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Abstract. General circulation models (GCMs) are the primary tools to evaluate the possible impacts of climate change; 

however, their results are coarse in temporal and spatial dimensions. In addition, they often show systematic biases 

compared to observations. Downscaling and bias correction of climate model outputs is thus required for local applications. 

Besides the computationally intensive strategy of dynamical downscaling, statistical downscaling offers a relatively 10 

straightforward solution by establishing relationships between small and large scale variables. This study compares four 

statistical downscaling methods of bias correction (BC), change factor of mean (CFM), quantile perturbation (QP) and event 

based weather generator (WG) to assess climate change impact on drought by the end of the 21st century (2071-2100) 

relative to a baseline period of 1971-2000 for the weather station of Uccle located in Belgium. A set of drought related 

aspects is analysed: dry day frequency, dry spell duration and total precipitation. The downscaling is applied to a 28-member 15 

ensemble of CMIP6 GCMs, each forced by four future scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. A 25-

member ensemble of CanESM5 GCM is also used to assess the significance of the climate change signals in comparison to 

the internal variability of the climate. A performance comparison of the downscaling methods reveals that the QP method 

outperforms the others in reproducing the magnitude and monthly pattern of the observed indicators. While all methods 

show a good agreement on downscaling total precipitation, their results differ quite largely for the frequency and length of 20 

dry spells. Using the downscaling methods, dry day frequency is projected to increase significantly in the summer months, 

with a relative change of up to 19% for SSP5-8.5. At the same time, total precipitation is projected to decrease significantly 

by up to 33% in these months. Total precipitation also significantly increases in winter, driven by a significant intensification 

of extreme precipitation rather than a dry day frequency change. Lastly, extreme dry spells are projected to increase in length 

by up to 9%. 25 

1 Introduction 

Our climate system is changing. Since the mid-20th century, global warming has been observed (IPCC, 2014). The 

atmosphere and oceans have warmed, ice and snow volumes have diminished and the sea level has risen. Climate change is 

linked to a variety of recent weather extremes worldwide. We entered the current decade with Australia’s immense bushfires 
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empowered by severe droughts (Phillips, 2020) and devastating mud slides triggered by extreme precipitation in Brazil 30 

(Associated Press, 2020). Nature and human communities all over the world are feeling the impact of global warming, which 

is projected to become more pronounced in the future (Tabari, 2021). Projections of how global warming will evolve in the 

coming decades and centuries would be extremely valuable to mankind in order to adapt efficiently. 

Droughts are natural hazards that have an impact on ecological systems and socioeconomic sectors such agriculture, 

drinking water supply, waterborne transport, electricity production (hydropower, cooling water) and recreation (Van Loon, 35 

2015; Xie et al., 2018). Quantification of the evolution of droughts on the local level is thus needed to take adequate 

mitigation measures. The hydrological processes behind drought are complex, with varying spatial and temporal scales. One 

of the aspects of drought is a lack of precipitation. As the projected increase in total precipitation does not systematically 

correspond to a decrease in dry days and longest dry spell length (Tabari and Willems, 2018a), besides total precipitation, 

dry spells and its building blocks, dry days, should be studied to evaluate the impact of climate change on drought. It is clear 40 

that prolonged periods of consecutive dry days can play an important role, for example in replenishing groundwater levels in 

time for the dry summer season (Raymond et al., 2019). 

Based on observations of more than 5000 rain gauges in the past six decades, Breinl et al. (2020) assessed the historical 

evolution of dry spells in the USA, Europe and Australia. Both trends towards shorter and longer dry spells were found, 

depending on the location. For Europe, extreme dry spells have become shorter in the North (Scandinavia and parts of 45 

Germany) and longer in the Netherlands and the central parts of France and Spain. Benestad (2018) also showed that the 

total area with 24 hrs precipitation between 50°S and 50°N has declined by 7% over the period 1998–2016 using satellite-

based Tropical Rain Measurement Mission data. Using climate model data, Raymond et al. (2018, 2019) found a future 

evolution towards longer dry spells and a larger spatial extent of extreme dry spells in the Mediterranean basin. For Belgium, 

Tabari et al. (2015) studied future water availability and drought based on the difference between precipitation and 50 

evapotranspiration. Water availability was projected to decrease during summer and to increase during winter, suggesting 

drier summers and wetter winters in the future. 

General circulation models (GCMs) are the primary tools for climate change impact assessment. However, they produce 

results at a relatively large temporal and spatial scales, the latter varying between 100 and 300 km, and are often found to 

show systematic biases in regards to observed data (Takayabu et al., 2016; Ahmed et al., 2019; Song et al., 2020). The bias 55 

particularly originates from processes that cannot be captured at the climate model’s coarse scales (e.g., convective 

precipitation). These processes are therefore simplified by means of parametrization, leading to significant bias and 

uncertainty in the model (Tabari, 2019). In order to work with these results on finer scales, which is usually required for 

hydrological impact studies, a downscaling approach can be applied. Dynamical downscaling is done by creating regional 

climate models that use the output of a GCM as boundary conditions and work at much finer scales (< 50 km). This comes at 60 

a large computational cost and does not necessarily account for bias correction (Maraun et al., 2010). An alternative 

approach is statistical downscaling which derives statistical relationships between predictor(s) and predictand, e.g. the large-
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scale historical GCM output and small-scale observations from weather stations and use them to downscale GCM results 

with relative ease to assess future local climate change impact (Ayar et al., 2016). 

To meet the demand of high spatiotemporal results for the hydrological impact analysis of climate change, the use of 65 

statistical downscaling methods has recently increased (e.g., Sunyer et al., 2015; Onyutha et al., 2016; Gooré Bi et al., 2017; 

Smid and Costa, 2018; Van Uytven, 2019; De Niel et al., 2019; Hosseinzadehtalaei et al., 2020). The results of statistical 

downscaling methods are, nevertheless, often compromised with bias and limitations due to assumptions and approximations 

made within each method (Trzaska and Schnarr, 2014; Maraun et al., 2015). Some of these assumptions cast doubt on the 

reliability of downscaled projections and may limit the suitability of downscaling methods for some applications (Hall, 70 

2014). As there is no single best downscaling method for all applications and regions, though some methods are superior for 

specific applications, the assumptions that led to the final results for different methods require evaluation. Therefore, end 

users can select an appropriate method for each application based on the methods’ strengths and limitations, the information 

needs (e.g., desired spatial and temporal resolutions) and the available resources (data, expertise, computing resources and 

time-frames). 75 

This study evaluates the assumptions, strengths and weaknesses of four statistical downscaling methods by a climate 

change impact analysis for the end of the 21st century (2071-2100) relative to a baseline period of 1971-2000. The selected 

statistical downscaling methods are a bias correction (BC) method, a change factor of mean (CFM) method, a quantile 

perturbation (QP) method and an event based weather generator (WG). A set of drought related aspects is studied: dry day 

frequency, dry spell length and total precipitation. The downscaling is applied to a 28-member ensemble of global climate 80 

models, each forced by four Coupled Model Intercomparison Project Phase 6 (CMIP6) climate change scenarios: SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5. The CMIP6 scenarios are an update to the CMIP5 scenarios, called Representative 

Concentration Pathways (RCPs), that only project future greenhouse gas emissions, expressed as a radiative forcing level in 

the year 2100 (e.g., RCP8.5). The CMIP6 scenarios link these radiative forcing levels to socioeconomic narratives (e.g., 

demography, land-use, energy use), called Shared Socioeconomic Pathways (SSPs; O’Neill et al., 2015). Historical 85 

observations from the Uccle weather station are used for the calibration of the statistical downscaling methods. Two cross-

validation methods are applied to evaluate the skill of the downscaling methods. A 25-member ensemble of CanESM5 GCM 

is also used to test the significance of the climate change signals. 

2 Data and methodology 

2.1 Observed and simulated data 90 

The statistical downscaling methods in this study use precipitation time series produced by GCMs as sole predictor. The 

predictand is also a precipitation time series, but at the local point scale (scale of a weather station). The availability of a long 

and high-quality time series of observations from the Uccle weather station enables us to effectively calibrate this 

relationship. The Uccle station is the main weather station of Belgium, located at the heart of the country (Lat = 50.80°, Lon 
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= 4.35°), and is run by the Royal Meteorological Institute (RMI). Starting in May 1898, the precipitation is being recorded at 95 

10-min intervals with the same instrument, making it one of the longest high-frequency observation time series in the world 

(Demarée, 2003). In this study, the 10-min observations are aggregated into daily precipitation values, the same temporal 

scale as the considered GCMs. The information lost by this aggregation is of low interest for studying drought. 

Small samples are subject to “the law of small numbers” (Kahneman, 2012) and can provide misleading results due to 

their high sensitivity to the presence of strong random statistical fluctuations (Benestad et al., 2017a, b; Hosseinzadehtalaei 100 

et al., 2017). To obtain more robust results, daily precipitation simulations for the historical period 1971-2000 and the future 

period 2071-2100 from a large ensemble of 28 CMIP6 GCMs are used in this study (Table 1). The data for the grid cell 

covering Uccle is selected for every GCM using the nearest neighbour algorithm. To give the GCMs in the ensemble an 

equal weight in the analysis, the one run per model (1R1M) strategy (Tabari et al., 2019) is applied. For one of the GCMs 

(CanESM5), 25 runs (r1 – r25) are considered in order to allow for quantification of the internal variability in GCM output. 105 

To allow for intercomparison of possible futures, multiple scenarios are selected. The four Tier 1 scenarios in ScenarioMIP 

(CMIP6) are chosen. This set of scenarios covers a wide range of uncertainties in future greenhouse gas forcings coupled to 

the corresponding socioeconomic developments (O’Neill et al., 2016). On a practical note, the GCM runs for these four 

scenarios are widely available since they are a basic requirement for participation in CMIP6. 

2.2 Statistical downscaling methods 110 

Four statistical downscaling methods were selected for this study based on their complexity and the way they treat dry spells. 

Each method has a different take on the downscaling of dry spells. This study aims at examining the influence of these 

factors in the statistical downscaling using four methods which are different in methodology and complexity. While BC and 

CFM are considered simple and computationally fast and straightforward methods that do not modify dry spells in 

downscaling, QP and WB are more advanced methods that adjust dry spells. BC applies a bias correction to the selected 115 

statistics, whereas the other three downscaling methods return a modified precipitation time series. BC utilizes a direct 

downscaling strategy by applying the relative change factors directly to the dry spell related research indicators. The other 

three methods opt for an indirect downscaling strategy towards dry spells by integrating the changes in dry days, which are 

downscaled directly into a coherent time series. For this, CFM solely relies on the temporal (precipitation) structure present 

in the GCM time series. QP on the other hand is expected to actively favour clustering of dry days. Lastly, WB makes use of 120 

a probability distribution to sample dry events from. While the precipitation change factor methods (BC, CFM and QP) 

assume independency between successive wet days and apply changes at the daily time scale, which can be problematic 

when successive wet days are part of a longer lasting event, WG identifies precipitation events and applies the same change 

factor to all precipitation within that event. 
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2.2.1 Bias correction (BC) of statistics 125 

The first statistical downscaling method applies a bias correction to the statistics that describe the precipitation time series. 

Consequently, this method does not return a precipitation time series, unlike the three other downscaling methods. This 

method can be regarded as a BC method applied directly to statistics (indicators) instead of to a daily precipitation time 

series. The BC factor is calculated as the ratio of the observed indicator to the model indicator of historical simulations, and 

then applied on the model indicator of scenario simulations to derive projected indicator. The indicators used in this study, to 130 

which the BC is applied, are discussed later on in subsection 2.4. 

An important assumption of all BC methods is that the climate model precipitation bias is time-invariant, which might 

not be the case (Leander and Buishand, 2007). Furthermore, BC methods assume the temporal structure of wet and dry days 

of the scenario-projected precipitation by the climate model is accurate. Successive days are also assumed independent. 

2.2.2 Change factor of mean (CFM) method 135 

The change factor of mean method or delta change method is frequently applied in the literature. The same simple rationale 

of the BC method can be applied by using a change factor approach instead. Here, no correction is applied to GCM 

precipitation projections. Instead, the relative change between the historical and scenario simulations of the GCM is used to 

calculate a change factor that can then be applied to the observed time series (Sunyer et al., 2012, 2015). The method applied 

to the precipitation P of day t in month m can be summarized by Eq. 1. 140 

𝑃𝑚,𝑡
𝑃𝑟𝑜𝑗

= 𝑎𝑚. 𝑃𝑚,𝑡
𝑂𝑏𝑠            (1.a) 

in which 𝑎𝑚 =
𝑃𝑚,…

𝐺𝐶𝑀𝑆𝑐𝑒𝑛

𝑃𝑚,…
𝐺𝐶𝑀𝐻𝑖𝑠            (1.b) 

In this notation, the precipitation is given for month m and time step t in the observations (Obs), and GCMScen and GCMHis 

refer to the scenario and historical simulations of GCMs, respectively. For this implementation, the change factor is 

calculated per month. 145 

CFM does not change the number of dry days directly. However, since the change factor is applied to all precipitation in 

a given month, days in the Uccle time series with precipitation values close to the wet day threshold (dry day: P < 1.0 mm, 

wet day: P ≥ 1.0 mm) can change state, depending on the change factor am. The Uccle precipitation time series has a 

resolution of 0.1 mm. The wet days nearest to the threshold have a value of 1.0 mm, while the closest dry days have a value 

of 0.9 mm. Consequently, wet days are changed into dry days for am < 1.0, while a transformation of dry days into wet days 150 

requires am > 
1.0

0.9
 = 1.11. In conclusion, CFM is expected to show slight changes in terms of dry days, with a bias towards 

rising the number of dry days, and thus the dry spells they compose. The mean monthly total precipitation changes projected 

in this method can be used as a reference for the other methods. 

An important assumption made in all CF methods is that the changes at local (weather station) level are the same as the 

changes described at the spatial, grid-averaged scale of climate models. Different from the BC methods, the CF methods 155 
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assume the temporal structure of the observed time series is preserved. Furthermore, it is assumed in the CFM method that 

all precipitation in a given period (i.e. month or season) is changed by the same factor, regardless of the time step considered 

or the precipitation intensity observed. In addition, the method assumes consecutive days are independent. 

2.2.3 Quantile perturbation (QP) method 

QP methods form a more advanced approach to the application of change factors. The core principle of the methods is that 160 

the change factors are calculated and allocated based on the exceedance probability of the precipitation intensities. More 

precisely, the observed daily precipitation with exceedance probability p is modified by a change factor obtained by 

comparing the scenario and historical simulations of climate models for the same exceedance probability p. This is opposed 

to the idea of applying the same change factor to observed precipitation amounts ranging from zero to the most extreme 

values, as is done in CFM. 165 

The QP version applied by Ntegeka et al. (2014) is used here in which the empirical exceedance probabilities 𝑝𝑘 are 

estimated by making use of the formula (
𝑘

𝑛+1
) for Weibull plotting positions, where k is the quantile rank (1 for the highest) 

and n is the number of wet days. This approach can change the exceedance probabilities strongly in comparison to the linear 

interpolation of the cumulative density function represented by (
𝑘

𝑛
) especially for extreme ranks. This approach was shown to 

be best suited for estimating return periods of extreme events (Makkonen, 2006). 170 

In QP, the dry day frequency is perturbed by making use of a two-step perturbation process. In a first step, change factors 

are calculated to determine the relative change in dry day frequency between the scenario and historical simulations of 

climate models. These determine whether dry days in a given month should be converted to wet days or the other way 

around. This is done randomly using a stochastic approach. However, an assumption concerning the clustering of dry days is 

made: only wet days preceded or followed by a dry day are eligible for the conversion or only dry days both preceded and 175 

followed by a wet day can be converted. After the wet/dry day perturbation step, the precipitation intensity of remaining wet 

days is perturbed by change factors derived from comparing the scenario and historical simulations of climate models. Due 

to the randomness introduced by the dry day perturbation step, multiple time series are generated. A sensitivity analysis is 

executed by varying the number of simulations (see Text S2 and Figs. S1-S3). The selection of the ‘best’ simulation is based 

on four indicators that can be derived from a precipitation time series: the mean (M), coefficient of variability (CV), 180 

skewness (S) and average monthly autocorrelation coefficient for a lag of 1 day (𝜌1). Using these four indicators, the 

distance D between the climate change signals of the generated series and the GCM time series, for a given month m, is 

calculated: 

𝐷𝑚 = ∑ (
𝐼𝑖,𝑚

𝑔

𝐼𝑖,𝑚
𝑂𝑏𝑠 −

𝐼𝑖,𝑚
𝐺𝐶𝑀𝑆𝑐𝑒𝑛

𝐼𝑖,𝑚
𝐺𝐶𝑀𝐻𝑖𝑠 )

2
4
𝑖=1           (2) 

where g denotes the generated series and Obs, GCMScen and GCMHis have the same meaning as in Eq. 1. The simulation 185 

corresponding to the smallest distance is selected as the best one. 
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The CF assumptions remain in place for the QP method, as well as the assumption regarding consecutive days as 

independent. Unlike the CF method, it is now assumed that extreme and non-extreme precipitation amounts can change with 

different factors. The temporal structure of the observed time series is not explicitly changed. Furthermore, it is assumed that 

the highest relative changes are applied to the days with the highest daily precipitation. The method allows for an explicit 190 

perturbation of the temporal structure of the observed time series. 

2.2.4 Event based weather generator (WG) 

The fourth selected statistical downscaling method in this study is the stochastic and event based approach developed by 

Thorndahl et al. (2017) which is not directly based on change factors but generates stochastic time series instead. 

Consequently, it belongs to the category of the weather generators. The method constructs a stochastic time series by 195 

alternating wet and dry events. Wet events are sampled from an observed point precipitation time series. Observed dry event 

durations are fitted to a two-component mixed exponential distribution (three parameters: 𝜆𝑎, 𝜆𝑏 and 𝑝𝑎 in Eq. 3) from which 

dry events durations (also called inter-event durations, tie) are sampled. Both sampling operations are performed for each 

season separately. 

𝑓(𝑡𝑖𝑒) = 𝑝𝑎[𝜆𝑎,𝑖𝑒 exp(−𝜆𝑎,𝑖𝑒𝑡𝑖𝑒)] + (1 − 𝑝𝑎)[𝜆𝑎,𝑖𝑒 exp(−𝜆𝑏,𝑖𝑒𝑡𝑖𝑒)]      (3) 200 

where 𝜆𝑎,𝑖𝑒 and 𝜆𝑏,𝑖𝑒  are the rate parameters for two populations, a and b, with different exponential distributions and pa is 

the weight of population a. More information about the two-component mixed exponential distribution can be found in the 

supplementary information (Text S1). A popular way to fit this type of distribution to data points is by application of 

iterative Expectation-Maximization algorithms (Yilmaz et al., 2015). An implementation of this algorithm for fitting mixed 

exponential distributions is included in the R package ‘Renext’ (Deville and IRSN, 2016). 205 

Figure 1 shows the two-component mixed exponential density functions that are fitted to the empirical probabilities of 

observed (Uccle) dry event lengths. The fitted distributions underestimate the proportion of inter-events with a duration of 1 

day. This underestimation is countered when sampling since the complete range [0, 1.5] of sampled durations is rounded to 1 

day. Figure 2 shows the two-component mixed exponential cumulative density functions that are fitted to the seasonal 

empirical cumulative density functions of observed (Uccle) daily precipitation intensities. The fitted distributions are very 210 

close to simple exponential distributions since 𝑝a ≈ 𝑝b ≈ 0.5 (𝑝𝑏 = [1 − 𝑝𝑎]) and 𝜆a ≈ 𝜆b. 

When the sampling processes are performed, the three parameters ( 𝜆𝑎 , 𝜆𝑏  and 𝑝𝑎 ) of the two-component mixed 

exponential stochastic variables (sampled from a uniform distribution) in order to accommodate for climate change. A 

similar approach is used for extreme precipitation, requiring the sampling of two parameters. In total, five parameters are 

sampled from uniform distributions for each season. 215 

The stochastic nature of this method requires a large number of simulations. These are evaluated using several target 

variables and the corresponding change factors, which are calculated using the GCM ensemble. For each climate change 

scenario, one simulation is picked from the accepted simulations as the ‘best’ simulation, based on the performance it shows 
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for different target variables. This method requires to make an arbitrary choice on several parameters: the boundaries of the 

uniform sampling intervals, the number of simulations, target variables and their weights. The sampling boundaries for the 220 

dry spell parameters and the number of simulations are the subject of a sensitivity analysis (see Text S2 and Fig. S4). The 

other parameters are further discussed in detail hereafter. 

Parameters for precipitation change factor function: The two parameters (slope 𝛼 and intercept 𝛽) of a linear change 

factor function (Eq. 4), used to alter event precipitation amounts in function of its exceedance probability, are sampled from 

uniform distributions. 225 

𝑐(𝑖) = 𝛼𝐹(𝑖) + 𝛽           (4) 

in which 

𝐹(𝑖) = 𝑝[1 − exp(𝜆𝑎𝑖)] + (1 − 𝑝)[1 − 𝑒𝑥𝑝(𝜆𝑏𝑖)]        (5) 

where 𝑐(𝑖) is the change factor as a function of intensity i, 𝐹(𝑖) is the probability of a given rainfall intensity i being less 

than or equal to i using the same two-component mixed exponential distribution used for fitting the inter-event durations 230 

(Eq. 3), 𝜆𝑎 and 𝜆𝑏 are the rate parameters for populations a and b with different exponential distributions and pa is the weight 

of population a. 

Thorndahl et al. (2017) specify that the sampling boundaries are empirically selected by executing the method for very 

broad sampling ranges and iteratively narrowing them down based on the simulations that are accepted. When applying this 

strategy, a test run comprising 50,000 simulations did, however, not show clear boundaries for these parameters. Instead, 235 

sampling ranges are chosen at 0.000 – 0.050 and 0.80 – 1.20 for 𝛼 and 𝛽 , respectively, for all seasons. These values 

correspond well to the parameter ranges found by Thorndahl et al. (2017) for the accepted runs in their study. 

Target variables: The performance of a simulation is evaluated based on a set of target variables. The target values for 

these variables are determined by application of change factors to the corresponding variables of the observed time series H. 

The value for target value i for simulation j is denoted as Mi,j. The performance P is then calculated using Eq. 6a. Assuming 240 

a Gaussian distribution of the target variables, the acceptance criterion Pcrit for each target variable is taken as its 95% 

confidence interval (Eq. 6b). A simulated time series j is accepted when Pi,j > Pcrit,i for all target variables i. 

𝑃𝑖,𝑗 = 1 −
|𝑐𝑓𝑖 .  𝐻𝑖 − 𝑀𝑖,𝑗|

𝑐𝑓𝑖 .  𝐻𝑖
           (6a) 

𝑃𝑐𝑟𝑖𝑡,𝑖 = 1 −
2 .  𝜎𝑐𝑓,𝑖

𝑐𝑓𝑖
           (6b) 

For all accepted simulations, the overall performance is calculated as a weighed sum of all individual target variable 245 

performances. For n target variables and weights wi, this becomes 𝑃𝑗 = ∑ 𝑤𝑖𝑃𝑖,𝑗
𝑛
𝑖=1 . 

The set of target variables in the original implementation is altered in order to fit the specific needs of this study better. 

Two target variables related to precipitation with T = 2 years and T = 5 years are removed. Instead, five new target variables 

are added, assuring the annual and seasonal number of dry days is adequately reproduced in the accepted simulations (Table 

2). The weights, attributed to each target variable for calculation of the overall performance, are attributed in favour of the 250 
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dry days target variables in order to reflect their importance for this study. The largest weights are assigned to the target 

variables that are expected to undergo the largest changes, which are expected to be the hardest to simulate. 

Like the other statistical downscaling methods, some assumptions are made in the WG method. It makes assumptions 

similar to change factor methods due to the selection procedure. The changes found for climate model grid-averaged spatial 

scales are treated as targets for the stochastic simulations. Furthermore, this weather generator assumes wet event durations 255 

will not change, while dry event durations will. In addition, it is assumed that observed time steps with larger precipitation 

amounts will have a relatively larger increase in precipitation in comparison to time steps with lower precipitation amounts. 

2.3 Validation of statistical downscaling methods 

All downscaling methods are prone to errors and require a proper validation (Benestad, 2016). We validate the four 

downscaling methods to assess how they reproduce dry day frequency, dry spell duration and total precipitation. An 260 

observation-based cross-validation is applied to evaluate the skill of CFM, QP and WG in terms of the relative error metric. 

As the BC method cannot be validated based on the observation-based cross-validation, it is evaluated using an inter-model 

cross-validation (Räty et al., 2014; Schmith et al., 2021). In the observation-based cross-validation, also called holdout 

method (Piani et al., 2010, Dosio and Paruolo, 2011) and perfect predictor experiment (Maraun et al., 2019a, b), observations 

are regarded as being pseudo-climate model data. The validation period is defined from 1971 to 2000 same as the historical 265 

period of the GCMs. As the dominant modes of internal variability in mid-latitudes have cycles of several decades 

(Schlesinger and Ramankutty, 1994; Tabari and Willems, 2018b), a large temporal distance between calibration and 

validation periods is required to acquire stable approximations of forced changes (Maraun and Widmann, 2018). A period in 

the far past (1900-1929; the first 30-year period in Uccle observations) is thus selected as the calibration period. 

In the inter-model cross-validation, each of the 28 GCMs employed in this study are by turns considered as pseudo-270 

observations. The historical simulation (1971-2000) of the pseudo-observations (verifying GCM) is used for the calibration 

of the remaining GCMs (projecting GCMs), and the scenario simulation (2071-2100) of the verifying GCM is utilized for 

the validation of projecting GCMs. The relative error for each indicator is computed as the absolute difference between the 

projected indicator from projecting GCMs and the validation indicator from the verifying GCM for the end of the 21st 

century (2071-2100) divided by the validation indicator. For the 28 GCMs (𝑁 = 28), 756 combinations (𝑁 × [𝑁 − 1]) are 275 

obtained to validate the BC method, also providing confidence intervals for the relative error. 

2.4 Research indicators 

In order to compare climate change scenarios and statistical downscaling methods, five types of research indicators are used 

in this study (Table 3). The most important indicators for this study are related to dry days, dry spells and total precipitation. 

A typical threshold used for separating wet and dry days is 0.1 mm (Pérez-Sánchez et al., 2018; Breinl et al., 2020). This 280 

value corresponds to the standard resolution used for precipitation observations. However, in recent climate change 

projection studies this threshold is often chosen higher, at 1 mm (Raymond et al., 2018; Tabari and Willems, 2018a; Kendon 
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et al., 2019; Han et al., 2019). This is done to counter the tendency of coarse climate models (GCMs) to overestimate the 

number of days with low precipitation (Tabari and Willems, 2018a), the so-called ‘drizzle problem’ (Moon et al., 2018). 

Following the definition used in the climate change study by Raymond et al. (2018), a dry spell is defined as consecutive 285 

dry days with less than 1 mm of precipitation. Furthermore, they define several classes of dry spell lengths (Table 4), based 

on the percentiles of dry spell length calculated using the historical period of the study. Dry spells are not to be confused 

with the terms dry events (Willems, 2013; Willems and Vrac, 2011) or inter-events (Sørup et al., 2017; Thorndahl et al., 

2017) used in the statistical downscaling methods. This is due to the definition of dry spells comprising consecutive dry days 

(≥ 2 days). In the discussed method implementations, dry events and inter-events respectively have minimum lengths of one 290 

day and even shorter than one day. 

The number of dry days is considered on a monthly basis. To assess changes in dry spell patterns, the classification 

discussed in the literature review by Raymond et al. (2018) is followed. For each of the five classes based on dry spell 

lengths, the number of dry spells is calculated. An additional indicator gives more information on the class containing the 

longest dry spells, very long dry spells. Here, the mean length of very long dry spells is used as an indicator. The indicators 295 

related to dry spells are calculated over the entire 30-year period to prevent splitting dry spells up. The last indicator used in 

this research for drought assessment is the mean monthly precipitation. 

An additional precipitation indicator describes the extreme precipitation in a given month m and allows for a rough 

comparison in terms of extreme precipitation, which is useful to compare how the different statistical downscaling methods 

handle extreme precipitation. This indicator is defined as the monthly maximum daily precipitation averaged over the 30-300 

year period. 

2.5 Significance testing of climate change signals 

The projected research indicators found after statistical downscaling can be compared to those found in the observed time 

series. For research indicator i with value I, this climate change signal (CCSi) is defined as 𝐼𝑖
𝑃𝑟𝑜𝑗

 divided by 𝐼𝑖
𝑂𝑏𝑠. Something 

can be said about the significance of the projected CCS in the GCM ensemble by comparing it with the internal variability of 305 

one climate model. A significance test is executed based on the Z-score (Tabari et al., 2019). Here, the stochastic variable X 

represents CCSi. The null hypothesis of the Z-test corresponds to a situation without climate change: the mean of CCSi is 

equal to 1 (𝐻0: 𝜇 = 1). The standard deviation 𝜎 can be estimated by the standard deviation of CCSi found over the 25 

CanESM5 runs, denoted si,25. The difference between these GCM runs is that they are initialized using different starting 

conditions, i.e. points in the pre-industrial control run. The differences in CCS for these 25 runs can thus be attributed to the 310 

internal variability of the climate system, which is regarded as ‘noise’. Consequently, the CCS is said to be significant if the 

signal-to-noise ratio (S2N), here equal to |Z|, is sufficiently large. Similar as in Tabari et al. (2019), the Z-test is applied to 

the median CCSi over the 28-member GCM ensemble. For a confidence level of 95%, the null hypothesis is rejected if  
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|𝑍| = Φ (1 −
0.05

2
) > 1.96. 10% and 20% significance levels correspond to Z = 1.64 and 1.28, respectively. An important 

assumption in this approach is that si,25 is a representative description for all climate models within the GCM ensemble. 315 

3 Results 

Before using the statistical downscaling methods for projecting the drought related indicators, their skill is validated in terms 

of the relative error metric (Figs. 3 and 4). For total precipitation, QP and CFM with a relative error of < 4% for different 

months outperform WG and BC. The distribution of the relative error for total precipitation adjusted by BC is generally 

shifted towards higher values for higher level scenarios. For the number of dry days, QP with a relative error of ≃ 1% for all 320 

months is clearly the best performed method, followed by WG for January to May and by either WG or CFM for the 

remaining months. BC is the worst method for the number of dry days, for which the relative error increases with scenario 

level. As for dry spells, QP can be considered the best method for the number of very short to large dry spells. The difference 

between the skills of the four methods is small for the number of very short and short dry spells, while it gets bigger as the 

spells become longer. For all the methods, the relative error enlarges for longer spells. 325 

Once the downscaling methods are evaluated, the future projections for the drought-related indicators are derived from 

the methods. Figure 5 shows the projections for the number of dry days per month with and without statistical downscaling. 

The results are characterized by the median of the CMIP6 GCM ensemble and the changes can be seen by comparing the 

projected indicator and the observed one at Uccle station. For BC, CFM and QP, each member of the ensemble is 

downscaled separately. As a consequence, the variation within the downscaled ensemble can also be looked at. This is not 330 

possible for WG since it downscales the ensemble as a whole. The median indicator values for BC, CFM and QP show a 

similar pattern. Across the four scenarios, the number of dry days increases between June and September in comparison to 

the Uccle observations. As expected, the increase becomes larger for higher level scenarios. The number of dry days remains 

about the same for the other months. WG projects a lower number of dry days during the summer months. The inter-model 

variation for dry day number projections tends to be the largest for BC, closely followed by QP. CFM shows a considerably 335 

smaller inter-model variation. The results for the CMIP6 GCMs without downscaling differ quite largely from the 

downscaled series during the winter months, and the difference gets smaller towards summer. 

To analyse the dry spell related indicators, dry spells are categorized by the quantiles of dry spell lengths in the observed 

(Uccle) time series. Table 4 gives an overview of the limits for each dry spell class. The projections for the number of dry 

spell indicators (the number per class, over a 30-year period) are shown in Fig. 6. Results not only vary strongly between 340 

statistical downscaling methods, but also between CMIP6 scenarios. The results generally point to an increase in the number 

of medium, large and very large dry spells in comparison to the observations. The magnitude of the changes is found to 

increase with scenario level for all the methods except WG which shows no clear pattern. Even the sign of the WG derived 

changes for extreme lengths of dry spells (very short and very long) alters between positive and negative among scenarios. 

The increase in the number of medium, large and very large dry spells for BC and CFM is in the expense of a decrease in the 345 
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number of short and very short dry spells. Without downscaling, the CMIP6 GCMs generally show a lower number of dry 

spells than the downscaled results across all classes and a higher value for the dry spell length indicator. Next to very long 

dry spell, dry spell length (mean length of very long dry spells), which is a characteristic of the most extreme dry spells, is 

also analysed (Fig. 6). In comparison to the historical observations, the general trend is towards an increase in dry spell 

length. The magnitude of the increase in dry spell length rises with scenario level. The inter-model spread of the number and 350 

the length of dry spells for the methods follows a similar pattern to the number of dry days, which is large, medium and 

small spreads for BC, QP and CFM, respectively. 

The results for mean monthly precipitation are given in Fig. 7. Compared to the historical situation, the clearest changes 

appear in the summer months (June – September) where precipitation decreases according to all methods except WG. WG 

shows a decrease between June and August for higher-end scenarios (SSP3-7.0 and SSP5-8.5). Between October and May, 355 

BC, CFM and QP projections show a precipitation increase, although less pronounced than the decrease in the summer 

months. In terms of the inter-model variability, BC, CFM and QP show a similar spread. The CMIP6 GCM ensemble 

without downscaling indications higher values for winter season and lower values for summer season in comparison to the 

downscaled series. 

The second series of research indicators related to precipitation is monthly maximum daily precipitation. As mentioned 360 

earlier, this research indicator does not attribute towards the drought investigation that is the main objective of this study. 

Rather, this indicator is used to gain further insight in the way the selected statistical downscaling methods work, as many 

statistical downscaling methods are originally developed for extreme precipitation studies. The maximum daily precipitation 

on a monthly basis and averaged over the 30-year period, is given in Fig. 8. An interesting observation is that the 

downscaling methods project a very similar and relatively slight increase during winter season, while for summer season the 365 

results vary greatly. The largest changes in comparison to the historical period are given by CFM, where a considerable 

decrease is found during the summer months. The results of WG are again less similar to the results of the other downscaling 

methods in terms of the change magnitude, while it provides the same change direction. When comparing the CMIP6 GCM 

projections before and after downscaling, they shows relatively similar results during the winter months, while the 

downscaled projections for the summer months are lower. 370 

The assessment of the significance of the results is based on the relative changes in comparison to the historical 

observations. In this study, this relative change is defined as the climate change signal. The median climate change signal of 

the GCM ensemble is given in Tables 5 and 6 for the different scenarios, statistical downscaling methods and research 

indicators. Based on the variation in climate change signals within the 25 CanESM5 runs (after downscaling), the 

significance of the median climate change signal of the ensemble can also be indicated. This is not possible for WG as it 375 

does not downscale each member of the ensemble separately. The number of dry days and total precipitation mainly show 

significance for the medium to high level scenarios during the summer months and to a lesser extent during the winter 

months. There is an agreement between the downscaling methods for the significance of the changes for the number of dry 

days and total precipitation. The significance of the changes in maximum daily precipitation is only found for CFM during 
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the summer months and for all methods in December. Summer precipitation extremes in Belgium are, however, convective 380 

in nature which are not well represented by coarse-resolution GCMs (Kendon et al., 2017), necessitating the use of 

convection-permitting climate models (grid spacing of ≤ 4 km) for their simulations (Tabari et al., 2016). The changes in dry 

spell length are significant for CFM and QP under almost all scenarios, while none of the BC derived changes are 

statistically significant. In contrast, BC is the method with the largest number of significant changes in the number of dry 

spells. That is, all changes in the number of medium and long dry spells for all scenarios obtained from BC are significant. 385 

The changes in these classes of dry spell number for higher level scenarios are also significant by CFM. While the QP 

derived changes for these classes are not significant, QP identifies some significant changes in extreme classes (very small 

and very long) of dry spells. 

4 Discussion 

4.1 Statistical downscaling methods 390 

From the results, it is clear that the statistical downscaling methods can act quite differently. By uncovering where these 

differences stem from, the performance of the statistical downscaling methods for drought research can be quantified. Hence, 

the results for the four statistical downscaling methods are discussed and linked to the methods’ strengths and weaknesses. 

4.1.1 BC method 

The first method, BC, applies a bias correction directly to the research indicators. This means no underlying time series is 395 

created. A first consequence is that not all projections are necessarily compatible with each other if the indicators are 

interdependent. This is the case for the number of dry spells since there are only a limited number of dry days to be 

distributed over the different classes of dry spells. 

Second, the number of extreme events such as long and very long dry spell is limited. In the 30-year period of 

observations in Uccle, only 20 and 11 long and very long dry spells occurred, respectively, while the number of these events 400 

varies substantially among CMIP6 projections (15 – 100 and 11 – 88 under SSP5-8.5). This leads to very large bias 

correction factors which in turn lead to (over)spectacular results after downscaling (see Fig. 6). The same problem holds true 

for the dry spell length indicator. An absolute bias correction approach instead of a relative one might be more appropriate. 

In the same spirit, Raymond et al. (2019) discuss changes in extreme dry spell lengths in absolute terms (days) rather than 

percentages. 405 

Note that these concerns do not take away from this method’s ability to qualitatively downscale indicators such as 

number of dry days or total precipitation. These indicators are often projected by making use of relative change factors, as is 

also the case for the other statistical downscaling methods. 
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4.1.2 CFM method 

CFM does not account directly for changes in the number of dry days. This CFM method applies a change factor to the 410 

observed time series in order to match the changes in total precipitation. For this specific research indicator, the result should 

consequently be no different than the one obtained using BC. The slight differences between these methods in Fig. 7 might 

be attributed to rounding differences. 

The rationale behind the application of this method to assess changes in drought finds its roots in the definition of the dry 

day threshold at 1 mm. As mentioned earlier, this is done to counter for the so-called ‘drizzle problem’ GCMs are affected 415 

by, meaning they overestimate the number of days with low numbers of precipitation. Consequently, days with precipitation 

amounts just below this threshold are classified as ‘dry’, while they might very well be lifted above this threshold in months 

where total precipitation is increased by the statistical downscaling method. Inversely, the wet days with precipitation just 

over the limit might convert to dry days in months with a decreasing total precipitation. Fig. 7 shows this effect quite clearly 

for the summer months, where total precipitation is projected to decrease. The relative change in the number of dry days 420 

under SSP5-8.5 scenario (+5.5% in August) remains, however, rather small in comparison to BC (+17.5%) or QP (+14.7%), 

which both account for the number of dry days directly. The relative error of the drought-related indicators obtained here for 

CFM is far smaller than that reported for extreme precipitation in the Mid-Europe region (Schmith et al., 2021). 

The most interesting aspect in applying CFM, however, is the lack of vital assumptions as to how changing the number 

of dry days affect the dry spells. All required information is contained within the time series created by the GCM. In this 425 

light, the general trends for the number of dry days and dry spell length indicators as projected by QP are interesting to 

examine, while keeping in mind that the underlying changes in the number of dry days are considerably smaller than one 

would find through a direct change factor approach. 

4.1.3 QP method 

An important aspect for drought assessment in QP method is in the form of the separate dry day perturbation step. Here, the 430 

time series is perturbed to match the projections of the number of dry days. Consequently, QP method should be equal to BC 

in terms of the number of dry days projections. This is not exactly true, as shown in Fig. 5, but the differences are small 

enough to attribute them to rounding off the results differently. As dry days are the building blocks of dry spells, a solid 

downscaling approach towards the number of dry days is vital for downscaling the number of dry spells and dry spell length. 

Out of the four methods considered in this study, QP is the best performed method in downscaling the number of dry days. 435 

4.1.4 WG method 

In several ways, WG seems to be the odd one out among the considered statistical downscaling methods. The original 

implementation of this method (Thorndahl et al., 2017) does, for instance, not downscale each member of the CMIP6 GCM 

ensemble separately as is the case for the other methods. Instead, WG aims to create one time series that corresponds well to 



15 

 

the mean of the ensemble, at least in terms of the selected target variables. In theory, an implementation that downscales 440 

each member of the GCM ensemble separately is possible. Tests executed in this direction uncovered a practical problem 

related to the sampling boundaries for parameters governing the dry event duration distribution. As shown in the sensitivity 

analysis (see Text S2), WG struggles to deal with large changes in the number of dry days, e.g. under SSP5-8.5. While the 

changes in the sensitivity analysis are averaged out over the GCM ensemble, they are not when downscaling each ensemble 

member separately. The much larger changes that would have to be tackled by the WG would require much larger sampling 445 

boundaries. The largest change found in the GCM ensemble (one of the CanESM5 runs under SSP5-8.5) is a decrease of 

40% in the number of dry days. To accommodate for this change, sampling boundaries upwards of 70% are required in 

theory. It is expected that an even larger sampling range is needed, in combination with large numbers of simulations to 

generate a comfortable number of accepted simulations. Testing at 40% and 30,000 simulations showed that for many 

members in the GCM ensemble, no accepted simulations could be generated. This is especially true for the SSP5-8.5 450 

scenario. 

For the monthly indicators, the number of dry days and total precipitation, BC, CFM and QP more or less match the 

temporal structure found in the Uccle observations. This is not however the case for WG. Two reasons can be identified for 

this. First, the method is implemented on a seasonal basis, following the original implementation (Thorndahl et al., 2017). 

Therefore, the method does not try to match changes in the number of dry days or total precipitation for every month but 455 

rather for the season as a whole. A comparison between a seasonal and a monthly implementation might be interesting to 

further investigate this method. A monthly implementation is expected to require larger numbers of simulations in order to 

achieve similar numbers of accepted simulations. This is due to the larger number of research indicators present (monthly 

instead of seasonal). Second, the downscaled time series do not necessarily match the mean of the GCM ensemble exactly 

for each research indicator. On the contrary, the method accepts all simulated time series that remain within the maximum 460 

deviation for each target variable (Table 7). These maximum deviations can be very large, e.g. ≃48% for extreme 

precipitation and ≃15% for total precipitation in summer (both under SSP5-8.5). Consequently, simulations that are far from 

the mean projections for some of the key research indicators (e.g. number of dry days) enter into the pool of accepted 

simulations and might be selected as the ‘best’ simulation due to the high performance of the simulation for other target 

variables. This explains the difference of WG for the number of dry days (Fig. 5) and total precipitation (Fig. 7) in 465 

comparison to the downscaling methods that accurately downscale these indicators, even when grouping the results per 

season (DJF – MAM – JJA – SON). 

The inaccurate simulation of the number of dry days affects the dry spell related indicators. It was concluded earlier that 

this is also the case for CFM. An additional concern for this downscaling method is that only one data point (best simulation) 

is available for comparison in Fig. 6, instead of the 28 data points (size of the ensemble) for the other downscaling methods. 470 

While this concern also holds true for the other indicators, it is mitigated by using these indicators (or similar) as target 

variables. In order to prevent the problems encountered with a relative bias correction applied directly to the dry spell 

indicators (see BC), this strategy cannot be followed for dry spell related indicators. 
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4.2 Significance of climate change signals 

The significance of the results is initially introduced to evaluate how the signal (median climate change signal) compares to 475 

the noise present in the CMIP6 GCM output, before downscaling. These results are implicitly formulated in Table 5 since 

they are the same as the BC results. As discussed earlier, only a limited number of research indicators are found to be 

significant, even at a relatively low significance level of 20%. The main takeaway from these results is that the increasing 

number of dry days (up to 19% for SSP5-8.5) and the decreasing total precipitation (up to 33% for SSP5-8.5) in the summer 

months are found to be significant. Total precipitation in January and December also significantly increases due to a 480 

significant increase in precipitation intensity as the changes in the number of dry days (or wet days) are not significant. 

Furthermore, a significant lengthening of dry spells up to 9% and a significant increase in the number of medium and larger 

dry spells as high as 90% are found. Our results suggest wetter winters and drier summers for Belgium, consistent with the 

results obtained from the CMIP5 GCMs (Tabari et al., 2015). An increase in the length of extreme dry spells (Breinl et al., 

2020) and in aridity conditions (Tabari, 2020) was also found for west Europe. 485 

The same methodology is followed to assess the significance of the results after downscaling. From the discussion on the 

different downscaling methods, it is clear that not all indicators are necessarily downscaled accurately. The results should 

thus be interpreted with care. As mentioned earlier, the main concern for BC is the direct downscaling of the dry spell related 

indicators, due to the small sample size and the lack of coherence between the projections for the different dry spell classes. 

As a consequence, the 90% increase for long dry spell is interpreted as an inaccurate result rather than a significant one. For 490 

CFM, it is observed that total precipitation is downscaled most accurately. The significant results for maximum daily 

precipitation during the summer months should thus be considered as inaccurate. QP on the other hand shows some 

interesting results. This method downscales the monthly indicators (number of dry days, total precipitation and maximum 

precipitation) accurately. Dry spells are not downscaled directly, but by randomly integrating the number of dry days 

changes in the original time series. This assures the dry spell related indicators are coherent. As such, the significant 8.7% 495 

increase at the 5% level for dry spell length under SSP5-8.5 is the most interesting results across all downscaling methods. 

4.3 Research indicators 

Five different types of research indicators are selected for this research. This subsection shortly evaluates the value of these 

indicators for this research. 

The number of dry days and total precipitation are both straightforward indicators that are widely used in literature for 500 

drought assessment (e.g., Tabari and Willems, 2018a; Hänsel et al., 2019). Both have proven to be useful to compare 

statistical downscaling methods (e.g., Ali et al., 2019) and gain insight in these methods since they often rely directly on 

them. For example, CFM is governed solely by total precipitation while WG directly considers number of dry days and QP 

method both through its target variables. In this study, both indicators were structured on a monthly basis. It is believed that 

a seasonal structure could also form a successful alternative. 505 
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As for the dry spell indicators, the number of dry spells related indicators offer interesting insights into the changes that 

occur within the dry spell household. The system introduced by Raymond et al. (2018) offers a straightforward but decent 

classification. Besides the different dry spell class indicators, the dry spell length indicator is introduced in order to gain 

further insight into the longest and most important dry spell class and fulfils this role adequately. An indicator describing the 

most extreme dry spell within the 30-year period could make for an interesting addition in future research. 510 

Last is the maximum daily precipitation per month averaged over the 30-year period. This indicator does not capture all 

nuances of extreme precipitation, but gives a rough impression of extreme precipitation changes. In this research, the 

maximum daily precipitation indicator merely functions as a simple illustration on how the statistical downscaling methods 

process extreme precipitation differently. It is not a relevant indicator for drought research. 

5 Conclusions and recommendations 515 

Four statistical downscaling methods were applied to the CMIP6 GCM ensemble for climate change impact assessment on 

drought. The main difference is how they treat the downscaling of dry spells. BC uses a bias correction applied directly to 

the dry spell research indicators, while the other downscaling methods approach dry spell downscaling indirectly by 

changing dry day frequency in the precipitation time series. CFM uses the information available in the time series (‘drizzle’) 

to convert the state (wet or dry) of days that are just below or over the wet day threshold (1 mm/day). QP applies changes in 520 

dry day frequency at random places in the time series. WG samples dry event lengths from a mixed exponential distribution. 

Other indicators, the number of dry days and total precipitation are downscaled directly across all methods, except for CFM 

which only takes total precipitation into account. 

The results for BC mirror the relative changes found in the CMIP6 GCM ensemble. While this seems to be a good 

approach for the number of dry days and total precipitation, the dry spell related indicators seem to be inflated due to the 525 

relative change applied to indicators with low occurrences, e.g. only 11 dry spells with a length over 25 days are observed in 

the Uccle precipitation time series. CFM fails to project the number of dry days correctly. While this might have been 

expected as the number of dry days is not taken into account during downscaling, this method is tested to see what dry spell 

patterns are ‘hidden’ into the original time series. Due to the poor projections of dry day frequency, this method is not fit  to 

evaluate dry spell changes. 530 

Similar to BC, QP downscales the number of dry days directly using the change factors found in the CMIP6 GCM 

ensemble. By altering the time series at random to match the dry day frequency, the dry spells are altered indirectly. Out of 

the four statistical downscaling methods used in this study, QP has the overall best performance in reproducing the 

magnitude and monthly pattern of the observed indicators. Lastly, the event based weather generator (WG) is a complex but 

potent method. This method uses the relative changes found in the CMIP6 GCM ensemble as targets for the number of dry 535 

days and total precipitation. A rather large deviation from these projections is, however, allowed. This results in a poor 

downscaling of the changes in dry day frequency and consequently in dry spells, despite the interesting approach it offers 
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towards dry spells (mixed exponential distribution). Stricter selection criteria and more optimized target variables should 

improve this method’s performance, likely at a larger computational cost. 

Considering the significance of the changes and the consistency among the downscaling methods, dry day frequency 540 

significantly increases in the summer months by up to 19% for SSP5-8.5. This dry day frequency increase may lead to a total 

precipitation decrease by up to 33%, as precipitation intensity remains unchanged or insignificantly decreases. Total 

precipitation is also projected to significantly increase in the winter months, as a result of a significant intensification of 

extreme precipitation. Furthermore, extreme dry spells are projected to be longer by up to 9%. 

WG offers ample opportunity for further improvement. The method could be structured per month instead of per season 545 

to capture month-to-month variation to match the other methods. Application of the method to each GCM in the ensemble 

would create more data points, allowing the quantification of the significance of the results found by using this method. 

Furthermore, alterations could be made to the acceptance criterion in order to lower the allowed deviations from the changes 

projected by the GCMs. This is especially important for accurate simulations of the number of dry days. With the same goal 

in mind, the mix of target variables and their corresponding weights could be changed (e.g., only target variables related to 550 

dry days). Furthermore, different dry event duration distributions (e.g., Weibull, exponential, gamma, generalized Pareto) 

can be considered besides the mixed exponential distribution that is used in this research. 

There is also room for new downscaling methods that are optimized to deal with dry spells. For example, a method that 

uses quantile mapping to assess dry spell changes (similar to precipitation downscaling in the QP method) could make for an 

interesting comparison to the other methods. In addition, a method that applies absolute changes to the dry spell indicators 555 

could be studied. The probabilities of dry spells such as the parameters of the probability density function (PDF) can also be 

downscaled. Because the statistics of dry spell lengths tend to follow a binomial distribution (Wilby et al., 1998; Semenov et 

al., 1998; Wilks, 1999; Mathlouthi & Lebdi, 2009), probability p that it rains on a specific day is estimated as p = 1/mean 

spell length. Similar method was used for the downscaling of heatwaves in India (Benestad et al., 2018). 

Several research indicators can be used to assess the statistical downscaling methods for the impact analysis of climate 560 

change on drought. In combination with total precipitation (water supply), one could consider evapotranspiration (water 

demand) to assess dryness (Greve et al., 2019; Tabari, 2020) and water availability (Tabari et al., 2015; Konapala et al., 

2020). Furthermore, additional indicators can be used to study dry spells. Besides the mean length of very long dry spells, 

the maximum dry spell length over a certain period can also be of interest. Furthermore, the temporal behaviour of dry spells 

could be studied, for example based on their starting, ending or middle day. This might be especially useful to assess the 565 

impact of dry spells during the wet season, when water tables have to be replenished in order to bridge the dry summer 

season. 

 

Data availability. CMIP6 GCM data used in the study are freely available at the ESGF website (https://esgf-

index1.ceda.ac.uk). The Uccle historical precipitation time series were provided by the Royal Meteorological Institute (RMI) 570 
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Figure 1. Fitted two-component mixed exponential distributions to seasonal empirical probabilities of observed (Uccle) dry 

event durations. 𝜆𝑎,𝑖𝑒 and 𝜆𝑏,𝑖𝑒  are the rate parameters for populations a and b with different exponential distributions, pa is 

the weight of population a and pb is the complement of the weight of population a (𝑝𝑏 = [1 − 𝑝𝑎]).  
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Figure 2. Fitted two-component mixed exponential distributions compared to empirical cumulative density functions of 

seasonal observed (Uccle) daily precipitation intensities. 𝜆𝑎,𝑖𝑒  and 𝜆𝑏,𝑖𝑒 are the rate parameters for populations a and b with 

different exponential distributions, pa is the weight of population a and pb is the complement of the weight of population a 

(𝑝𝑏 = [1 − 𝑝𝑎]).  
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Figure 3. Relative error of the observation-based cross-validation for the drought-related indicators (Ptot: monthly 

precipitation, NDD: number of dry days, dry spell number). Each colour represents a downscaling method. VSDS, SDS, 

MDS, LDS and VLDS denote very short, short, medium, long and very long dry spells defined in Table 4, respectively.  
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Figure 4. Relative error of the inter-model cross-validation of the BC method for the drought-related indicators (Ptot: 

monthly precipitation, NDD: number of dry days, dry spell number). VSDS, SDS, MDS, LDS and VLDS denote very short, 

short, medium, long and very long dry spells defined in Table 4, respectively. Top and bottom of the box show the 75th and 

25th percentiles of the relative error, respectively. Top and bottom of the whiskers show the 5th and 95th percentiles, 

respectively. Horizontal black line in the middle of the box represents the median. 
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Figure 5. Graphical representation of results for number of dry days under different future scenarios. Coloured lines 

represent median values of the ensemble, shades represent the variation within the ensemble (10% – 90% quantiles). CMIP6 

GCM projections (not downscaled; dashed line) and Uccle observations (solid line) are given as reference.  
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Figure 6. Boxplot representation of results for number of dry spells and dry spell length under different future scenarios. 

WG downscales the ensemble as a whole, resulting in only one data point. CMIP6 GCM projections (not downscaled; 

dashed line) and Uccle observations (solid line) are given as reference. VSDS, SDS, MDS, LDS and VLDS denote very 

short, short, medium, long and very long dry spells, respectively. Top and bottom of the box show the 75th and 25th 

percentiles of the relative error, respectively. Top and bottom of the whiskers show the 5th and 95th percentiles, respectively. 

Horizontal black line in the middle of the box represents the median.  
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Figure 7. Graphical representation of results for total precipitation under different future scenarios. Coloured lines represent 

median values of the ensemble, shades represent the variation within the ensemble (10% – 90% quantiles). CMIP6 GCM 

projections (not downscaled; dashed line) and Uccle observations (solid line) are given as reference.  
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Figure 8. Graphical representation of results for maximum daily precipitation under different future scenarios. Coloured 

lines represent median values of the ensemble, shades represent the variation within the ensemble (10% – 90% quantiles). 

CMIP6 GCM projections (not downscaled; dashed line) and Uccle observations (solid line) are given as reference.  
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Table 1. Overview of the CMIP6 GCM ensemble used in this study (r: realisation or ensemble member, i: initialisation 

method, p: physics, f: forcing). The r1i1p1f1 run is used for all the GCMs except five GCMs for which this run is not 

available and so their r1i1p1f2 and r2i1p1f1 runs are used. 

Model Resolution Variant label His. SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Lat [°] Lon [°] 

ACCESS-CM2 1.3 1.9 r1i1p1f1 1 1 1 1 1 

ACCESS-ESM1-5 1.3 1.9 r1i1p1f1 1 1 1 1 1 

BCC-CSM2-MR 1.1 1.1 r1i1p1f1 1 1 1 1 1 

CAMS-CSM1-0 1.1 1.1 r2i1p1f1 1 1 1 1 1 

CanESM5 2.8 2.8 r1i1p1f1 - r25i1p1f1 25 25 25 25 25 

CESM2 0.9 1.3 r1i1p1f1 1 1 1 1 1 

CESM2-WACCM 0.9 1.3 r1i1p1f1 1 1 1 1 1 

CMCC-CM2-SR5 1.0 1.0 r1i1p1f1 1 1 1 1 1 

CNRM-CM6-1 1.4 1.4 r1i1p1f2 1 1 1 1 1 

CNRM-ESM2-1 1.4 1.4 r1i1p1f2 1 1 1 1 1 

EC-Earth3 0.7 0.7 r1i1p1f1 1 1 1 1 1 

EC-Earth3-Veg 0.7 0.7 r1i1p1f1 1 1 1 1 1 

EC-Earth3-Veg-LR 1.1 1.1 r1i1p1f1 1 1 1 1 1 

FGOALS-g3 2.0 2.0 r1i1p1f1 1 1 1 1 1 

GFDL-ESM4 1.0 1.3 r1i1p1f1 1 1 1 1 1 

IITM-ESM 1.9 1.9 r1i1p1f1 1 1 1 1 1 

INM-CM4-8 1.5 2.0 r1i1p1f1 1 1 1 1 1 

INM-CM5-0 1.5 2.0 r1i1p1f1 1 1 1 1 1 

IPSL-CM6A-LR 1.3 2.5 r1i1p1f1 1 1 1 1 1 

KACE-1-0-G 1.3 1.9 r1i1p1f1 1 1 1 1 1 

MIROC6 1.4 1.4 r1i1p1f1 1 1 1 1 1 

MIROC-ES2L 2.8 2.8 r1i1p1f2 1 1 1 1 1 

MPI-ESM1-2-HR 0.9 0.9 r1i1p1f1 1 1 1 1 1 

MPI-ESM1-2-LR 1.9 1.9 r1i1p1f1 1 1 1 1 1 

MRI-ESM2-0 1.1 1.1 r1i1p1f1 1 1 1 1 1 

NorESM2-LM 1.9 2.5 r1i1p1f1 1 1 1 1 1 

NorESM2-MM 0.9 1.3 r1i1p1f1 1 1 1 1 1 

UKESM1-0-LL 1.9 1.3 r1i1p1f2 1 1 1 1 1 
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Table 2. Target variables used for evaluation of the simulations of WG. 

Target variable Abbr. Unit Weight 

Annual number of dry days and – – 

Seasonal number of dry days, winter sndwi – 0.10 

Seasonal number of dry days, spring sndsp – 0.10 

Seasonal number of dry days, summer sndsu – 0.20 

Seasonal number of dry days, autumn sndau – 0.10 

Annual precipitation ap mm – 

Seasonal precipitation, winter spwi mm 0.03 

Seasonal precipitation, spring spsp mm 0.06 

Seasonal precipitation, summer spsu mm 0.15 

Seasonal precipitation, autumn spau mm 0.06 

Annual number of events above 10 mm per day n10mm – 0.10 

Annual number of events above 20 mm per day n20mm – 0.05 

Annual maximum daily precipitation mdp mm 0.05 
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Table 3. Overview of the considered research indicators. 

Research indicators # 

Mean monthly number of dry days 12 

Number of dry spells per class 5 

Mean length of very long dry spells 1 

Mean monthly precipitation 12 

Maximum monthly precipitation 12 

 42 
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Table 4. Classification of dry spells based on their length along with the limits for each class derived from observed time 

series. 

Class name Percentiles Limits [days] 

Very short dry spell < 20th [2, 7] 

Short dry spell 20th – 40th [8, 13] 

Medium dry spell 40th – 60th [14, 19] 

Long dry spell 60th – 80th [20, 25] 

Very long dry spell > 80th [26, ∞] 

  



36 

 

Table 5. Climate change signals and corresponding significance for BC and CFM. Climate change signal is the change 

relative to the historical observations (1971-2000). Numbers in italic, bold and bold italic denote significant changes at 20%, 

10% and 5% levels, respectively. 

Research indicator Obs. BC CFM 

SSP1-

2.6 

SSP2-

4.5 

SSP3-

7.0 

SSP5-

8.5 

SSP1-

2.6 

SSP2-

4.5 

SSP3-

7.0 

SSP5-

8.5 

Dry spell length 27 4.7% 7.5% 4.9% 10.5% 2.3% 2.8% 2.8% 3.2% 

Number of dry 

spells 

Very short 795 6.8% 5.3% 1.9% -1.6% -0.6% -1.3% -1.3% -1.6% 

Short 219 6.2% 8.0% 8.1% 7.6% -1.1% -1.2% -1.7% -2.3% 

Medium 68 27.9% 47.9% 48.5% 50.7% 3.2% 3.3% 4.4% 5.2% 

Long 20 60.9% 77.5% 90.1% 86.6% 5.0% 10.5% 13.0% 20.2% 

Very long 11 6.8% 5.3% 1.9% -1.6% 1.6% 3.9% 10.7% 10.4% 

Number of dry 

days 

Jan 18 -4.6% -0.9% -2.5% -5.5% -1.4% -1.6% -2.3% -3.0% 

Feb 18 -1.3% -0.6% -0.5% -2.4% 0.1% -0.5% -0.5% -1.8% 

Mar 18 -4.7% -3.2% -1.2% -3.0% -0.6% -0.6% -0.6% -1.2% 

Apr 19 -2.6% -1.3% 0.9% -0.9% -0.5% -0.5% -0.1% -1.0% 

May 20 1.4% 2.6% 7.1% 9.5% 0.9% 0.9% 1.7% 2.1% 

Jun 18 4.5% 8.2% 13.3% 18.0% 1.1% 1.9% 3.4% 4.9% 

Jul 21 5.9% 10.3% 15.0% 19.3% 1.5% 2.5% 3.8% 5.3% 

Aug 22 5.2% 9.6% 14.9% 17.5% 1.5% 2.7% 4.2% 5.5% 

Sep 21 4.1% 7.6% 10.3% 13.6% 1.2% 1.8% 3.0% 3.6% 

Oct 21 1.4% 5.7% 5.2% 6.2% -0.2% 0.2% -0.1% -0.2% 

Nov 17 2.5% 3.2% 1.3% 1.5% 0.6% 0.5% -0.1% -0.5% 

Dec 18 -3.6% -6.1% -3.7% -6.1% -0.3% -0.8% -1.2% -2.1% 

Total 

precipitation 

Jan 71.2 11.4% 12.9% 17.8% 23.1% 11.4% 12.9% 17.8% 23.1% 

Feb 53.1 5.2% 7.5% 9.8% 17.1% 5.3% 7.5% 9.8% 17.2% 

Mar 72 14.0% 12.6% 13.3% 20.0% 13.9% 12.6% 13.3% 20.0% 

Apr 54.7 9.6% 9.7% 8.6% 12.3% 9.6% 9.7% 8.6% 12.2% 

May 69.7 3.1% 4.6% -1.6% -2.6% 3.1% 4.6% -1.6% -2.6% 

Jun 77.1 0.7% -5.9% -14.0% -22.2% 0.7% -5.9% -14.0% -22.2% 

Jul 68.9 -7.3% -14.0% -23.2% -31.7% -7.3% -14.0% -23.2% -31.7% 

Aug 64.4 -8.5% -16.5% -27.1% -32.8% -8.5% -16.5% -27.2% -32.8% 

Sep 62.1 -3.1% -8.4% -15.6% -19.3% -3.1% -8.4% -15.6% -19.3% 

Oct 68.8 4.4% 0.7% 2.3% 5.0% 4.4% 0.7% 2.3% 5.0% 

Nov 79.6 4.2% 6.1% 10.2% 13.4% 4.2% 6.1% 10.2% 13.4% 

Dec 78.7 9.8% 14.2% 17.9% 24.5% 9.8% 14.2% 17.9% 24.5% 

Maximum daily 

precipitation 

Jan 13.5 12.0% 17.4% 21.5% 25.3% 11.4% 12.9% 17.8% 23.1% 

Feb 12.4 4.0% 7.6% 11.3% 17.7% 5.3% 7.5% 9.8% 17.2% 

Mar 14.2 11.6% 13.9% 15.8% 22.5% 13.9% 12.6% 13.3% 20.0% 

Apr 12.3 8.4% 12.2% 12.1% 15.3% 9.6% 9.7% 8.6% 12.2% 

May 16.6 5.3% 9.6% 8.3% 12.9% 3.1% 4.6% -1.6% -2.6% 

Jun 19.3 8.1% 4.5% 2.1% -1.2% 0.7% -5.9% -14.0% -22.2% 

Jul 16.9 0.5% 0.9% -4.4% -12.5% -7.3% -14.0% -23.2% -31.7% 

Aug 18.7 0.0% -3.8% -9.4% -12.9% -8.5% -16.5% -27.1% -32.8% 

Sep 15.7 6.4% 6.5% 3.1% 4.0% -3.1% -8.4% -15.6% -19.3% 

Oct 17.2 11.2% 10.7% 14.4% 20.3% 4.4% 0.7% 2.3% 5.0% 

Nov 16.6 8.9% 11.2% 17.0% 23.7% 4.2% 6.1% 10.2% 13.4% 

Dec 15.8 8.2% 13.1% 19.7% 26.6% 9.8% 14.2% 17.9% 24.5% 
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Table 6. Climate change signals for QP and WG and corresponding significance for QP. Significance testing is not possible 

for WG as it does not downscale each member of the ensemble separately. Climate change signal is the change relative to the 

historical observations (1971-2000). Numbers in italic, bold and bold italic denote significant changes at 20%, 10% and 5% 

levels, respectively. 

Research indicator Obs. QP WG 

SSP1-

2.6 

SSP2-

4.5 

SSP3-

7.0 

SSP5-

8.5 

SSP1-

2.6 

SSP2-

4.5 

SSP3-

7.0 

SSP5-

8.5 

Dry spell length 27 4.9% 5.6% 6.5% 8.7% 19.0% 9.8% 11.3% 16.8% 

Number of dry 

spells 

Very short 795 5.5% 4.8% 2.0% 1.4% 3.4% -2.0% -5.4% 6.0% 

Short 219 -1.6% -1.4% 0.0% -1.2% 3.7% 12.8% 18.7% 5.9% 

Medium 68 -4.3% 2.5% 6.5% 6.6% -17.6% -10.3% -8.8% -7.4% 

Long 20 3.6% 5.4% 16.1% 21.4% 20.0% 0.0% 15.0% 5.0% 

Very long 11 3.9% 18.5% 43.8% 62.7% -36.4% 63.6% 36.4% -27.3% 

Number of dry days Jan 18 -2.6% -0.7% -1.8% -3.4% 8.2% 2.4% 5.9% 0.7% 

Feb 18 -0.2% 0.1% 0.1% -1.0% -6.9% 3.8% -6.5% -0.9% 

Mar 18 -3.6% -2.9% -1.2% -2.5% 1.1% 9.8% 11.3% 8.5% 

Apr 19 -1.6% -0.5% 0.7% -0.3% -3.8% 1.6% -2.8% 2.1% 

May 20 1.8% 2.4% 6.1% 7.6% -0.3% 1.3% 7.0% -4.3% 

Jun 18 4.1% 8.0% 12.9% 18.0% 13.8% 13.2% 15.6% 13.2% 

Jul 21 5.7% 9.0% 13.1% 16.6% -1.7% 3.7% 0.5% 3.1% 

Aug 22 4.8% 8.1% 12.8% 14.7% -5.9% -3.8% 0.6% -6.0% 

Sep 21 4.3% 6.9% 9.5% 11.8% -2.3% -3.7% -8.1% -1.0% 

Oct 21 0.7% 3.6% 3.1% 4.0% -5.3% 0.5% 3.5% 1.9% 

Nov 17 1.9% 2.2% 0.6% 0.7% 9.5% 15.9% 19.2% 11.4% 

Dec 18 -1.1% -2.7% -1.8% -3.4% 5.5% 9.7% 8.0% 7.4% 

Total precipitation Jan 71.2 11.5% 13.3% 18.1% 23.3% -2.6% 6.8% 15.1% 18.5% 

Feb 53.1 5.5% 7.8% 10.4% 17.7% 42.0% -0.7% 41.3% 16.8% 

Mar 72 14.3% 13.1% 13.8% 21.1% 14.1% 1.2% -7.1% 5.6% 

Apr 54.7 10.4% 10.8% 9.7% 13.5% 22.6% 31.1% 35.5% 32.4% 

May 69.7 4.6% 5.9% 0.1% -0.8% -1.8% 3.0% -10.3% 8.7% 

Jun 77.1 1.6% -5.1% -13.4% -21.1% -24.3% -22.1% -20.5% -32.6% 

Jul 68.9 -6.6% -13.7% -23.3% -31.3% -0.2% -10.7% -4.5% -27.0% 

Aug 64.4 -7.0% -14.7% -25.5% -32.2% 11.9% -0.6% -22.3% -9.7% 

Sep 62.1 -2.4% -7.3% -14.4% -18.0% 6.2% 13.0% 42.9% 24.0% 

Oct 68.8 5.1% 1.5% 2.8% 6.1% 16.6% 2.8% 15.4% 4.9% 

Nov 79.6 4.8% 6.5% 10.6% 14.0% -13.2% -10.2% -15.4% -1.9% 

Dec 78.7 10.1% 14.6% 18.5% 25.3% 4.1% -4.9% 7.1% 3.3% 

Maximum daily 

precipitation 

Jan 13.5 13.5% 17.0% 21.3% 26.2% 20.2% 30.4% 35.6% 26.1% 

Feb 12.4 6.2% 9.9% 13.7% 20.9% 44.1% 25.6% 51.4% 22.4% 

Mar 14.2 14.4% 14.8% 18.1% 25.3% 31.8% 51.5% 22.3% 30.5% 

Apr 12.3 11.9% 14.2% 14.5% 17.5% 23.6% 51.5% 52.9% 58.2% 

May 16.6 8.1% 12.8% 12.8% 16.2% -1.6% 2.1% 6.3% 7.0% 

Jun 19.3 11.8% 8.3% 6.8% 2.8% -16.9% -17.5% -2.8% -17.2% 

Jul 16.9 3.5% 4.6% -1.4% -5.2% 20.9% 15.2% 16.6% -25.0% 

Aug 18.7 4.6% 0.9% -2.6% -9.4% 11.9% -9.9% -20.1% -19.3% 

Sep 15.7 6.8% 6.8% 1.6% 3.5% 26.9% 9.2% 43.6% 34.5% 

Oct 17.2 10.6% 10.8% 12.7% 21.4% 11.0% 5.8% 22.8% 18.8% 

Nov 16.6 10.5% 11.8% 16.8% 21.6% 1.1% 15.4% 18.0% 20.1% 

Dec 15.8 10.8% 14.9% 22.2% 28.9% 20.8% 19.8% 23.2% 10.7% 
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Table 7. Maximum deviation relative to the mean change factor projected by the CMIP6 ensemble allowed for acceptance 

for each target variable in WG. These deviations correspond to a 95% confidence interval of the distribution of each target 

variable projection within the GCM ensemble. 

Target variable Abbr. Weight SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Dry days Annual and 0 3.43% 3.22% 4.15% 4.40% 

Winter sndwi 0.1 5.21% 6.89% 7.18% 8.15% 

Spring sndsp 0.1 6.33% 4.85% 5.78% 7.15% 

Summer sndsu 0.2 5.86% 6.05% 8.14% 8.24% 

Autumn sndau 0.1 4.62% 3.75% 5.75% 5.58% 

Total 

precipitation 

Annual and 0 4.35% 5.07% 6.24% 6.46% 

Winter sndwi 0.03 6.60% 7.72% 8.61% 10.64% 

Spring sndsp 0.06 10.00% 9.54% 10.44% 12.38% 

Summer sndsu 0.15 11.95% 10.98% 14.68% 14.87% 

Autumn sndau 0.06 7.20% 6.82% 7.47% 8.21% 

Extreme 

precipitation 

10 mm n10mm 0.1 8.49% 12.08% 13.62% 15.01% 

20 mm n20mm 0.05 27.59% 35.70% 36.61% 48.14% 

Max mdp 0.05 7.42% 11.32% 11.39% 13.29% 

 


