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Abstract. General circulation models (GCMs) are the primary tools to evaluate the possible impacts of climate change; 

however, their results are coarse in temporal and spatial dimensions. In addition, they often show systematic biases 

compared to observations. Downscaling and bias correction of climate model outputs is thus required for local applications. 

Besides the computationally intensive strategy of dynamical downscaling, statistical downscaling offers a relatively 10 

straightforward solution by establishing relationships between small and large scale variables. This study compares four 

statistical downscaling methods (SDMs) of bias correction (BC), change factor of mean (CFM), quantile perturbation (QP) 

and event based weather generator (EBWG) to assess climate change impact on drought by the end of the 21st century 

(2071-2100) relative to a baseline period of 1971-2000. A set of drought related aspects is analysed: dry day frequency, dry 

spell duration and total precipitation. The downscaling is applied to a 14-member ensemble of CMIP6 GCMs, each powered 15 

by four future scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. A 25-member ensemble of CanESM5 GCM is also 

used to assess the significance of the climate change signals in comparison to the internal variability of the climate. While all 

methods show a good agreement on downscaling total precipitation, the CFM method fails to downscale dry day frequency 

well. The QP method outperforms the others in downscaling dry spells. Using this method, dry day frequency is projected to 

increase significantly in the summer months, with relative changes of up to 20.4% in the worst-case climate change scenario. 20 

At the same time, total precipitation is projected to decrease significantly by up to 41.9% in these months. Lastly, extreme 

dry spells are projected to increase in length by up to 7.4%. 

1 Introduction 

Our climate system is changing. Since the mid-20th century, global warming has been observed (IPCC, 2014). The 

atmosphere and oceans have warmed, ice and snow volumes have diminished and the sea level has risen. Climate change is 25 

linked to a variety of recent weather extremes worldwide. We entered the current decade with Australia’s immense bushfires 

empowered by severe droughts (Phillips, 2020) and devastating mud slides triggered by extreme precipitation in Brazil 

(Associated Press, 2020). Nature and human communities all over the world are feeling the impact of global warming. 
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Projections of how global warming will evolve in the coming decades and centuries would therefore be extremely valuable 

to mankind in order to adapt efficiently. 30 

Droughts are natural hazards that have an impact on ecological systems and socioeconomic sectors such agriculture, 

drinking water supply, waterborne transport, electricity production (hydropower, cooling water) and recreation (Van Loon, 

2015; Xie et al., 2018). Quantification of the evolution of droughts on the local level is thus needed to take adequate 

mitigation measures. The hydrological processes behind drought are complex, with varying spatial and temporal scales. One 

of the aspects of drought is a lack of precipitation. As the projected increase in total precipitation does not systematically 35 

correspond to a decrease in dry days and longest dry spell length (Tabari and Willems, 2018), besides total precipitation, dry 

spells and its building blocks, dry days, should be studied to evaluate the impact of climate change on drought. It is clear that 

prolonged periods of consecutive dry days can play an important role, for example in replenishing groundwater levels in 

time for the dry summer season (Raymond et al., 2019). 

Based on observations of more than 5000 rain gauges in the past six decades, Breinl et al. (2020) assessed the historical 40 

evolution of dry spells in the USA, Europe and Australia. Both trends towards shorter and longer dry spells were found, 

depending on the location. For Europe, extreme dry spells have become shorter in the North (Scandinavia and parts of 

Germany) and longer in the Netherlands and the central parts of France and Spain. Using climate model data, Raymond et al. 

(2018, 2019) found a future evolution towards longer dry spells and a larger spatial extent of extreme dry spells in the 

Mediterranean basin. For Belgium, Tabari et al. (2015) studied future water availability by comparing precipitation and 45 

potential evapotranspiration. Precipitation and the number of wet days were found to increase during summer and to 

decrease during winter, while evapotranspiration was found to increase for both seasons. This suggests drier summers and 

wetter winters. 

General circulation models (GCMs) are the primary tools for climate change impact assessment. However, they produce 

results at a relatively large temporal and spatial scales, the latter varying between 100 and 300 km, and are often found to 50 

show systematic biases in regards to observed data (Ahmed et al., 2019; Song et al., 2020). The bias is especially introduced 

to processes that cannot be captured at the climate model’s coarse scales (e.g., convective precipitation). These processes are 

therefore simplified by means of parametrization, leading to significant bias and uncertainty in the model (Tabari, 2019). In 

order to work with these results on finer scales, which is usually required for hydrological impact studies, a downscaling 

approach can be applied. Dynamical downscaling is done by creating regional climate models that use the output of a GCM 55 

as boundary conditions and work at much finer scales (< 50 km). This comes at a large computational cost and does not 

necessarily account for bias correction (Maraun et al., 2010). An alternative approach is statistical downscaling which 

derives statistical relationships between predictor(s) and predictand, e.g. the large-scale historical GCM output and small-

scale observations from weather stations and use them to downscale GCM results with relative ease to assess future local 

climate change impact (Ayar et al., 2016). 60 

To meet the demand of high spatiotemporal results for the hydrological impact analysis of climate change, the use of 

statistical downscaling methods (SDMs) has recently increased (e.g., Sunyer et al., 2015; Gooré Bi et al., 2017; Smid and 
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Costa, 2018; Van Uytven, 2019; De Niel et al., 2019; Hosseinzadehtalaei et al., 2020). The results of SDMs are, 

nevertheless, often compromised with bias and limitations due to assumptions and approximations made within each method 

(Trzaska and Schnarr, 2014; Maraun et al., 2015). Some of these assumptions cast doubt on the reliability of downscaled 65 

projections and may limit the suitability of downscaling methods for some applications (Hall, 2014). As there is no single 

best downscaling method, the assumptions that led to the final results for different methods require evaluation. Therefore, 

end users can select an appropriate method based on their strengths and limitations. 

This study evaluates the assumptions, strengths and weaknesses of SDMs by a climate change impact analysis for the end 

of the 21st century (2071-2100) relative to a baseline period of 1971-2000. The four selected SDMs are a bias correction 70 

(BC) method, a change factor of mean (CFM) method, a quantile perturbation (QP) method and an event based weather 

generator (EBWG). A set of drought related aspects is studied: dry day frequency, dry spell length and total precipitation. 

The downscaling is applied to a 14-member ensemble of global climate models, each powered by four Coupled Model 

Intercomparison Project Phase 6 (CMIP6) climate change scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The 

CMIP6 scenarios are an update to the CMIP5 scenarios, called Representative Concentration Pathways (RCPs), that only 75 

project future greenhouse gas emissions, expressed as a radiative forcing level in the year 2100 (e.g., RCP8.5). The CMIP6 

scenarios link these radiative forcing levels to socioeconomic narratives (e.g., demography, land-use, energy use), called 

Shared Socioeconomic Pathways (SSPs; O’Neill et al., 2015). Historical observations from the Uccle weather station are 

used for the calibration of the SDMs. A 25-member ensemble of CanESM5 GCM is also used to test the significance of the 

climate change signals. 80 

2 Data and methodology 

2.1 Observed and simulated data 

The SDMs in this study use precipitation time series produced by GCMs as sole predictor. The predictand is also a 

precipitation time series, but at the local point scale (scale of a weather station). The availability of a long and high-quality 

time series of observations from the Uccle weather station enables us to effectively calibrate this relationship. The Uccle 85 

station is the main weather station of Belgium, located at the heart of the country (Lat = 50.80°, Lon = 4.35°), and is run by 

the Royal Meteorological Institute (RMI). Starting in May 1898, the precipitation is being recorded at 10-min intervals with 

the same instrument, making it one of the longest high-frequency observation time series in the world (Demarée, 2003). In 

this study, the 10-min observations are aggregated into daily precipitation values, the same temporal scale as the considered 

GCMs. The information lost by this aggregation is of low interest for studying drought. 90 

Daily precipitation simulations from 14 CMIP6 GCMs are used in this study (Table 1). The data for the grid cell covering 

Uccle is selected for every GCM using the nearest neighbour algorithm. To give the GCMs in the ensemble an equal weight 

in the analysis, the one run per model (1R1M) strategy (Tabari et al., 2019) is applied. Only one run, the first initial 

condition run (r1), is considered for each individual GCM. For one of the GCMs (CanESM5), 25 runs (r1 – r25) are 
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considered in order to allow for quantification of the internal variability in GCM output. To allow for intercomparison of 95 

possible futures, multiple scenarios are selected. The four Tier 1 scenarios in ScenarioMIP (CMIP6) are chosen. This set of 

scenarios covers a wide range of uncertainties in future greenhouse gas forcings coupled to the corresponding socioeconomic 

developments (O’Neill et al., 2016). On a practical note, the GCM runs for these four scenarios are widely available since 

they are a basic requirement for participation in CMIP6. 

2.2 Statistical downscaling methods 100 

Four SDMs methods were selected, each with a different take on the downscaling of dry spells. The first method utilizes a 

direct downscaling strategy by applying the relative change factors directly to the dry spell related research indicators. The 

other methods opt for an indirect downscaling strategy towards dry spells by integrating the changes in dry days, which are 

downscaled directly into a coherent time series. For this, SDM2 solely relies on the temporal (precipitation) structure present 

in the GCM time series. SDM3 on the other hand is expected to actively favor clustering of dry days. Lastly, SDM4 makes 105 

use of a probability distribution to sample dry events from. 

2.2.1 SDM1: Bias correction (BC) of statistics 

The first SDM applies a bias correction to the statistics that describe the precipitation time series. Consequently, this method 

does not return a precipitation time series, unlike the three other SDMs. This method can be regarded as a BC method 

applied directly to statistics (indicators) instead of to a daily precipitation time series. The indicators used in this study, to 110 

which the BC is applied, are discussed later on in subsection 2.3. 

An important assumption of all BC methods is that the climate model precipitation bias is time-invariant, which might 

not be the case (Leander and Buishand, 2007). Furthermore, BC methods assume the temporal structure of wet and dry days 

of the scenario-projected precipitation by the climate model is accurate. Successive days are also assumed independent. 

2.2.2 SDM2: Change factor of mean (CFM) method 115 

The change factor of mean method is frequently applied in the literature. The same simple rationale of the BCM method can 

be applied by using a change factor approach instead. Here, no correction is applied to GCM precipitation projections. 

Instead, the relative change between the historical and projection period runs of the GCM is used to calculate a change factor 

that can then be applied to the observed time series (Sunyer et al., 2012, 2015). The method applied to the precipitation P of 

day t in month m can be summarized by Eq. 1. 120 

𝑃𝑚,𝑡
𝑃𝑟𝑜𝑗

= 𝑎𝑚. 𝑃𝑚,𝑡
𝑂𝑏𝑠            (1.a) 

in which 𝑎𝑚 =
𝑃𝑚,…

𝐺𝐶𝑀𝑆𝑐𝑒𝑛

𝑃𝑚,…
𝐺𝐶𝑀𝐻𝑖𝑠            (1.b) 

In this notation, the precipitation is given for month m and time step t in the observations. Note that observations are often 

available at smaller time steps then the typical temporal scale of 1 day for GCMs. 
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SDM2 does not change the number of dry days (NDD) directly. However, since the change factor is applied to all 125 

precipitation in a given month, days in the Uccle time series with precipitation values close to the wet day threshold (dry 

day: P < 1.0 mm, wet day: P ≥ 1.0 mm) can change state, depending on the change factor am. The Uccle precipitation time 

series has a resolution of 0.1 mm. The wet days nearest to the threshold have a value of 1.0 mm, while the closest dry days 

have a value of 0.9 mm. Consequently, wet days are changed into dry days for am < 1.0, while a transformation of dry days 

into wet days requires am > 
1.0

0.9
= 1.11. In conclusion, SDM2 is expected to show slight changes in terms of dry days, with a 130 

bias towards rising the NDD, and thus the dry spells they compose. The mean monthly total precipitation changes projected 

in this method can be used as a reference for the other methods. 

An important assumption made in all CF methods is that the changes at local (weather station) level are the same as the 

changes described at the spatial, grid-averaged scale of the climate model. Different from the BC methods, the CF methods 

assume the temporal structure of the observed time series is preserved. Furthermore, the CFM method assumes that all 135 

precipitation in a given period (i.e. month or season) is changed by the same factor, regardless of the time step considered or 

the precipitation intensity observed. In addition, the method assumes consecutive days are independent. 

2.2.3 SDM3: Quantile perturbation (QP) method 

Quantile perturbation (QP) methods form a more advanced approach to the application of change factors. The core principle 

of the methods is that the change factors are calculated and allocated based on the exceedance probability of the precipitation 140 

intensities. This is opposed to the idea of applying the same change factor to observed precipitation amounts ranging from 

zero to the most extreme values, as is done in CFM. The QP version applied by Ntegeka et al. (2014) is used here in which 

the empirical exceedance probabilities p are estimated by making use of the formula (
𝑘

𝑛+1
) for Weibull plotting positions. 

This approach can change the exceedance probabilities strongly in comparison to the linear interpolation of the cumulative 

density function represented by (
𝑘

𝑛
) especially for extreme ranks. In literature, this approach is revealed to be suited best for 145 

estimating return periods of extreme events (Makkonen, 2006). 

Dry day frequency is perturbed by making use of a two-state (wet = 1, dry = 0) second order Markov chain process. This 

means the states of the two preceding days are taken into account when determining the chance of conversion of a given day. 

The transition probabilities for the future climate is estimated by applying the change factor principle to these probabilities 

directly. First, change factors are calculated for all probabilities calculated by dividing those found in the scenario climate 150 

model run by those of the historical run. The change factors are then applied to the transition probabilities of the observed 

time series. Due to the randomness introduced by the dry day perturbation step, multiple time series are generated. A 

sensitivity analysis is executed by varying the number of simulations (see Text S2 and Figs. S3-S5). The selection of the 

‘best’ simulation is based on four indicators that can be derived for a precipitation time series: the mean (M), coefficient of 

variability (CV), skewness (S) and average monthly autocorrelation coefficient for a lag of 1 day (𝜌1). 155 
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The CF assumptions remain in place for the QP method, as well as the assumption regarding consecutive days as 

independent. Unlike the CF method, it is now assumed that extreme and non-extreme precipitation amounts can change with 

different factors. The temporal structure of the observed time series is not explicitly changed. Furthermore, it is assumed that 

the highest relative changes are applied to the days with the highest daily precipitation. The method allows for an explicit 

perturbation of the temporal structure of the observed time series. 160 

2.2.4 SDM4: Event based weather generator (EBWG) 

Whereas change factor methods discussed earlier apply the same change factor to all precipitation observed on the same day, 

event based methods identify precipitation events and apply the same change factor to all precipitation within that event. The 

fourth selected SDM in this study is the stochastic and event based approach developed by Thorndahl et al. (2017) which is 

not directly based on change factors but generates stochastic time series instead. Consequently, it belongs to the category of 165 

the weather generators. 

The method constructs a stochastic time series by alternating wet and dry events. The two-component mixed exponential 

distribution is first fitted to the historical observations. This process is detailed in the supplementary information (Text S1 

and Figs. S1-S2). In the second step, the three parameters (𝜆𝑎, 𝜆𝑏 and 𝑝𝑎) of this distribution are converted into stochastic 

variables (sampled from a uniform distribution) in order to accommodate for climate change. A similar approach is used for 170 

extreme precipitation, requiring the sampling of two parameters. In total, five parameters are sampled from uniform 

distributions for each season. 

The stochastic nature of this method requires a large number of simulations. These are evaluated using several target 

variables and the corresponding change factors, which are calculated using the GCM ensemble. For each climate change 

scenario, one simulation is picked from the accepted simulations as the ‘best’ simulation, based on the performance it shows 175 

for different target variables. This method requires to make an arbitrary choice on several parameters: the boundaries of the 

uniform sampling intervals, the number of simulations, target variables and their weights. The sampling boundaries for the 

dry spell parameters and the number of simulations are the subject of a sensitivity analysis (see Text S2 and Fig. S6). The 

other parameters are further discussed in detail hereafter. 

Parameters for precipitation change factor function: The 2 parameters (slope 𝛼 and intercept 𝛽) of a linear change factor 180 

function, used to alter event precipitation amounts in function of its exceedance probability are sampled from uniform 

distributions. Thorndahl et al. (2017) specify that the sampling boundaries are empirically selected by executing the method 

for very broad sampling ranges and iteratively narrowing them down based on the simulations that are accepted. When 

applying this strategy, a test run comprising 50,000 simulations did, however, not show clear boundaries for these 

parameters. Instead, sampling ranges are chosen at 0.000 – 0.050 and 0.80 – 1.20 for 𝛼 and 𝛽 respectively, for all seasons. 185 

These values correspond well to the parameter ranges found by Thorndahl et al. (2017) for the accepted runs in their study. 

Target variables: The performance of a simulation is evaluated based on a set of target variables. This set is altered in 

comparison to the original implementation in order to fit the specific needs of this study better. Two target variables related 
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to precipitation with T = 2 years and T = 5 years are removed. Instead, five new target variables are added, assuring the 

annual and seasonal number of dry days is adequately reproduced in the accepted simulations (Table 2). The weights, 190 

attributed to each target variable for calculation of the overall performance, are attributed in favor of the dry days target 

variables in order to reflect their importance for this study. The largest weights are attributed to the target variables that are 

expected to undergo the largest changes, which are expected to be the hardest to simulate. 

Like the other SDMs, some assumptions are made in the EBWG method. It makes assumptions similar to change factor 

methods due to the selection procedure. The changes found for climate model grid-averaged spatial scales are treated as 195 

targets for the stochastic simulations. Furthermore, this weather generator assumes wet event durations will not change, 

while dry event durations will. In addition, it is assumed that observed time steps with larger precipitation amounts will have 

a relatively larger increase in precipitation in comparison to time steps with lower precipitation amounts. 

2.3 Research indicators 

In order to compare climate change scenarios and SDMs, five types of research indicators (RIs) are used in this study (Table 200 

3). The most important indicators for this study are related to dry days, dry spells and total precipitation. A typical threshold 

used for separating wet and dry days is 0.1 mm (Pérez-Sánchez et al., 2018; Breinl et al., 2020). This value corresponds to 

the standard resolution used for precipitation observations. However, in recent climate change projection studies this 

threshold is often chosen higher, at 1 mm (Raymond et al., 2018; Tabari and Willems, 2018; Kendon et al., 2019; Han et al., 

2019). This is done to counter the tendency of coarse climate models (GCMs) to overestimate the number of days with low 205 

precipitation (Tabari and Willems, 2018), the so-called ‘drizzle problem’ (Moon et al., 2018). 

Following the definition used in the climate change study by Raymond et al. (2018), a dry spell is defined as consecutive 

dry days with less than 1 mm of precipitation. Furthermore, they define several classes of dry spell lengths (Table 4), based 

on the percentiles of dry spell length calculated using the historical period of the study. Dry spells are not to be confused 

with the terms dry events (Willems, 2013; Willems and Vrac, 2011) or inter-events (Sørup et al., 2017; Thorndahl et al., 210 

2017) used in the SDMs. This is due to the definition of dry spells comprising consecutive dry days (≥ 2 days). In the 

discussed SDM implementations, dry events and inter events respectively have minimum lengths of one day and even 

shorter than one day. 

The number of dry days (NDD) is considered on a monthly basis. To assess changes in dry spell patterns, the 

classification discussed in the literature review by Raymond et al. (2018) is followed. For each of the five classes based on 215 

dry spell lengths, the number of dry spells is calculated. An additional indicator gives more information on the class 

containing the longest dry spells, very long dry spells (VLDS). Here, the median VLDS length is used as an indicator. The 

indicators related to dry spells are calculated over the entire 30-year period to prevent splitting dry spells up. The last 

indicator used in this research for drought assessment is the mean monthly precipitation (P tot). 
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An additional precipitation indicator (Pmax) describes the extreme precipitation in a given month m and allows for a rough 220 

comparison in terms of extreme precipitation, which is useful to compare how the different SDMs handle extreme 

precipitation. Pmax is defined as the monthly maximum daily precipitation averaged over the 30-year period. 

2.4 Significance testing of climate change signals 

The projected research indicators found after statistical downscaling can be compared to those found in the observed time 

series. For research indicator i with value I, this climate change signal (CCSi) is defined as 𝐼𝑖
𝑃𝑟𝑜𝑗

 divided by 𝐼𝑖
𝑂𝑏𝑠. Something 225 

can be said about the significance of the projected CCS in the GCM ensemble by comparing it with the internal variability of 

one climate model. A significance test is executed based on the Z-score (Tabari et al., 2019). Here, the stochastic variable X 

represents CCSi. The null hypothesis of the Z-test corresponds to a situation without climate change: the mean of CCSi is 

equal to 1 (𝐻0: 𝜇 = 1). The standard deviation 𝜎 can be estimated by the standard deviation of CCSi found over the 25 

CanESM5 runs, denoted si,25. The difference between these GCM runs is that they are initialized using different starting 230 

conditions, i.e. points in the pre-industrial control run. The differences in CCS for these 25 runs can thus be attributed to the 

internal variability of the climate system, which is regarded as ‘noise’. Consequently, the CCS is said to be significant if the 

signal-to-noise ratio (S2N), here equal to |Z|, is sufficiently large. Similar as in Tabari et al. (2019), the Z-test is applied to 

the median CCSi over the 14-member GCM ensemble. For a confidence level of 95%, the null hypothesis is rejected if  

|𝑍| = Φ (1 −
0.05

2
) > 1.96. 10% and 20% significance levels correspond to Z = 1.64 and 1.28, respectively. An important 235 

assumption in this approach is that si,25 is a representative description for all climate models within the GCM ensemble. 

3 Results 

Figure 1 shows the number of dry days per month (NDD). The results are characterized by the median of the CMIP6 GCM 

ensemble. For SDM1 – 3, each member of the ensemble is downscaled separately. As a consequence, the variation within 

the downscaled ensemble can be looked at as well. This is not possible for SDM4 since it downscales the ensemble as a 240 

whole. The median indicator values for SDM1 – 3 show a similar pattern. Across the four scenarios, the NDD increases 

between June and September in comparison to the Uccle observations. As expected, the increase becomes larger for higher 

level scenarios. NDD remains about the same for the other months. Application of SDM4 does not capture the larger number 

of NDD during the summer months well. Instead, NDD remains relatively unchanged throughout the year. Comparison to 

the results of the CMIP6 GCM projections (before downscaling) learns the Uccle climate has a more gradual evolution of 245 

NDD over the year than the GCM projections. The last observation relates to the variation of the SDM results. SDM1 shows 

the largest variation of NDD within the ensemble, closely followed by SDM3. SDM2 shows a considerably smaller 

variation. The results for the CMIP6 GCMs (without downscaling), differ quite largely from the downscaled series during 

the winter months but show good agreement during summer. 
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To discuss the dry spell related RIs, dry spells are categorized by the quantiles of dry spell lengths in the observed 250 

(Uccle) time series. Table 4 gives an overview of the limits for each dry spell class. The results for the NDS indicators 

(number of dry spells per class, over a 30-year period) are summarized in Fig. 2. Results not only vary strongly between 

SDMs, but between CMIP6 scenarios too. Most results seem to agree that there is an increase in the medium dry spells 

(NDS3) in comparison to the observations. The magnitude of these changes is found to increase for higher level scenarios. 

Long dry spells (NDS4) are found to increase in general, although the magnitude of this increase remains more or less 255 

constant for the different scenarios. More ambiguity is present for NDS1, NDS2 and NDS5, where the nature of the changes 

(increase or decrease) depends on the considered scenario. Without downscaling, the CMIP6 GCMs generally show a lower 

number of dry spells than the SDMs across all classes and a higher value for the DSL indicator. 

Next to NDS5, DSL (median VLDS length) is a characteristic of the most extreme dry spells. Results are given in Fig. 2. 

In comparison to the historical observations, the general trend is towards an increasing value for DSL. Across the different 260 

scenarios, the magnitude of the changes only varies slightly. 

The results for Ptot (mean monthly precipitation) are given in Fig. 3. Compared to the historical situation, the clearest 

changes appear in the summer months (June – September) where Ptot decreases according to SDM1 – 3. This decrease 

becomes larger for higher-end scenarios (SSP3-7.0 and SSP5-8.5). A similar trend is found for SDM4 between June and 

August, especially for the higher-end scenarios. Between October and May, SDM1 – 3 projections show an increase in Ptot, 265 

although less pronounced than the decrease in the summer months. In terms of variability, SDM1 – 3 also show similar 

results. The CMIP6 GCM ensemble without downscaling shows higher values for winter season and lower values for 

summer season in comparison to the downscaled series. 

The second series of RIs related to precipitation is Pmax. As mentioned earlier, this research indicator does not attribute 

towards the drought investigation that is the main objective of this study. Rather, the Pmax indicator is used to gain further 270 

insight in the way the selected statistical downscaling methods work, as many statistical downscaling methods are originally 

created for extreme precipitation studies. 

Pmax, the maximum daily precipitation on a monthly basis and averaged over the 30-year period, is given in Fig. 4. An 

interesting observation is that SDM1 – 3 project a very similar and relatively slight increase during winter season, while for 

summer season the results vary greatly. The largest changes in comparison to the historical period are given by SDM2, 275 

where a considerable decrease is found during the summer months. The results of SDM4 are again less similar to the results 

of the other SDMs. This SDM seems to show a different pattern of changes for each scenario. Generally speaking, the 

CMIP6 GCM ensemble before downscaling shows relatively similar results during the winter months, while its results for 

the summer months are slightly lower than the SDM results. 

The assessment of the significance of the results is based on the relative changes in comparison to the historical 280 

observations. In this study, this relative change is defined as the climate change signal (CCS). The median CCS of the GCM 

ensemble is given in Tables 5 and 6 for the different scenarios, SDMs and RIs. Based on the variation in CCS within the 25 

https://doi.org/10.5194/hess-2020-506
Preprint. Discussion started: 19 October 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

CanESM5 runs (after downscaling), the significance of the median CCS of the ensemble can also be indicated. This is not 

possible for SDM4 as it does not downscale each member of the ensemble separately. 

The monthly indicators NDD and Ptot mainly show significance for the medium to high level scenarios during the 285 

summer months and to a lesser extent during the winter months. The same observation can be made for Pmax, although 

significance is only found for SDM2 during the summer months. Furthermore, some of the dry spell related indicators are 

significant. Again, most significant results are found for SDM2. 

4 Discussion 

4.1 SDMs 290 

From the results, it is clear that the SDMs can act quite differently. By uncovering where these differences stem from, the 

performance of the SDMs for drought research can be quantified. Hence, the results for the four SDMs are discussed and 

linked to the methods’ strengths and weaknesses. 

4.1.1 SDM1 

The first method, SDM1, applies a bias correction directly to the research indicators. This means no underlying time series is 295 

created. A first consequence is that not all projections are necessarily compatible with each other if the indicators are 

interdependent. This is the case for NDS since there are only a limited number of dry days to be distributed over the different 

classes of dry spells. 

Second, the number of extreme events such as LDS and VLDS is limited. In the 30-year period of observations in Uccle, 

only 20 and 11 occurred, respectively. Furthermore, the number of LDS and VLDS varies substantially among CMIP6 300 

projections (9 – 34 and 3 – 51 under SSP5-8.5). This leads to very large bias correction factors which in turn lead to 

(over)spectacular results after downscaling (see Fig. 2; NDS4 and NDS5). The same problem holds true for the DSL 

indicator. An absolute bias correction approach instead of a relative one might be more appropriate. In the same spirit, 

Raymond et al. (2019), discuss changes in extreme dry spell lengths in absolute terms (days) rather than percentages. 

Note that these concerns do not take away from this method’s ability to qualitatively downscale indicators such as NDD 305 

or Ptot. These indicators are often projected by making use of relative change factors, as is also the case for the other SDMs. 

4.1.2 SDM2 

SDM2 does not account directly for changes in NDD. This CFM method applies a change factor to the observed time series 

in order to match the changes in Ptot. For this specific research indicator, the result should consequently be no different than 

the one obtained using SDM1. The slight differences between these methods in Fig. 3 might be attributed to rounding 310 

differences. 
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The rationale behind the application of this method to assess changes in drought finds its roots in the definition of the dry 

day threshold at 1 mm. As mentioned earlier, this is done to counter for the so-called ‘drizzle problem’ many GCMs are 

affected by, meaning they overestimate the number of days with low numbers of precipitation. Consequently, days with 

precipitation amounts just below this threshold are classified as ‘dry’, while they might very well be lifted above this 315 

threshold in months where Ptot is increased by the SDM. Vice versa for days just over the limit changing into dry days in 

months with a decreasing Ptot. Fig. 3 shows this effect quite clearly for the summer months, where Ptot is projected to 

decrease. The relative change in NDD (+7.8% in August) remains, however, rather small in comparison to SDM1 (+13.8%) 

or SDM3 (+14.8%), which both account for NDD directly. 

The most interesting aspect in applying this SDM, however, is the lack of vital assumptions as to how the changing NDD 320 

affect the dry spells. All required information is contained within the time series created by the GCM. In this light, the 

general trends for NDS and DSL indicators as projected by SDM3 are interesting to examine, while keeping in mind the 

underlying changes in NDD are considerably smaller than one would find through a direct change factor approach. 

4.1.3 SDM3 

An important aspect for drought assessment in SDM3 is in the form of the separate dry day perturbation step. Here, the time 325 

series is perturbed to match NDD projections. Consequently, SDM3 should be equal to SDM1 in terms of NDD projections. 

This is not exactly true, as shown in Fig. 1, but the differences are small enough to attribute them to rounding off the results 

differently. As dry days are the building blocks of dry spells, a solid downscaling approach towards NDD is vital for 

downscaling NDS and DSL. Out of the four methods considered in this study, SDM3 is the only method that succeeds in 

downscaling the NDD in an appropriate manner while coherently downscaling the dry spells as well. 330 

4.1.4 SDM4 

In several ways, SDM4 seems to be the odd one out among the considered SDMs. The original implementation of this 

method (Thorndahl et al., 2017) does, for instance, not downscale each member of the CMIP6 GCM ensemble separately as 

is the case for the other methods. Instead, SDM4 aims to create one time series that corresponds well to the mean of the 

ensemble, at least in terms of the selected target variables. In theory, an implementation that downscales each member of the 335 

GCM ensemble separately is possible. Tests executed in this direction uncovered a practical problem related to the sampling 

boundaries for parameters governing the dry event duration distribution. As shown in the sensitivity analysis (see Text S2), 

the SDM struggles to deal with large changes in NDD, e.g. under SSP5-8.5. While the changes in the sensitivity analysis are 

averaged out over the GCM ensemble, they are not when downscaling each ensemble member separately. The much larger 

changes that would have to be tackled by the SDM4 would require much larger sampling boundaries. The largest change 340 

found in the GCM ensemble (one of the CanESM5 runs under SSP5-8.5) is a decrease of 40% in the number of dry days. To 

accommodate for this change, sampling boundaries upwards of 70% are required in theory. It is expected that an even larger 

sampling range is needed, in combination with large numbers of simulations to generate a comfortable number of accepted 
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simulations. Testing at 40% and 30,000 simulations showed that for many members in the GCM ensemble, no accepted 

simulations could be generated. This is especially true for the SSP5-8.5 scenario. 345 

For the monthly indicators, NDD and Ptot, SDM1 – 3 more or less match the temporal structure found in the Uccle 

observations. This is clearly not the case for SDM4. Two reasons can be identified for this. First, the method is implemented 

on a seasonal basis, following the original implementation (Thorndahl et al., 2017). Therefore, the method does not try to 

match changes in NDD or Ptot for every month but rather for the season as a whole. A comparison between a seasonal and a 

monthly implementation might be interesting to further investigate this method. A monthly implementation is expected to 350 

require larger numbers of simulations in order to achieve similar numbers of accepted simulations. This is due to the larger 

number of research indicators present (monthly instead of seasonal). Second, the downscaled time series do not necessarily 

match the mean of the GCM ensemble exactly for each research indicator. On the contrary, the method accepts all simulated 

time series that remain within the maximum deviation for each target variable (Table 7). These maximum deviations can be 

very large, e.g. 21.5% for NDD during winter and 40.3% for P tot in summer (both under SSP5-8.5). Consequently, 355 

simulations that are far from the mean projections for some of the key research indicators (e.g. number of dry days) enter 

into the pool of accepted simulations and might be selected as the ‘best’ simulation due to the high performance of the 

simulation for other target variables. This explains the difference of SDM4 for NDD (Fig. 1) and Ptot (Fig. 3) in comparison 

to the SDMs that accurately downscale these indicators (SDM1 & 2 and SDM1 – 3 respectively), even when grouping the 

results per season (DJF – MAM – JJA – SON). 360 

The inaccurate simulation of NDD affects the dry spell related RIs. It was concluded earlier that this is also the case for 

SDM2. An additional concern for this SDM is that only one data point (best simulation) is available for comparison in Fig. 2, 

instead of the 14 data points (size of the ensemble) for the other SDMs. While this concern also holds true for the other RIs, 

it is mitigated by using these RIs (or similar) as target variables. In order to prevent the problems encountered with a relative 

bias correction applied directly to the dry spell indicators (see SDM1), this strategy cannot be followed for dry spell related 365 

RIs. 

4.2 Significance of climate change signals 

The significance of the results is initially introduced to evaluate how the signal (median CCS) compares to the noise present 

in the CMIP6 GCM output, before downscaling. These results are implicitly formulated in Table 5 since they are the same as 

SDM1’s. As discussed earlier, only a limited number of research indicators are found to be significant, even at a relatively 370 

low significance level of 20%. The main takeaway from these results is that the increasing number of dry days in the summer 

months (between 13.8% and 20.4%) is found to be significant for the high level climate change scenarios. Besides this, the 

number of the shortest dry spell class (NDS1) significantly decreases (up to 10.1%) while the number of long dry spells 

(NDS4) is found to significantly increase (by 86.7%) under SSP3-7.0. 

The same methodology is followed to assess the significance of the results after downscaling. From the discussion on the 375 

different SDMs, it is clear that not all RIs are necessarily downscaled accurately. The results should thus be interpreted with 
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care. As mentioned earlier, the main concern for SDM1 is the direct downscaling of the dry spell related RIs, due to the 

small sample size and the lack of coherence between the projections for the different dry spell classes. As a consequence, the 

86.7% increase for NDS4 is interpreted as an inaccurate result rather than a significant one. For SDM2, it is observed that 

only Ptot is downscaled accurately. The significant results for Pmax during the summer months should thus be considered as 380 

inaccurate. SDM3 on the other hand shows off some interesting results. This method downscales the monthly indicators 

(NDD, Ptot and Pmax) accurately. Dry spells are not downscaled directly, but by randomly integrating the NDD changes in the 

original time series. This assures the dry spell related RIs are coherent. As such, the significant 7.4% increase for DSL under 

SSP5-8.5 and a significance level of 5% is the most interesting results across all SDMs. 

4.3 Research indicators 385 

Five different types of research indicators are selected for this research. This subsection shortly evaluates the value of these 

indicators for this research. 

NDD and Ptot are both straightforward indicators that are widely used in literature for drought assessment. Both have 

proven to be useful to compare SDMs and gain insight in these methods since they often rely directly on them. For example, 

SDM2 is governed solely by Ptot while SDM4 directly considers NDD and SDM3 both through its target variables. In this 390 

study, both indicators were structured on a monthly basis. It is believed that a seasonal structure could also form a successful 

alternative. 

As for the dry spell indicators, the NDS RIs offer interesting insights into the changes that occur within the dry spell 

household. The system introduced by Raymond et al. (2018) offers a straightforward but decent classification. Besides the 

different dry spell class indicators, the DSL indicator is introduced in order to gain further insight into the longest and most 395 

important dry spell class and fulfils this role adequately. An indicator describing the most extreme dry spell within the 30-

year period could make for an interesting addition in future research. 

Last is the Pmax indicator, defined as the maximum daily precipitation per month averaged over the 30-year period. This 

indicator does not capture all nuances of extreme precipitation, but gives a rough impression of extreme precipitation 

changes. In this research, the Pmax indicator merely functions as a simple illustration on how the SDMs process extreme 400 

precipitation differently. It is not a relevant indicator for drought research. 

5 Conclusions and recommendations 

Four statistical downscaling methods were applied to the CMIP6 GCM ensemble for climate change impact assessment on 

drought. The main difference is how they treat the downscaling of dry spells. SDM1 uses a bias correction applied directly to 

the dry spell research indicators, while SDM2 – 4 approach dry spell downscaling indirectly by changing dry day frequency 405 

in the precipitation time series. SDM2 (CFM method) uses the information available in the time series (‘drizzle’) to convert 

the state (wet or dry) of days that are just below or over the wet day threshold (1 mm/day). SDM3 (QP method) applies 
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changes in dry day frequency at random places in the time series. The final method, SDM4 (EBWG), samples dry event 

lengths from a mixed exponential distribution. Other indicators, NDD and P tot are downscaled directly across all methods, 

except for SDM2, which only takes Ptot into account. 410 

The results for SDM1 mirror the relative changes found in the CMIP6 GCM ensemble. While this seems to be a good 

approach for NDD and Ptot, the dry spell related indicators seem to be inflated due to the relative change applied to indicators 

with low occurrences, e.g. only 11 dry spells with a length over 25 days are observed in the Uccle precipitation time series. 

SDM2 fails to project NDD correctly. While this might have been expected (NDD is not taken into account during 

downscaling), this method is tested to see what dry spell patterns are ‘hidden’ into the original time series. Due to the poor 415 

projections of dry day frequency, this method is not fit to evaluate dry spell changes. 

Similar to SDM1, SDM3 downscales NDD directly using the change factors found in the CMIP6 GCM ensemble. By 

altering the time series at random to match the dry day frequency, the dry spells are altered indirectly. Out of the four SDMs 

used in this study, SDM3 has the best performance in downscaling dry spells. Lastly, the event based weather generator 

(SDM4) is a complex but potent method. This method uses the relative changes found in the CMIP6 GCM ensemble as 420 

targets for NDD and Ptot. A rather large deviation from these projections is, however, allowed. This results in a poor 

downscaling of the changes in dry day frequency and consequently the projections for dry spells are inaccurate, despite the 

interesting approach this SDM offers towards dry spells (mixed exponential distribution). Stricter selection criteria and more 

optimized target variables should improve this method’s performance, likely at a larger computational cost. 

These conclusions put the results of SDM3 in the spotlight. The most important finding is that the number of dry days is 425 

projected to increase significantly in the summer months, from June until September. The magnitude and significance level 

of this increase depend on the considered climate change scenario: between 7.4% and 10.6% for SSP2-4.5 (significance level 

𝛼 = 10%), between 12.0% and 15% for SSP3-7.0 (𝛼 = 5%) and between 13.6% and 20.4% for SSP5-8.5% (𝛼 = 5%). 

Furthermore, the DSL is found to significantly increase by 7.4% for SSP5-8.5 (𝛼 = 5%). 

The event based weather generator (SDM4) offers ample opportunity for further improvement. The method could be 430 

structured per month instead of per season to capture month-to-month variation to match the other methods. Application of 

the method to each GCM in the ensemble would create more data points, allowing the quantification of the significance of 

the results found by using this method. Furthermore, alterations could be made to the acceptance criterion in order to lower 

the allowed deviations from the changes projected by the GCMs. This is especially important for accurate simulations of the 

number of dry days. With the same goal in mind, the mix of target variables and their corresponding weights could be 435 

changed (e.g., only target variables related to dry days). Furthermore, different dry event duration distributions (Weibull, 

exponential, gamma, generalized Pareto...) can be considered besides the mixed exponential distribution that is used in the 

original implementation and in this research. 

There is also room for new downscaling methods that are optimized to deal with dry spells. For example, a method that 

uses quantile mapping to assess dry spell changes (similar to precipitation downscaling in the QP method) could make for an 440 
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interesting comparison to the other methods. In addition, a method that applies absolute changes to the dry spell indicators 

could be studied. 

Several research indicators can be used to assess the SDMs for the impact analysis of climate change on drought. In 

combination with Ptot, one could consider evapotranspiration to assess water availability. Furthermore, additional indicators 

can be used to study dry spells. Besides the median length of very long dry spells, the maximum dry spell length over a 445 

certain period can also be of interest. Furthermore, the temporal behavior of dry spells could be studied, for example based 

on their starting, ending or middle day. This might be especially useful to assess the impact of dry spells during the wet 

season, when water tables have to be replenished in order to bridge the dry summer season. 

For climate change impact assessment, this study made use of the CMIP6 GCMs. CMIP6 is an ongoing project, not all 

participating research institutes have completed and uploaded their GCM runs yet. Future studies should keep an eye on the 450 

CMIP6 database (ESGF archive) for additional suitable candidates to enlarge the GCM ensemble. As the size of the used 

CMIP6 GCM ensemble is large enough to be exempt from the small sample size issue for climate change studies 

(Hosseinzadehtalaei et al., 2017), similar results are expected to be found using a larger GCM ensemble. However, including 

more GCMs boosts the confidence to the results and allows a more comprehensive uncertainty analysis. 

 455 
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Figure 1. Graphical representation of NDD results. Coloured lines represent median values of the ensemble, shades 

represent the variation within the ensemble (10% – 90% quantiles). CMIP6 GCM projections (not downscaled) and Uccle 

observations are given as reference.  

https://doi.org/10.5194/hess-2020-506
Preprint. Discussion started: 19 October 2020
c© Author(s) 2020. CC BY 4.0 License.



20 

 

 

 

 

 

 

 

Figure 2. Boxplot representation of NDS and DSL results. SDM4 downscales the ensemble as a whole, resulting in only one 

data point. CMIP6 GCM projections (not downscaled) and Uccle observations are given as reference.  
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Figure 3. Graphical representation of Ptot results. Coloured lines represent median values of the ensemble, shades represent 

the variation within the ensemble (10% – 90% quantiles). CMIP6 GCM projections (not downscaled) and Uccle 

observations are given as reference.  
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Figure 4. Graphical representation of Pmax results. Coloured lines represent median values of the ensemble, shades represent 

the variation within the ensemble (10% – 90% quantiles). CMIP6 GCM projections (not downscaled) and Uccle 

observations are given as reference.  
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Table 1. Overview of the CMIP6 GCM ensemble. 

Model Resolution His. SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Lat [°] Lon [°] 

ACCESS-ESM1-5 1.3 1.9 1 1 1 1 1 

BCC-CSM2-MR 1.1 1.1 1 1 1 1 1 

CanESM5 2.8 2.8 25 25 25 25 25 

CESM2-WACCM 0.9 1.3 1 1 1 1 1 

EC-Earth3-Veg 0.7 0.7 1 1 1 1 1 

FGOALS-g3 2.0 2.0 1 1 1 1 1 

GFDL-ESM4 1.0 1.3 1 1 1 1 1 

INM-CM5-0 1.5 2.0 1 1 1 1 1 

IPSL-CM6A-LR 1.3 2.5 1 1 1 1 1 

KACE-1-0-G 1.3 1.9 1 1 1 1 1 

MIROC6 1.4 1.4 1 1 1 1 1 

MPI-ESM1-2-HR 0.9 0.9 1 1 1 1 1 

MRI-ESM2-0 1.1 1.1 1 1 1 1 1 

NorESM2-MM 0.9 1.3 1 1 1 1 1 
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Table 2. Target variables used for evaluation of the simulations of SDM4. 

Target variable Abbr. Unit Weight 

Annual number of dry days and – – 

Seasonal number of dry days, winter sndwi – 0.10 

Seasonal number of dry days, spring sndsp – 0.10 

Seasonal number of dry days, summer sndsu – 0.20 

Seasonal number of dry days, autumn sndau – 0.10 

Annual precipitation ap mm – 

Seasonal precipitation, winter spwi mm 0.03 

Seasonal precipitation, spring spsp mm 0.06 

Seasonal precipitation, summer spsu mm 0.15 

Seasonal precipitation, autumn spau mm 0.06 

Annual number of events above 10 mm per day n10mm – 0.10 

Annual number of events above 20 mm per day n20mm – 0.05 

Annual maximum daily precipitation mdp mm 0.05 
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Table 3. Overview of the considered research indicators. 

Research indicators Abbr. # 

Mean monthly number of dry days NDDm 12 

Number of dry spells per class NDSc 5 

Median VLDS length DSL 1 

Mean monthly precipitation 𝑃𝑚
𝑡𝑜𝑡 12 

Maximum monthly precipitation 𝑃𝑚
𝑚𝑎𝑥 12 

  42 
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Table 4. Classification of dry spells based on their length along with the limits for each class derived from observed time 

series. 

Class name Abbr. Research indicator Percentiles Limits [days] 

Very short dry spell VSDS NDS1 < 20th [2, 7] 

Short dry spell SDS NDS2 20th – 40th [8, 13] 

Medium dry spell MDS NDS3 40th – 60th [14, 19] 

Long dry spell LDS NDS4 60th – 80th [20, 25] 

Very long dry spell VLDS NDS5 > 80th [26, ∞] 
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Table 5. CCS and corresponding significance for SDM1 and SDM2. CCS is the change relative to the historical observations 

(1971-2000). Numbers in italic, bold and bold italic denote significant changes at 20%, 10% and 5% levels, respectively. 

Research indicator Obs. SDM1 SDM2 

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

DSL 27 -0.90% 2.90% 3.40% 0.90% 3.70% 3.70% 3.70% 3.70% 

NDSc 1 795 -3.10% -3.20% -6.20% -9.00% -0.60% -0.80% -0.90% -0.30% 

2 219 -1.00% -1.70% 1.60% 0.50% -1.40% -1.40% -1.80% -2.70% 

3 68 -9.40% 19.00% 25.00% 26.20% 1.50% 2.90% 4.40% 5.90% 

4 20 40.20% 50.00% 86.70% 61.30% 5.00% 10.00% 10.00% 25.00% 

5 11 9.80% 27.20% 114.30% 150.00% 0.00% 0.00% 9.10% 9.10% 

NDDm Jan 18 -1.70% 2.00% 3.70% -7.20% -2.90% -2.90% -2.90% -2.90% 

Feb 18 1.00% -1.30% -0.90% -2.60% 0.00% -1.60% 0.00% -1.60% 

Mar 18 -7.30% -2.70% 1.80% 0.20% 0.00% 0.00% 0.00% -1.10% 

Apr 19 -1.30% -1.00% 1.10% -1.00% 0.00% 0.00% 0.00% -2.40% 

May 20 1.50% 2.00% 6.10% 10.60% 0.00% 0.00% 2.30% 0.00% 

Jun 18 6.20% 12.70% 13.60% 20.10% 1.30% 3.30% 3.30% 5.80% 

Jul 21 4.20% 11.70% 14.80% 20.40% 1.20% 3.00% 3.90% 7.30% 

Aug 22 5.00% 11.00% 15.00% 13.80% 1.50% 3.00% 3.60% 7.80% 

Sep 21 3.70% 8.40% 11.50% 16.30% 1.60% 2.40% 3.70% 2.60% 

Oct 21 -0.60% 2.70% 2.60% 4.70% 0.00% 0.00% 0.00% 0.00% 

Nov 17 2.10% 7.40% 2.90% 1.50% 0.00% 0.00% 0.00% -1.60% 

Dec 18 -6.70% -6.90% -8.40% -11.10% -1.50% -1.50% -1.50% -3.40% 

𝑃𝑚
𝑡𝑜𝑡 Jan 71.2 13.00% 12.70% 14.20% 21.10% 14.30% 13.80% 16.20% 22.10% 

Feb 53.1 1.60% 8.50% 8.50% 11.80% 1.30% 12.00% 8.90% 12.40% 

Mar 72 7.80% 6.70% 6.60% 6.20% 8.70% 7.00% 7.00% 19.80% 

Apr 54.7 7.60% 7.30% 7.10% 9.60% 7.40% 7.40% 7.70% 15.10% 

May 69.7 3.30% 0.10% -3.30% 0.00% 3.30% 1.30% -0.30% 2.80% 

Jun 77.1 -3.50% -11.60% -16.40% -24.70% -1.90% -10.80% -16.70% -26.40% 

Jul 68.9 -5.20% -16.90% -28.30% -29.70% -4.70% -17.60% -27.10% -45.90% 

Aug 64.4 -12.10% -17.70% -26.90% -43.50% -13.30% -18.20% -28.20% -45.70% 

Sep 62.1 -7.10% -10.20% -21.40% -19.10% -5.40% -10.30% -24.00% -20.50% 

Oct 68.8 7.90% 8.50% 1.10% 5.30% 8.40% 8.60% 1.00% 8.70% 

Nov 79.6 5.70% 4.90% 7.70% 10.00% 5.80% 8.00% 8.20% 16.20% 

Dec 78.7 10.60% 20.10% 22.20% 26.00% 11.20% 20.30% 22.60% 30.90% 

𝑃𝑚
𝑚𝑎𝑥  Jan 13.5 14.90% 14.60% 19.60% 24.80% 14.30% 13.80% 16.20% 22.10% 

Feb 12.4 1.90% 6.50% 9.20% 13.70% 1.30% 12.00% 8.90% 12.40% 

Mar 14.2 11.80% 12.10% 15.30% 16.20% 8.70% 7.00% 7.00% 19.80% 

Apr 12.3 8.60% 9.50% 11.50% 13.40% 7.40% 7.40% 7.70% 15.10% 

May 16.6 4.10% 8.30% 10.40% 20.50% 3.30% 1.30% -0.30% 2.80% 

Jun 19.3 0.00% 1.90% -4.10% -7.80% -1.90% -10.80% -16.70% -26.40% 

Jul 16.9 2.60% -5.90% -4.10% -12.30% -4.70% -17.60% -27.10% -45.90% 

Aug 18.7 -4.00% -11.50% -14.50% -22.20% -13.30% -18.20% -28.20% -45.70% 

Sep 15.7 5.00% 2.40% -3.30% 3.30% -5.40% -10.30% -24.00% -20.50% 

Oct 17.2 13.40% 11.20% 14.10% 15.80% 8.40% 8.60% 1.00% 8.70% 

Nov 16.6 5.00% 10.20% 14.80% 21.90% 5.80% 8.00% 8.20% 16.20% 

Dec 15.8 6.10% 15.60% 20.60% 30.80% 11.20% 20.30% 22.60% 30.90% 
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Table 6. CCS for SDM3 and SDM4 and corresponding significance for SDM3. CCS is the change relative to the historical 

observations (1971-2000). Numbers in italic, bold and bold italic denote significant changes at 20%, 10% and 5% levels, 

respectively. 

Research indicator Obs. SDM3 SDM4 

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

DSL 27 3.70% 3.70% 6.50% 7.40% 7.40% 7.40% -3.70% 18.50% 

NDSc 1 795 5.50% 3.60% 1.30% 2.20% 11.60% -5.40% 0.50% -7.70% 

2 219 -2.70% -0.70% -1.10% 2.50% -2.30% -1.40% 23.30% 25.10% 

3 68 -1.50% 6.60% 11.00% 9.60% -30.90% 7.40% 7.40% 20.60% 

4 20 0.00% 5.00% 22.50% 20.00% 0.00% 20.00% -20.00% 50.00% 

5 11 4.50% 13.60% 40.90% 50.00% -18.20% 36.40% -18.20% -54.50% 

NDDm Jan 18 -0.50% 1.50% 1.60% -3.40% -2.40% 4.80% 8.40% 8.80% 

Feb 18 1.90% 0.10% 0.10% -0.40% -12.20% -4.70% -6.20% -4.50% 

Mar 18 -4.00% -2.10% 3.50% 1.50% 7.60% 0.70% 15.80% 19.50% 

Apr 19 0.10% 0.30% 1.80% -0.70% -5.20% 3.10% 2.40% 6.10% 

May 20 2.20% 3.80% 6.80% 7.90% -0.20% -0.50% 0.20% 5.50% 

Jun 18 6.60% 10.60% 15.00% 20.40% 11.10% 13.80% 15.00% 12.90% 

Jul 21 3.60% 9.20% 13.60% 16.70% -8.30% -2.00% 6.40% 4.40% 

Aug 22 5.20% 9.70% 14.60% 14.80% -2.60% -2.10% 0.90% 3.90% 

Sep 21 5.00% 7.40% 12.00% 13.60% -8.70% -5.70% -3.70% 0.60% 

Oct 21 -0.20% 1.80% 2.30% 3.90% 2.10% 0.50% -4.50% -1.30% 

Nov 17 2.20% 5.00% 3.00% 1.30% 8.90% 6.20% 17.60% 11.00% 

Dec 18 -3.50% -5.00% -3.50% -6.80% 7.60% 15.20% 12.80% 14.50% 

𝑃𝑚
𝑡𝑜𝑡 Jan 71.2 13.00% 13.50% 15.60% 20.70% 8.30% 0.50% 1.40% 4.40% 

Feb 53.1 1.60% 8.50% 9.70% 12.00% 43.00% 33.50% 37.60% 36.90% 

Mar 72 8.10% 7.30% 6.30% 6.70% -6.60% 5.00% -20.40% -12.30% 

Apr 54.7 7.20% 7.40% 8.00% 10.00% 29.40% 24.20% 10.90% 23.10% 

May 69.7 4.00% 0.80% -1.40% 1.30% 2.70% 14.60% 15.40% 5.30% 

Jun 77.1 -0.60% -11.40% -14.70% -24.40% -20.70% -26.40% -30.80% -28.00% 

Jul 68.9 -4.50% -20.00% -30.40% -31.40% 11.40% -7.30% -22.40% -30.80% 

Aug 64.4 -10.30% -16.00% -24.40% -41.90% -8.00% -8.70% -7.60% -30.70% 

Sep 62.1 -4.00% -8.60% -20.40% -18.80% 24.40% 19.80% 16.50% 15.00% 

Oct 68.8 8.30% 8.30% 1.00% 6.00% -7.60% 4.40% 30.60% 11.50% 

Nov 79.6 5.90% 6.00% 8.90% 10.80% -3.20% -12.30% -19.30% -1.80% 

Dec 78.7 10.90% 20.80% 22.60% 27.00% -11.80% -4.60% -3.60% -5.80% 

𝑃𝑚
𝑚𝑎𝑥  Jan 13.5 13.50% 16.00% 19.70% 23.90% 19.20% 5.90% 16.00% 21.10% 

Feb 12.4 2.60% 11.10% 10.10% 15.20% 29.10% 61.20% 33.70% 32.30% 

Mar 14.2 10.00% 11.10% 13.50% 15.70% 16.70% 15.00% 7.00% 30.70% 

Apr 12.3 10.90% 14.00% 11.60% 16.50% 42.10% 44.70% 19.10% 66.60% 

May 16.6 4.10% 8.40% 13.80% 18.30% 15.60% 18.80% 31.00% 14.30% 

Jun 19.3 7.00% 6.00% 2.20% 3.20% -16.70% -22.10% -21.20% -16.10% 

Jul 16.9 7.50% 1.00% 1.50% -5.60% 22.00% 11.00% -1.70% -22.80% 

Aug 18.7 1.20% -4.50% -6.30% -19.20% -7.50% -16.50% 6.20% -26.80% 

Sep 15.7 1.80% 2.80% -2.20% 11.70% 21.80% 24.20% 28.90% 39.10% 

Oct 17.2 12.30% 12.40% 10.00% 16.00% 5.20% 8.80% 25.60% 17.80% 

Nov 16.6 9.20% 13.40% 15.90% 24.20% 11.70% -6.10% 5.70% 17.90% 

Dec 15.8 6.70% 15.40% 21.30% 31.80% -5.50% 10.40% 2.00% 3.50% 
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Table 7. Maximum deviation relative to the mean change factor projected by the CMIP6 ensemble allowed for acceptance 

for each target variable in SDM4. These deviations correspond to a 95% confidence interval of the distribution of each target 

variable projection within the GCM ensemble. 

Target variable Abbr. Weight SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Dry days Annual and 0 6.90% 7.60% 7.10% 7.90% 

Winter sndwi 0.1 11.80% 17.00% 14.50% 21.50% 

Spring sndsp 0.1 15.20% 11.30% 12.50% 15.20% 

Summer sndsu 0.2 12.30% 12.50% 13.70% 13.90% 

Autumn sndau 0.1 7.50% 7.80% 12.10% 10.40% 

Total P Annual and 0 9.70% 12.60% 12.00% 12.90% 

Winter sndwi 0.03 12.30% 15.20% 16.70% 19.50% 

Spring sndsp 0.06 21.10% 20.50% 21.60% 25.20% 

Summer sndsu 0.15 28.30% 25.80% 28.90% 40.30% 

Autumn sndau 0.06 14.00% 16.40% 12.80% 11.70% 

Extreme P 10 mm n10mm 0.1 18.30% 22.60% 22.50% 24.10% 

20 mm n20mm 0.05 35.20% 38.10% 44.10% 41.10% 

Max mdp 0.05 13.80% 20.60% 21.10% 17.60% 
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