e.g. Coppola et al., 

2011a, b; 2013; 2015). Seventy soil samples were collected from the Ap and Bw horizon in the experimental farm. Saturated 195 

hydraulic conductivity, K0, and water retention experimental data were measured in the laboratory by the falling head 

permeameter (Reynolds and Elrick, 2003) and tension table method (Dane and Hopmans, 2003), respectively. The water 

retention data were fitted to the van Genuchten model (van Genuchten, 1980): 

𝐒𝐞 =
𝛉-𝛉𝐫
𝛉𝟎-𝛉𝐫

= [𝟏 + |𝛂𝐡|𝐧]-𝐦,    h < 0      (9) 

𝛉 = 𝛉𝟎,       h = 0      (10) 200 

where Se (-) is the effective saturation, α (cm-1), n (-) and m (-) are shape parameters, θ0 (-) and θr (-) are the saturated and 

residual water content, respectively.  

The hydraulic conductivity was estimated by the van Genuchten-Mualem model (van Genuchten, 1980), with m=1-1/n: 

𝐊𝐫(𝐒𝐞) =
𝐊(𝐒𝐞)
𝐊𝟎

= 𝐒𝐞𝛕 ~𝟏 − �𝟏 − 𝐒𝐞
𝟏
𝐦�

𝐦

�
𝟐

,         (11) 

where K0 is the saturated hydraulic conductivity, Kr (-) is the relative hydraulic conductivity, and τ (-) is a parameter which 205 

accounts for the dependence of the tortuosity and the correlation factors on the water content. 

Due to the different hydrological behaviour between laboratory and field (Kutilek and Nielsen, 1994), the laboratory-derived 

curves were scaled to the field curves by applying the procedure described in Basile et al. (2003; 2006). Statistics of the 

parameters are reported in Table 1. The data in the table indicate a larger variability of the hydraulic properties of the Bw 

horizon, compared to the Ap horizon. This is probably due to the frequent roto-tillage of the Ap horizon, inducing 210 

significantly greater homogeneity of this soil layer. Actually, even the apparent larger variability of the K0 for the Ap horizon 

is quite lower than the variability reported in the literature, which is generally characterized by coefficients of variation (CV) 

much larger than 100% (Kutilek and Nielsen, 1994; Mallants et al., 1996; Coppola et al., 2011) and may even reach values 

of 450% (Carsel and Parrish, 1988). The hydraulic properties parameters for the bedrock were those determined on the same 

type of bedrock by Caputo et al. (2010; 2015). 215 

2.3.2. Synthetic hydrological simulations 

2D numerical simulations of the infiltration and redistribution process were carried out using Hydrus 2D/3D software 

(Šimůnek et al., 2016), by introducing the actual boundary conditions imposed during the experiment to: i) gain an insight to 
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the spatio-temporal distribution of water and solute concentration during the experiment period, prior to interpreting the field 

EMI data and to ii) optimize the EMI inversion parameters. The Richards Equation and Advection-Dispersion Equation were 220 

used to simulate water flow and solute transport, respectively. The distributions of the hydraulic parameters (see Table 1) 

were used to generate several synthetic transects, with variable hydraulic properties and depth to bedrock (electrically 

resistive layer), in order to simulate different distributions of water contents, solute concentrations and soil depths and to 

explore their role on the variability of the σa response. Each synthetic transects consisted of an assembly of 30 interacting 

soil columns, each with its own hydraulic properties and depth to bedrock. Each of the 30 soil profiles included three 225 

horizons: Ap (0-15 cm), Bw and bedrock. The Bw and bedrock thickness changed in each soil profile according to the depth 

of the soil-bedrock interface. For hydraulic properties, the transect variability was assumed to be characterized by the 

variability of the parameters θ0, α, n and K0. The hydraulic properties and depth to bedrock were assigned randomly to each 

soil column by using the statistical distribution of each parameter (see Table 1). Statistical tests showed that θ0 and n were 

normally distributed, K0 and α log-normally distributed, and depth to bedrock uniformly distributed. The means and the 230 

covariance matrix for θ0, log K0, log α, and n were computed. Due to the continuous ploughing and other tillage practices 

(see Sect. 2.1), the Ap horizon is rather homogeneous and therefore only the hydraulic parameters of the horizon Bw were 

considered to vary stochastically. The hydraulic parameters of both Ap horizon and bedrock were fixed to their average 

values. 

20 synthetic transects with 30 random vectors of the four parameters (θs, α, n and K0) were produced from the correlated 235 

multivariate distribution by generating a vector x of independent standard normal deviates and then applying a linear 

transformation of the form x=m+Lrn, where m is the desired vector of means and L is the lower triangular matrix derived 

from the symmetric covariance matrix V=LLT decomposed by Cholesky factorization (Carsel and Parrish, 1988). θr was set 

to zero for all simulations. For solute transport, a longitudinal dispersivity of 2 cm was assumed according to a previous 

experiment carried out in the same field (Coppola et al., 2011b). Transverse dispersivity was assumed to be one tenth of the 240 

longitudinal dispersivity (Mallants et al., 2011). The simulation time – according to the field experiment data – included a 

period of 91 days from 01 September 2016 to 30 November 2016 in which 12 irrigations were applied (a total of 210 mm), 

having the water an EC of 12 dSm-1 (each one of about 18 mm with a Cl- concentration of about 0.1 mmol cm-3). The 12 

dSm-1 was considered because spatial and temporal variabilities of σb were expected to be larger and more apparent due to 

greater salinity changes. Potential evapotranspiration was estimated by a local agrometeorological station; irrigation fluxes 245 

and Cl- concentration in the irrigation water were considered as top boundary conditions. Free drainage was assumed at the 

lower boundary (z=-150 cm). Initial soil water content value was set to 0.25 cm3 cm-3, based on the field measurements by 

TDR probe, and the initial Cl- concentration was set equal to zero.  

It is worth noting that the use of synthetic transects does not aim to address the overall spatial variability of soil properties 

potentially observable in the investigated field, but to randomly select a reasonable number of different scenarios to better 250 

understand how solute concentration and water content changes during the experiment influence σb distribution. They also 

help to identify a proper regularization strategy to invert measured σa data in the field. In this sense, the number (20) of 
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transects is a trade-off between the need of accounting for the possible heterogeneity of the field and the computational 

challenge of carrying out too many synthetic data inversions.  

For each generated transect, numerical simulations produced distributions of water contents and Cl- concentrations.  255 

2.4. Site-specific calibration θ-σw-σb 

The water content and Cl- concentration distributions were converted to bulk electrical conductivity (σb) distributions by 

using the model proposed by Malicki and Walczak, 1999:  

𝛔𝐰 =
𝛔𝐛-𝐚

(𝛆𝐛-𝐛)(𝟎.𝟎𝟎𝟓𝟕E𝟎.𝟎𝟎𝟎𝟎𝟕𝟏𝐒)
	,          (12) 

where εb (-) is the dielectric constant, which is related to the water content, and σw (dSm-1) is the electrical conductivity of 260 

the soil solution. The latter was obtained by using a linear relationship C-σw for solutions at different concentrations of 

calcium chloride.  

The parameters for the Malicki and Walczak model were calibrated through a laboratory experiment. Specifically, εb and σb 

for different values of σw were simultaneously measured on reconstructed soil samples values using TDR probes. For this 

purpose, four PVC cylinders (8 cm in diameter and 15 cm height) were filled with air-dried soil reaching a dry bulk density 265 

of about 1.1 g cm-3, imitating the field condition. Each soil sample was wetted by adding 10 ml of CaCl2 solution at a 

specified electrical conductivity: 1, 2, 4 and 6 dSm-1, respectively. The cylinders were covered by 0.05-mm plastic foil 

before the measurement in order to avoid evaporation and to equilibrate with the air temperature of 20°C. The procedure was 

repeated 16 times for each soil sample to measure soil water content values ranging from air-dry to near saturation. For each 

wetting step, the measurements of θ and σb were carried out using TDR three-wire probes (10 cm long with a rod diameter of 270 

0.3 cm and rods spaced 1.2 cm) vertically inserted in the soil columns. The following parameters of Eq. (12) were obtained: 

a = 3.6 dSm−1; b = 0.11. 

2.5. Schematic view of the approach used in the paper 

The logical sequence of the different steps used in the proposed approach is described in Fig. 4 
1. Starting from the statistical distribution of the hydraulic properties and the physical characteristics of the system under 275 

study (the latter limited to only depth to the bedrock, in this specific case), as described in Sect. 2.3.1., several synthetic 

transects are generated, each accounting for some of the variability in terms of hydraulic properties and physical 

characteristics that the EMI sensor potentially experience during the monitoring; 

2. Hydrological simulations for each of these synthetic transects are thus carried out, each producing synthetic distributions 

of both water contents and solute concentrations, as described in sec 2.3.2 which, in turn, is converted to as many 280 

synthetic distributions of σb by using a specifically developed θ-σb-σw calibration relationship, discussed in Sect 2.4; 

3. These σb distributions are used in a forward EMI modelling procedure (see Sect. 2.2.2.) to generate synthetic σa data for 

all the synthetic transects considered; 
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4. The σa, θ and σw (C) distributions is used to guide the inversion of EMI readings obtained during real monitoring 

campaigns carried out in the physical system under study in two different (but related) ways: i) to have an a-priori 285 

knowledge of where a measured EMI reading may come from (e.g. at a given time, a measured σa distribution could 

come from the depth of the water or solute propagation front, from the depth to the bedrock, from water accumulation at 

the soil-bedrock interface); ii) to identify the optimal regularization parameters, discussed in sec 2.2.3., to be used in the 

inversion model of the real EMI data, by looking for example to the parameter value allowing for a satisfactory results 

for most of the synthetic transects. For the latter purpose, we compare different inversion parameters combinations in 290 

terms of correlation (correlation coefficient, R), precision (mean square error, RMSE) and bias (mean error, ME) 

between the simulated and modelled σb;  

5. Finally, with all this information at hand, one is ready to look at the real EMI datasets, by producing more realistic σb 

distributions which can now be seen with much more confidence compared to cases where EMI inversion has to be 

carried out without any prior information from the experiment and, thus, producing less interpretable and more uncertain 295 

σb distributions.  

The Results and Discussion section below will show the application of the approach to the system under study, with an 

analysis of the real EMI data carried out only in the final phase, when having available all the information needed to guide 

the inversion of the real EMI data and interpretation of the obtained models. 

3. Results and Discussion 300 

3.1. Synthetic spatio-temporal distributions of solute water content and solute concentration  

This section is to show how the synthetic simulations described in the section 2.3.2 can be used to analyse the sensitivity of 

the EMI response to both the hydrological behaviour and physical characteristics of the system under study.  

As an example, Fig. 5 depicts the depth to the bedrock for one of the synthetic transects described in Sect. 2.3.2. For the 

same transect, Fig. 6 shows, for four selected days, the spatial distribution of water content obtained from the Hydrus 2D/3D 305 

simulations with irrigation water at 12 dSm-1. The soil shows very high values of water content on the selected days. This is 

because the water was supplied to the soil only 1-3 days before the selected days. On the other hand, lower values were 

obtained at larger depths, within the bedrock. The water content distributions show a significant lateral heterogeneity while 

the temporal variations are very small. The spatial variations of water content distribution can be partly explained by the 

variability of the hydraulic properties. However, soil depth proved to be the dominant factor in determining water content 310 

lateral variability. In fact, high inverse correspondence of soil depth with water content is revealed in the vertical profiles 

where bedrock is superficial (e.g. profiles 3, 4 and 5) or deep (i.e., profiles 19, 20 and 21). The correlation between soil depth 

and water content averaged along each profile is very high (r=0.88) for the four dates, thus confirming that the depth of the 

bedrock is the main factor governing the water distribution. 
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In terms of the temporal variations, the water content distribution did not change significantly and the average soil water 315 

content of the whole soil profile was found to be similar in the selected dates, with an average in the range 0.20-0.22 cm3 cm-

3 and a standard deviation of 0.02 cm3 cm-3. This was expected as the experimental field was irrigated regularly and the four 

selected dates refer to approximately the same time after an irrigation application (1-3 days). However, small differences of 

water content may be observed near the soil surface, which may well be explained by the evaporation process taking place 

during the 1-3 days after irrigation and mostly involving the shallower soil layer. For example, the near-surface shows higher 320 

water content (i.e. 0.25-0.30 cm3 cm-3) on 26 Oct, because the irrigation took place one day before on 25 Oct. On the other 

hand, lower water content is evident in the near-surface on 17 Oct due to a three days gap between the water irrigation on 14 

Oct and simulation date. Figure 7 shows the spatio-temporal distribution of Cl- concentration obtained for the same synthetic 

transect of Fig. 6. Compared to the water content, Cl- concentrations show a significantly greater evolution over time, with a 

slow and steady Cl- concentration increase along the soil profile due to the twelve injections of saline water.  On average, the 325 

front of chloride deepens slowly at a fairly constant rate, but with a lateral variability which is related to the lateral variability 

of water contents and hydraulic properties. The lateral variability is quite low in the first days of solute applications and 

becomes evident only when the solute migrates deeper into the soil profile. The lateral variability of Cl- concentration is 

mainly related to the depth to bedrock, as can be immediately observed by comparing the solute distributions and the transect 

morphology shown in Fig. 5. The depth of the soil-bedrock interface as well as soil hydraulic properties conditions the 330 

spatial distributions of water contents, which, in turn, influence the Cl- concentration distribution. 

3.2. Simulated spatio-temporal distribution of σb 

Figure 8 shows the spatio-temporal distribution of σb for the same synthetic transect, obtained by converting water contents 

and solute concentrations by applying Eq. (12). The Fig. 8 shows a resistive zone beneath a conductive zone. The 

conductivity of the resistive zone varies slightly spatially and temporally, however the conductivity of this zone is generally 335 

within 25 mSm-1. The resistive zones in the maps correspond to the bedrock in the study area (see Fig. 5). The conductivity 

of the upper layers changes significantly both spatially and temporally from an average conductivity of 50 mSm-1 on 17 Oct 

to more than 100 mSm-1 on 23 Nov. The time evolution of the conductive zone is evident and, as the water content does not 

change significantly over time, is mostly related to the chloride propagation during the simulation. The lateral variation at 

any time, by contrast, is largely ascribable to bedrock topography. 340 

3.3. Time-lapse synthetic σa data  

The spatio-temporal distribution of σb shown in Fig. 8 was used to generate the time-lapse synthetic σa data. The generated σa 

data for the model obtained on 23 Nov (see plot d in Fig. 8) is shown in Fig. 9. Profile ρ32 shows the greatest σa values in 

each orientation, while the minimum σa was recorded on profile ρ118 indicating a conductive zone over a resistive zone, 

which is expected from the model shown in Fig. 8d. In addition, significant lateral σa change is evident along the transect 345 

with strongest fluctuations in ρ32 in both orientations. This is because of the strong lateral σb variations at near surface due 
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to the saline water infiltration and heterogeneity of the subsurface. The general behaviour of the synthetic σa data suggests 

that the field data might have strong lateral σa changes along the transect and a careful processing of data is required (e.g. 

filtering of σa data should be avoided). 

3.4. Optimizations of the inversion parameters 350 

In this section we show how well the developed inversion method can resolve the σb distribution from generated synthetic σa 

distribution. Firstly, we investigated the influence of the spatial smoothing parameter (λ) and the inversion algorithm S1 (Eq. 

(5)) and S2 (Eq. (6)) in resolving the σb distribution. In this regard, the generated σa data were inverted using both S1 and S2 

and different values of λ in the 0.01 to 10 range. Figure 10 shows an example of the σb distribution models after inverting the 

synthetic σa data presented in Fig. 9 This example was selected due to the larger lateral and vertical contrast.  355 

Ideally, the obtained σb distribution should be very similar to the one shown in Fig. 8d. However, looking closely at the 

obtained σb distribution, we observe that all of them are different, to some extent, to the one shown in Fig. 8d. First of all, we 

note that the model obtained using λ values greater than 1 (not shown here) and regardless of the choice of inversion 

algorithm (i.e. S1 and S2) shows a high misfit error and also significantly over-smoothed σb distribution. This is not 

surprising as the sharp vertical spatial variability of σb due to the saline water irrigation, soil heterogeneity as well as the 360 

shallow bedrock cannot be well resolved using high λ (over-smoothed parameters). Consequently, a high λ is not a wise 

choice when sharp vertical and lateral conductivity contrasts are expected in the field. The obtained model using S2 

algorithm and moderate λ values (i.e. 0.5) also yields a very smooth model. In contrast, the obtained models using S1 - 

λ=0.05, S1 - λ=0.5 and S2 - λ=0.05 do a better job in resolving near-surface anomalies. However, the conductivity 

distribution at depth is not well recovered using the S1 algorithm.  365 

In Fig. 11, we plotted the synthetic σb distributions data against the obtained modelled σb distributions using different 

inversion parameters shown in Fig. 10 and calculated the statistical scores R, RMSE and ME to further investigate the 

impact of the inversion algorithm and parameters in resolving the σb distributions. Firstly, we observed that both S1 and S2 

algorithms underestimated the σb to some extent, judging from the ME values. The S2-λ=0.5 and S1-λ=0.05 show weaker 

statistical scores with higher RMSE and ME and relatively lower R. The over-smooth impact of S2-λ=0.5 and the resulting 370 

highest ME indicates that the S2 algorithm with moderate to high λ values is not a rational choice when large spatial and 

vertical variations of σb are expected. On the other hand, the lowest R and highest RMSE, obtained for S1-λ=0.05, suggest 

that the S1 algorithm with very small values of λ is not able to well predict the spatial variation of σb. The use of the S1 

algorithm with very small values of λ usually apply insignificant spatial constraint that may result in more inconsistency 

between synthetic σb and modelled σb distributions. The S2-λ=0.05 and S1-λ=0.5 show better statistical results with higher R 375 

and lower RMSE and ME which make them a better choice for the inversion of field data. While both inversion parameters 

set present almost the same RMSE, the S2-λ=0.05 yields a higher R, suggesting that the S2-λ=0.05 can better resolve the 

spatial σb distributions. This is expected from a comparison of S2-λ=0.05 and S1-λ=0.5 results in Fig. 10 and Fig. 11 where a 

relatively lower correlation is evident between synthetic σb and modelled σb at lower ranges of σb (Fig. 11) located at depth 
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more than 70 cm (Fig. 10 and Fig. 11) when we used the S1-λ=0.5. The difficulty of resolving a resistive zone at depth and 380 

beneath a conductive zone is indeed expected. In fact, the sensitivity of the EMI signals is very limited over the resistive 

zone and therefore the resistive zone cannot be well resolved. The condition will be worse in our study as a resistive zone is 

located beneath a conductive zone: the EMI response of the subsurface will be dominated by the influence of the near 

surface conductive zone. In addition, five of the six depths of investigation of the CMD Mini-Explorer are limited to the first 

1 m and, as a result, a lower resolution is expected at greater depths. The S2 algorithm did a better job in resolving the 385 

resistive zone at depth. This is because the S2 algorithm constrains the value of each cell to the reference model during the 

inversion process which limits the large variations of each cell during the inversion process.  

In terms of recovering the absolute values of soil electrical conductivity, it appears that all obtained models underestimate 

the conductivity of the anomalies near the surface. This can be explained by over-parameterized inverse problem and the 

effects of smoothing from regularization applied in the inversion algorithm, as well as the impact of the resistive zone 390 

beneath the conductive zone. In addition, the 6 measurements per site with site spacing of 1 m is not sufficient for recovering 

sharp σb variability along the transect. Measuring σa at different heights as well as smaller site spacing enables more σa data 

to better resolve changes which occur over short depth and length increments. 

In terms of the influence of the temporal smoothing parameter (α), we explored different values (results not shown here). We 

noticed that the values larger than 0.1 over-smoothed the expected temporal variation and thus the detailed variations cannot 395 

be resolved. We conclude that, for our study, a value of 0.05 is the best choice for α in resolving the temporal variation of σb.  

We repeated the same analyses using 20 different synthetics transects, consisting of a random assembly of 30 interacting soil 

columns, each with its own hydraulic properties and depth to bedrock and different saline treatment (results not shown here). 

The results of our analysis show that the algorithm S2 is the best choice in the presence of a resistive zone at depth and small 

values of λ and α work best for dealing with the sharp lateral and temporal expected changes that occurred during the 400 

experiment. Based on the synthetic tests, the spatio-temporal algorithm S2 described in Eq. (6) with λ and α values of 0.05 

and 0.05 respectively were selected to invert time lapse actual σa datasets measuring during the experiment period.  

3.5. Inversion of the real time-lapse σa field data 

Using the optimized inversion parameters obtained in Sect. 3.4., we inverted time-lapse σa data collected over the four 

experimental plots, P1, P2, P3, and P4. Fig. 12 shows the σa data of the middle transect in each experimental plot (Fig. 1) 405 

referred to the last date of monitoring, i.e. 23 Nov. The σa data shows a relatively similar pattern in both VCP and HCP 

modes with greater σa values on ρ32 and ρ71 and the minimum σa values recorded on ρ118, indicating a conductive zone 

over a resistive zone. In addition, greater lateral σa changes in the VCP mode are evident along the four transects with 

noticeable fluctuations in P4, suggesting greater lateral σb variations at near surface. The σa data obtained from plot P1 and 

P2 show lower range of conductivity, varying in the 20-40 mSm-1 and 20-50 mSm-1 ranges, respectively. P3 and P4 represent 410 

higher range of conductivity with the former in the 20-70 mSm-1 range and the latter in the 20-80 mSm-1 range.  
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Figure 13 shows the time-lapse inversion results for the same transects for four dates: 17 and 26 Oct; and 14 and 23 Nov 

2016. The same colour scale was used for all models, allowing comparison of spatio-temporal variation of σb along all 

profiles at different times. The corresponding model responses for the last measurements on 23 Nov are shown in Fig. 12. 

The misfit errors for the P1, P2, P3, and P4 are 1.43, 1.21, 2.15 and 2.95 mSm-1, respectively, indicating a good fit between 415 

data and model responses. Slightly higher misfit errors for P3 and P4 are probably due to greater range of σa as well as the 

larger lateral variations of σa. Looking at EMI models at different times and along all four experimental plots, we identify 

two distinct zones: a resistive zone at depth more than 50 cm beneath a conductive zone. The conductivity of the resistive 

zone varies laterally and temporally along all four transects; however, the conductivity of this zone rarely exceeds 25 mSm-1. 

The resistive zones in the maps shown correspond to the bedrock in the study area (Fig. 2). The conductivity of this zone is 420 

slightly lower in P3 and P4 which is probably due to the shallower bedrock in these plots. In contrast, the conductive zone 

near-surface shows significant spatio-temporal conductivity changes depending on the conductivity of the injected water.  

The time-lapse models obtained from plot P1 show the minimum spatio-temporal conductivity changes in this zone with 

conductivity varying in the 30-60 mSm-1 range. The P2 plot shows larger spatial and temporal conductivity changes 

compared to P1, as expected, with conductivity varying between 30 and 80 mSm-1. The conductivity of this zone decreases 425 

slightly on 14 Nov. This is probably due to the impact of heavy rain (31 mm) on 7 Nov, inducing salt leaching and reducing 

the soil conductivity. The P3 and P4 plots show stronger conductivity changes both spatially and temporally with 

conductivity varying between 50 and 100 mSm-1. The first models, obtained for 17 Oct, shows the minimum conductivity 

among the four selected dates. This is consistent with the simulated distributions shown in Fig. 8 and it is probably due to the 

saline front being still undispersed in the initial propagation phase (Fig. 7).  430 

As the saline water is continuously added to the soil surface, the Cl- concentration increases in the soil and also deepens 

slowly in the soil profile, thus increasing soil electrical conductivity. Consequently, the higher soil conductivities seen on 23 

Oct (Fig. 13, P3 and P4) are due to higher Cl- concentration and its propagation to deeper layers. The conductivity models 

obtained for 14 Nov show a decrease in soil conductivity in both P3 and P4, although there were 6 irrigations after 23 Oct. 

On the other hand, the conductive zone extends to deeper soil. This is not surprising as we already expected it from the 435 

simulations (see Fig. 8). This behaviour is probably due to the rainfall event on 7 Nov (as noted on P2) which diluted the Cl- 

concentration in the soil. This suggests that the EMI surveys and data modelling detected well the expected change in Cl- 

concentration.  

Finally, the models obtained for the data collected on 23 Nov, depicted in Fig. 13, show the maximum soil conductivity and 

extension of the conductive zone among the selected dates in P3 and P4. A comparison of these models with our simulations 440 

results discussed in 4.1 and 4.2 show that the increase of Cl- concentration in soil after twelve irrigation events, as well as the 

redistribution of Cl- during the experiment period, are the main reason for increase in soil conductivity. Judging from the 

water content distribution maps, obtained from numerical simulations and shown in Fig. 6, we expect very small temporal 

variations of water content in all experimental plots. Consequently, the temporal variations of Cl- concentration and 

distribution is expected to be the key factor in temporal variations of soil electrical conductivity. 445 
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From a management perspective, the discussion above suggests that using the described approach regularly after irrigation 

applications may allow monitoring of salt propagation and redistribution. As water content values and patterns are expected 

to be quite similar at similar times after each irrigation event, changes in bulk electrical conductivities obtained by an EMI 

sensor will be closely related to changes in salt concentrations.  

4. Conclusion 450 

In this study, we carried out a time-lapse EMI survey over four experimental plots irrigated with water at four different 

salinity levels during three months. We examined how well the time-lapse EMI measurements and a time-lapse inversion 

algorithm can be used to monitor soil salinity variability in space and time through performing simulation experiments and 

inversion processes. Based on our detailed simulations and synthetic tests as well as the interpretation of the time-lapse 

models, the following main conclusions can be drawn: 455 

1. The numerical simulations performed in this study allow predictions of the spatial and temporal variability of soil 

salinity and water content during the irrigation experiment prior to the modelling of field σa data. This improves our 

understanding of how soil salinity and water content changes during the experiment influence σb distribution in time, 

which may be crucial for interpreting EMI models in terms of soil salinity and water content distribution. They also 

provided a synthetic time-lapse EMI dataset very similar to the field condition, allowing the optimization of data 460 

processing and to find the best inversion approach for the field experiment. From the synthetic analysis, we also 

established that the EMI measurements do not return enough subsurface information to resolve the expected sharp 

conductivity changes in this specific experiment.  

2. A comprehensive investigation of our results and joint-interpretation of numerical simulations and time-lapse models 

reveals that the soil Cl- concentration change is the key factor responsible for σb changes when the EMI surveys are 465 

repeated after the irrigation at the same time. In fact, repetition of the EMI surveys after the irrigation has three main 

advantages: i) the soil is wet and conductive and, in such a condition, the signal/noise ratio is usually better and EMI 

data will be more reliable; ii) the water content distribution will not change significantly, allowing to better study the 

impact of soil salinity changes in time; iii) The sensitivity of σb to the Cl- concentration in wet soils is higher and thus 

EMI inversion results may be used to interpret salt propagation with more confidence.  470 

3. A previously developed least-squares 4-D space–time domain inversion algorithm was implemented in this study to 

invert entire time-lapse EMI data sets simultaneously for monitoring soil salinity for the first time. The regularizations 

in this algorithm are introduced in both space and time domains to improve the stability of the inversion process and to 

reduce the inversion artefacts. Using a synthetic test, the applicability of the algorithm has been examined and we 

showed that this approach can provide information about the conductivity variability in space and time. More synthetic 475 

tests are required to further investigate the efficiency of the inversion algorithm under different scenarios, however, we 

anticipate that the algorithm can be used for other EMI monitoring surveys. 
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4. Performing EMI surveys over four experimental plots irrigated with water at four different salinity levels, we evaluated 

the potential of EMI surveys for monitoring the dynamics of soil salinity due to irrigation. Comparing the EMI models 

obtained from four experimental sites, we showed that the σb variations are consistent with the expectations related to 480 

the amount of salt and water irrigated at each plot during the experiment. The water content did not change significantly 

during the EMI measurement campaigns, hence, the temporal variations of σb as well as their difference at each plot are 

mainly related to the soil salinity distributions. In other words, the results indicate that the applied experimental 

methodology is strongly capable of giving information on spatial and temporal variability of soil salinity. Further 

investigations have to be conducted to use EMI sensors for monitoring salinity under significant water content changes 485 

over time. In this case, discriminating the role of water content changes and salinity changes on the σa response may be 

quite complicated if not impossible. 

5. The EMI method provides enormous advantages over traditional methods of soil sampling because it allows in-depth 

and non-invasive analysis, covering large areas in less time and at a lower cost. However, a proper interpretation of the 

EMI inversion models in terms of soil process is usually difficult owing to the fact that the soil electrical conductivity is 490 

a complex function of soil properties, which may vary significantly over space and time. Thus, retrieving soil properties 

from EMI data requires appropriate understanding of site-specific soil processes. Our study shows that the independent 

interpretation of time-lapse EMI data without hydrologic insight and understanding of soil processes may be misleading. 

This fact highlights the necessity of collaboration of geophysicists, soil scientists and hydrologists to construct a 

hydrologic conceptual model which can explain the salinity and water process.  495 
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Table 1: Statistics (mean and coefficient of variation - CV) of the hydraulic property parameters of the two soil layers and 655 
bedrock. 

Layer 
 θr θs α n K0 τ 
 (cm3 cm-3) (cm3 cm-3) (cm-1) (-) (cm d-1) (-) 

Ap 
Mean 0.000 0.329 0.070 1.40 10.30 0.5 
CV%  4.6 15.7 7.9 64.2  

Bw 
Mean 0.000 0.315 0.025 1.38 33.42 0.5 
CV%  13.2 78.2 11.5 240.2  

Bedrock  0.068 0.354 0.055 3.67 19.02 0.5 
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 660 

 
Figure 1: A schematic display of the experimental setup. Four experimental plots were designed equally and irrigated with the 

same amount of water at four different salinity levels. 
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Figure 2: Measured spatial distribution of the soil depth along four experimental plots, P1, P2, P3 and P4. 
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Figure 3: The details of irrigation events and precipitation information during the experiment. The dates of EMI measurements 

are marked with triangular. 675 
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Figure 4: Flow chart of the applied procedure with the key steps in bold. The procedure is explained in details in the text 
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Figure 5. Simulated spatial distribution of the soil depth for the selected scenario. 
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 695 

Figure 6: Soil water content distribution simulations for the selected scenario: a) 17 Oct, b) 26 Oct, c) 14 Nov and d) 23 Nov 2016. 
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Figure 7: Soil Cl- concentration distributions simulations for the selected scenario: a) 17 Oct, b) 26 Oct, c) 14 Nov and d) 23 Nov 

2016 
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Figure 8: σb distributions simulations for the selected scenario: a) 17 Oct, b) 26 Oct, c) 14 Nov and d) 23 Nov 2016. 
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Figure 9: σa data generated from the forward calculation of the σb distributions on 23 Nov, shown in Fig. 8d. (a) HCP mode and 

(b) VCP mode configurations are displayed. 
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Figure 10: σb distributions obtained from the inversion of the synthetic σa data (23 Nov), shown in Fig. 9, using four different 

combinations of two algorithms, S1 and S2, and λ parameters. 
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Figure 11: Synthetic versus modelled σb distribution for four different combinations of S and λ inversion parameters. Different 

colours refer to different depths. Main statistics are also reported. 
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Figure 12: σa distribution of the middle transect in four experimental plots P1, P2, P3 and P4 referred to 23 Nov. (a) and 

(b)show VCP and HCP configuration, respectively. 
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Figure 13: Spatio-temporal distribution of σb along the middle transect in four experimental plots P1, P2, P3 and P4 and for 
four selected dates: 17 Oct, 26 Oct, 14 Nov and 23 Nov 2016. 
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