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Abstract. The agricultural sector in Saudi Arabia has witnessed rapid growth in both production and area under cultivation 

over the last few decades. This has prompted some concern over the state and future availability of fossil groundwater 

resources, which have been used to drive this expansion. Large-scale studies using satellite gravimetric data show a declining 

trend over this region. However, water management agencies require much more detailed information on both the spatial 

distribution of agricultural fields, and their varying levels of water exploitation through time, than coarse gravimetric data can 15 

provide. Relying on self-reporting from farm operators or sporadic data collection campaigns to obtain needed information are 

not feasible options, nor do they allow for retrospective assessments. In this work, a water accounting framework that combines 

satellite data, meteorological output from weather prediction models, and a modified land surface hydrology model, was 

developed to provide information on both irrigated crop-water use and groundwater abstraction rates. Results from the local-

scale, comprising several thousand individual center-pivot fields, were then used to quantify the regional-scale response. To 20 

do this, a semi-automated approach for the delineation of center-pivot fields using a multi-temporal statistical analysis of 

Landsat 8 data was developed. Next, actual crop evaporation rates were estimated using a two-source energy balance (TSEB) 

model driven by leaf area index, land surface temperature, and albedo inputs, all of which were derived from Landsat 8. The 

Community Atmosphere Biosphere Land Exchange (CABLE) model was then adapted to use satellite-based vegetation and 

related surface variables, and forced with a 3 km reanalysis dataset from the Weather Research and Forecasting (WRF) model. 25 

Groundwater abstraction rates were then inferred by estimating the irrigation supplied to each individual center-pivot, which 

was determined via an optimization approach that considered CABLE-based estimates of evaporation and TSEB-based satellite 

estimates. The framework was applied over two study regions in Saudi Arabia: a small-scale experimental facility of around 

40 center-pivots in Al Kharj that was used for an initial evaluation, and a much larger agricultural region in Al Jawf province 

comprising more than 5,000 individual fields across an area exceeding 2,500 km2. Total groundwater abstraction for the year 30 

2015 in Al Jawf were estimated at approximately 5.5 billion cubic meters, far exceeding any recharge to the groundwater 

system and further highlighting the need for a comprehensive water management strategy. Overall, this novel data-model 
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fusion approach facilitates the compilation of national-scale groundwater abstractions, while also detailing field-scale 

information that allows both farmers and water management agencies to make informed water accounting decisions across 

multiple spatial and temporal scales.  

1 Introduction 

Global water consumption has increased at an unprecedented rate during the last century, with many countries turning 5 

to groundwater as either an additional or primary source of supply to meet growing agricultural and other sectoral demands 

(FAO 2015; Famiglietti et al., 2014). In arid and semi-arid regions in particular, groundwater is routinely the major water 

source driving such expansions in irrigated agriculture (Siebert et al., 2010). Unfortunately, these expansions have come with 

a number of associated costs related to sustainability of aquifer systems, degrading water quality and over-exploitation. Indeed, 

global monitoring efforts targeting major aquifer systems around the world have identified strong depletion trends (Wada et 10 

al., 2012; Famiglietti et al., 2014), making the prospect of meeting future water and food security demands even more 

challenging (Dalin et al., 2017). While these relatively recent estimates of groundwater depletion (Famiglietti et al., 2011; 

Voss et al, 2013; Rodell et al., 2018) have been obtained through satellite systems such as the Gravity Recovery and Climate 

Experiment (GRACE; Tapley et al., 2004), their value as a monitoring and management tool is limited due to the coarse 

observation scale (Alley and Konikow, 2015; Miro and Famiglietti, 2018). In order to provide the granularity of information 15 

needed to monitor groundwater abstractions at the field-scale (~50 ha), a combination of higher-resolution data and modeling 

is needed.  

Despite its extreme arid environment (Kenawy and McCabe, 2016), Saudi Arabia has quite an extensive agricultural 

sector. Like most national efforts to monitor and manage agricultural water use, agencies in Saudi Arabia have relied on farmer 

surveys to estimate agricultural land and water extraction. In common with other national efforts, there is also a lack of regular 20 

and consistent field metering to provide measurements of agricultural water use. Nevertheless, historical estimates from early 

national studies indicate an agricultural extent of about 12,135 km2 in 2005, with associated water use of 21 billion cubic 

meters (BCM) within the Kingdom (FAO 2008a). While this may be relatively small compared to other national accounts 

(Döll and Siebert, 2002; FAO 2008b; Wisser et al., 2008), agricultural water use in Saudi Arabia has been estimated to 

represent more than 80% of the total national water consumption (FAO 2008a; Chowdhury and Al-Zahrani, 2015). Indeed, it 25 

is thought that less than 20% of the agricultural water use comes from renewable sources, with rain-fed agriculture present 

only in southwestern regions such as Jizan and Aseer. Local alluvial aquifers (e.g. wadis) that are occasionally recharged 

during storm events provide another source of water that has been used for more traditional agriculture in Saudi Arabia 

(Missimer et al., 2012), but these do not represent a suitable source for large commercial-scale applications. The primary origin 

of water that has driven the dramatic expansion of irrigated agriculture in Saudi Arabia is non-renewable groundwater from 30 

deep fossil aquifer systems. Although agriculture has featured throughout the nation’s history, significant extraction from 

groundwater resources really only commenced during the 1970's, when subsidies directed towards increasing food security 
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incentivised farmers (FAO, 2008a; Al-Rumkhani et al., 2004). These incentives, together with the relatively inexpensive access 

to diesel fuel required for extraction via pumping wells, combined to rapidly develop this sector of the economy. Center-pivot 

irrigation, where water is pumped from a well and sprayed using a rotating arm with nozzles, became the predominant method 

of irrigation nation-wide, and is typically applied on a daily and continuous basis for prolonged periods. The rapid expansion 

in agricultural land use, especially from center-pivot irrigation fields, has thus rendered ground survey-based monitoring 5 

impractical and increasingly unreliable. 

With regular coverage from Earth observing satellites, remote sensing offers a capacity to monitor the Earth across a 

range of spatial and temporal scales (McCabe et al., 2017a). While moderate resolution images (e.g. O~250m-1km) have been 

used for observing processes such as evaporation (Mu et al., 2011), these techniques lack the capacity to delineate individual 

fields. Typical center-pivot fields with dimensions approaching 50 ha (800 m diameter) are generally densely vegetated, and 10 

crops with different growing seasons are often located adjacent to each other, or even within the same field. In such a case, 

platforms such as the MODerate resolution Imaging Spectroradiometer (MODIS) would only capture a heterogeneous mix of 

vegetated and bare desert soil, let alone be able to differentiate between crops (Kustas et al., 2004; McCabe et al. 2006; 

Wardlow et al., 2007; Guindin-Garcia et al., 2012). Landsat 8 data, on the other hand, has a spatial resolution of 30 m, allowing 

it to map individual fields with a revisit time of 16 days. Whether this temporal resolution is sufficient to capture the seasonality 15 

of different crops is certainly a question to be explored, although it should be noted that new satellite platforms such as Sentinel 

2 (Drusch et al., 2012) and even CubeSats (McCabe et al., 2017b), provide a much higher orbital repeat cycle. Regardless, a 

satellite driven framework would provide a singular opportunity for improving agricultural water management and monitoring 

(Brocca et al., 2018; Jalilvand et al., 2019).  

Quantifying crop water use via evaporation is a fundamental step towards estimating agricultural water use. In the 20 

absence of within-field flow metering or a surface flux monitoring system (Baldocchi et al., 2001), a remote sensing-based 

approach to estimate land surface evaporation provides a suitable alternative. A comprehensive body of research has been 

dedicated to developing and intercomparing techniques (Kalma et al. 2008; Fisher et al., 2017) and exploring the application 

of these from local (Allen et al., 2007; Anderson et al. 2011) to regional and global scales (Miralles et al. 2016; McCabe et al. 

2016). Most of these models combine available meteorological data with satellite-based vegetation retrievals, or with 25 

vegetation and thermal infrared measurements, to estimate the surface evaporation. For example, Song et al. (2016) and Li et 

al. (2017) used the two-source energy balance (TSEB; Norman et al. 1995) and the surface energy balance models (SEBS; Su, 

2002) respectively, to map evaporation from semi-arid irrigated sites. Aragon et al. (2018) applied the Priestley-Taylor JPL 

(PT-JPL; Fisher et al., 2008) with ultra-high resolution vegetation data from CubeSats to map evaporation over irrigated fields. 

Anderson et al. (2012) demonstrated and discussed the ability of Landsat thermal imagery (e.g. with TSEB) to monitor 30 

evaporation and its application for water resources management. TSEB has also been used as part of the Atmosphere-Land 

Exchange Inverse (ALEXI; Anderson et al., 1997) and its associated disaggregation scheme (DisALEXI; Norman et al., 2003) 

to generate high-resolution maps of agricultural water use. As it currently stands, there remains no single retrieval technique 
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that has been identified as the best performing evaporation model across all biomes and scales (Ershadi et al., 2014; Michel et 

al., 2016; McCabe et al, 2016), with model selection ultimately based on past performance and expert knowledge. 

While there has been sustained efforts towards estimating agricultural water use through evaporation modeling, there 

have been relatively few studies aimed at retrieving actual irrigation amounts for monitoring purposes. For example, Folhes et 

al. (2009) combined known irrigation values from 40 selected fields with satellite-based evaporation estimates in order to 5 

derive an irrigation efficiency. They then used this information to estimate the total water use in a semi-arid irrigated 

agricultural region in Brazil. Santos et al. (2008) integrated satellite-based evaporation estimates into a water balance model 

in order to provide improved irrigation guidelines to reduce water use. Another approach that has been explored is to use 

satellite-based evaporation estimates to constrain the irrigation input into a land surface model (LSM) by way of inverse 

modeling. Droogers et al. (2010) used synthetic model runs to determine whether this approach could be employed to retrieve 10 

irrigation amounts. Importantly, they explored the effects of satellite retrieval frequency on the estimated irrigation, 

demonstrating that while RMSE increased with larger observation intervals, Landsat data could potentially be used for this 

purpose. Huang et al. (2015) used a similar approach by assimilating temporal variations of MODIS-derived Leaf Area Index 

(LAI) and evaporation data into the soil water atmosphere plant (SWAP) model to derive irrigation depth. They found that 

assimilating both variables resulted in the least relative error of the resulting crop yields compared to official county statistics. 15 

Lopez (2018) also used evaporation estimates and an LSM in an inverse modeling approach to retrieve irrigation rates from 

40 center-pivot fields, demonstrating the potential for obtaining seasonal irrigation rates for individual fields. More recently, 

Jalilvand et al. (2019) explored the possibility of using an approach designed to retrieve rainfall from satellite-based soil 

moisture data in order to infer irrigation amounts, expanding upon the work of Brocca et al. (2018). However, this approach is 

limited by the scale at which soil moisture can currently be retrieved (e.g. 0.25°), as well as by the uncertainty of the techniques 20 

used to obtain the actual rainfall amounts that need to be removed (Jalilvand et al., 2019).  

To date, the potential of coupling a land surface model with satellite estimates (via evaporation) has yet to be fully 

exploited for operational field-scale irrigation monitoring. While estimates of evaporation represent the main loss of water 

from agricultural systems (through soil evaporation and vegetation transpiration), losses through deep drainage are not 

generally accounted for in evaporation models. LSMs can account for such hydrology, simulating the exchanges of water and 25 

heat between the land surface and the atmosphere and providing a detailed water balance that is beyond standard evaporation 

process models. One simple method to incorporate irrigation in an LSM is to directly add the irrigation rate to the rainfall 

component (e.g. Ozdogan et al., 2010), but this requires the values of the irrigation rates to be known (or assumed) a priori. 

However, satellite-based evaporation estimates could be used to constrain the irrigation value needed to reproduce the observed 

water use. In this study, the idea of combining satellite-based evaporation estimates with LSM simulations to indirectly obtain 30 

irrigation rates, and consequently groundwater extraction amounts, was applied over two distinct irrigated agricultural regions. 

As in the soil moisture-based approach of Brocca et al. (2018) and Jalilvand et al. (2019), rainfall is not explicitly considered 

in this water balance. The application of this inverse modeling approach can be simplified in arid environments, as irrigation 

rates are typically not modified when short-duration sporadic rainfall events occur, since the amounts that can be captured by 
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the crops is limited. Indeed, over the growth cycle of a typical crop, the applied irrigation volume is at least an order of 

magnitude greater than any rainfall component (Kenawy and McCabe, 2016).  

The present study details the first large-scale implementation of this framework, focusing on quantifying groundwater 

abstractions for a single year to illustrate the feasibility of larger-scale and longer-term implementation. The integrated satellite 

data and modeling approach is designed to map the extent and distribution of fields, estimate crop water use, and infer 5 

groundwater abstraction rates. To do this, the framework exploits an object-based image classification technique (Johansen et 

al. 2010) for mapping individual fields, where one field is defined as the area covered by a single center-pivot rotating arm. 

The latter is an important aspect that was required in order to apply the data-modeling framework in parallel, i.e. to effectively 

obtain irrigation rates over a large region containing thousands of fields. Naturally, this allows the display and aggregation of 

groundwater abstraction rates, and other relevant information over arbitrary delineations, such as management zones or farms, 10 

and represents a novel aspect of this work. To date, there have been no comparable efforts attempting the retrieval of individual 

irrigation rates for a large number (thousands) of fields, and thus this study represents an effort that moves closer towards big-

data driven operational monitoring of individual fields. Our framework provides a novel water accounting system for 

agricultural management in Saudi Arabia, and offers an independent benchmark for water loss over a region that is routinely 

omitted in global (and even regional-scale) evaporation products (Mu et al., 2011; Miralles et al., 2011). Covering one of the 15 

largest agricultural regions in Saudi Arabia, the study provides a benchmark against which the impact of water policy changes 

can be evaluated in the future, and demonstrates the potential of broader-scale application elsewhere. 

2 Description of study regions    

The study focused on two different agricultural areas in Saudi Arabia, which enabled an evaluation of the proposed 

groundwater abstraction estimation framework (Section 3) and subsequent larger-scale application to be explored. To evaluate 20 

the performance at the individual field-scale, the strategy was first applied to 40 center-pivots located on a small farm (Section 

2.1) southeast of Riyadh. For this site, available irrigation data for the year 2015 was obtained directly from the farm 

management (Section 3.5) based on in-house field reporting. To assess the large-scale application of our groundwater 

abstraction estimation strategy, it was then applied to thousands of center-pivot fields in Al Jawf (Section 2.2), one of the 

largest agricultural regions in Saudi Arabia. With no individual field data available for comparison on this region, the total 25 

groundwater abstraction estimates were compared with some previous regional-scale estimates.  

2.1 The Tawdeehiya experimental farm 

The Tawdeehiya farm (Fig. 1) is a medium-sized commercial agricultural facility that consists of approximately 40 

center-pivot fields, each with an extent of approximately 50 ha, n.b. within the average field size of those found in the larger 

Al Jawf region (see Fig. 1 and Section 4.2). The farm is located about 200 km southeast of Riyadh, and exhibits similar 30 

environmental and climatic conditions as the Al Jawf study area (i.e. low rainfall and high daytime summer temperatures 
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exceeding 40°C). Crops grown in this farm during 2015 included a range of vegetables, alfalfa, Rhodes grass and maize, with 

a total area under cultivation of more than 2000 ha. While one Landsat tile (path/row 165/43) is enough to observe the entire 

farm, the adjacent tile (164/43) offers additional coverage of fields on the eastern side of the farm. Additional details of the 

site and data can be found in Lopez (2018), as well as some related remote sensing-based studies that provide further 

description (Aragon et al., 2018; Houborg and McCabe, 2018b).  5 

2.2 The Al Jawf agricultural region 

The Al Jawf province is located in the north of Saudi Arabia (29°–32° N, 36°–41° E) and is one of the top five 

agricultural regions both in terms of agricultural area and water use (FAO, 2013; Chowdhury et al., 2016). Most of the 

agricultural area is managed by large commercial farms, the majority employing center-pivot irrigation (Fig. 1). The irrigated 

area in Al Jawf has increased significantly over the last three decades, from being practically non-existent in the 1980’s, to 10 

covering more than 1,500 km2 by 2005 (FAO, 2013), with more than 90% estimated to be irrigated using groundwater delivered 

via center-pivot systems (Al-Rhumikhani and Din, 2004). The Saudi statistical yearbook (SSYB, 2010) reported a decline in 

acreage in Al Jawf from 1,600 km2 in 2007 to 1,200 km2 in 2009. However, newer versions of this report (SSYB, 2013) do 

not offer a regional disaggregation of agricultural area. Under the Ninth Development Plan from the Ministry of Economy and 

Planning (MEP, 2010), it was reported that there was a 2.5% annual decrease in agricultural water use in the Kingdom, from 15 

17.5 BCM in 2004 to 15.4 BCM in 2009, which was attributed to regulations to rationalise water consumption and cultivation 

of water-intensive crops (MEP, 2010). In Al Jawf, the same report forecasts a continued decline in groundwater abstraction 

from 1.5 BCM in 2009 to 1.2 BCM in 2014. Although other sources include more recent estimates for the total agricultural 

water demand in the Kingdom (MEWA, 2019), these are not available on a regional basis. The majority of crops grown in Al 

Jawf in 2009 (SSYB, 2010) were cereals (60% in area; with wheat being the most predominant), followed by fruits (24%, 20 

consisting of dates, grapes and citrus), fodder (11%; mostly clover) and vegetables (4%; mostly potatoes and tomatoes). 

Unfortunately, the same level of detail is not available from more recent reports (SSYB, 2013), but we note that cereal 

production is no longer supported to any significant extent. One of the challenges for attributing water use to crop-type in this 

region is the lack of available ground-based land cover data. Al-Rhumikhani and Din (2004) used a data set from one 

agricultural site in 2001 that cultivated alfalfa, potatoes, tomato, and wheat, to classify crops in Al Jawf from Landsat imagery. 25 

To our knowledge, no other recent crop classification efforts have been made in the region.  

Although rain-fed agriculture represents about 10% of the cultivated area within Saudi Arabia, this is limited to the 

south-west regions of Jizan, Baha, Aseer and Makkah (FAO, 2008a). Annual rainfall values in Al Jawf are, as in most of Saudi 

Arabia, less than 50 mm/year (Kenawy et al., 2016), and consequently there is insufficient water to support rain-fed irrigation. 

Indeed, agriculture in Al Jawf is entirely supported by groundwater extraction (Al-Rhumikhani and Din, 2004; MEP, 2010; 30 

Chowdhury et al., 2016). In 2015, average wind speeds in this region were relatively low (less than 5 m/s) throughout the year, 

but reached maximum speeds up to 16 m/s (the meteorological data used in this study is described in Section 3.4.3). Average 

temperatures ranged from about 10 °C in January and December, up to 32 °C in July and August, and were consistently higher 
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than 25 °C from May to October. Maximum temperatures of up to 44 °C occurred in August, while the minimum temperature 

reached was -1 °C and occurred in January. Relative humidity ranged from about 25% from May to September, and around 

55% during January, November and December.  

3 Pivot-based groundwater abstraction framework 

A key output of this study is the estimation of groundwater abstraction from thousands of individually delineated 5 

center-pivot fields. At the core of the methodology is the indirect estimation of the volume of irrigation that needs to be applied 

to a field in order to reproduce the satellite observed crop water use. Figure 2 presents a schematic of the methodology with 

the necessary inputs, intermediate processes and relevant outputs. In this approach, the first step is an automated processing 

framework (Section 3.1) that performs Landsat image acquisition, cloud and cloud shadow detection, regionally optimised 

atmospheric correction, and finally higher-level product generation of albedo, Normalized Difference Vegetation Index 10 

(NDVI), leaf area index (LAI) and land surface temperature (LST). This procedure was based on recent efforts in combining 

machine learning techniques with physically based model inversion results (Houborg and McCabe, 2018a), which have made 

the automatic estimation of these parameters over large arid regions possible. The data obtained in this crucial first step was 

then directed into both the evaporation and land surface models (see Section 3.4). The next step uses a geographical object-

based image analysis (GEOBIA) procedure (Johansen et al., 2010) to detect and map individual center-pivot fields based on 15 

NDVI data (Section 3.2). Meteorological data were retrieved from a reanalysis performed using the Advanced Research WRF 

(ARW; Skamarock et al., 2008) model over the Arabian Peninsula. Details of this dataset are described in Langodan et al. 

(2014); Viswanadhapalli et al. (2017, 2019); and Dasari et al. (2019), so only a brief description is provided in Section 3.4.3. 

To provide needed estimates of crop water use (via evaporation), the TSEB model (see Section 3.4.1) was run over two Landsat 

tiles on each study region (172/39 and 171/39 for al Jawf; 165/43 and 164/43 for the Tawdeehiya Farm) using the WRF data 20 

together with the Landsat-based vegetation and biophysical parameters (at 30 m spatial resolution and at a 16 day frequency) 

obtained in the first step.  

Up to this point, all processes involved use of the entire Landsat tiles. The following steps in the framework were 

performed independently over each separately delineated center-pivot field (herein simply referred to as “field”). These 

operations were performed in parallel using hundreds of CPUs on a high-performance computing cluster (see 25 

https://www.hpc.kaust.edu.sa/ibex for further details). To do this, data were first extracted for each field using Geospatial Data 

Abstraction Library (GDAL) tools. Next, LAI spatio-temporal information was used to detect the seasonal activity of each 

field. This included the possibility that one field actually contained two different crops with different growing periods, a 

practice that was recognised by analysing the images, as well as on-site observations. Details of the automated detection 

capability developed within this framework are provided in Section 3.3. After this analysis, a “field temporal use index” was 30 

computed, defined here as the percentage (in days/days), that the field was used to grow a crop within the year of study. This 

index, referred to as field use (%), is required to compare irrigation practices among different farms and/or regions.  
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The Community Atmosphere Biosphere Land Exchange model (CABLE; Kowalczyk et al., 2006; Section 3.4.2) was 

used as an offline land surface hydrology model to indirectly estimate the irrigation rate applied over each season, for any 

particular field, for the study year of 2015. As rainfall is limited in this region, implementing CABLE simulations without an 

irrigation component leads to an almost complete lack of evaporation signal. TSEB information on evaporation was used to 

infer the irrigation amount that would be needed in CABLE to reproduce the estimated evaporation. In this sense, TSEB 5 

improves the estimation of CABLE by providing the missing irrigation component in this region. The procedure is done as 

follows:  for each active season identified in a field, an ensemble of CABLE runs were performed under different irrigation 

amounts. Denoting Esat as the remotely sensed estimates of evaporation (obtained using TSEB; see Section 3.4.1) and ELSM as 

the output evaporation from the CABLE land surface model, a cost function that was proportional to the difference between 

ELSM and Esat was accumulated during each available observation of Esat: 10 

𝐽 = ∑ ൣ𝑌(𝑡) − 𝐻൫𝑋(𝑡)൯൧
்

ൣ𝑌(𝑡) − 𝐻൫𝑋(𝑡)൯൧ ,         (1) 

where 𝐻 is an operator that maps the land surface model space 𝑋(𝑡) to the observation space 𝑌(𝑡) n.b. the satellite estimates 

need not be available at the same resolution as the model, or might be incomplete (e.g. due to the presence of clouds). Lopez 

(2018) used a stochastic optimization approach (Spall, 1998) that iteratively updates the irrigation rates to minimise the 

objective function. That method required tuning two parameters that control the speed at which the update occurs, a process 15 

that was initially performed by trial and error. Importantly, the number of fields that were evaluated in Lopez (2018) was 

significantly smaller (40) than the present study (more than 5000). Unfortunately, the transferability of the optimization 

parameters to a larger number of fields was limited, as the optimised irrigation rates either diverged, or the values did not 

update at all due to improper scaling of the gradient of the cost function. Under the rationale that the search space is relatively 

small, i.e. by constraining the irrigation rate to realistic values (e.g. 1.1 – 3 times the observed evaporation rates), a simple 20 

exhaustive search (brute-force) was implemented in this study. This removed the need for a trial and error approach for 

optimization of parameters, as well as the need to compute a gradient (which requires at least two model runs for each step), 

i.e. trading off precision for improvements in computation. The latter was a key consideration to efficiently apply this 

methodology to thousands of fields.  

At the end of the process, the irrigation rate that produced the most accurate evaporation estimate (compared to TSEB 25 

estimates) was the one used to calculate the total groundwater abstraction over the field. The irrigation rate (Irr) applied to 

CABLE is the actual amount of water reaching the ground, and it was assumed to be a constant fraction (1-Closs) of groundwater 

abstraction (Gw) as in Eq. (2): 

𝐼𝑟𝑟 = 𝐺௪(1 − 𝐶௦௦).                         (2)         

The loss term was calculated using the following rationale. The amount of water pumped out of the well (Gw) is sprayed by 30 

nozzles positioned on a rotating arm irrigating the field. A fraction of this water (Closs) is lost due to wind carrying moisture 

out of the field to the desert soil or to other fields. Under similar conditions (hyper-arid irrigated fields), this fraction has been 

estimated to be between 12 and 20% (Steiner et al., 1983; Sadeghi et al., 2017). Without frequent on-site measurement of this 
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loss value across the whole field, it is not possible to incorporate it directly into the model. In this study, the aim was to provide 

an estimate of the irrigation amount (Irr) as an approximation of the groundwater abstraction (Gw). Efforts to translate this into 

actual groundwater abstraction on a regular basis for large areas are necessary, but will require ground observations or further 

model improvement. For this study, a conservative value (in time and throughout the fields) of 20% (𝐶௦௦= 0.2), and thus a 

factor of 1.25 i.e. (1-𝐶௦௦)-1, was used to scale irrigation to abstracted groundwater.   5 

In terms of the overall field water balance, the approach employed in this study was simplified by the fact that rainfall 

in this region does not represent a significant source that can be used by crops. As such, the rainfall component in CABLE was 

replaced by the irrigation rate that is being estimated in the iterative procedure. The validity of this assumption and thus the 

applicability of this model is certainly reasonable in most of the major agricultural regions of Saudi Arabia, with the exception 

of regions with significant rain-fed agriculture, such as those in Jizan and Baha. However, even in those regions, the annual 10 

rainfall rarely exceeds 300 mm, and occur within a relatively well-defined period of the year. For example, coffee production 

is an important economic activity in Jizan, occurring mainly in high altitudes within the Fifa mountains, and farmers there 

regularly require groundwater as an additional source to meet the water needs of coffee trees, especially during extended 

periods of drought (Al-Abdulkader et al., 2018; Sayed et al., 2019). In other regions, the contribution of rainfall might be 

proportionally higher and thus need to be removed before obtaining the irrigated amount.  15 

3.1 Vegetation indices and biophysical parameters retrieved from satellite data 

NDVI is a widely used metric describing surface greenness (Tucker, 1979; Beck et al., 2011) and is computed herein 

directly from the Landsat near infrared (851-879 nm) and red bands (636-673 nm). Prior to computing NDVI, Landsat images 

for the year 2015 (between 20 and 22 scenes were acquired for each of the tiles used in this study) were atmospherically 

corrected to surface reflectances using a regionally optimised Second Simulation of the Satellite Signal in the Solar Spectrum 20 

(6S; Kotchenova et al., 2006)-based approach (Houborg and McCabe, 2017). Cloud and cloud shadow detection was performed 

using the Function of mask (Fmask) algorithm (Zhu and WoodCock, 2012). Another biophysical indicator for vegetation 

growth monitoring is the LAI, defined as the projected area of leaves over a unit of land area. LAI is a key parameter that has 

been used to improve water and energy flux modeling over agricultural fields (Aragon et al., 2018). However, as opposed to 

NDVI, LAI cannot be computed directly from satellite data. While simple relationships between LAI and other vegetation 25 

indices (including NDVI) have been used (Turner et al., 1999; Colombo et al., 2003; Fan et al., 2009), the applicability of such 

relationships for regions other than where they were developed (using ground measurements) has been brought into question 

(Wang et al., 2005; Atzberger et al., 2015; Kang et al., 2016). Houborg and McCabe (2018a) used a machine learning approach 

to develop relationships between LAI and several vegetation indices over a desert agriculture site in Saudi Arabia (Tawdeehiya 

farm; Section 2.1). They used a combination of in situ measurements and physically based model inversion results as a hybrid 30 

training dataset, with retrievals showing good performance compared to the in situ LAI measurements. In our study, a coupled 

leaf-canopy model (PROSAIL) produced forward runs over a wide range of realizations, and these were used as a training 

dataset to develop estimates of LAI using a Random Forests (RF) approach. The inversion of the forward runs needed to derive 
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LAI was based on the REGularized canopy reflectance model (REGFLEC; Houborg et al., 2015) which has been shown to be 

suitable for largely automated applications (Houborg and McCabe, 2016). The configuration of REGFLEC in this study 

followed Houborg and McCabe (2018a), but using only the model inversion results (e.g. PROSAIL) due to a lack of in situ 

LAI data in the larger region of Al Jawf. PROSAIL combines a leaf optical properties model (PROSPECT; Jacquemoud and 

Baret, 1990) with a canopy bidirectional reflectance model (SAIL; Verhoef, 1984), and has been used to retrieve LAI for a 5 

wide range of crops (Jacquemoud et al., 2009; Vohland et al., 2010; Rivera et al., 2013). The RF ensemble-based decision tree 

technique was used to learn the complex non-linear associations between the spectral data and the target biophysical property 

(i.e. LAI). In this study, the ‘ranger’ RF package in R was used for model training and prediction. This package is optimised 

for efficient memory usage with large and high dimensional datasets: a critical aspect for working with Landsat tile domains. 

Figure 3 shows the resulting NDVI and LAI maps for one Landsat tile (path/row 172/39) on April 23, 2015, demonstrating the 10 

high contrast between the bare desert soil and irrigated agriculture and the within-field variability that can be observed at these 

high resolutions. Most of the agricultural fields in Al Jawf (95%) were located within this Landsat domain, however the 

adjoining path/row 171/39 was also included to give a complete account of agriculture in Al Jawf (see Fig. 1). The Tawdeehiya 

Farm is located on the eastern edge of path/row 165/43, and hence some fields can also be observed by path/row 164/43.   

3.2 Semi-automatic delineation of center-pivot irrigation fields using Landsat imagery 15 

A GEOBIA approach was developed in the eCognition Developer 9.3 software to delineate individual fields for the 

study sites. As seasonal crop cycles prevent all active fields within a specific year from being detected at a single point in time, 

the full Landsat image time series was used for 2015. Two layers based on the annual image time series (20 - 22 images) were 

produced: (1) a maximum NDVI layer and (2) a minimum panchromatic layer. NDVI was first calculated for all images in the 

time series, and the maximum NDVI value for each pixel in the time series was assigned to the final maximum NDVI layer. 20 

Similarly, all the panchromatic images within the time series were used to produce a single panchromatic layer, representing 

the minimum value within the time series. To detect all active fields in 2015, a multi-threshold segmentation was applied to 

cluster all pixels with a maximum NDVI value of > 0.20 together and classify these objects as “vegetation”. Unclassified pixels 

surrounded by “vegetation” objects were first merged with the respective “vegetation” objects, and these objects were then 

classified as center pivots, if the object length was ≤ 1,200 m, length/width ratio ≤ 1.1, and elliptic fit ≥ 0.90. The length/width 25 

ratio and elliptic fit features were used to identify round objects, while the length feature ensured that neighboring fields 

merged together were not initially classified as fields before they had been separated into objects, representing an individual 

field.  

The minimum panchromatic layer was subjected to an edge extraction Lee Sigma filter. This filtering process 

produced another layer, highlighting bright edges in the imagery, i.e. areas with large contrast in panchromatic pixel values, 30 

such as the edges between center pivots and surrounding sandy soil. Separating adjoining fields required several processing 

steps to first identify pixels with high edge filtering values and the use of region-growing algorithms to grow these high value 

edge filtered pixels into neighboring pixels with lower values. This allowed most of the adjoined fields to be separated. 
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Some refining of the delineation results were then performed to ensure the fields were extended to their perimeter, 

which was done using a number of object shape criteria and an NDVI threshold of 0.20. While most of the fields (approximately 

85%) were correctly classified at this stage, there were still several half or “Pac-man” shaped fields remaining to be classified. 

These remaining fields were manually delineated, followed by an object growing and object shrinking process to refine the 

manually delineated field edges. 5 

3.3 Irrigation activity detection using LAI 

LAI time series were used as an indication of vegetation growth to estimate periods of active irrigation, which were 

then used to constrain the start and end dates of CABLE model runs. However, upon visual analysis of multiple fields within 

the study regions, we observed that fields are often divided into two halves, each with its own crop and potentially different 

irrigation amounts. Therefore, prior to obtaining a representative LAI time series for analysis, it was necessary to further 10 

delineate the two sections of the field if it was indeed divided. To achieve this, the k-means clustering algorithm was employed. 

In general, the idea of clustering is to identify groups of objects that are similar to one another and different from those in other 

groups (Jain and Dubes, 1988; Jain et al., 1999). The k-means algorithm (MacQueen, 1967) is a partitioning clustering method 

(i.e. there is no overlap between the groups) that has been widely used in remote sensing studies. For this purpose, let 𝑋 =

{𝑥}, 𝑖 = 1,2,3, … , 𝑛 be a set of n-dimensional points to be clustered into a set of K clusters 𝐶 = {𝑐}, 𝑘 = 1,2,3, … , 𝐾 (in our 15 

study, K is set to 2). The squared error between the mean of each cluster and the points within the cluster can be computed by 

Eq. (3): 

𝐽(𝑐) =  ∑ ||𝑥−𝑢||ଶ
௫∈ೖ

.                    (3) 

The aim of the K-means algorithm is to minimise the sum of 𝐽(𝑐) for k = 1,2,3,…, K. Four main steps are followed iteratively 

to minimise this sum: (1) select K points as the initial centroids, (2) form K clusters by assigning all points to the closest 20 

centroid, (3) re-compute the centroid of each cluster, and (4) repeat (2) and (3) until there is no significant change in the 

centroids within consecutive iterations. To speed up convergence, the “k-means++” (Arthur and Vassilvitskii, 2007) algorithm 

was used to select the initial cluster centers.  A more detailed description of the k-means algorithm is provided by Jain (2010).  

Prior to applying the clustering algorithm, it was more efficient to extract the features to represent the characteristics 

of the time series. To do this, the discrete wavelet transform (DWT) was employed, which is an efficient procedure used to 25 

separate deterministic from stochastic components of a signal (Heil and Walnut, 1989). The DWT has been used to analyse 

satellite images in the context of noise reduction as well as change detection (Zhu and Yang, 1998; Wang and Paliwal, 2006; 

Martínez and Gilabert, 2009). The main idea behind application of the DWT is that the signal is represented as a combination 

of approximation and detail coefficients (Heil and Walnut, 1989): 

𝑥(𝑡)  =  𝐴(𝑡)  + ∑ 𝐷  (𝑡)
ୀଵ   , 𝐴(𝑡)  =  ∑ 𝑎𝜙(𝑡)ଶష

ୀଵ  , 𝐷(𝑡)  =  ∑ 𝑑𝜓(𝑡)ଶషೕ

ୀଵ ,       (4) 30 

where AJ(t) and Dj(t) are respectively the approximation and detail coefficients, and J is the decomposition level.  The detail 

coefficients are generated by projecting the original signal x(t) using a set of wavelet basis functions defined as 𝜓,(𝑡)  =
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 √2ି𝜓(2ି𝑡 − 𝑘), 𝑗 = 1, . . . , 𝐽, 𝑘 ∈ 𝑍, where k is the shift parameter and is the base function. In other words, the detailed 

signal Dj(t) at level j is generated by the detailed signal Dj(t) at scale j and can be obtained by applying a high-pass filter (g) 

on the original and scaled signals. In a similar way, the approximation coefficients are generated by projecting the signal on a 

set of orthonormal scaling functions given by 𝜙,(𝑡)  =  √2ି𝜙(2ି𝑡 − 𝑘), 𝑗 = 1, . . . , 𝐽, 𝑘 ∈ 𝑍. Similarly, the scale signals are 

computed by applying a low-pass filter (h) on the original and scaled signals. Gao and Yan (2010) provide a more detailed 5 

description of the DWT.  

In our study, LAI time series were first transformed into DWT components by level-1 decomposition of the basis 

function ‘haar’. Then, to establish whether the field is divided into two parts or not, two threshold values were used. Both 

values relate to the cosine similarity (Eq. 5), which measures the similarity among pixels of the same field:  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∙

|||| ||||
=  

∑ 

సభ

ට∑ 
మ 

సభ ට∑ 
మ

సభ  

 ,                     (5)        10 

where Ai and Bi are components of a vector A and B respectively (i.e. one vector represents the time series of one pixel). The 

cosine similarity values of two vectors ranges from -1 to 1. The closer the value approaches 1, the closer the direction of the 

two vectors. On the other hand, the closer the value gets to -1, the more the two vectors go in the opposite direction. For each 

pair of pixels, the cosine similarity of DWT components of time series were first computed, and then the time series of the two 

pixels were determined to be similar or not by using a threshold of the cosine similarity (tcs). The second threshold used was 15 

based on the fraction of pairs where the value of cosine similarity was higher than tcs, i.e. defining nTcs as the number of pair 

values with similarity higher than tcs, and N as the total number of pairs, the ratio to use as the second threshold was tpcs = 

nTcs/N.  Upon an exploratory analysis based on a representative sample of a few hundred fields, the appropriate values for 

these two thresholds were determined as tcs = 0.75 and tpcs = 0.8. Hence, a field was classified as partitioned when the tpcs 

value was exceeded, and was thus further processed by the k-means algorithm for clustering.  20 

Next, a number of representative pixels within the field (or sub-field if partitioned) were selected and used to 

determine the start and end dates for each season within the land surface hydrology model runs. The pixels were selected based 

on a criteria that the daily LAI values, obtained by linearly interpolating from the 16-day LAI time series, were consistently 

within the interquartile range (e.g. 25% and 75%). This was done to remove the influence of outlier pixels. Finally, the mean 

value over these pixels each day was taken as the mean LAI time series (mLAI). Using this mean LAI time series, crop growing 25 

seasons were then selected based on the start and end dates of the first season, defined by the period where mLAI is higher than 

a threshold tLAI (in m2/m2). A value of tLAI = 0.3 m2/m2 provided a reasonable delineation of growing seasons for a large 

number of fields. Furthermore, to remove noise that could result from the interpolation of the LAI time series, only seasons 

that were at least 30 days in duration were processed, which is the approximate length of the shortest crop growing seasons 

observed for alfalfa crops and also ensures that it includes at least one Landsat scene.  30 

Upon analysis of the shape of mLAI, in terms of the number of peaks as a measure of the oscillatory nature of the time 

series, fields were then classified into two possible categories: seasonal or perennial. A “seasonal” field had clearly defined 
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growing cycles that were separated by inactive periods. Figure 4 (a) shows a field that was active for only three months, with 

clear start and end dates obtained by computing the dates at which the mean seasonal pixels in the LAI time series intersected 

with 0.3 m2/m2. Perennial fields had vegetation patterns that reflected long periods (up to year-round) of vegetation above the 

LAI threshold, but with intermittent cut and re-growth periods. This is typical of a field growing alfalfa or grass, where the 

production is continuous throughout most of the year. An example of a perennial field is shown in Figure 4 (b). This field was 5 

active from April to December 2015, but with intermittent cut/re-growth cycles. For this second category of crops, it was not 

straightforward to select clear periods for retrieving irrigation, due to Landsat’s temporal resolution of 16 days. To ensure that 

there would be enough satellite evaporation estimates for constraining the land surface model runs, the process for these types 

of pivots was performed on a quarterly basis. 

3.4 Models and ancillary data 10 

3.4.1 Satellite evaporation estimation using TSEB 

The TSEB model (Norman et al., 1995) was used to obtain the satellite-based estimates of evaporation that constrain 

the land surface hydrology model runs. TSEB was selected based on its proven utility in the estimation of evaporation over 

irrigated crops in semi-arid and arid regions (e.g. Colaizzi et al., 2012; Zhuang and Wu, 2015; Nieto et al., 2019). TSEB is 

based on the energy balance (𝑅 = 𝐿𝐸 + 𝐻 + 𝐺), where Rn is the net radiation reaching the crop canopy and soil surface, H is 15 

the sensible heat flux (i.e. the energy transformed to heat and released into the atmosphere), G is the soil heat flux, and LE is 

the latent heat flux of evaporation, which is the key link between the energy and water balance equations. In TSEB, the LE 

term is obtained as a residual of the energy balance equation, and along with H and Rn, is divided into separate components 

for the soil and canopy at each pixel. The model for sensible heat flux in TSEB is based on a network of temperature gradient-

transport resistances between the air, canopy boundary layer, canopy and soil. In this study, the “in-series” resistance scheme 20 

(Shuttleworth, 1985) for the sensible heat flux was used. The in-series scheme was selected as it has been demonstrated to 

estimate heat fluxes of densely vegetated areas more accurately than the parallel or patch schemes (Kustas et al., 1999; Colaizzi 

et al., 2012). In center-pivot fields, the crops are not structured in rows, and at maturity the canopy covers the entirety of the 

soil surface (with the exception of the beam tracks of the pivot), and thus the area was considered as densely vegetated. The 

in-series approach accounts for the coupling between soil and canopy heat fluxes.  25 

The sensible heat flux  is defined below for canopy (Hc) and soil (Hs) in Eq. (6): 

𝐻 = 𝜌𝑐 ቀ ்ି்ಲ

ೣ
ቁ ; 𝐻௦ = 𝜌𝑐 ቀ ೞ்ି்ಲ

ೞ
ቁ,                  (6)         

where Tc is the canopy temperature, Ts is the soil temperature, TAC is the temperature of the canopy-air space, rx is the canopy 

boundary layer resistance, rs is the resistance of air between the soil surface and source height, 𝜌 is the density of water, and 

𝑐 is the specific heat of water. The calculation of the two resistances rs and rx was done following the methods of Sauer (1995) 30 

and McNaughton (1995) respectively.  
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The LE fluxes for the canopy and soil are determined based on initial estimates for Tc and Ts, which are then iteratively 

refined until LEs is positive (or after a maximum number of iterations). An initial estimate of LEc (canopy latent heat flux) is 

required in order to obtain the values of Tc and Ts. This is done using the Priestley-Taylor equation and then solving for Tc: 

𝑇 = 𝑇 − (𝑅 − 𝐿𝐸)𝑟/(𝜌𝑐),                               (7) 

where Ta is the air temperature from the WRF data and rah is the aerodynamic resistance to heat transport. The value of rah 5 

depends on atmospheric stability parameters, wind speed, and measurement heights for temperature and wind speed, which is 

set to WRF’s near surface level (2 m in this study). The aerodynamic roughness length for heat and momentum transport were 

defined as 𝑧ெ = 𝐻/8 and 𝑧ு =
௭బಾ

ୣ୶୮൫ಳ
షభ൯

, where the 𝑘
ିଵ (i.e., ln(𝑧ெ/𝑧ு) ) parameter was set to 2 as in Norman et al. 

(1995). Without detailed in situ information describing land cover and crop development stage, canopy height was prescribed 

to a constant value of 0.3 m: a reasonable assumption based on the typical crops such as alfalfa, wheat, and vegetables being 10 

grown in this region. 

The net radiation is computed by Eq. (8): 

𝑅 = (1 − 𝛼)𝑆ௗ + 𝐿ௗ − 𝜀௦௨𝜎𝐿𝑆𝑇ସ,                                                (8) 

where 𝛼 is the albedo (computed from Landsat data as in Liang, 2000), Sdn and Ldn are the incoming shortwave and longwave 

radiation components (derived from WRF data), 𝜀௦௨ = (𝑓ఝ𝜀௩ + (1 − 𝑓ఝ)𝜀ௗ)  is the surface emissivity with 𝑓ఝ described 15 

in Equation 11 and 𝜀௩ = 0.98 and 𝜀ௗ = 0.93 are the canopy and soil emissivities respectively, and σb is the Stefan–

Boltzmann constant.  

The net radiation that reaches the canopy 𝑅 is modeled as: 

𝑅 = 𝑅 ቀ1 − 𝑒ି.ସହூ/ඥଶ  (ఝ)ቁ,                                                (9) 

where 𝜑௭is the solar zenith angle. This simple parameterization for 𝑅 was developed based on the Cupid model for dense 20 

canopies as described in Zhuang and Wu (2015). The initial soil temperature is then given by Eq. (10) and is updated iteratively 

as described in Norman et al. (1995): 

𝑇௦ ≅ ට(𝑇
ସ − 𝑓ఝ 𝑇

ସ)/൫1 − 𝑓ఝ ൯
ర

.                       (10) 

In this study, the radiometric temperature (Tr) is the LST derived from Landsat’s thermal infrared sensor data, with 

atmospheric correction of the at-sensor brightness surface temperature performed using MODTRAN (Berk et al., 2005; Rosas 25 

et al., 2017). In this process, atmospheric profile data from MERRA2 (Gelaro et al., 2017) was used and emissivity fields were 

based on the methods of French et al. (2005) using estimates of vegetation fraction (Anderson et al., 2007). A Data Mining 

Sharpener (DMS) technique based on regression tree analysis (Gao et al., 2012) was used to perform spatial sharpening of 

LST to 30 m resolution. The vegetation fraction at the sensor view angle 𝜑 (0 for Landsat) is: 

𝑓ఝ = 1 −𝑒𝑥𝑝 ቀ
ି.ହ ூ

௦ (ఝ) 
ቁ.                        (11) 30 
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The vegetation fraction assumes a spherical leaf angle distribution, which is a good approximation for general plant canopies, 

spreading the leaf area uniformly across solar zenith angles (Campbell 1998). For Saudi Arabia, at the Landsat overpass time, 

the extension coefficient Kb is approximately equal to 0.5. 

For pixels with low LAI values (LAI < 1) i.e. where the soil component is dominant, the canopy component was 

omitted by applying a simpler, one-source energy balance (OSEB). In the OSEB, the sensible heat flux is estimated by using 5 

a one-layer circuit network. Although this can lead to a sharp transition in ET for values around LAI=1, this was done in order 

to reduce the influence of high bare soil evaporation values using TSEB, which would cause an overestimation of water use in 

fallow or inactive fields and where the surface can be modelled as a single layer. In OSEB, H is simply given by: 

𝐻 = 𝜌𝑐 ቀ ೝ்ି்ೌ

ೌ
ቁ.                    (12) 

The soil heat flux (G) model of Santanello and Friedl (2003) was used in this study. This model includes a simple relation 10 

describing the covariation between daytime ground heat flux and net radiation (Rn):  

𝐺 = 𝐴𝑐𝑜𝑠 ቀ
ଶగ(௧ାଵ,଼)


ቁ 𝑅௦,                               (13) 

where A represents the maximum ratio of G/Rns, B is a constant that minimises the divergence of the equation to that of 

measured values, and t is the number of seconds between the satellite overpass time and solar noon. The values of A and B 

were left as in the original parameterization, with A = 0.31 and B = 74000 s.  15 

The use of TSEB to estimate evaporation has been validated in similar arid regions (Colaizzi et al., 2012; Zhuang and 

Wu, 2015; Nieto et al., 2019). With a lack of sufficient ground-based measurements in our study regions, we did not attempt 

to provide a new validation data set for TSEB. However, we used data from one eddy-covariance tower installed in 2016 on a 

center-pivot irrigated field in Tawdeehiya farm (Figure 1; Section 2.1), which showed good estimation for operational purposes 

in this data-limited region (Figure S1).  20 

3.4.2 CABLE 

CABLE was used as a stand-alone (offline) land surface hydrology model to estimate irrigation rates based on the 

evaporation estimates obtained with TSEB. CABLE was selected given its application in other dryland environments and as 

the land surface scheme for regional and global climate models (Zhang et al., 2009; Haverd et al., 2013; Hirsch et al., 2019), 

but the approach described in this study is not limited to any particular scheme. Energy and water interactions are modeled in 25 

CABLE across six layers of soil (with thickness from the surface to bottom layer of 2.2 cm, 5.8 cm, 15.4 cm, 40.9 cm, 108.5 

cm, and 287.2 cm), the canopy layer, and the atmosphere. Similar to TSEB, the heat fluxes in CABLE are modeled by a 

network of aerodynamic resistances. The sensible and latent heat fluxes are also partitioned into a flux from the soil to the 

canopy, and from the canopy to the atmosphere. However, in CABLE, the canopy layer is further divided (two-leaf canopy 

model) between sunlit and shaded leaves, using an approach developed by Leuning et al. (1995).  30 

Another feature of CABLE is that the canopy transpiration, as well as root water extraction, both depend on whether 

the canopy is wet, dry, or partially wet (Lai and Katul, 2000). A coupling between the root water extraction and stomatal 
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conductance was added by Haverd et al. (2016), enabling a “root shut-down” that tests for over-extraction in each soil layer, 

which would otherwise result in high water use efficiencies under drying conditions. Hydraulic redistribution (Ryel et al., 

2002) was also added to CABLE in order to improve the representation of the water flux between soil layers. This component 

involves redistribution of water by roots, and depends on the root density and the rhizosphere conductivity. This term was 

added as an additional term in Richard’s equation, which describes the soil moisture (θ) flux and is based on the one-5 

dimensional conservation equation and Darcy’s Law: 

డఏ

డ௧
=  −

డ

డ௭
(𝐾 + 𝐷

డఏ

డ௭
) + 𝐹௪(𝑧),                (14) 

where K is the hydraulic conductivity, D is diffusivity, and Fw(z) includes water lost due to soil evaporation, root extraction, 

or water gained or lost in a layer by hydraulic redistribution (Ryel et al., 2002). In this study, CABLE version 2.3.4 was used. 

This version of CABLE is freely available at trac.nci.org.au/trac/cable after registration. Detailed descriptions of the model 10 

are available in Kowalzcyk et al. (2006), Wang et al. (2011), Kowalzcyk (2013), and Haverd et al. (2016).  

To support the generality of our approach, the offline global simulations in this application of CABLE use look-up 

tables for soil and vegetation classification. By default, CABLE includes a soil classification table derived from Zobler (1999), 

and vegetation types defined by the International Geosphere and Biosphere Program (Loveland et al., 2000).  CABLE auxiliary 

files also include monthly LAI data derived from MODIS data averaged from 2002 to 2009 (Gao et al., 2008; Ganguly et al., 15 

2008), as specified in the CABLE user guide (Srbinovsky et al., 2013). In this study, the default soil texture was used, and 

assumed as uniform across the studied region (the soil corresponds to sandy loam soil in the irrigated regions explored here). 

However, LAI data in this study was derived as described in Section 3.1, as the coarse-scale MODIS-derived dataset is not 

representative of the actual crop growing patterns. The possibility of different crops and crop rotation in the same field within 

the year was considered, as explained in Section 3.3, using the clustering technique based on LAI data. One limitation of the 20 

framework is the lack of a crop identification module, which would improve the definition of vegetation characteristics. Here, 

vegetation parameters were assigned based on the default CABLE cropland vegetation class, as currently no crop identification 

strategy was implemented, other than the delineation and clustering technique. Finally, CABLE was forced with hourly 

meteorological data from a WRF reanalysis (Section 3.4.3). 

Under basin-scale water budget studies, a spin-up of the model is generally required to achieve a realistic initial soil 25 

moisture state. This is normally done by running a representative year of meteorological data several times, or running several 

years prior to the start of the study period (Ajami et al., 2014; 2015), and assuming that the spin-up period is representative of 

the “normal” conditions. This assumption does not hold in our simulations because we are aiming to retrieve irrigated amounts, 

which could change from one year to the other, as different crops are grown. Therefore, this posed a challenge for representing 

the initial state of irrigated agricultural fields at the start of our simulations. In our study, the spin-up for each field was 30 

performed as follows: after estimation of the irrigation amount for one season, the model is run using this irrigation amount, 

and the final state is saved as the initial state for the next iterative process. However, the problem still lies with the spin-up of 
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the first period. To solve this, we started by first running the groundwater abstraction strategy for a three-month period prior 

to the start of the study period, thus generating an initial state for the actual period of study. 

3.4.3 Meteorological data 

The meteorological data required to drive the TSEB and CABLE models were derived from a numerical weather 

prediction simulation of the Weather Research and Forecasting (WRF) model: specifically, the Advanced Research WRF 5 

(ARW; Skamarock et al., 2008) model version 3.7.0. The regional simulation, performed over the entire Arabian Peninsula 

and neighboring regions, used dynamical downscaling of global analysis data from the National Centers for Environmental 

Prediction (NCEP). Dynamical downscaling refers to a method to generate a higher spatial and temporal resolution regional 

climatic model by assimilating available regional datasets, and initialised from coarser reanalysis data (Giorgi and Mearns, 

1991; Wilby and Wigley, 1997; Viswanadhapalli et al., 2017; 2019; Dasari et al., 2019). This is typically done by nesting a 10 

high spatial resolution domain within a coarser domain. Observational data used in this regional climate model included quality 

controlled data from the NCEP Atmospheric Data Project (ADP) such as surface station data, wind data from the Quick 

Scatterometer (QSCAT), WindSat and ASCAT scatterometers, and atmospheric motion vectors from geostationary satellites. 

The methodology, model parameters, and model physics followed a similar approach as described in Jiang et al. (2009), 

Langodan et al. (2014, 2016), Viswanadhapalli et al. (2017) and Dasari et al. (2019). The simulations were performed over a 15 

5-year period (2011 – 2015) at an hourly time step, and with the internal model domain having a spatial resolution of 3 km, 

covering the Arabian Peninsula.  

3.5 Evaluation of model performance 

To evaluate the modeling approach across thousands of individual field sites would require the provision of an 

extensive data set of on-ground water-use measurements, ideally collected from numerous pivots and over an extensive period 20 

of time. However, detailed abstraction, irrigation and crop-water use data in such quantity rarely exists in even the most well 

monitored sites, let alone for developing country applications. Although we could not collate comprehensive and spatially 

distributed evaluation data for the Al Jawf study region, we utilise data from the smaller-scale Tawdeehiya farm to provide 

farm-reported data for the year 2015. The available evaluation data consisted of monthly values of total irrigation application 

time (in hours), and a single value of flow rate in gallons per minute for each field. To convert to groundwater abstraction 25 

(GWA), the flow rate was multiplied by the number of minutes irrigated in each month and converted to units of millions of 

cubic meters (MCM). The model’s performance to quantify field groundwater abstraction was evaluated using the Nash-

Sutcliffe efficiency, given by Eq. (15): 

NSE =  1 −
 (ௌି)మొ

సభ

 (ିഥ)మొ
సభ

,                              (15) 
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where O represents the observations (farm data) and S our estimations, both in MCM for the year 2015. NSE values can be 

negative (from -∞) or a value from 0 to 1, where 1 represents a perfect match between estimates and observations, and a value 

of 0 represents that the estimates are as good as the mean of the observed values (Oഥ).  

4 Results 

The strategy as described in this study (Section 3) was applied to two study regions. Section 4.1 presents the results 5 

of groundwater abstraction (GWA) of 40 fields at the Tawdeehiya farm and evaluates the performance based on farm data for 

these fields. Next, Sections 4.2 and 4.3 focus on the larger-scale application of the methodology across the Al Jawf region, 

demonstrating the framework’s capability in terms of information it can reveal at a regional level. First, Section 4.2 explores 

patterns of irrigation activity e.g. how much time are these fields active throughout the year; whether there is a preference for 

seasonal or perennial type of fields (as defined in Section 3.3); and the spatial distribution of yearly groundwater abstraction 10 

and field use within the region. Finally, Section 4.3 demonstrates the range of monthly to annual water use in the region, i.e. 

irrigation rates and derived groundwater abstraction values. A comparison of evaporation estimated by CABLE (with inferred 

irrigation based on our approach) and TSEB is shown in Figure S2. As a result of this work, a first of its kind spatially 

distributed map of field-based groundwater abstraction was created as a key output of the monitoring strategy. 

4.1 Pivot-based framework performance at the Tawdeehiya farm 15 

In order to evaluate the performance of the approach, the pivot-based water accounting methodology (described in 

Section 3) was first applied to the 40 active fields at the Tawdeehiya farm (Fig. 1). Seventeen fields were identified as following 

a perennial planting pattern, with yearly field use values around 86%. Twenty-three fields were classified as seasonal fields, 

with average field use vales of 57%. The performance evaluation was based on a comparison of the estimated yearly 

groundwater abstraction rates and farm-based data reports of flow rates delivered to the irrigation booms. Upon examination 20 

of the estimated monthly irrigation rates from the seasonal fields, a systematic mismatch was observed during periods where 

fields were identified as being “inactive”. From knowledge of the local farm-based operations, it is not unusual that fields 

required a significant amount of pre-planting irrigation (likely to reduce the salt load in the soil and in preparation for seeding). 

But during this period, the LAI would be below the threshold used to define an “active” season (Section 3.3), and thus water 

accounting in the model would not be triggered. Lowering the LAI threshold would not help in identifying this pre-planting 25 

stage, because it is already essentially zero when vegetation is not present. Reducing it further to arbitrarily low values would 

defeat the purpose of seasonal activity detection. As an alternative, the season can be extended to include a pre-planting stage 

of a pre-defined amount of time. However, this parameter would depend on a variety of factors, such as the type of crop being 

planted and other farm management practices. Without a sufficient amount of data with which to derive strategies to account 

for irrigation during this pre-planting stage, the groundwater abstraction values for seasonal fields in this study can only be 30 

interpreted as a lower bound.  
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Figure 5 presents the groundwater abstraction estimates calculated for the center-pivot fields compared against farm 

reported flow rates (multiplied by irrigation duration). As can be seen, there is a significant amount of variability between the 

pivot results, largely a consequence of seasonal versus perennial fields. However, for a number of the seasonal fields, there 

was a clear and defined under-estimate of groundwater abstraction relative to the reported flow-rate extrapolations (identified 

by the gray-dots). Indeed, eleven fields had an unrealistically long pre-planting stage of more than two months, based on the 5 

reported flow-rate data. It is extremely unlikely that these reflect real farming practices, and are almost certainly a result of 

local reporting errors. Taking into account the uncertainty of the farm data for these eleven pivots, the yearly groundwater 

abstraction values were re-calculated to estimate only when fields were determined to be active, i.e. based on the satellite-

derived LAI values. Using this assessment threshold, the NSE value was 0.38 with an R2 of 0.61 for all 40 pivot fields, with a 

linear regression described by the blue line in Figure 5 (slope of 0.62, intercept of 0.51). For reference, the eleven gray dots 10 

(not included in the NSE calculation) present the original data that includes the “inactive” period, i.e. with the long pre-planting 

stage. 

Further exploring the relationship between monthly groundwater abstraction and its relation to the level of a field’s 

activity (based on LAI data), Fig. 6 shows the results for two different fields and their spatial and temporal changes in LAI. 

The first field (center panel) presents a 6 month period when LAI is above the defined threshold (0.3 m2/m2), and a long 15 

inactive period (August – December) which would be designated as low-to-no estimated irrigation. For the period of activity 

(Jan-July, excluding a planting stage in March) the agreement between reported flow rate and estimated groundwater 

abstraction is good. However, for the August-December period, when the LAI imagery shows low LAI to bare soil conditions, 

the farm data reports a varying amount of irrigation based on the fixed flow rate records. For the second field (right panel of 

Fig. 6), the monthly variations in groundwater abstraction are in good agreement with farm data for the majority of the year, 20 

with the exception of a three-month period (January to March), which was identified as inactive, but where farm-reported data 

again indicates irrigation is active.   

While undertaking a field-based assessment of the strategy is obviously an area of importance, it is tempered by the 

reality of using data that is often of less than “high-quality”. However, by combining independent observation available from 

satellite platforms, we can further discriminate these spurious data points, and refine the assessment process. These types of 25 

analyses highlight the need for forensic assessment of ground-based (and satellite) observations, and the value of establishing 

consistency between available datasets (McCabe et al. 2008; Lopez et al. 2017). Indeed, in this case, the proposed model-

satellite fusion approach correctly identifies errors in “ground-based” data, and provides a clear example of the observation 

and monitoring challenge in this and many other regions. 

4.2 Irrigation activity detection in Al Jawf 30 

Given the quite different application scale of the pivot-based groundwater estimation approach when performed over 

the Al Jawf region (compared to Tawdeehiya), an overview and analysis of intermediate processing steps is warranted. The 

object-based image analysis approach (see Section 3.2) produced a map containing 5,567 individually delineated fields, 
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covering a total area of 2,494 km2 i.e. more than 60% higher than previous reporting (FAO, 2013). The majority of the 

delineated fields (81%) were identified as “perennial” (see Fig. 4b), with less than 1.5% recognised as inactive using the LAI-

based approach. Examples of these delineations are shown in Fig. 1 (top; outlined in black). On average, the size of the fields 

were 45 ha (0.45 km2), with no observable distinction in acreage between perennial and seasonal fields. Figure 7 displays the 

distribution of size (in ha) for all fields (first quartile of 25.54 ha, third quartile of 66.05 ha). The field sizes do not follow a 5 

normal distribution, but form clusters (e.g. around 82 ha, 67 ha, and 50 ha; see inset on Fig. 7), which is expected as center-

pivot irrigation systems are installed in standard sizes. The largest fields (e.g. > 60 ha), were concentrated around the central 

region (30° N, 38.25° E), which is where the largest commercial-scale farms operate. In more remote areas to the north and 

east of Al Jawf, a larger variation of smaller fields can be identified, and are likely owned by smaller, independent farms. 

The annual field use (%), calculated as the ratio between the number of active days and total days in the year, is shown 10 

in Fig. 8. As expected, perennial fields have a higher field use (average, first and third quartiles: 86, 77 and 100%, respectively) 

than seasonal fields (average, first and third quartiles: 35, 24 and 46%, respectively). In contrast with the area distribution (Fig. 

7), the majority of fields had high annual field values, meaning they were active throughout most of the year, independent of 

their location (small or large commercial-scale farms). This is consistent with the fact that most fields were identified as 

perennial, and indicates a preference towards forage crops (i.e. grass and alfalfa) during this year, regardless of the scale of 15 

operation.   

The field use (%) was also calculated on a monthly basis as the ratio of number of days active to number of days in 

each month in Fig. 9, with the distribution of values among all fields shown as violin plots for perennial and seasonal fields 

separately. Most perennial fields were consistently active throughout the year (monthly field use above 80%), but for any given 

month there were fields that were inactive (i.e. with less than 5% monthly use). For example, the largest number of inactive 20 

perennial fields was 958 in January, followed by 913 in December, with the smallest being 353 in March. Because perennial 

fields are, by definition, expected to be active throughout most of the year, the violin plots (Fig. 9) show a consistent pattern 

with a wide top (i.e. high y-values) and otherwise thin body. Seasonal fields on the other hand, had a more variable range of 

irrigation activity. Most fields were irrigated from February to May, with more than 46% of the fields having a monthly field 

use value larger than 50%. This was followed by July and August, where more than 33% of fields exceeded the 50% monthly 25 

field use. Irrigation activities were lowest during January, June and from September to December, where less than 30% of 

fields had monthly field use values larger than 50%. This suggests an overall trend for seasonal crops either being used for one 

growing season (from February to May), or two seasons (February to May and July to August). 

4.3 Monthly and annual irrigation and groundwater abstraction 

The irrigation rates for each field were determined using the inverse modeling approach, i.e. running the CABLE 30 

model iteratively to determine the rate needed to reproduce the TSEB-based satellite-observed crop water use (see Section 3). 

Figure 10 presents the derived monthly irrigation estimates. Results were generally higher for perennial fields compared to 

seasonal fields, with average values ranging from 122– 152 mm in January, February and from October to December, and the 
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highest values occurring from April to September (210 – 234 mm). The monthly maximum value for a perennial field was 407 

mm and occurred in August. Average yearly irrigation values for the perennial fields reached 2,007 mm, with first and third 

quartile values of 1,347 mm and 2,799 mm for the fields within the Al Jawf region. Average monthly irrigation values for 

seasonal fields were lowest in November and December (50 – 58 mm) and highest during March to April (165 – 171 mm), 

indicating the production of spring crops. A second peak, indicative of a second season (as mentioned in the monthly field use 5 

analysis), was also evident in the monthly irrigation profile, with average values of 145 mm and 131 mm in July and August, 

following a lower value of 109 mm in June. The highest monthly irrigation value for a seasonal field was 348 mm during July. 

On average, seasonal fields had a total annual irrigation value of 675 mm, with the first and third quartiles at 299 mm and 1041 

mm. 

The irrigation values were converted to groundwater abstraction by multiplying monthly irrigation amount by the 10 

area covered by pixels that were actively irrigated in each season, and then by a factor of 1.25 (i.e. 1/(1-Closs)) to account for 

irrigation losses (as described in Section 3). Figure 11 shows a map of annual groundwater abstraction in the region, in units 

of million cubic meters (MCM). The total annual groundwater consumption in 2015 for the Al Jawf agricultural region was 

estimated at 5.56 billion cubic meters (BCM). Clusters of fields with high abstraction (> 3 MCM/year; shown in blue) are 

mostly centered in the main commercial region (38.25° E, 30° N), where fields were generally larger (> 60 ha; Fig. 7) and 15 

irrigated throughout most of the year (>80%; Fig. 8). The first quartile, mean and third quartile of groundwater abstraction 

among all fields in Al Jawf was 0.24, 1.0 and 1.59 MCM, respectively. The corresponding values were larger, as expected, for 

perennial fields: 0.43, 1.16, and 1.74 MCM, and significantly smaller for seasonal fields: 0.06, 0.34, and 0.5 MCM. 

5 Discussion 

5.1 Historical efforts towards quantifying agriculture water use  20 

Quantifying the water use of individual agricultural fields has been a research objective for many decades (Jackson 

et al., 1987; Rana and Katerji, 2000; Kalma et al., 2008), with numerous efforts directed towards improving process-based 

modeling approaches to characterise the evaporative response (Ershadi et al., 2014; Anderson et al., 2018; McCabe et al., 

2019). The challenge has often been related to the availability of data with sufficient spatial and temporal resolution to observe 

fields in adequate detail, as well as a lack of knowledge on the dynamics of the underlying crop type and condition. In addition, 25 

most efforts have tended to focus on monitoring for relatively short periods, or perhaps a single growing season, rather than 

providing a basis for long-term retrospective or ongoing monitoring. Recent developments exploiting constellations of 

CubeSats have enabled high resolution in space and time retrievals of key land surface parameters (Houborg and McCabe 

2018c), providing enhanced estimates of crop water use and crop development and overcoming the spatiotemporal constraint 

(Aragon et al., 2018; McCabe et al. 2017b). However, while crop water use is an important variable in delivering insights into 30 

water allocation and management, regulators are often most interested in determining the source and volumes of water actually 

being extracted from reservoirs to supply this agricultural need, not just the net use. This has represented a much more 
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challenging task, as in-situ data on these systems is often non-existent, and not easily inferred through remote measurement: 

at least at the scales at which local and regional management needs to be performed.  

In many regions of the world, existing or historical groundwater monitoring networks help to inform regional 

groundwater depletion trends (Shamsudduha et al., 2012; Scanlon et al., 2012; Zhou et al., 2013) and offer insights into related 

environmental impacts (Lee and Song, 2007; Erban et al., 2014). Satellite-based gravimetry measurements from GRACE have 5 

informed on water storage depletion trends around the world (Rodell et al., 2018), with particular benefit to data scarce regions 

where the quantification of aquifer depletion would not otherwise be possible (Lezzaik and Milewski, 2018). However, while 

GRACE data provide an excellent source of large scale information on aquifer response (Voss et al., 2013; Famiglietti et al., 

2014), it is not suited to attribute to any particular use at the scales required for resource management. For example, the Al 

Jawf agricultural region as defined in this study (mapped agricultural area of about 2,500 km2) is small compared to the scale 10 

of the Saq aquifer system that feeds it (about 500,000 km2) and the recommended minimal size for GRACE studies (>200,000 

km2; Famiglietti et al., 2014; Long et al., 2015; Richey et al., 2015). Moreover, even in regions where groundwater monitoring 

networks do exist, there is a need to bridge the gap between a regional assessment and practical farm scale monitoring. In this 

context, our study demonstrates new capability, using a satellite data-modeling framework to provide an unprecedented level 

of information for water management. The approach represents a dramatic improvement on more traditional farmer-based 15 

surveys, which are time-consuming to collect, can often be unreliable and unrepresentative, and lack the spatial and temporal 

detail needed to provide accurate water accounting at the regional-scale.  

While a number of studies have attempted to estimate irrigation by incorporating an irrigation module into a water 

balance model, these approaches have often been based on “adding” the necessary irrigation depth to maintain the soil moisture 

above a threshold value (Santos et al., 2008; Ozdogan et al., 2010, Pokrhel et al., 2012), which may not reflect the actual 20 

irrigation volume being applied. Here we developed a data-modeling approach to automatically retrieve seasonal irrigation 

rates for individual center-pivot fields, focusing on fields irrigated by center-pivot infrastructure: consistent with the type of 

infrastructure that supports the majority of irrigated fields in Saudi Arabia and in other cereal crop production areas world-

wide. The developed approach is based on constraining a land surface hydrology model with evaporation estimates, and then 

“inferring” the irrigation rate: an idea explored conceptually by Droogers et al. (2010) and applied in a real-world case-study 25 

by Lopez (2018). As the first large-scale demonstration of this framework at the regional-scale, the present study represents 

an effort towards more effective water use monitoring in both Saudi Arabia and other arid countries (e.g. in the MENA region) 

that rely heavily on groundwater abstraction for agricultural production.   

5.2 Demonstrating the capability of the pivot-based groundwater abstraction estimation framework 

The framework offers a unique monitoring and modeling effort in terms of scale and granularity, as it demonstrated 30 

a capacity to obtain agricultural water use estimates from the scale of a single pivot to more than 5,000 individual fields. 

Importantly, the approach is scalable and can be applied to other domains and locations. The mapping activities used in 

producing our water use estimates for the year 2015 indicate a much larger extent of agriculture (2,494 km2) in the region than 



23 
 

has previously been reported (1,200 km2 for the year 2009; SSYB, 2010). Consequently, a much higher groundwater 

abstraction was also estimated (5.56 BCM) than that forecast for the year 2014 (1.2 BCM; MEP, 2010). However, it is 

important to note that these prior estimates were obtained by incorporating information from various private and public sources, 

including on-site interviews, and are subject to significant uncertainties. These include possible misrepresentation due to the 

absence of metering in farms (i.e. self under reporting), and possible omission of fields located in remote areas. Regardless, 5 

our estimates are proportionally consistent (in terms of area) with more recent reports of nationwide groundwater abstraction 

for the year 2015 (20.8 BCM; MEWA, 2019). That is, both the estimates of area and of groundwater abstraction for the Al 

Jawf region represent about one quarter of irrigated agriculture in the Kingdom.  

Ultimately, our study is a demonstration of using the best available data and tools to undertake an analysis in a data-

limited region. The lack of data is very much a developing world problem, but there are numerous “developed” world cases 10 

where data to inform model set-up and evaluation is absent. Using the strategy proposed here, we were able to provide results 

that reflect expectations when compared to the limited available datasets (both at farm and regional scale), i.e. a positive 

outcome given the scenario where independent data is not available to inform decision makers.    

5.3 Limitations, potential extensions and applications 

The goal of this study was to provide a first approximation of regional groundwater abstraction independent from 15 

self-reported data, and for this, we have used a specific choice of models (i.e. TSEB and CABLE). Other remote sensing 

approaches for evaporation estimation could be used. For example, the use of ALEXI/DisALEXI (Norman et al., 2003) could 

be explored to mitigate the sensitivity to the accuracy of LST retrieval, but the trade-off between higher ET accuracy and the 

impact on computational effort should be evaluated. Likewise, our approach is not limited to any particular land surface model. 

Further investigation is required to determine the uncertainties of the models used as well as from other inputs such as LAI 20 

and how these propagate through our groundwater abstraction framework. One approach that could help mitigate biases within 

specific models is to explore the use of multi-model estimates, which would also help provide ranges of groundwater 

abstraction.  

Because this study was aimed to retrieve estimates for the year 2015, a key reference year that will be used to evaluate 

the impact of policy changes in Saudi Arabia, Landsat 8 imagery was the primary source of satellite data. With a sun-25 

synchronous return frequency of 16 days, this means that for a 90-day season, the method is based on between 4 to 6 images. 

Given this low number of observations, our study aimed at retrieving seasonal irrigation amounts, i.e. we do not estimate 

irrigation amounts in different crop developmental stages. Added to this limitation, cloud cover can be an important factor in 

the uncertainty of the irrigation activity detection. While this is not a major issue in the current setting (high percentage of 

“blue-sky” days throughout the year), it may be pertinent to applications in other geographic locations. For more recent years, 30 

data from newer satellites with higher temporal resolution, such as Sentinel-2 (Ferrant et al., 2017; Veloso et al., 2017) and 

CubeSats (McCabe et al., 2017b; Houborg and McCabe, 2018b), could be employed to support improved estimates, as active 

irrigation seasons would be more accurately defined, and irrigation estimates could be obtained on a sub-seasonal basis (e.g. 
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being able to differentiate between crop stages). The higher spatial resolution available (e.g. 3 m in the case of Planet data) 

can also benefit the model, especially for the detection of partially irrigated, or partitioned (two-crop) fields, and to avoid the 

edge overlap in some fields that hinders the automated capability of the delineation procedure. However, the increased 

computational cost of using higher resolution data, particularly with the LSM runs, is an important consideration (Wood et al., 

2011; Bierkens et al., 2015), especially when seeking to apply the methodology over a larger number of fields (e.g. at a national-5 

scale).  

Detecting periods of active irrigation is a crucial step of the framework, and ensures that the model is able to retrieve 

irrigation values for the appropriate periods. Ideally, the more often that satellite information is available, the better the 

prediction of active irrigation seasons will become. This is especially important for perennial fields, which undergo fast 

response to cut and re-growth cycles that could be missed by the 16 day revisit interval of Landsat (Houborg and McCabe, 10 

2018b). However, an aspect that requires further investigation is how to retrieve irrigation rates during the pre-planting stage. 

One way to tackle this challenge would be using high-resolution soil moisture products to track the change in soil water content 

(Sánchez-Ruiz et al., 2014). Although this was an unexplored aspect in this study, the obtained estimates can be interpreted as 

a lower bound for seasonal fields, which comprised less than 20% of the fields identified in the Al Jawf region. 

As this study focused only on center-pivot irrigation, the total quantity of abstracted water used for agricultural 15 

production in Al Jawf will be marginally higher than the reported 5.56 BCM. This value represents a first-order estimate that 

can be further refined by adding the contribution of other irrigated crops and fields e.g. date palms and more recently 

agricultural shifts to planting of olive trees. In parallel with additional crop mapping and identification activities, efforts are 

also being directed towards strategies that monitor water use from other types of irrigation (e.g. drip and flood irrigation), in 

order to obtain a more comprehensive estimate of groundwater abstraction in this region and beyond. As a first step, using the 20 

object-based image analysis procedure, we delineated and estimated an area of about 31 km2 of irrigated fields in the Al Jawf 

region that were not classified as center-pivot fields. This represents about 1.22 % of the total irrigated area, and depending on 

the type of irrigation (e.g. drip irrigation), represents a relatively small fraction of the total groundwater abstraction. One 

approach to incorporate the agricultural water use from these remaining fields would be to first implement an advanced crop 

classification scheme (Cai et al., 2018; Piedelobo et al., 2019) and then calculate irrigation requirements for each crop (Castaño 25 

et al., 2010; Kirby et al., 2013; Yang et al., 2019). The reason for using other approaches with these remaining irrigated fields, 

is that the framework relies on the assumption of relatively uniform irrigation application, which simplified the effort to 

translate irrigation rates into abstracted groundwater. Additional improvements to the methodology would also include better 

quantifying the spray-loss component of the center-pivot system. For example, information derived from wind speed and 

direction, humidity and air temperature could be used to refine spray loss estimates over each field (Abo-Ghobar 1992; Sadhegi 30 

et al., 2015; 2017) with a dynamic, rather than fixed value. The methodology is being further developed to run both 

retrospectively and up to current-periods in order to monitor change in agricultural activities across the Kingdom and to 

quantify this sectors corresponding water use. Such data will enable responses to policy changes and management 
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implementations to be identified, and can act to facilitate optimization practices for agricultural water use and groundwater 

abstraction in other data-sparse regions. 

6 Conclusions 

An automated approach to estimate agricultural-driven groundwater abstraction based on integrating satellite data 

and land surface modeling was developed, with its functionality demonstrated over several thousand center-pivot fields in an 5 

arid region of Saudi Arabia. The monitoring framework provided an unprecedented level of information capturing water-use 

behaviour at the individual field-scale, and included information metrics such as geospatial location, distribution of cultivated 

areas, irrigation activity patterns, crop water use, and ultimately the abstracted groundwater used to grow the agriculture 

product. Monthly to yearly estimates of abstracted groundwater were obtained for more than 5,000 center-pivot fields, covering 

an area of approximately 2,500 km2, with a total groundwater use estimated at 5.56 BCM. Individual field use ranged from 10 

0.24 MCM to more than 3 MCM annual abstractions for those areas operating at more than 80% capacity. The annual total 

abstraction value represents about one quarter of the total groundwater abstraction used for agriculture in the Kingdom (20.8 

BCM; MEWA, 2019). In terms of agricultural area, the 2,500 km2 also represent about one quarter of the Kingdom’s center-

pivot based irrigation capacity (~10,029 km2; FAO, 2008a).  

With the development of this novel water accounting approach, changes and trends in agricultural patterns from 15 

regional to national scales can now be monitored, providing information on crop type (perennial or seasonal), changes in the 

cultivated areas, and volumes of water being used over time. Such information is needed for improved water management, to 

inform the development of water related regulations, and to assess the impact of policies on water conservation. The approach 

is currently being deployed retrospectively to monitor all center-pivot infrastructure across Saudi Arabia for the years 2011–

2015, and then to expand this forward in time to allow near real-time monitoring. Future work will focus on the inclusion of 20 

other types of agriculture (e.g. date palms, orchards and olive trees) for a more complete accounting of water abstraction for 

agricultural use. In parallel, a classification of crop types grown within individual center-pivot fields is being performed to 

better identify potential water-saving and irrigation optimization techniques at the individual field-scale. The availability of 

new and emerging sources of remote sensing information presents an opportunity to further advance our precision agricultural 

capacity, and will be incorporated into the future versions of this modeling framework, providing enhanced assessment on 25 

crop growth and field condition. 

7 Data and code availability 

Landsat 8 imagery used in this study is publicly available from the Google Cloud Platform at 

https://cloud.google.com/storage/docs/public-datasets/landsat. Data from the WRF reanalysis performed within this study is 

available upon request. The source code of CABLE version 2.3.4 used in this study is available at trac.nci.org.au/trac/cable 30 
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after registration to the CABLE user group at the National Computational Infrastructure (NCI) Australia. Python code to run 

the TSEB model and the pivot-based groundwater abstraction strategy used in this study is available upon request at 

hydrology@kaust.edu.sa.   
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TSEB model using Landsat data. TL designed and applied the approach for irrigation activity detection in center-pivot fields. 

RH applied the REGFLEC model using Landsat and ancillary data for the retrieval of vegetation indices and biophysical 
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Figure 1: Location of the two study regions. Left: The Tawdeehiya farm in Al Kharj (southeast of Riyadh). A false color Landsat 8 
image (2015/06/09) is shown to highlight active center-pivot fields over the desert environment. Right: The Al Jawf agricultural 
region in the north-west of Saudi Arabia spans two Landsat 8 tiles. Two false color images are shown: 2015/06/09 for path/row 
172/39 (left) and 2015/06/19 for path/row 171/39 (right). Center-pivot fields are densely packed and largely uniform in size in the 5 
main area (30° N, 38.25° E), while in other areas they are sparser and less uniform (for example, the image on the right).    
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Figure 2: Flow chart outlining the main inputs (dashed-dotted), processes (dot pattern) and outputs (solid) of the groundwater 
abstraction monitoring framework. 

 

Figure 3: Example of the full Landsat tile (path/row 172/39) NDVI (left) and LAI (right) estimation, demonstrating the foot-print 5 
from center-pivot irrigated fields in this region (high contrast with the bare desert soil). 
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Figure 4: Example of two types of crops identified for this study based on an LAI threshold of 0.3 m²/m². (A) Images of the six scenes 
when the field was identified as active are shown on top, which correspond to the six dates marked as diamonds inside the dashed 
lines on the bottom plot. The season start and end dates (10 Feb and 21 May) correspond to dates when the mean LAI crosses the 
threshold of 0.3 m²/m². (B) This particular field was inactive during the first three months of the year, followed by large LAI 5 
oscillations, indicating repeat cut/re-growth activities. Landsat scenes for this field are shown on top, increasing in date to the right 
and bottom, while the dates are marked as diamonds in the LAI time series plot. 

 
Figure 5: Comparison of annual groundwater estimates to farm data. The blue line shows the regression based on the black and 
green dots (adjusted to include only active seasons for 11 seasonal fields). The gray points show the original farm data with long pre-10 
planting stages for those same 11 seasonal fields. 
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Figure 6: Estimated groundwater abstraction in million cubic meters (MCM) for two fields in the Tawdeehiya farm along with a 
comparison based on available flow rates from farm data. The left panel shows the spatial maps of LAI data (m2/m2) using the 
methodology described in Section 3.1. Two fields from two different periods are delineated either in black (corresponding to middle 
panel) or white (right panel). Each of these panels shows a spatiotemporal map of the field LAI (top), and a comparison of 5 
groundwater abstraction obtained using the framework described in Section 3 and available farm data (bottom). The field marked 
with black is one of the eleven fields identified as having a large abstraction discrepancy i.e. the farm data indicates ongoing periods 
of irrigation, while the LAI data indicates inactivity.  
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Figure 7: Spatial distribution and statistics of individual field areas. Clusters of large fields (those > 60 ha) can be found in the main 
agricultural zone (30° N, 38.25° E), corresponding to the location of several large commercial-scale farms. The figure’s inset on the 
left shows a violin plot of the field sizes in Al Jawf: at a given field area (y-axis), the plot outline (in black) is wider when there is a 
larger number of fields of that given size. The black horizontal lines inside the plot show the first quartile, median and third quartile, 5 
while the black diamond show the average value. The background on the inset shows colored dots (horizontal positions are given 
randomly for visualization purposes) to distinguish perennial and seasonal fields. 
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Figure 8: Spatial distribution and statistics of the annual field use, defined as the ratio of active irrigation days to total number of 
days in the year. Most fields had high values of annual use (> 80%). The inset on the left shows the distribution of annual field use 
among all fields in the region as a violin plot.  The two black diamonds show the average value grouped by the type of field (seasonal 
or perennial), while the black square represents the average of all fields. The background shows colored dots (horizontal positions 5 
are given randomly for visualization purposes) to distinguish perennial and seasonal fields. 

 

Figure 9: Monthly center-pivot field use for perennial (top) and seasonal (bottom) fields. The black squares show the average 
monthly field use (% days irrigated during each month). A larger width at a given level of use indicates a larger number of fields. 
Horizontal lines show the 25%, 50% (median) and 75% quantiles.  10 
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Figure 10: Monthly irrigation statistics (mm) for perennial (top) and seasonal (bottom) fields. The black squares show the average 
values of monthly irrigation among the same type of fields in the region (4509 perennial fields; 974 seasonal fields). The violin plots 
show the distribution of monthly irrigation values, which range from 0 (no irrigation) up to 406 mm/month (i.e. 13.5 mm/day). 
Horizontal lines show the 25%, 50% (median) and 75% quantiles. 5 
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Figure 11: Map of annual groundwater abstraction in million cubic meters (MCM) for the Al Jawf agricultural region. Values were 
obtained for individual fields, as seen on the examples shown at top featuring one zone with high levels of abstractions (top-left) and 
another zone with a smaller density of fields and lower values of abstraction (top-right). The background shows the same Landsat 8 
images as in Fig. 2.  5 

 


