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Comparison of statistical downscaling methods for climate 

change impact analysis on precipitation-driven drought 

 

We appreciate all the useful comments and suggestions provided by the anonymous reviewers. The changes to the 

text, which address the different comments, were highlighted in BLUE COLOR in the revised manuscript. 

 

Referee #1 

HESS-2020-506 Title: Comparison of statistical downscaling methods for climate change impact analysis on drought 

Authors: Hossein Tabari, Daan Buekenhout, Patrick Willems 

 

GENERAL COMMENT 

The paper presents a comparative analysis of four (4) Statistical Downscaling Methods (SDMs), namely, Bias 

Correction (BC), Change Factor of Mean (CFM), Quantile Perturbation (QP) and Event Based Weather Generator 

(EBWG) to assess climate change impact on drought by the end of the 21st century (2071-2100) relative to a baseline 

period of 1971-2000. The SDMs were applied to downscale daily precipitation from 14-member ensemble of CMIP6 

GCM at the Uccle weather station in Belgium for four future scenarios, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0 and 

SSP5-8.5. Various drought indices have been calculated and used in the comparison of SDMs’ results for the future 

period with the drought indices estimated from the observed precipitation for the baseline period. 

The paper is well organized, written and comprehensive. However, there are a few points that should be clarified and 

addressed. Overall, the paper merits publication in the HESS after the moderate comments are properly addressed. 

REPLY: We thank the reviewer for the encouraging assessment and helpful comments. 

 

SPECIFIC COMMENTS 

1) Title: The title of the paper should include the word “precipitation”. Precipitation is the variable downscaled from 

GCMs in the paper. Additionally, drought phenomenon is affected by other meteorological variables, for example 

temperature, evapotranspiration and others. It should be clear from the title that the work presented in the paper deals 

with the downscaling of precipitation for the estimation of climate change impacts on droughts. 

REPLY: We agree with the reviewer that the title of the paper should show that precipitation and its lack are 

investigated in this study. The title was revised as “Comparison of statistical downscaling methods for climate change 

impact analysis on precipitation-driven drought”. 

 

2) Abstract: It should be made clear in the Abstract that the downscaling exercise was made for the weather station of 

Uccle located in Belgium. This information is missing from the stand-alone abstract of the paper. 

REPLY: The weather station name was added to the abstract. 
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3) It is usual to calibrate/validate the SDMs during the historical base period (1971-2000 in the paper) and, then, apply 

them for the future period(s). The authors although mentioned that the methods have been calibrated using the 

observed precipitation at the Uccle weather station, they do not present any results (i.e. statistics, graphs) about the 

calibration of the SDMs. The presentation of the calibration results are necessary to assess the validity of the 

downscaling methods before using them to the future periods. 

REPLY: We agree that assessing the validity of the statistical downscaling methods is important. We evaluated the 

skill of the statistical downscaling methods using two cross-validation methods. The validation procedure was 

explained in section 2.3. The validation results are shown in new figures 1 and 2 and interpreted in section 3 (lines 

317-325). The validation methods were also explained in section 2.3. 

 

MINOR COMMENTS 

4) Lines 46-48. It is written “Precipitation and the number of wet days were found to increase during summer and to 

decrease during winter, while evapotranspiration was found to increase for both seasons. This suggests drier summers 

and wetter winters.” This statement is quite vague and needs further explanation on the ratio of precipitation and 

evapotranspiration to generate drier summers and wetter winters. 

REPLY: The difference between precipitation and evapotranspiration was used as an indicator of drought and water 

availability in that study. The sentence was revised by clarifying this issue. 

 

5) Line 130. The equation of m should be written better. The equal sign is not shown properly. 

REPLY: A space was added before the equal sign. 

 

6) Table 3. What is WLDS? Although the term is presented in the text of the paper, it should be written in full. Tables 

are stand-alone elements of a paper. 

REPLY: VLDS refers to very long dry spell. It was written in full in the table. The abbreviations in the other tables 

were also written in full. 

 

7) Figure 2. The color bars and the reference lines should be explained. 

REPLY: Sorry for the missing legend. The legend was added to the figure (Fig. 6 in the revised paper). 

=========================================================================== 
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Referee #2 

In general, I found this manuscript difficult to follow. If I weren’t supposed to review it, I would have stopped reading 

it fairly quickly. This is not so much a question about the English but the way the material is structured and that it 

presumes that the reader already is familiar with the work. I also think I have some misgivings about the results and 

have a few issues with the nomenclature. There is no proper evaluation of the methods, and I think the authors could 

give more background and discuss their efforts in the context of other relevant papers. 

REPLY: We thank the reviewer for the critical assessment and constructive feedback. 

The major improvements made in the revised paper are: 

 We enlarged the ensemble sample size to limit the effect of the random sampling fluctuation, making the 

total ensemble sample size equal to 52 for each RCP-SSP scenario (simulations from a 28-member 

ensemble of the CMIP6 GCMs plus 24 extra simulations from the CanESM5 GCM ensemble). In this 

regard, ‘the law of small numbers’ and the risk of using a limited sample size were noted by citing the 

relevant references (lines 99-100). 

 We explained the four methods in more details and justified their choice in the revised paper. 

 We evaluated the skill of the statistical downscaling methods using two cross-validation methods to show 

how they can reproduce dry day frequency, dry spell duration and total precipitation. The validation 

procedure was explained in section 2.3. The validation results are shown in new figures 1 and 2 and 

interpreted in section 3 (lines 317-325). The validation methods were also explained in section 2.3. 

 To improve the readability of the manuscript, all acronyms and abbreviations except the four downscaling 

methods were written in the full term in the revised paper. The English of the paper was also improved. 

 The results of the study were discussed in the context of other relevant studies, and the literature review 

was modified. 

L.40-48: It may be of interest to note that the occurrence of droughts also may be a consequence of a reduction in the 

global area with 24-hr rainfall (DOI: 10.1088/1748-9326/aab375). 

REPLY: We appreciate the reviewer for bringing this point to our attention. The drought as a result of a decrease in 

daily precipitation area was noted in the revised paper. 

 

L.66: The statement ‘As there is no single best downscaling method’ may be correct generally for a range of situations, 

but for specific and limited problems, there may be some method that is superior and provides the most reliable answer. 

REPLY: The sentence refers to the lack of a single best downscaling method for all applications and regions. We 

agree with the reviewer that some methods are superior for specific applications. That is why we need to evaluate 

different statistical downscaling methods to select the optimal one for each application based on the information needs 

(e.g., desired spatial and temporal resolutions) and on available resources (data, expertise, computing resources and 

time-frames). 

The sentence was reformulated in the revised paper to clarify this point. 
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L.73/79: ensemble sizes of 14 or 25 members are on the low end for giving robust information, due to pronounced 

and stochastic/chaotic decadal variations (Deser et al., 2012) and ‘the law of small numbers’. If the ensemble is to be 

regarded as a statistical sample, then it typically needs more than 30 data points to get results that are not heavily 

affected by random sampling fluctuation, and preferably more than 100 members to get more robust statistics. 

REPLY: We agree with the reviewer that small samples subject to “the law of small numbers” are susceptible to the 

presence of strong random statistical fluctuations and can provide misleading results (Benestad et al., 2017a, b). Our 

initial climate model ensemble includes 38 runs from 15 GCM for each of the four considered RCP-SSP scenario 

(SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Thirteen additional GCMs were added to the previous ensemble. This 

makes the total ensemble sample size equal to 52 for each RCP-SSP scenario (simulations from a 28-member ensemble 

of the CMIP6 GCMs plus 24 extra simulations from the CanESM5 GCM ensemble), which is large enough to limit 

the effect of the random sampling fluctuation. The law of small numbers and the risk of using a limited sample size 

were noted by citing the relevant references (lines 99-100). 

 

L83: If ‘precipitation time series produced by GCMs as sole predictor’ also is used for model calibration, then there 

seems to be a problem because the GCMs are not synchronised with the observations in the real world. 

REPLY: Rummukainen (1997) classified SDMs into two groups of perfect prognosis (PP) and model output statistics 

(MOS) based on the information used for downscaling, and Wilby and Wigely (1997) and Fowler et al. (2007) 

classified them into three groups of regression methods, weather type approaches, and stochastic weather generators 

(WGs) based on the relationship used to connect large and local scales. Maraun et al. (2010) combined these two 

types of the SDM classification and came up with three categories of PP, MOS, and WGs. According to the last 

classification, the SDMs 1-3 in this study are classified as MOS methods and the SDM 4 as a WG. 

As mentioned in paragraph 63 in Maraun et al. (2010), “Depending on the type of simulations used for MOS 

calibration the predictors can either be simulated precipitation time series or properties of the simulated intensity 

distribution. Similarly, predictands can either be local precipitation series or properties of the local‐scale intensity 

distribution.” 

In WGs, the change factors are used to modify observations for a future climate. “Once these change factors are 

calculated, no large‐scale drivers are needed to generate weather time series.” (paragraph 81 in Maraun et al., 2010). 

 

L92: Both GCMs and RCMs have a minimum skillful scale (DOI: 10.2151/jmsj.2015-042) which implies that single 

grid box values should not be used as a predictor. The difference between downscaling and bias adjustment is that the 

former utilises the scales that the models are able to skillfully reproduce and known dependencies between large and 

small scales to infer changes in the local (small-scale) climate whereas the latter is about modifying individual grid-

box values (below the minimum skillful scales) to match the statistical properties of observations from similar 

locations. 

REPLY: We agree that the simulations of coarse scale climate models (GCM and RCM) are biased, which was noted 

in the lines 51-53 of the revised paper. 
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Regarding the SDMs used in this study, we follow the SDM classification made by Maraun et al. (2010) who 

classified SDMs into three groups of PP, MOS, and WGs. In that classification, the SDMs 1-3 in this study are 

classified in the MOS group and the SDM4 in the WGs group. In these methods, “the change factor is calculated for 

the grid box containing the location of the weather station of interest” (paragraph 81 in Maraun et al., 2010). 

 

L100: I found the section difficult to follow and at times there seemed to be too little information. A rule of thumb is 

it is annoying to read a paper where you need to read another paper before you understand what it does, and the reader 

should be able to reproduce the results based on a detailed ‘recipe’ explaining the method. Reproducibility is an 

important issue. 

REPLY: To avoid a lengthy paper, the statistical downscaling methods were briefly explained in the initial version of 

the paper. We agree with the reviewer that all necessary information to reproduce the results and understand the full 

context of how to interpret our results should be included. The statistical downscaling methods were explained in 

more details in the revised paper (L110-257). 

 

L101: State that the four methods are explained in more detail below. Also, I’m not sure why there are four methods 

- what is the merit of each? Sure, I get it that they may give different results, but so what? 

REPLY: The four statistical downscaling methods were selected for this study based on their complexity and the way 

they treat dry spells. Each method has a different take on the downscaling of dry spells. This study aims at examining 

the influence of these factors in the statistical downscaling using four methods which are different in methodology 

and complexity. While BC and CFM are considered simple and computationally fast and straightforward methods 

that do not modify dry spells in downscaling, QP and WB are more advanced methods that adjust dry spells. BC 

applies a bias correction to the selected statistics, whereas the other three downscaling methods return a modified 

precipitation time series. BC utilizes a direct downscaling strategy by applying the relative change factors directly to 

the dry spell related research indicators. The other three methods opt for an indirect downscaling strategy towards 

dry spells by integrating the changes in dry days, which are downscaled directly into a coherent time series. For this, 

CFM solely relies on the temporal (precipitation) structure present in the GCM time series. QP on the other hand is 

expected to actively favour clustering of dry days. Lastly, WB makes use of a probability distribution to sample dry 

events from. While the precipitation change factor methods (BC, CFM and QP) assume independency between 

successive wet days and apply changes at the daily time scale, which can be problematic when successive wet days 

are part of a longer lasting event, WG identifies precipitation events and applies the same change factor to all 

precipitation within that event. 

The above explanation is present in lines 111-124 of the revised paper. In addition, we explained the four methods in 

more details (L125-257). 

 

L107: Insufficient information about the BC methods? 

REPLY: The statistical downscaling methods were explained in more details in the revised paper (L111-257). 
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L115: A change factor of mean cannot really be classified as a downscaling method as it does not involve different 

spatial scales. 

REPLY: Based on the calibration data, a change factor of mean is classified as a model output statistics (MOS) method 

(Maraun et al., 2010; Sunyer et al., 2015). It is considered as the simplest MOS method as mentioned in paragraph 

66 in Maraun et al. (2010). 

 

L180: Perhaps an illustration will make it easier to follow. 

REPLY: Relevant equations were added for a better understanding of the method. 

 

L199: Why not downscale the parameters of the pdf for the dry-spell duration? If there is a probability p that it rains 

on a specific day, then the pdf for the duration of dry spells ought to follow a binomial distribution with one parameter 

p = 1/mean(spell lengths). This approach has been tried for heatwaves in India (DOI:10.5194/ascmo-4-37-2018). 

Because the statistics of spells (duration of events) tend to follow the binomial distribution, it is advisable to include 

the mean duration - not just its median (which is usually not a quantity that corresponds to the parameters of a pdf). 

REPLY: 

- Thank you for the suggesting this interesting method. In this study, two groups of statistical downscaling methods 

(simple and advanced) were selected to downscale three variables of dry day frequency, dry spell duration and total 

precipitation. Although the suggested method would effectively downscale dry spell duration, it would not, however, 

work for the other two variables (total precipitation and dry day frequency). So, the method would be suggested as an 

interesting downscaling method for future research on the duration of dry spells. 

- We agree that dry spell durations follow a binomial distribution which has previously been successfully fitted to the 

distribution of wet and dry spells in different parts of the world (Wilby et al., 1998; Semenov et al., 1998; Wilks, 1999; 

Mathlouthi & Lebdi, 2009). 

In the revised paper, the median duration of dry spells was replaced with the mean duration. 

 

L200-206: There is a subtle but important difference between a rain gauge measurement (a point measurement) and 

gridbox values from GCMs (area mean estimates), which also has implications for threshold values. This is also 

expected to be affected by different spatial resolutions (Table 1). For a coarser model, local ‘convective’ would be 

smudged out over a larger area (I guess it is parameterised) and expected to have a different statistical characteristic 

to a very tiny spatial sample (rain gauge measurements with diameters of the order of centimetres). This in itself is a 

justification for bias adjustment, but nevertheless makes it difficult to compare dry and wet days in models with 

different spatial resolution. 

REPLY: The local processes such as convection that cannot be resolved in horizontal grid spacing of GCMs are 

parameterized, which is a source of large bias and uncertainty in the simulations. The bias is, therefore, corrected for 

local impact assessments. A comparison between convection-permitting and convection-parameterized models would 
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lead to a difference in dry spell changes because of a better representation of diurnal convection and propagating 

systems in convection-permitting models (Kendon et al., 2019). However, at the spatial resolution of GCMs at which 

local processes are parameterized, the spatial resolution difference is less important compared to the contributions 

of other factors to the differences across simulations and projections of GCMs such as other differences in the design 

of climate models, e.g., type of parameterization scheme (Foley, 2010), a lake of knowledge of an unknown future 

(even without climate change) as well as inadequate theoretical understanding of climate system processes (Knutti et 

al., 2008; Knutti and Sedláček, 2013) such as climate feedbacks (Knutti and Hegerl, 2008; Collins et al., 2011), carbon 

cycle processes (Friedlingstein et al., 2006; Booth et al., 2012), boundary-layer, gravity wave drag and its susceptible 

interplay with large-scale dynamics (Shepherd, 2014) and climate variability (Hegerl et al., 2007). 

For the data used in this study, no relation was found between the spatial resolutions of the CMIP6 GCMs and 

their simulated historical dry day frequencies (p-value=0.2219) and between the spatial resolutions and projected 

dry day frequency changes of GCMs (p-value=0.1772). 

The same threshold value of 1 mm is therefore used for climate change impact assessments on dry spell durations 

using climate models with a wide range of spatial resolutions; convection-permitting models (e.g., Kendon et al. 

[2019]), regional climate models (e.g., WRF RCM in Han et al. [2019], EURO‐CORDEX RCMs in Dosio [2016]; 

Med-CORDEX RCMs in Raymond et al. [2018]; WAS-CORDEX RCMs in Tabari and Willems [2018]; CORDEX-

Africa RCMs in Dosio and Panitz [2016]) and global climate models (e.g., CMIP5 GCMs in Sillmann et al. [2013] 

and Giorgi et al. [2019]; CMIP6 GCMs in Kim et al. [2020]). 

 

L222: Pmax is the max monthly maximum precipitation or the mean monthly maximum? 

REPLY: Pmax refers to mean monthly maximum precipitation. It is monthly maximum daily precipitation averaged 

over the 30-year period. 

 

L235: Why is a two-tailed test used here? 

REPLY: This is because S2N can be either positive or negative as the signal can be either positive or negative (see 

Tables 5 and 6), but the noise is always positive. 

 

L237: It is important with a proper evaluation of the methods involving e.g. cross-validation and historical data, which 

seems to be missing. E.g., can the methods reproduce historical changes/variations in dry-spell lengths? 

REPLY: We evaluated the skill of the statistical downscaling methods using two cross-validation methods to show 

how they can reproduce dry day frequency, dry spell duration and total precipitation. The validation procedure was 

explained in section 2.3. The validation results are shown in new figures 1 and 2 and interpreted in section 3 (lines 

317-325). The validation methods were also explained in section 2.3. 

 

L253: ‘medium’ should be ‘median’? It’s better to use the mean because the statistics of dry-spell length is expected 

to follow a distribution that is not too different to the binomial distribution for which the mean is connected to its only 

parameter. 
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REPLY: We agree to replace median with mean. 

 

L258: Define ‘DSL’. 

REPLY: DSL refers to median very long dry spell length as shown in Table 3. VLDS was written in full in Table 3 and 

in the text. In addition, median very long dry spell length was replaced with mean very long dry spell length. 

 

L269: It’s annoying to stumble across acronyms like ‘RI’ which I then need to scroll up to remind me of what it stands 

for. The same goes with the other acronyms. I think it’s a bad habit (and sloppy) to use many acronyms and 

abbreviations and if there is no need to do so, it’s generally better to spell out the words to make it easier for the reader 

and ensure that (s)he focuses on the message rather than trying to decipher the text. The punishment is of course 

revisions. 

REPLY: We agree with the reviewer that the use of many acronyms and abbreviations especially the non-standard 

ones would be confusing for the reader. To improve the readability of the manuscript, all acronyms and abbreviations 

except the four downscaling methods were written in the full term in the revised paper. 

 

I think that the ensemble used here is too small to make any judgement about future climate due to pronounced 

stochastic local variability on decadal scales (Deser et al., 2012) and the law of small numbers. This stochastic nature 

should call for the use of probabilistic projections. Furthermore, I would not call the efforts discussed here 

‘downscaling’ but they are more along the line of ‘prediction’ or ‘bias correction’ in my opinion (there is no scaling 

dependencies being utilised between large and small). It can be shown that the large-scale circulation (SLP anomalies) 

tend to determine whether there is rain or no rain for a location, and downscaling would involve using the large-scale 

circulation as a means to infer the wet-day frequency and maybe also dry-spell lengths. 

REPLY: We agree with the reviewer that small samples subject to “the law of small numbers” are susceptible to the 

presence of strong random statistical fluctuations and can provide misleading results (Benestad et al., 2017a, b). Our 

initial climate model ensemble includes 38 runs from 15 GCM for each of the four considered RCP-SSP scenario 

(SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Thirteen additional GCMs were added to the previous ensemble. This 

makes the total ensemble sample size equal to 52 for each RCP-SSP scenario (simulations from a 28-member ensemble 

of the CMIP6 GCMs plus 24 extra simulations from the CanESM5 GCM ensemble), which is large enough to limit 

the effect of the random sampling fluctuation. The law of small numbers and the risk of using a limited sample size 

were noted by citing the relevant references (lines 99-100). 

As mentioned in paragraph 63 in Maraun et al. (2010), “Depending on the type of simulations used for MOS 

calibration the predictors can either be simulated precipitation time series or properties of the simulated intensity 

distribution. Similarly, predictands can either be local precipitation series or properties of the local‐scale intensity 

distribution.” In WGs, the change factors are used to modify observations for a future climate. “Once these change 

factors are calculated, no large‐scale drivers are needed to generate weather time series.” (paragraph 81 in Maraun 

et al., 2010). 
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L380: Need to define ‘accurately’ and provide evidence for the statement. 

REPLY: We evaluated the skill of the statistical downscaling methods using two cross-validation methods to show 

how they can reproduce dry day frequency, dry spell duration and total precipitation. The validation procedure was 

explained in section 2.3. The validation results are shown in new figures 1 and 2 and interpreted in section 3 (lines 

317-325). The validation methods were also explained in section 2.3. 
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