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Abstract. The agricultural sector in Saudi Arabia has witnessed rapid growth in both production and area under cultivation 

over the last few decades. This has prompted some concern over the state and future availability of fossil groundwater 

resources, which have been used to drive this expansion. Large-scale studies using satellite gravimetric data show a declining 

trend over this region. However, water management agencies require much more detailed information on both the spatial 

distribution of agricultural fields, and their varying levels of water exploitation through time, than coarse gravimetric data can 15 

provide. Relying on self-reporting from farm operators or sporadic data collection campaigns to obtain needed information are 

not feasible options, nor do they allow for retrospective assessments. In this work, a water accounting framework that combines 

satellite data, meteorological output from weather prediction models, and a modified land surface hydrology model, was 

developed to provide information on both irrigated crop-water use and groundwater abstraction rates. Results from the local-

scale, comprising several thousand individual center-pivot fields, were then used to quantify the regional-scale response. To 20 

do this, a semi-automated approach for the delineation of center-pivot fields using a multi-temporal statistical analysis of 

Landsat 8 data was developed. Next, actual crop evaporation rates were estimated using a two-source energy balance (TSEB) 

model driven by leaf area index, land surface temperature, and albedo inputs, all of which were derived from Landsat 8. The 

Community Atmosphere Biosphere Land Exchange (CABLE) model was then adapted to use satellite-based vegetation and 

related surface variables, and forced with a 3 km reanalysis dataset from the Weather Research and Forecasting (WRF) model. 25 

Groundwater abstraction rates were then inferred by estimating the irrigation supplied to each individual center-pivot, which 

was determined via an optimization approach that considered CABLE-based estimates of evaporation and TSEB-based satellite 

estimates. The framework was applied over two study regions in Saudi Arabia: a small-scale experimental facility of around 

40 center-pivots in Al Kharj that was used for an initial evaluation, and a much larger agricultural region in Al Jawf province 

comprising more than 5,000 individual fields across an area exceeding 2,500 km2. Total groundwater abstraction for the year 30 

2015 in Al Jawf were estimated at approximately 5.5 billion cubic meters, far exceeding any recharge to the groundwater 

system and further highlighting the need for a comprehensive water management strategy. Overall, this novel data-model 
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fusion approach facilitates the compilation of national-scale groundwater abstractions, while also detailing field-scale 

information that allows both farmers and water management agencies to make informed water accounting decisions across 

multiple spatial and temporal scales.  

1 Introduction 

Global water consumption has increased at an unprecedented rate during the last century, with many countries turning 5 

to groundwater as either an additional or primary source of supply to meet growing agricultural and other sectoral demands 

(FAO 2015; Famiglietti et al., 2014). In arid and semi-arid regions in particular, groundwater is routinely the major water 

source driving such expansions in irrigated agriculture (Siebert et al., 2010). Unfortunately, these expansions have come with 

a number of associated costs related to sustainability of aquifer systems, degrading water quality and over-exploitation. Indeed, 

global monitoring efforts targeting major aquifer systems around the world have identified strong depletion trends (Wada et 10 

al., 2012; Famiglietti et al., 2014), making the prospect of meeting future water and food security demands even more 

challenging (Dalin et al., 2017). While these relatively recent estimates of groundwater depletion (Famiglietti et al., 2011; 

Voss et al, 2013; Rodell et al., 2018) have been obtained through satellite systems such as the Gravity Recovery and Climate 

Experiment (GRACE; Tapley et al., 2004), their value as a monitoring and management tool is limited due to the coarse 

observation scale (Alley and Konikow, 2015; Miro and Famiglietti, 2018). In order to provide the granularity of information 15 

needed to monitor groundwater abstractions at the field-scale (~50 ha), a combination of higher-resolution data and modeling 

is needed.  

Despite its extreme arid environment (Kenawy and McCabe, 2016), Saudi Arabia has quite an extensive agricultural 

sector. Like most national efforts to monitor and manage agricultural water use, agencies in Saudi Arabia have relied on farmer 

surveys to estimate agricultural land and water extraction. In common with other national efforts, there is also a lack of regular 20 

and consistent field metering to provide measurements of agricultural water use. Nevertheless, historical estimates from early 

national studies indicate an agricultural extent of about 12,135 km2 in 2005, with associated water use of 21 billion cubic 

meters (BCM) within the Kingdom (FAO 2008a). While this may be relatively small compared to other national accounts 

(Döll and Siebert, 2002; FAO 2008b; Wisser et al., 2008), agricultural water use in Saudi Arabia has been estimated to 

represent more than 80% of the total national water consumption (FAO 2008a; Chowdhury and Al-Zahrani, 2015). Indeed, it 25 

is thought that less than 20% of the agricultural water use comes from renewable sources, with rain-fed agriculture present 

only in southwestern regions such as Jizan and Aseer. Local alluvial aquifers (e.g. wadis) that are occasionally recharged 

during storm events provide another source of water that has been used for more traditional agriculture in Saudi Arabia 

(Missimer et al., 2012), but these do not represent a suitable source for large commercial-scale applications. The primary origin 

of water that has driven the dramatic expansion of irrigated agriculture in Saudi Arabia is non-renewable groundwater from 30 

deep fossil aquifer systems. Although agriculture has featured throughout the nation’s history, significant extraction from 

groundwater resources really only commenced during the 1970's, when subsidies directed towards increasing food security 
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incentivised farmers (FAO, 2008a; Al-Rumkhani et al., 2004). These incentives, together with the relatively inexpensive access 

to diesel fuel required for extraction via pumping wells, combined to rapidly develop this sector of the economy. Center-pivot 

irrigation, where water is pumped from a well and sprayed using a rotating arm with nozzles, became the predominant method 

of irrigation nation-wide. The rapid expansion in agricultural land use, especially from center-pivot irrigation fields, has thus 

rendered ground survey-based monitoring impractical and increasingly unreliable. 5 

With regular coverage from Earth observing satellites, remote sensing offers a capacity to monitor the Earth across a 

range of spatial and temporal scales (McCabe et al., 2017a). While moderate resolution images (e.g. O~250m-1km) have been 

used for observing processes such as evaporation (Mu et al., 2011), these techniques lack the capacity to delineate individual 

fields. Typical center-pivot fields with dimensions approaching 50 ha (800 m diameter) are generally densely vegetated, and 

crops with different growing seasons are often located adjacent to each other, or even within the same field. In such a case, 10 

platforms such as the MODerate resolution Imaging Spectroradiometer (MODIS) would only capture a heterogeneous mix of 

vegetated and bare desert soil, let alone be able to differentiate between crops (Kustas et al., 2004; McCabe et al. 2006; 

Wardlow et al., 2007; Guindin-Garcia et al., 2012). Landsat, on the other hand, has a spatial resolution of 30 m, allowing it to 

map individual fields with a revisit time of 16 days. Whether this temporal resolution is sufficient to capture the seasonality of 

different crops is certainly a question to be explored, although it should be noted that new satellite platforms such as Sentinel 15 

2 (Drusch et al., 2012) and even CubeSats (McCabe et al., 2017b), provide a much higher orbital repeat cycle. Regardless, a 

satellite driven framework would provide a singular opportunity for improving agricultural water management and monitoring 

(Brocca et al., 2018; Jalilvand et al., 2019).  

Quantifying crop water use via evaporation is a fundamental step towards estimating agricultural water use. In the 

absence of within-field flow metering or a surface flux monitoring system (Baldocchi et al., 2001), a remote sensing-based 20 

approach to estimate land surface evaporation provides a suitable alternative. A comprehensive body of research has been 

dedicated to developing and intercomparing techniques (Kalma et al. 2008; Fisher et al., 2017) and exploring the application 

of these from local (Allen et al., 2007; Anderson et al. 2011) to regional and global scales (Miralles et al. 2016; McCabe et al. 

2016). Most of these models combine available meteorological data with satellite-based vegetation retrievals, or with 

vegetation and thermal infrared measurements, to estimate the surface evaporation. For example, Song et al. (2016) and Li et 25 

al. (2017) used the two-source energy balance (TSEB; Norman et al. 1995) and the surface energy balance models (SEBS; Su, 

2002) respectively, to map evaporation from semi-arid irrigated sites. Aragon et al. (2018) applied the Priestley-Taylor JPL 

(PT-JPL; Fisher et al., 2008) with ultra-high resolution vegetation data from CubeSats to map evaporation over irrigated fields. 

Anderson et al. (2012) demonstrated and discussed the ability of Landsat thermal imagery (e.g. with TSEB) to monitor 

evaporation and its application for water resources management. TSEB has also been used as part of the Atmosphere-Land 30 

Exchange Inverse (ALEXI; Anderson et al., 1997) and its associated disaggregation scheme (DisALEXI; Norman et al., 2003) 

to generate high-resolution maps of agricultural water use. As it currently stands, there remains no single retrieval technique 

that has been identified as the best performing evaporation model across all biomes and scales (Ershadi et al., 2014; Michel et 

al., 2016; McCabe et al, 2016), with model selection ultimately based on past performance and expert knowledge. 
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While there has been sustained efforts towards estimating agricultural water use through evaporation modeling, there 

have been relatively few studies aimed at retrieving actual irrigation amounts for monitoring purposes. For example, Folhes et 

al. (2009) combined known irrigation values from 40 selected fields with satellite-based evaporation estimates in order to 

derive an irrigation efficiency. They then used this information to estimate the total water use in a semi-arid irrigated 

agricultural region in Brazil. Santos et al. (2008) integrated satellite-based evaporation estimates into a water balance model 5 

in order to provide improved irrigation guidelines to reduce water use. Another approach that has been explored is to use 

satellite-based evaporation estimates to constrain the irrigation input into a land surface model (LSM) by way of inverse 

modeling. Droogers et al. (2010) used synthetic model runs to determine whether this approach could be employed to retrieve 

irrigation amounts. Importantly, they explored the effects of satellite retrieval frequency on the estimated irrigation, 

demonstrating that while RMSE increased with larger observation intervals, Landsat data could potentially be used for this 10 

purpose. Huang et al. (2015) used a similar approach by assimilating temporal variations of MODIS-derived Leaf Area Index 

(LAI) and evaporation data into the soil water atmosphere plant (SWAP) model to derive irrigation depth. They found that 

assimilating both variables resulted in the least relative error of the resulting crop yields compared to official county statistics. 

Lopez (2018) also used evaporation estimates and an LSM in an inverse modeling approach to retrieve irrigation rates from 

40 center-pivot fields, demonstrating the potential for obtaining seasonal irrigation rates for individual fields. More recently, 15 

Jalilvand et al. (2019) explored the possibility of using an approach designed to retrieve rainfall from satellite-based soil 

moisture data in order to infer irrigation amounts, expanding upon the work of Brocca et al. (2018). However, this approach is 

limited by the scale at which soil moisture can currently be retrieved (e.g. 0.25 degrees), as well as by the uncertainty of the 

techniques used to obtain the actual rainfall amounts that need to be removed (Jalilvand et al., 2019).  

To date, the potential of coupling a land surface model with satellite estimates (via evaporation) has yet to be fully 20 

exploited for operational field-scale irrigation monitoring. While estimates of evaporation represent the main loss of water 

from agricultural systems (through soil evaporation and vegetation transpiration), losses through deep drainage are not 

generally accounted for in evaporation models. LSMs can account for such hydrology, simulating the exchanges of water and 

heat between the land surface and the atmosphere and providing a detailed water balance that is beyond standard evaporation 

process models. One simple method to incorporate irrigation in an LSM is to directly add the irrigation rate to the rainfall 25 

component (e.g. Ozdogan et al., 2010), but this requires the values of the irrigation rates to be known (or assumed) a priori. 

However, satellite-based evaporation estimates could be used to constrain the irrigation value needed to reproduce the observed 

water use. In this study, the idea of combining satellite-based evaporation estimates with LSM simulations to indirectly obtain 

irrigation rates, and consequently groundwater extraction amounts, was applied over two distinct irrigated agricultural regions. 

As in the soil moisture-based approach of Brocca et al. (2018) and Jalilvand et al. (2019), rainfall is not explicitly considered 30 

in this water balance. The application of this inverse modeling approach can be simplified in arid environments, as irrigation 

rates are typically not modified when short-duration sporadic rainfall events occur, since the amounts that can be captured by 

the crops is limited. Indeed, over the growth cycle of a typical crop, the applied irrigation volume is at least an order of 

magnitude greater than any rainfall component (Kenawy and McCabe, 2016).  
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The present study details the first large-scale implementation of this framework, focusing on quantifying groundwater 

abstractions for a single year to illustrate the feasibility of larger-scale and longer-term implementation. The integrated satellite 

data and modeling approach is designed to map the extent and distribution of fields, estimate crop water use, and infer 

groundwater abstraction rates. To do this, the framework exploits an object-based image classification technique (Johansen et 

al. 2010) for mapping individual fields, where one field is defined as the area covered by a single center-pivot rotating arm. 5 

The latter is an important aspect that was required in order to apply the data-modeling framework in parallel, i.e. to effectively 

obtain irrigation rates over a large region containing thousands of fields. Naturally, this allows the display and aggregation of 

groundwater abstraction rates, and other relevant information over arbitrary delineations, such as management zones or farms, 

and represents a novel aspect of this work. To date, there have been no comparable efforts attempting the retrieval of individual 

irrigation rates for a large number (thousands) of fields, and thus this study represents an effort that moves closer towards big-10 

data driven operational monitoring of individual fields. Our framework provides a novel water accounting system for 

agricultural management in Saudi Arabia, and offers an independent benchmark for water loss over a region that is routinely 

omitted in global (and even regional-scale) evaporation products (Mu et al., 2011; Miralles et al., 2011). Covering one of the 

largest agricultural regions in Saudi Arabia, the study provides a benchmark against which the impact of water policy changes 

can be evaluated in the future, and demonstrates the potential of broader-scale application elsewhere. 15 

2 Description of study regions    

The study focused on two different agricultural areas in Saudi Arabia, which enabled an evaluation of the proposed 

groundwater abstraction estimation framework (Section 3) and subsequent larger-scale application to be explored. To evaluate 

the performance at the individual field-scale, the strategy was first applied to 40 center-pivots located on a small farm (Section 

2.1) southeast of Riyadh. For this site, available irrigation data for the year 2015 was obtained directly from the farm 20 

management (Section 3.5) based on in-house field reporting. To assess the large-scale application of our groundwater 

abstraction estimation strategy, it was then applied to thousands of center-pivot fields in Al Jawf (Section 2.2), one of the 

largest agricultural regions in Saudi Arabia. With no individual field data available for comparison on this region, the total 

groundwater abstraction estimates were compared with some previous regional-scale estimates.  

2.1 The Tawdeehiya experimental farm 25 

The Tawdeehiya farm (Fig. 1) is a medium-sized commercial agricultural facility that consists of approximately 40 

center-pivot fields, each with an extent of approximately 50 ha, n.b. within the average field size of those found in the larger 

Al Jawf region (see Fig. 2 and Section 4.2). The farm is located about 200 km southeast of Riyadh, and exhibits similar 

environmental and climatic conditions as the Al Jawf study area (i.e. low rainfall and high daytime summer temperatures 

exceeding 40°C). Crops grown in this farm during 2015 included a range of vegetables, alfalfa, Rhodes grass and maize, with 30 

a total area under cultivation of more than 2000 ha. While one Landsat tile (path/row 165/43) is enough to observe the entire 
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farm, the adjacent tile (164/43) offers additional coverage of fields on the eastern side of the farm. Additional details of the 

site and data can be found in Lopez (2018), as well as some related remote sensing-based studies that provide further 

description (Aragon et al., 2018; Houborg and McCabe, 2018b).  

2.2 The Al Jawf agricultural region 

The Al Jawf province is located in the north of Saudi Arabia (29°–32° N, 36°–41° E) and is one of the top five 5 

agricultural regions both in terms of agricultural area and water use (FAO, 2013; Chowdhury et al., 2016). Most of the 

agricultural area is managed by large commercial farms, the majority employing center-pivot irrigation (Fig. 2). The irrigated 

area in Al Jawf has increased significantly over the last three decades, from being practically non-existent in the 1980’s, to 

covering more than 1,500 km2 by 2005 (FAO, 2013), with more than 90% estimated to be irrigated using groundwater delivered 

via center-pivot systems (Al-Rhumikhani and Din, 2004). The Saudi statistical yearbook (SSYB, 2010) reported a decline in 10 

acreage in Al Jawf from 1,600 km2 in 2007 to 1,200 km2 in 2009. However, newer versions of this report (SSYB, 2013) do 

not offer a regional disaggregation of agricultural area. Under the Ninth Development Plan from the Ministry of Economy and 

Planning (MEP, 2010), it was reported that there was a 2.5% annual decrease in agricultural water use in the Kingdom, from 

17.5 BCM in 2004 to 15.4 BCM in 2009, which was attributed to regulations to rationalise water consumption and cultivation 

of water-intensive crops (MEP, 2010). In Al Jawf, the same report forecasts a continued decline in groundwater abstraction 15 

from 1.5 BCM in 2009 to 1.2 BCM in 2014. Although other sources include more recent estimates for the total agricultural 

water demand in the Kingdom (MEWA, 2019), these are not available on a regional basis. The majority of crops grown in Al 

Jawf in 2009 (SSYB, 2010) were cereals (60% in area; with wheat being the most predominant), followed by fruits (24%, 

consisting of dates, grapes and citrus), fodder (11%; mostly clover) and vegetables (4%; mostly potatoes and tomatoes). 

Unfortunately, the same level of detail is not available from more recent reports (SSYB, 2013), but we note that cereal 20 

production is no longer supported to any significant extent. One of the challenges for attributing water use to crop-type in this 

region is the lack of available ground-based land cover data. Al-Rhumikhani and Din (2004) used a data set from one 

agricultural site in 2001 that cultivated alfalfa, potatoes, tomato, and wheat, to classify crops in Al Jawf from Landsat imagery. 

To our knowledge, no other recent crop classification efforts have been made in the region.  

Although rain-fed agriculture represents about 10% of the cultivated area within Saudi Arabia, this is limited to the 25 

south-west regions of Jizan, Baha, Aseer and Makkah (FAO, 2008a). Annual rainfall values in Al Jawf are, as in most of Saudi 

Arabia, less than 50 mm/year (Kenawy et al., 2016), and consequently there is insufficient water to support rain-fed irrigation. 

Indeed, agriculture in Al Jawf is entirely supported by groundwater extraction (Al-Rhumikhani and Din, 2004; MEP, 2010; 

Chowdhury et al., 2016). In 2015, average wind speeds in this region were relatively low (less than 5 m/s) throughout the year, 

but reached maximum speeds up to 16 m/s (the meteorological data used in this study is described in Section 3.4.3). Average 30 

temperatures ranged from about 10 °C in January and December, up to 32 °C in July and August, and were consistently higher 

than 25 °C from May to October. Maximum temperatures of up to 44 °C occurred in August, while the minimum temperature 
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reached was -1 °C and occurred in January. Relative humidity ranged from about 25% from May to September, and around 

55% during January, November and December.  

3 Pivot-based groundwater abstraction framework 

A key output of this study is the estimation of groundwater abstraction from thousands of individually delineated 

center-pivot fields. At the core of the methodology is the indirect estimation of the volume of irrigation that needs to be applied 5 

to a field in order to reproduce the satellite observed crop water use. Figure 3 presents a schematic of the methodology with 

the necessary inputs, intermediate processes and relevant outputs. In this approach, the first step is an automated processing 

framework (Section 3.1) that performs Landsat image acquisition, cloud and cloud shadow detection, regionally optimised 

atmospheric correction, and finally higher-level product generation of albedo, Normalized Difference Vegetation Index 

(NDVI), leaf area index (LAI) and land surface temperature (LST). This procedure was based on recent efforts in combining 10 

machine learning techniques with physically based model inversion results (Houborg and McCabe, 2018a), which have made 

the automatic estimation of these parameters over large arid regions possible. The data obtained in this crucial first step was 

then directed into both the evaporation and land surface models (see Section 3.4). The next step uses a geographical object-

based image analysis (GEOBIA) procedure (Johansen et al., 2010) to detect and map individual center-pivot fields based on 

NDVI data (Section 3.2). Meteorological data were retrieved from a reanalysis performed using the Advanced Research WRF 15 

(ARW; Skamarock et al., 2008) model over the Arabian Peninsula. Details of this dataset are described in Langodan et al. 

(2014); Viswanadhapalli et al. (2017, 2019); and Dasari et al. (2019), so only a brief description is provided in Section 3.4.3. 

To provide needed estimates of crop water use (via evaporation), the TSEB model (see Section 3.4.1) was run over two Landsat 

tiles on each study region (172/39 and 171/39 for al Jawf; 165/43 and 164/43 for the Tawdeehiya Farm) using the WRF data 

together with the Landsat-based vegetation and biophysical parameters (at 30 m spatial resolution and at a 16 day frequency) 20 

obtained in the first step.  

Up to this point, all processes involved use of the entire Landsat tiles. The following steps in the framework were 

performed independently over each separately delineated center-pivot field (herein simply referred to as “field”). These 

operations were performed in parallel using hundreds of CPUs on a high-performance computing cluster (see 

https://www.hpc.kaust.edu.sa/ibex for further details). To do this, data were first extracted for each field using Geospatial Data 25 

Abstraction Library (GDAL) tools. Next, LAI spatio-temporal information was used to detect the seasonal activity of each 

field. This included the possibility that one field actually contained two different crops with different growing periods, a 

practice that was recognised by analysing the images, as well as on-site observations. Details of the automated detection 

capability developed within this framework are provided in Section 3.3. After this analysis, a “field temporal use index” was 

computed, defined here as the percentage (in days/days), that the field was used to grow a crop within the year of study. This 30 

index, referred to as field use (%), is required to compare irrigation practices among different farms and/or regions.  
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The Community Atmosphere Biosphere Land Exchange model (CABLE; Kowalczyk et al., 2006; Section 3.4.2) was 

used as an offline land surface hydrology model to indirectly estimate the irrigation rate applied over each season, for any 

particular field, for the study year of 2015. For each active season identified in a field, an ensemble of CABLE runs were 

performed under different irrigation amounts. Denoting Esat as the remotely sensed estimates of evaporation (obtained using 

TSEB; see Section 3.4.1) and ELSM as the output evaporation from the CABLE land surface model, a cost function that was 5 

proportional to the difference between ELSM and Esat was accumulated during each available observation of Esat: 

𝐽 = ∑ [𝑌(𝑡𝑖) − 𝐻(𝑋(𝑡𝑖))]
𝑇

[𝑌(𝑡𝑖) − 𝐻(𝑋(𝑡𝑖))]𝑖 ,         (1) 

where 𝐻 is an operator that maps the land surface model space 𝑋(𝑡𝑖) to the observation space 𝑌(𝑡𝑖) n.b. the satellite estimates 

need not be available at the same resolution as the model, or might be incomplete (e.g. due to the presence of clouds). Lopez 

(2018) used a stochastic optimization approach (Spall, 1998) that iteratively updates the irrigation rates to minimise the 10 

objective function. That method required tuning two parameters that control the speed at which the update occurs, a process 

that was initially performed by trial and error. Importantly, the number of fields that were evaluated in Lopez (2018) was 

significantly smaller (40) than the present study (more than 5000). Unfortunately, the transferability of the optimization 

parameters to a larger number of fields was limited, as the optimised irrigation rates either diverged, or the values did not 

update at all due to improper scaling of the gradient of the cost function. Under the rationale that the search space is relatively 15 

small, i.e. by constraining the irrigation rate to realistic values (e.g. 1.1 – 3 times the observed evaporation rates), a simple 

exhaustive search (brute-force) was implemented in this study. This removed the need for a trial and error approach for 

optimization of parameters, as well as the need to compute a gradient (which requires at least two model runs for each step), 

i.e. trading off precision for improvements in computation. The latter was a key consideration to efficiently apply this 

methodology to thousands of fields.  20 

At the end of the process, the irrigation rate that produced the most accurate evaporation estimate (compared to TSEB 

estimates) was the one used to calculate the total groundwater abstraction over the field. The irrigation rate (Irr) applied to 

CABLE is the actual amount of water reaching the ground, and it was assumed to be a constant fraction (1-Closs) of groundwater 

abstraction (Gw) as in Eq. (2): 

𝐼𝑟𝑟 = 𝐺𝑤(1 − 𝐶𝑙𝑜𝑠𝑠).                         (2)         25 

The loss term was calculated using the following rationale. The amount of water pumped out of the well (Gw) is sprayed by 

nozzles positioned on a rotating arm irrigating the field. A fraction of this water (Closs) is lost due to wind carrying moisture 

out of the field to the desert soil or to other fields. Under similar conditions (hyper-arid irrigated fields), this fraction has been 

estimated to be between 12 and 20% (Steiner et al., 1983; Sadeghi et al., 2017). Without frequent on-site measurement of this 

loss value across the whole field, it is not possible to incorporate it directly into the model. In this study, the aim was to provide 30 

an estimate of the irrigation amount (Irr) as an approximation of the groundwater abstraction (Gw). Efforts to translate this into 

actual groundwater abstraction on a regular basis for large areas are necessary, but will require ground observations or further 
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model improvement. For this study, a conservative value (in time and throughout the fields) of 20% (𝐶𝑙𝑜𝑠𝑠= 0.2), and thus a 

factor of 1.25 i.e. (1-𝐶𝑙𝑜𝑠𝑠)-1, was used to scale irrigation to abstracted groundwater.   

In terms of the overall field water balance, the approach employed in this study was simplified by the fact that rainfall 

in this region does not represent a significant source that can be used by crops. As such, the rainfall component in CABLE was 

replaced by the irrigation rate that is being estimated in the iterative procedure. The validity of this assumption and thus the 5 

applicability of this model is certainly reasonable in most of the major agricultural regions of Saudi Arabia, with the exception 

of regions with significant rain-fed agriculture, such as those in Jizan and Baha. However, even in those regions, the annual 

rainfall rarely exceeds 300 mm, and occur within a relatively well-defined period of the year. For example, coffee production 

is an important economic activity in Jizan, occurring mainly in high altitudes within the Fifa mountains, and farmers there 

regularly require groundwater as an additional source to meet the water needs of coffee trees, especially during extended 10 

periods of drought (Al-Abdulkader et al., 2018; Sayed et al., 2019). In other regions, the contribution of rainfall might be 

proportionally higher and thus need to be removed before obtaining the irrigated amount. 

3.1 Vegetation indices and biophysical parameters retrieved from satellite data 

NDVI is a widely used metric describing surface greenness (Tucker, 1979; Beck et al., 2011) and is computed herein 

directly from the Landsat near infrared (851-879 nm) and red bands (636-673 nm). Prior to computing NDVI, Landsat images 15 

for the year 2015 (between 20 and 22 scenes were acquired for each of the tiles used in this study) were atmospherically 

corrected to surface reflectances using a regionally optimised Second Simulation of the Satellite Signal in the Solar Spectrum 

(6S; Kotchenova et al., 2006)-based approach (Houborg and McCabe, 2017). Cloud and cloud shadow detection was performed 

using the Function of mask (Fmask) algorithm (Zhu and WoodCock, 2012). Another biophysical indicator for vegetation 

growth monitoring is the LAI, defined as the projected area of leaves over a unit of land area. LAI is a key parameter that has 20 

been used to improve water and energy flux modeling over agricultural fields (Aragon et al., 2018). However, as opposed to 

NDVI, LAI cannot be computed directly from satellite data. While simple relationships between LAI and other vegetation 

indices (including NDVI) have been used (Turner et al., 1999; Colombo et al., 2003; Fan et al., 2009), the applicability of such 

relationships for regions other than where they were developed (using ground measurements) has been brought into question 

(Wang et al., 2005; Atzberger et al., 2015; Kang et al., 2016). Houborg and McCabe (2018a) used a machine learning approach 25 

to develop relationships between LAI and several vegetation indices over a desert agriculture site in Saudi Arabia. They used 

a combination of in situ measurements and physically based model inversion results as a hybrid training dataset. In our study, 

a coupled leaf-canopy model (PROSAIL) produced forward runs over a wide range of realizations, and these were used as a 

training dataset to develop estimates of LAI using a Random Forests (RF) approach. PROSAIL combines a leaf optical 

properties model (PROSPECT; Jacquemoud and Baret, 1990) with a canopy bidirectional reflectance model (SAIL; Verhoef, 30 

1984), and has been used to retrieve LAI for a wide range of crops (Jacquemoud et al., 2009; Vohland et al., 2010; Rivera et 

al., 2013). The RF ensemble-based decision tree technique was used to learn the complex non-linear associations between the 

spectral data and the target biophysical property (i.e. LAI). In this study, the ‘ranger’ RF package in R was used for model 
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training and prediction. This package is optimised for efficient memory usage with large and high dimensional datasets: a 

critical aspect for working with Landsat tile domains. Figure 4 shows the resulting NDVI and LAI maps for one Landsat tile 

(path/row 172/39) on April 23, 2015, demonstrating the high contrast between the bare desert soil and irrigated agriculture and 

the within-field variability that can be observed at these high resolutions. Most of the agricultural fields in Al Jawf (95%) were 

located within this Landsat domain, however the adjoining path/row 171/39 was also included to give a complete account of 5 

agriculture in Al Jawf (see Fig. 2). The Tawdeehiya Farm (Fig. 1) is located on the eastern edge of path/row 165/43, and hence 

some fields can also be observed by path/row 164/43.   

3.2 Semi-automatic delineation of center-pivot irrigation fields using Landsat imagery 

A GEOBIA approach was developed in the eCognition Developer 9.3 software to delineate individual fields for the 

study sites. As seasonal crop cycles prevent all active fields within a specific year from being detected at a single point in time, 10 

the full Landsat image time series was used for 2015. Two layers based on the annual image time series (20 - 22 images) were 

produced: (1) a maximum NDVI layer and (2) a minimum panchromatic layer. NDVI was first calculated for all images in the 

time series, and the maximum NDVI value for each pixel in the time series was assigned to the final maximum NDVI layer. 

Similarly, all the panchromatic images within the time series were used to produce a single panchromatic layer, representing 

the minimum value within the time series. To detect all active fields in 2015, a multi-threshold segmentation was applied to 15 

cluster all pixels with a maximum NDVI value of > 0.20 together and classify these objects as “vegetation”. Unclassified pixels 

surrounded by “vegetation” objects were first merged with the respective “vegetation” objects, and these objects were then 

classified as center pivots, if the object length was ≤ 1,200 m, length/width ratio ≤ 1.1, and elliptic fit ≥ 0.90. The length/width 

ratio and elliptic fit features were used to identify round objects, while the length feature ensured that neighboring fields 

merged together were not initially classified as fields before they had been separated into objects, representing an individual 20 

field.  

The minimum panchromatic layer was subjected to an edge extraction Lee Sigma filter. This filtering process 

produced another layer, highlighting bright edges in the imagery, i.e. areas with large contrast in panchromatic pixel values, 

such as the edges between center pivots and surrounding sandy soil. Separating adjoining fields required several processing 

steps to first identify pixels with high edge filtering values and the use of region-growing algorithms to grow these high value 25 

edge filtered pixels into neighboring pixels with lower values. This allowed most of the adjoined fields to be separated. 

Some refining of the delineation results were then performed to ensure the fields were extended to their perimeter, 

which was done using a number of object shape criteria and an NDVI threshold of 0.20. While most of the fields (approximately 

85%) were correctly classified at this stage, there were still several half or “Pac-man” shaped fields remaining to be classified. 

These remaining fields were manually delineated, followed by an object growing and object shrinking process to refine the 30 

manually delineated field edges. 
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3.3 Irrigation activity detection using LAI 

LAI time series were used as an indication of vegetation growth to estimate periods of active irrigation, which were 

then used to constrain the start and end dates of CABLE model runs. However, upon visual analysis of multiple fields within 

the study regions, we observed that fields are often divided into two halves, each with its own crop and potentially different 

irrigation amounts. Therefore, prior to obtaining a representative LAI time series for analysis, it was necessary to further 5 

delineate the two sections of the field if it was indeed divided. To achieve this, the k-means clustering algorithm was employed. 

In general, the idea of clustering is to identify groups of objects that are similar to one another and different from those in other 

groups (Jain and Dubes, 1988; Jain et al., 1999). The k-means algorithm (MacQueen, 1967) is a partitioning clustering method 

(i.e. there is no overlap between the groups) that has been widely used in remote sensing studies. For this purpose, let 𝑋 =

{𝑥𝑖}, 𝑖 = 1,2,3, … , 𝑛 be a set of n-dimensional points to be clustered into a set of K clusters 𝐶 = {𝑐𝑘}, 𝑘 = 1,2,3, … , 𝐾 (in our 10 

study, K is set to 2). The squared error between the mean of each cluster and the points within the cluster can be computed by 

Eq. (3): 

𝐽(𝑐𝑘) =  ∑ ||𝑥𝑖−𝑢𝑘||2
𝑥𝑖∈𝑐𝑘

.                    (3) 

The aim of the K-means algorithm is to minimise the sum of 𝐽(𝑐𝑘) for k = 1,2,3,…, K. Four main steps are followed iteratively 

to minimise this sum: (1) select K points as the initial centroids, (2) form K clusters by assigning all points to the closest 15 

centroid, (3) re-compute the centroid of each cluster, and (4) repeat (2) and (3) until there is no significant change in the 

centroids within consecutive iterations. To speed up convergence, the “k-means++” (Arthur and Vassilvitskii, 2007) algorithm 

was used to select the initial cluster centers.  A more detailed description of the k-means algorithm is provided by Jain (2010).  

Prior to applying the clustering algorithm, it was more efficient to extract the features to represent the characteristics 

of the time series. To do this, the discrete wavelet transform (DWT) was employed, which is an efficient procedure used to 20 

separate deterministic from stochastic components of a signal (Heil and Walnut, 1989). The DWT has been used to analyse 

satellite images in the context of noise reduction as well as change detection (Zhu and Yang, 1998; Wang and Paliwal, 2006; 

Martínez and Gilabert, 2009). The main idea behind application of the DWT is that the signal is represented as a combination 

of approximation and detail coefficients (Heil and Walnut, 1989): 

𝑥(𝑡)  =  𝐴𝐽(𝑡)  + ∑ 𝐷𝐽  (𝑡)𝐽
𝑗=1   , 𝐴𝐽(𝑡)  =  ∑ 𝑎𝐽𝑘𝜙𝐽𝑘(𝑡)𝑛2−𝐽

𝑘=1  , 𝐷𝑗(𝑡)  =  ∑ 𝑑𝑗𝑘𝜓𝑗𝑘(𝑡)𝑛2−𝑗

𝑘=1 ,       (4) 25 

where AJ(t) and Dj(t) are respectively the approximation and detail coefficients, and J is the decomposition level.  The detail 

coefficients are generated by projecting the original signal x(t) using a set of wavelet basis functions defined as 𝜓𝑗,𝑘(𝑡)  =

 √2−𝑗𝜓(2−𝑗𝑡 − 𝑘), 𝑗 = 1, . . . , 𝐽, 𝑘 ∈ 𝑍, where k is the shift parameter and is the base function. In other words, the detailed 

signal Dj(t) at level j is generated by the detailed signal Dj(t) at scale j and can be obtained by applying a high-pass filter (g) 

on the original and scaled signals. In a similar way, the approximation coefficients are generated by projecting the signal on a 30 

set of orthonormal scaling functions given by 𝜙𝑗,𝑘(𝑡)  =  √2−𝑗𝜙(2−𝑗𝑡 − 𝑘), 𝑗 = 1, . . . , 𝐽, 𝑘 ∈ 𝑍. Similarly, the scale signals are 
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computed by applying a low-pass filter (h) on the original and scaled signals. Gao and Yan (2010) provide a more detailed 

description of the DWT.  

In our study, LAI time series were first transformed into DWT components by level-1 decomposition of the basis 

function ‘haar’. Then, to establish whether the field is divided into two parts or not, two threshold values were used. Both 

values relate to the cosine similarity (Eq. 5), which measures the similarity among pixels of the same field:  5 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝐴∙𝐵

||𝐴|| ||𝐵||
=  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2 𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1  

 ,                     (5)        

where Ai and Bi are components of a vector A and B respectively (i.e. one vector represents the time series of one pixel). The 

cosine similarity values of two vectors ranges from -1 to 1. The closer the value approaches 1, the closer the direction of the 

two vectors. On the other hand, the closer the value gets to -1, the more the two vectors go in the opposite direction. For each 

pair of pixels, the cosine similarity of DWT components of time series were first computed, and then the time series of the two 10 

pixels were determined to be similar or not by using a threshold of the cosine similarity (tcs). The second threshold used was 

based on the fraction of pairs where the value of cosine similarity was higher than tcs, i.e. defining nTcs as the number of pair 

values with similarity higher than tcs, and N as the total number of pairs, the ratio to use as the second threshold was tpcs = 

nTcs/N.  Upon an exploratory analysis based on a representative sample of a few hundred fields, the appropriate values for 

these two thresholds were determined as tcs = 0.75 and tpcs = 0.8. Hence, a field was classified as partitioned when the tpcs 15 

value was exceeded, and was thus further processed by the k-means algorithm for clustering.  

Next, a number of representative pixels within the field (or sub-field if partitioned) were selected and used to 

determine the start and end dates for each season within the land surface hydrology model runs. The pixels were selected based 

on a criteria that the daily LAI values, obtained by linearly interpolating from the 16-day LAI time series, were consistently 

within the interquartile range (e.g. 25% and 75%). This was done to remove the influence of outlier pixels. Finally, the mean 20 

value over these pixels each day was taken as the mean LAI time series (mLAI). Using this mean LAI time series, crop growing 

seasons were then selected based on the start and end dates of the first season, defined by the period where mLAI is higher than 

a threshold tLAI (in m2/m2). A value of tLAI = 0.3 m2/m2 provided a reasonable delineation of growing seasons for a large 

number of fields. Furthermore, to remove noise that could result from the interpolation of the LAI time series, only seasons 

that were at least 30 days in duration were processed, which is the approximate length of the shortest crop growing seasons 25 

observed for alfalfa crops and also ensures that it includes at least one Landsat scene.  

Upon analysis of the shape of mLAI, in terms of the number of peaks as a measure of the oscillatory nature of the time 

series, fields were then classified into two possible categories: seasonal or perennial. A “seasonal” field had clearly defined 

growing cycles that were separated by inactive periods. Figure 5 (a) shows a field that was active for only three months, with 

clear start and end dates obtained by computing the dates at which the mean seasonal pixels in the LAI time series intersected 30 

with 0.3 m2/m2. Perennial fields had vegetation patterns that reflected long periods (up to year-round) of vegetation above the 

LAI threshold, but with intermittent cut and re-growth periods. This is typical of a field growing alfalfa or grass, where the 

production is continuous throughout most of the year. An example of a perennial field is shown in Figure 5 (b). This field was 
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active from April to December 2015, but with intermittent cut/re-growth cycles. For this second category of crops, it was not 

straightforward to select clear periods for retrieving irrigation, due to Landsat’s temporal resolution of 16 days. To ensure that 

there would be enough satellite evaporation estimates for constraining the land surface model runs, the process for these types 

of pivots was performed on a quarterly basis. 

3.4 Models and ancillary data 5 

3.4.1 Satellite evaporation estimation using TSEB 

The TSEB model (Norman et al., 1995) was used to obtain the satellite-based estimates of evaporation that constrain 

the land surface hydrology model runs. TSEB is based on the energy balance (𝑅𝑛 = 𝐿𝐸 + 𝐻 + 𝐺), where Rn is the net radiation 

reaching the crop canopy and soil surface, H is the sensible heat flux (i.e. the energy transformed to heat and released into the 

atmosphere), G is the soil heat flux, and LE is the latent heat flux of evaporation, which is the key link between the energy and 10 

water balance equations. In TSEB, the LE term is obtained as a residual of the energy balance equation, and along with H and 

Rn, is divided into separate components for the soil and canopy at each pixel. The model for sensible heat flux in TSEB is 

based on a network of temperature gradient-transport resistances between the air, canopy boundary layer, canopy and soil. In 

this study, the “in-series” resistance scheme (Shuttleworth, 1985) for the sensible heat flux was used, which are defined below 

for canopy (Hc) and soil (Hs) in Eq. (6): 15 

𝐻𝑐 = 𝜌𝑐𝑝 (
𝑇𝑐−𝑇𝐴𝐶

𝑟𝑥
) ; 𝐻𝑠 = 𝜌𝑐𝑝 (

𝑇𝑠−𝑇𝐴𝐶

𝑟𝑠
),                  (6)         

where Tc is the canopy temperature, Ts is the soil temperature, TAC is the temperature of the canopy-air space, rx is the canopy 

boundary layer resistance, rs is the resistance of air between the soil surface and source height, 𝜌 is the density of water, and 

𝑐𝑝 is the specific heat of water. The calculation of the two resistances rs and rx was done following the methods of Sauer (1995) 

and McNaughton (1995) respectively. 20 

The LE fluxes for the canopy and soil are determined based on initial estimates for Tc and Ts, which are then iteratively 

refined until LEs is positive (or after a maximum number of iterations). An initial estimate of LEc (canopy latent heat flux) is 

required in order to obtain the values of Tc and Ts. This is done using the Priestley-Taylor equation and then solving for Tc: 

𝑇𝑐 = 𝑇𝑎 − (𝑅𝑛𝑐 − 𝐿𝐸𝑐)𝑟𝑎ℎ/(𝜌𝑐𝑝),                               (7) 

where Ta is the air temperature from the WRF data and rah is the aerodynamic resistance to heat transport. The value of rah 25 

depends on atmospheric stability parameters, wind speed, and measurement heights for temperature and wind speed, which is 

set to WRF’s near surface level (2 m in this study). The net radiation reaching the canopy (Rnc = Rn - Rns; where Rns is the net 

radiation reaching the soil) is given by Eq. (8): 

𝑅𝑛𝑐 = 𝑅𝑛 − 𝑅𝑛𝑠 = 𝑅𝑛 (1 − 𝑒−0.45𝐿𝐴𝐼/√2𝑐𝑜𝑠 (𝜑𝑧)),                                  (8) 

where 𝜑𝑧is the solar zenith angle. The initial soil temperature is then given by Eq. (9) and is updated iteratively as described 30 

in Norman et al. (1995): 
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𝑇𝑠 ≅ √(𝑇𝑟
4 − 𝑓𝜑 𝑇𝑐

4)/(1 − 𝑓𝜑 )
4

.                       (9) 

In this study, the radiometric temperature (Tr) is the LST derived from Landsat’s thermal infrared sensor data, with 

atmospheric correction of the at-sensor brightness surface temperature performed using MODTRAN (Berk et al., 2005; Rosas 

et al., 2017). In this process, atmospheric profile data from MERRA2 (Gelaro et al., 2017) was used and emissivity fields were 

based on the methods of French et al. (2005) using estimates of vegetation fraction (Anderson et al., 2007). A Data Mining 5 

Sharpener (DMS) technique based on regression tree analysis (Gao et al., 2012) was used to perform spatial sharpening of 

LST to 30 m resolution. The vegetation fraction at the sensor view angle 𝜑 (0 for Landsat) is: 

𝑓𝜑 = 1 −𝑒𝑥𝑝 (
−0.5 𝐿𝐴𝐼

𝑐𝑜𝑠 (𝜑) 
).                        (10) 

For pixels with low LAI values (LAI < 1) i.e. where the soil component is dominant, the canopy component was 

omitted by applying a simpler, one-source energy balance (OSEB). In the OSEB, the sensible heat flux is estimated by using 10 

a one-layer circuit network, where H is simply given by: 

𝐻 = 𝜌𝑐𝑝 (
𝑇𝑟−𝑇𝑎

𝑟𝑎ℎ
).                    (11) 

The soil heat flux (G) model of Santanello and Friedl (2003) was used in this study. This model includes a simple relation 

describing the covariation between daytime ground heat flux and net radiation (Rn):  

𝐺 = 𝐴𝑐𝑜𝑠 (
2𝜋(𝑡+10,800)

𝐵
) 𝑅𝑛𝑠,                               (12) 15 

where A represents the maximum ratio of G/Rns, B is a constant that minimises the divergence of the equation to that of 

measured values, and t is the number of seconds between the satellite overpass time and solar noon. The value for the net 

radiation (Rn) used in Eq. (8) is given by Eq. (13): 

𝑅𝑛 = (1 − 𝛼)𝑆𝑑𝑛 + 𝐿𝑑𝑛 − 𝜀𝑠𝑢𝑟𝑓𝜎𝑏𝑇𝑟
4,                           (13) 

where 𝛼 is the albedo, Sdn and Ldn are the incoming shortwave and longwave radiation components (derived from WRF data), 20 

εsurf  is the surface emissivity, and σb is the Stefan–Boltzmann constant. The value of εsurf is given by a simple mixing equation 

as a function of vegetation cover, with  𝜀𝑣𝑒𝑔 = 0.98 and 𝜀𝑠𝑜𝑖𝑙 = 0.93. In the case of the single-layer model (OSEB), it is set 

simply to εsoil. 

3.4.2 CABLE 

CABLE was used as a stand-alone (offline) land surface hydrology model to estimate irrigation rates based on the 25 

evaporation estimates obtained with TSEB. In this study, CABLE was forced with hourly meteorological data from a WRF 

reanalysis (Section 3.4.3), Landsat-based LAI (Section 3.1) interpolated to daily values, and land cover classification (cropland 

and barren soil) derived from the center-pivot fields delineation (Section 3.2). CABLE models the energy and water 

interactions between six layers of soil (with thickness from the surface to bottom layer of 2.2 cm, 5.8 cm, 15.4 cm, 40.9 cm, 

108.5 cm, and 287.2 cm), the canopy layer, and the atmosphere. Similar to TSEB, the heat fluxes in CABLE are modelled by 30 
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a network of aerodynamic resistances. The sensible and latent heat fluxes are also partitioned into a flux from the soil to the 

canopy, and from the canopy to the atmosphere. However, in CABLE, the canopy layer is further divided (two-leaf canopy 

model) between sunlit and shaded leaves, using an approach developed by Leuning et al. (1995).  

Another feature of CABLE is that the canopy transpiration, as well as root water extraction, both depend on whether 

the canopy is wet, dry, or partially wet (Lai and Katul, 2000). A coupling between the root water extraction and stomatal 5 

conductance was added by Haverd et al. (2016), enabling a “root shut-down” that tests for over-extraction in each soil layer, 

which would otherwise result in high water use efficiencies under drying conditions. Hydraulic redistribution (Ryel et al., 

2002) was also added to CABLE in order to improve the representation of the water flux between soil layers. This component 

involves redistribution of water by roots, and depends on the root density and the rhizosphere conductivity. This term was 

added as an additional term in Richard’s equation, which describes the soil moisture (θ) flux and is based on the one-10 

dimensional conservation equation and Darcy’s Law: 

𝜕𝜃

𝜕𝑡
=  −

𝜕

𝜕𝑧
(𝐾 + 𝐷

𝜕𝜃

𝜕𝑧
) + 𝐹𝑤(𝑧),                (14) 

where K is the hydraulic conductivity, D is diffusivity, and Fw(z) includes water lost due to soil evaporation, root extraction, 

or water gained or lost in a layer by hydraulic redistribution (Ryel et al., 2002). In this study, CABLE version 2.3.4 was used. 

This version of CABLE is freely available at trac.nci.org.au/trac/cable after registration. Detailed descriptions of the model 15 

are available in Kowalzcyk et al. (2006), Wang et al. (2011), Kowalzcyk (2013), and Haverd et al. (2016).  

3.4.3 Meteorological data 

The meteorological data required to drive the TSEB and CABLE models were derived from a numerical weather 

prediction simulation of the Weather Research and Forecasting (WRF) model: specifically, the Advanced Research WRF 

(ARW; Skamarock et al., 2008) model version 3.7.0. The regional simulation, performed over the entire Arabian Peninsula 20 

and neighboring regions, used dynamical downscaling of global analysis data from the National Centers for Environmental 

Prediction (NCEP). Dynamical downscaling refers to a method to generate a higher spatial and temporal resolution regional 

climatic model by assimilating available regional datasets, and initialised from coarser reanalysis data (Giorgi and Mearns, 

1991; Wilby and Wigley, 1997; Viswanadhapalli et al., 2017; 2019; Dasari et al., 2019). This is typically done by nesting a 

high spatial resolution domain within a coarser domain. Observational data used in this regional climate model included quality 25 

controlled data from the NCEP Atmospheric Data Project (ADP) such as surface station data, wind data from the Quick 

Scatterometer (QSCAT), WindSat and ASCAT scatterometers, and atmospheric motion vectors from geostationary satellites. 

The methodology, model parameters, and model physics followed a similar approach as described in Jiang et al. (2009), 

Langodan et al. (2014, 2016), Viswanadhapalli et al. (2017) and Dasari et al. (2019). The simulations were performed over a 

5-year period (2011 – 2015) at an hourly time step, and with the internal model domain having a spatial resolution of 3 km, 30 

covering the Arabian Peninsula.  
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3.5 Evaluation of model performance 

To evaluate the modeling approach across thousands of individual field sites would require the provision of an 

extensive data set of on-ground water-use measurements, ideally collected from numerous pivots and over an extensive period 

of time. However, detailed abstraction, irrigation and crop-water use data in such quantity rarely exists in even the most well 

monitored sites, let alone for developing country applications. Although we could not collate comprehensive and spatially 5 

distributed evaluation data for the Al Jawf study region, we utilise data from the smaller-scale Tawdeehiya farm to provide 

farm-reported data for the year 2015. The available evaluation data consisted of monthly values of total irrigation application 

time (in hours), and a single value of flow rate in gallons per minute for each field. To convert to groundwater abstraction 

(GWA), the flow rate was multiplied by the number of minutes irrigated in each month and converted to units of millions of 

cubic meters (MCM). The model’s performance to quantify field groundwater abstraction was evaluated using the Nash-10 

Sutcliffe efficiency, given by Eq. (15): 

NSE =  1 −
∑ (𝑆𝑖−Oi)2N

i=1

∑ (Oi−O̅)2N
i=1

,                              (15) 

where O represents the observations (farm data) and S our estimations, both in MCM for the year 2015. NSE values can be 

negative (from -∞) or a value from 0 to 1, where 1 represents a perfect match between estimates and observations, and a value 

of 0 represents that the estimates are as good as the mean of the observed values (O̅).  15 

4 Results 

The strategy as described in this study (Section 3) was applied to two study regions. Section 4.1 presents the results 

of groundwater abstraction (GWA) of 40 fields at the Tawdeehiya farm and evaluates the performance based on farm data for 

these fields. Next, Sections 4.2 and 4.3 focus on the larger-scale application of the methodology across the Al Jawf region, 

demonstrating the framework’s capability in terms of information it can reveal at a regional level. First, Section 4.2 explores 20 

patterns of irrigation activity e.g. how much time are these fields active throughout the year; whether there is a preference for 

seasonal or perennial type of fields (as defined in Section 3.3); and the spatial distribution of yearly groundwater abstraction 

and field use within the region. Finally, Section 4.3 demonstrates the range of monthly to annual water use in the region, i.e. 

irrigation rates and derived groundwater abstraction values. As a result of this work, a first of its kind spatially distributed map 

of field-based groundwater abstraction was created as a key output of the monitoring strategy. 25 

4.1 Pivot-based framework performance at the Tawdeehiya farm 

In order to evaluate the performance of the approach, the pivot-based water accounting methodology (described in 

Section 3) was first applied to the 40 active fields at the Tawdeehiya farm (Fig. 1). Seventeen fields were identified as following 

a perennial planting pattern, with yearly field use values around 86%. Twenty-three fields were classified as seasonal fields, 

with average field use vales of 57%. The performance evaluation was based on a comparison of the estimated yearly 30 
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groundwater abstraction rates and farm-based data reports of flow rates delivered to the irrigation booms. Upon examination 

of the estimated monthly irrigation rates from the seasonal fields, a systematic mismatch was observed during periods where 

fields were identified as being “inactive”. From knowledge of the local farm-based operations, it is not unusual that fields 

required a significant amount of pre-planting irrigation (likely to reduce the salt load in the soil and in preparation for seeding). 

But during this period, the LAI would be below the threshold used to define an “active” season (Section 3.3), and thus water 5 

accounting in the model would not be triggered. Lowering the LAI threshold would not help in identifying this pre-planting 

stage, because it is already essentially zero when vegetation is not present. Reducing it further to arbitrarily low values would 

defeat the purpose of seasonal activity detection. As an alternative, the season can be extended to include a pre-planting stage 

of a pre-defined amount of time. However, this parameter would depend on a variety of factors, such as the type of crop being 

planted and other farm management practices. Without a sufficient amount of data with which to derive strategies to account 10 

for irrigation during this pre-planting stage, the groundwater abstraction values for seasonal fields in this study can only be 

interpreted as a lower bound.  

Figure 6 presents the groundwater abstraction estimates calculated for the center-pivot fields compared against farm 

reported flow rates (multiplied by irrigation duration). As can be seen, there is a significant amount of variability between the 

pivot results, largely a consequence of seasonal versus perennial fields. However, for a number of the seasonal fields, there 15 

was a clear and defined under-estimate of groundwater abstraction relative to the reported flow-rate extrapolations (identified 

by the gray-dots). Indeed, eleven fields had an unrealistically long pre-planting stage of more than two months, based on the 

reported flow-rate data. It is extremely unlikely that these reflect real farming practices, and are almost certainly a result of 

local reporting errors. Taking into account the uncertainty of the farm data for these eleven pivots, the yearly groundwater 

abstraction values were re-calculated to estimate only when fields were determined to be active, i.e. based on the satellite-20 

derived LAI values. Using this assessment threshold, the NSE value was 0.38 with an R2 of 0.61 for all 40 pivot fields, with a 

linear regression described by the blue line in Figure 6 (slope of 0.62, intercept of 0.51). For reference, the eleven gray dots 

(not included in the NSE calculation) present the original data that includes the “inactive” period, i.e. with the long pre-planting 

stage. 

Further exploring the relationship between monthly groundwater abstraction and its relation to the level of a field’s 25 

activity (based on LAI data), Fig. 7 shows the results for two different fields and their spatial and temporal changes in LAI. 

The first field (center panel) presents a 6 month period when LAI is above the defined threshold (0.3 m2/m2), and a long 

inactive period (August – December) which would be designated as low-to-no estimated irrigation. For the period of activity 

(Jan-July, excluding a planting stage in March) the agreement between reported flow rate and estimated groundwater 

abstraction is good. However, for the August-December period, when the LAI imagery shows low LAI to bare soil conditions, 30 

the farm data reports a varying amount of irrigation based on the fixed flow rate records. For the second field (right panel of 

Fig. 7), the monthly variations in groundwater abstraction are in good agreement with farm data for the majority of the year, 

with the exception of a three-month period (January to March), which was identified as inactive, but where farm-reported data 

again indicates irrigation is active.   
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While undertaking a field-based assessment of the strategy is obviously an area of importance, it is tempered by the 

reality of using data that is often of less than “high-quality”. However, by combining independent observation available from 

satellite platforms, we can further discriminate these spurious data points, and refine the assessment process. These types of 

analyses highlight the need for forensic assessment of ground-based (and satellite) observations, and the value of establishing 

consistency between available datasets (McCabe et al. 2008; Lopez et al. 2017). Indeed, in this case, the proposed model-5 

satellite fusion approach correctly identifies errors in “ground-based” data, and provides a clear example of the observation 

and monitoring challenge in this and many other regions. 

4.2 Irrigation activity detection in Al Jawf 

Given the quite different application scale of the pivot-based groundwater estimation approach when performed over 

the Al Jawf region (compared to Tawdeehiya), an overview and analysis of intermediate processing steps is warranted. The 10 

object-based image analysis approach (see Section 3.2) produced a map containing 5,567 individually delineated fields, 

covering a total area of 2,494 km2 i.e. more than 60% higher than previous reporting (FAO, 2013). The majority of the 

delineated fields (81%) were identified as “perennial” (see Fig. 5b), with less than 1.5% recognised as inactive using the LAI-

based approach. Examples of these delineations are shown in Fig. 2 (top; outlined in black). On average, the size of the fields 

were 45 ha (0.45 km2), with no observable distinction in acreage between perennial and seasonal fields. Figure 8 displays the 15 

distribution of size (in ha) for all fields (first quartile of 25.54 ha, third quartile of 66.05 ha). The field sizes do not follow a 

normal distribution, but form clusters (e.g. around 82 ha, 67 ha, and 50 ha; see inset on Fig. 8), which is expected as center-

pivot irrigation systems are installed in standard sizes. The largest fields (e.g. > 60 ha), were concentrated around the central 

region (30° N, 38.25° E), which is where the largest commercial-scale farms operate. In more remote areas to the north and 

east of Al Jawf, a larger variation of smaller fields can be identified, and are likely owned by smaller, independent farms. 20 

The annual field use (%), calculated as the ratio between the number of active days and total days in the year, is shown 

in Fig. 9. As expected, perennial fields have a higher field use (average, first and third quartiles: 86, 77 and 100%, respectively) 

than seasonal fields (average, first and third quartiles: 35, 24 and 46%, respectively). In contrast with the area distribution (Fig. 

8), the majority of fields had high annual field values, meaning they were active throughout most of the year, independent of 

their location (small or large commercial-scale farms). This is consistent with the fact that most fields were identified as 25 

perennial, and indicates a preference towards forage crops (i.e. grass and alfalfa) during this year, regardless of the scale of 

operation.   

The field use (%) was also calculated on a monthly basis as the ratio of number of days active to number of days in 

each month in Fig. 10, with the distribution of values among all fields shown as violin plots for perennial and seasonal fields 

separately. Most perennial fields were consistently active throughout the year (monthly field use above 80%), but for any given 30 

month there were fields that were inactive (i.e. with less than 5% monthly use). For example, the largest number of inactive 

perennial fields was 958 in January, followed by 913 in December, with the smallest being 353 in March. Because perennial 

fields are, by definition, expected to be active throughout most of the year, the violin plots (Fig. 10) show a consistent pattern 
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with a wide top (i.e. high y-values) and otherwise thin body. Seasonal fields on the other hand, had a more variable range of 

irrigation activity. Most fields were irrigated from February to May, with more than 46% of the fields having a monthly field 

use value larger than 50%. This was followed by July and August, where more than 33% of fields exceeded the 50% monthly 

field use. Irrigation activities were lowest during January, June and from September to December, where less than 30% of 

fields had monthly field use values larger than 50%. This suggests an overall trend for seasonal crops either being used for one 5 

growing season (from February to May), or two seasons (February to May and July to August). 

4.3 Monthly and annual irrigation and groundwater abstraction 

The irrigation rates for each field were determined using the inverse modeling approach, i.e. running the CABLE 

model iteratively to determine the rate needed to reproduce the TSEB-based satellite-observed crop water use (see Section 3). 

Figure 11 presents the derived monthly irrigation estimates. Results were generally higher for perennial fields compared to 10 

seasonal fields, with average values ranging from 122– 152 mm in January, February and from October to December, and the 

highest values occurring from April to September (210 – 234 mm). The monthly maximum value for a perennial field was 407 

mm and occurred in August. Average yearly irrigation values for the perennial fields reached 2,007 mm, with first and third 

quartile values of 1,347 mm and 2,799 mm for the fields within the Al Jawf region. Average monthly irrigation values for 

seasonal fields were lowest in November and December (50 – 58 mm) and highest during March to April (165 – 171 mm), 15 

indicating the production of spring crops. A second peak, indicative of a second season (as mentioned in the monthly field use 

analysis), was also evident in the monthly irrigation profile, with average values of 145 mm and 131 mm in July and August, 

following a lower value of 109 mm in June. The highest monthly irrigation value for a seasonal field was 348 mm during July. 

On average, seasonal fields had a total annual irrigation value of 675 mm, with the first and third quartiles at 299 mm and 1041 

mm. 20 

The irrigation values were converted to groundwater abstraction by multiplying monthly irrigation amount by the 

area covered by pixels that were actively irrigated in each season, and then by a factor of 1.25 (i.e. 1/(1-Closs)) to account for 

irrigation losses (as described in Section 3). Figure 12 shows a map of annual groundwater abstraction in the region, in units 

of million cubic meters (MCM). The total annual groundwater consumption in 2015 for the Al Jawf agricultural region was 

estimated at 5.56 billion cubic meters (BCM). Clusters of fields with high abstraction (> 3 MCM/year; shown in blue) are 25 

mostly centered in the main commercial region (38.25° E, 30° N), where fields were generally larger (> 60 ha; Fig. 8) and 

irrigated throughout most of the year (>80%; Fig. 9). The first quartile, mean and third quartile of groundwater abstraction 

among all fields in Al Jawf was 0.24, 1.0 and 1.59 MCM, respectively. The corresponding values were larger, as expected, for 

perennial fields: 0.43, 1.16, and 1.74 MCM, and significantly smaller for seasonal fields: 0.06, 0.34, and 0.5 MCM. 
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5 Discussion 

Quantifying the water use of individual agricultural fields has been a research objective for many decades (Jackson 

et al., 1987; Rana and Katerji, 2000; Kalma et al., 2008), with numerous efforts directed towards improving process-based 

modeling approaches to characterise the evaporative response (Ershadi et al., 2014; Anderson et al., 2018; McCabe et al., 

2019). The challenge has often been related to the availability of data with sufficient spatial and temporal resolution to observe 5 

fields in adequate detail, as well as a lack of knowledge on the dynamics of the underlying crop type and condition. In addition, 

most efforts have tended to focus on monitoring for relatively short periods, or perhaps a single growing season, rather than 

providing a basis for long-term retrospective or ongoing monitoring. Recent developments exploiting constellations of 

CubeSats have enabled high resolution in space and time retrievals of key land surface parameters (Houborg and McCabe 

2018c), providing enhanced estimates of crop water use and crop development and overcoming the spatiotemporal constraint 10 

(Aragon et al., 2018; McCabe et al. 2017b). However, while crop water use is an important variable in delivering insights into 

water allocation and management, regulators are often most interested in determining the source and volumes of water actually 

being extracted from reservoirs to supply this agricultural need, not just the net use. This has represented a much more 

challenging task, as in-situ data on these systems is often non-existent, and not easily inferred through remote measurement: 

at least at the scales at which local and regional management needs to be performed.  15 

In many regions of the world, existing or historical groundwater monitoring networks help to inform regional 

groundwater depletion trends (Shamsudduha et al., 2012; Scanlon et al., 2012; Zhou et al., 2013) and offer insights into related 

environmental impacts (Lee and Song, 2007; Erban et al., 2014). Satellite-based gravimetry measurements from GRACE have 

informed on water storage depletion trends around the world (Rodell et al., 2018), with particular benefit to data scarce regions 

where the quantification of aquifer depletion would not otherwise be possible (Lezzaik and Milewski, 2018). However, while 20 

GRACE data provide an excellent source of large scale information on aquifer response (Voss et al., 2013; Famiglietti et al., 

2014), it is not suited to attribute to any particular use at the scales required for resource management. Moreover, even in 

regions where groundwater monitoring networks do exist, there is a need to bridge the gap between a regional assessment and 

practical farm scale monitoring. In this context, our study demonstrates new capability, using a satellite data-modeling 

framework to provide an unprecedented level of information for water management. The approach represents a dramatic 25 

improvement on more traditional farmer-based surveys, which are time-consuming to collect, can often be unreliable and 

unrepresentative, and lack the spatial and temporal detail needed to provide accurate water accounting at the regional-scale.  

While a number of studies have attempted to estimate irrigation by incorporating an irrigation module into a water 

balance model, these approaches have often been based on “adding” the necessary irrigation depth to maintain the soil moisture 

above a threshold value (Santos et al., 2008; Ozdogan et al., 2010, Pokrhel et al., 2012), which may not reflect the actual 30 

irrigation volume being applied. Here we developed a data-modeling approach to automatically retrieve seasonal irrigation 

rates for individual center-pivot fields, focusing on fields irrigated by center-pivot infrastructure: consistent with the type of 

infrastructure that supports the majority of irrigated fields in Saudi Arabia and in other cereal crop production areas world-
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wide. The developed approach is based on constraining a land surface hydrology model with evaporation estimates, and then 

“inferring” the irrigation rate: an idea explored conceptually by Droogers et al. (2010) and applied in a real-world case-study 

by Lopez (2018). As the first large-scale demonstration of this framework at the regional-scale, the present study represents 

an effort towards more effective water use monitoring in both Saudi Arabia and other arid countries (e.g. in the MENA region) 

that rely heavily on groundwater abstraction for agricultural production.   5 

The framework offers a unique monitoring and modeling effort in terms of scale and granularity, as it demonstrated 

a capacity to obtain agricultural water use estimates from the scale of a single pivot to more than 5,000 individual fields. 

Importantly, the approach is scalable and can be applied to other domains and locations. The mapping activities used in 

producing our water use estimates for the year 2015 indicate a much larger extent of agriculture (2,494 km2) in the region than 

has previously been reported (1,200 km2 for the year 2009; SSYB, 2010). Consequently, a much higher groundwater 10 

abstraction was also estimated (5.56 BCM) than that forecast for the year 2014 (1.2 BCM; MEP, 2010). However, it is 

important to note that these prior estimates were obtained by incorporating information from various private and public sources, 

including on-site interviews, and are subject to significant uncertainties. These include possible misrepresentation due to the 

absence of metering in farms (i.e. self under reporting), and possible omission of fields located in remote areas. Regardless, 

our estimates are proportionally consistent (in terms of area) with more recent reports of nationwide groundwater abstraction 15 

for the year 2015 (20.8 BCM; MEWA, 2019). That is, both the estimates of area and of groundwater abstraction for the Al 

Jawf region represent about one quarter of irrigated agriculture in the Kingdom.  

Detecting periods of active irrigation is a crucial step of the framework, and ensures that the model is able to retrieve 

irrigation values for the appropriate periods. Ideally, the more often that satellite information is available, the better the 

prediction of active irrigation seasons will become. This is especially important for perennial fields, which undergo fast 20 

response to cut and re-growth cycles that could be missed by the 16 day revisit interval of Landsat (Houborg and McCabe, 

2018b). However, an aspect that requires further investigation is how to retrieve irrigation rates during the pre-planting stage. 

One way to tackle this challenge would be using high-resolution soil moisture products to track the change in soil water content 

(Sánchez-Ruiz et al., 2014). Although this was an unresolved issue in this study, the obtained estimates can be interpreted as 

a lower bound for seasonal fields, which comprised less than 20% of the fields identified in the Al Jawf region. 25 

Because this study was aimed to retrieve estimates for the year 2015, a key reference year that will be used to evaluate 

the impact of policy changes in Saudi Arabia, Landsat 8 imagery was the primary source of satellite data. With a sun-

synchronous return frequency of 16 days, this means that for a 90-day season, the method is based on between 4 to 6 images. 

Because of this, cloud cover can be an important factor in the uncertainty of the irrigation activity detection. While this is not 

a major issue in the current setting (high percentage of “blue-sky” days throughout the year), it may be pertinent to applications 30 

in other geographic locations. For more recent years, data from newer satellites with higher temporal resolution, such as 

Sentinel-2 (Ferrant et al., 2017; Veloso et al., 2017) and CubeSats (McCabe et al., 2017b; Houborg and McCabe, 2018b), could 

be employed to support improved estimates, as active irrigation seasons would be more accurately defined, and irrigation 

estimates could be obtained on a sub-seasonal basis (e.g. being able to differentiate between crop stages). The higher spatial 
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resolution available (e.g. 3 m in the case of Planet data) can also benefit the model, especially for the detection of partially 

irrigated, or partitioned (two-crop) fields, and to avoid the edge overlap in some fields that hinders the automated capability 

of the delineation procedure. However, the increased computational cost of using higher resolution data, particularly with the 

LSM runs, is an important consideration (Wood et al., 2011; Bierkens et al., 2015), especially when seeking to apply the 

methodology over a larger number of fields (e.g. at a national-scale).  5 

As this study focused only on center-pivot irrigation, the total quantity of abstracted water used for agricultural 

production in Al Jawf will be marginally higher than the reported 5.56 BCM. This value represents a first-order estimate that 

can be further refined by adding the contribution of other irrigated crops and fields e.g. date palms and more recently 

agricultural shifts to planting of olive trees. In parallel with additional crop mapping and identification activities, efforts are 

also being directed towards strategies that monitor water use from other types of irrigation (e.g. drip and flood irrigation), in 10 

order to obtain a more comprehensive estimate of groundwater abstraction in this region and beyond. As a first step, using the 

object-based image analysis procedure, we delineated and estimated an area of about 31 km2 of irrigated fields in the Al Jawf 

region that were not classified as center-pivot fields. This represents about 1.22 % of the total irrigated area, and depending on 

the type of irrigation (e.g. drip irrigation), represents a relatively small fraction of the total groundwater abstraction. One 

approach to incorporate the agricultural water use from these remaining fields would be to first implement an advanced crop 15 

classification scheme (Cai et al., 2018; Piedelobo et al., 2019) and then calculate irrigation requirements for each crop (Castaño 

et al., 2010; Kirby et al., 2013; Yang et al., 2019). The reason for using other approaches with these remaining irrigated fields, 

is that the framework relies on the assumption of relatively uniform irrigation application, which simplified the effort to 

translate irrigation rates into abstracted groundwater. Additional improvements to the methodology would also include better 

quantifying the spray-loss component of the center-pivot system. For example, information derived from wind speed and 20 

direction, humidity and air temperature could be used to refine spray loss estimates over each field (Abo-Ghobar 1992; Sadhegi 

et al., 2015; 2017) with a dynamic, rather than fixed value. The methodology is being further developed to run both 

retrospectively and up to current-periods in order to monitor change in agricultural activities across the Kingdom and to 

quantify this sectors corresponding water use. Such data will enable responses to policy changes and management 

implementations to be identified, and can act to facilitate optimization practices for agricultural water use and groundwater 25 

abstraction in other data-sparse regions. 

6 Conclusions 

An automated approach to estimate agricultural-driven groundwater abstraction based on integrating satellite data 

and land surface modeling was developed, with its functionality demonstrated over several thousand center-pivot fields in an 

arid region of Saudi Arabia. The monitoring framework provided an unprecedented level of information capturing water-use 30 

behaviour at the individual field-scale, and included information metrics such as geospatial location, distribution of cultivated 

areas, irrigation activity patterns, crop water use, and ultimately the abstracted groundwater used to grow the agriculture 

https://doi.org/10.5194/hess-2020-50
Preprint. Discussion started: 25 February 2020
c© Author(s) 2020. CC BY 4.0 License.



23 

 

product. Monthly to yearly estimates of abstracted groundwater were obtained for more than 5,000 center-pivot fields, covering 

an area of approximately 2,500 km2, with a total groundwater use estimated at 5.56 BCM. Individual field use ranged from 

0.24 MCM to more than 3 MCM annual abstractions for those areas operating at more than 80% capacity. The annual total 

abstraction value represents about one quarter of the total groundwater abstraction used for agriculture in the Kingdom (20.8 

BCM; MEWA, 2019). In terms of agricultural area, the 2,500 km2 also represent about one quarter of the Kingdom’s center-5 

pivot based irrigation capacity (~10,029 km2; FAO, 2008a).  

With the development of this novel water accounting approach, changes and trends in agricultural patterns from 

regional to national scales can now be monitored, providing information on crop type (perennial or seasonal), changes in the 

cultivated areas, and volumes of water being used over time. Such information is needed for improved water management, to 

inform the development of water related regulations, and to assess the impact of policies on water conservation. The approach 10 

is currently being deployed retrospectively to monitor all center-pivot infrastructure across Saudi Arabia for the years 2011–

2015, and then to expand this forward in time to allow near real-time monitoring. Future work will focus on the inclusion of 

other types of agriculture (e.g. date palms, orchards and olive trees) for a more complete accounting of water abstraction for 

agricultural use. In parallel, a classification of crop types grown within individual center-pivot fields is being performed to 

better identify potential water-saving and irrigation optimization techniques at the individual field-scale. The availability of 15 

new and emerging sources of remote sensing information presents an opportunity to further advance our precision agricultural 

capacity, and will be incorporated into the future versions of this modeling framework, providing enhanced assessment on 

crop growth and field condition. 

7 Data and code availability 

Landsat 8 imagery used in this study is publicly available from the Google Cloud Platform at 20 

https://cloud.google.com/storage/docs/public-datasets/landsat. Data from the WRF reanalysis performed within this study is 

available upon request. The source code of CABLE version 2.3.4 used in this study is available at trac.nci.org.au/trac/cable 

after registration to the CABLE user group at the National Computational Infrastructure (NCI) Australia. Python code to run 

the TSEB model and the pivot-based groundwater abstraction strategy used in this study is available upon request at 

hydrology@kaust.edu.sa.   25 
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Figure 1: Location of the Tawdeehiya farm in Al Kharj (southeast of Riyadh). A false color Landsat 8 image (2015/06/09) is shown 

to highlight active center-pivot fields over the desert environment. 
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Figure 2: The Al Jawf agricultural region in the north-west of Saudi Arabia spans two Landsat 8 tiles. Two false color Landsat 8 

images are shown: 2015/06/09 for path/row 172/39 (left) and 2015/06/19 for path/row 171/39 (right). Center-pivot fields are densely 

packed and largely uniform in size in the main area (30° N, 38.25° E), while in other areas they are more sparse and less uniform 

(for example, the image on the right). 5 
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Figure 3: Flow chart outlining the main inputs (dashed-dotted), processes (dot pattern) and outputs (solid) of the groundwater 

abstraction monitoring framework. 

 

Figure 4: Example of the full Landsat tile (path/row 172/39) NDVI (left) and LAI (right) estimation, demonstrating the foot-print 5 
from center-pivot irrigated fields in this region (high contrast with the bare desert soil). 
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Figure 5: Example of two types of crops identified for this study based on an LAI threshold of 0.3 m²/m². (A) Images of the six scenes 

when the field was identified as active are shown on top, which correspond to the six dates marked as diamonds inside the dashed 

lines on the bottom plot. The season start and end dates (10 Feb and 21 May) correspond to dates when the mean LAI crosses the 

threshold of 0.3 m²/m². (B) This particular field was inactive during the first three months of the year, followed by large LAI 5 
oscillations, indicating repeat cut/re-growth activities. Landsat scenes for this field are shown on top, increasing in date to the right 

and bottom, while the dates are marked as diamonds in the LAI time series plot. 

 

Figure 6: Comparison of annual groundwater estimates to farm data. The blue line shows the regression based on the black and 

green dots (adjusted to include only active seasons for 11 seasonal fields). The gray points show the original farm data with long pre-10 
planting stages for those same 11 seasonal fields. 

https://doi.org/10.5194/hess-2020-50
Preprint. Discussion started: 25 February 2020
c© Author(s) 2020. CC BY 4.0 License.



37 

 

 

Figure 7: Estimated groundwater abstraction in million cubic meters (MCM) for two fields in the Tawdeehiya farm along with a 

comparison based on available flow rates from farm data. The left panel shows the spatial maps of LAI data (m2/m2) using the 

methodology described in Section 3.1. Two fields from two different periods are delineated either in black (corresponding to middle 

panel) or white (right panel). Each of these panels shows a spatiotemporal map of the field LAI (top), and a comparison of 5 
groundwater abstraction obtained using the framework described in Section 3 and available farm data (bottom). The field marked 

with black is one of the eleven fields identified as having a large abstraction discrepancy i.e. the farm data indicates ongoing periods 

of irrigation, while the LAI data indicates inactivity.  
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Figure 8: Spatial distribution and statistics of individual field areas. Clusters of large fields (those > 60 ha) can be found in the main 

agricultural zone (30° N, 38.25° E), corresponding to the location of several large commercial-scale farms. The figure’s inset on the 

left shows a violin plot of the field sizes in Al Jawf: at a given field area (y-axis), the plot outline (in black) is wider when there is a 

larger number of fields of that given size. The black horizontal lines inside the plot show the first quartile, median and third quartile, 5 
while the black diamond show the average value. The background on the inset shows colored dots (horizontal positions are given 

randomly for visualization purposes) to distinguish perennial and seasonal fields. 
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Figure 9: Spatial distribution and statistics of the annual field use, defined as the ratio of active irrigation days to total number of 

days in the year. Most fields had high values of annual use (> 80%). The inset on the left shows the distribution of annual field use 

among all fields in the region as a violin plot.  The two black diamonds show the average value grouped by the type of field (seasonal 

or perennial), while the black square represents the average of all fields. The background shows colored dots (horizontal positions 5 
are given randomly for visualization purposes) to distinguish perennial and seasonal fields. 

 

Figure 10: Monthly center-pivot field use for perennial (top) and seasonal (bottom) fields. The black squares show the average 

monthly field use (% days irrigated during each month). A larger width at a given level of use indicates a larger number of fields. 

Horizontal lines show the 25%, 50% (median) and 75% quantiles.  10 
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Figure 11: Monthly irrigation statistics (mm) for perennial (top) and seasonal (bottom) fields. The black squares show the average 

values of monthly irrigation among the same type of fields in the region (4509 perennial fields; 974 seasonal fields). The violin plots 

show the distribution of monthly irrigation values, which range from 0 (no irrigation) up to 406 mm/month (i.e. 13.5 mm/day). 

Horizontal lines show the 25%, 50% (median) and 75% quantiles. 5 

https://doi.org/10.5194/hess-2020-50
Preprint. Discussion started: 25 February 2020
c© Author(s) 2020. CC BY 4.0 License.



41 

 

 

Figure 12: Map of annual groundwater abstraction in million cubic meters (MCM) for the Al Jawf agricultural region. Values were 

obtained for individual fields, as seen on the examples shown at top featuring one zone with high levels of abstractions (top-left) and 

another zone with a smaller density of fields and lower values of abstraction (top-right). The background shows the same Landsat 8 

images as in Fig. 2.  5 
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