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Dear Dr. Kelleher and referees, 

The current document consolidates the referee comments, the author responses posted so far, and the 

actions taken in the major revision of the manuscript. It is organized according to the following color code:  

• Black: Referee comments 

• Blue: Authors' responses from the previous stage 

• Red: Authors' major revisions and responses for the new version of the manuscript 

After this section of comments and responses, you can find the manuscript pdf with the tracked changes. 

Please note that the page numbers and lines in our current responses (red) refer to the revised, tracking-

free version of the manuscript. 

The new version of the manuscript contains the adjustments requested by the referees during this open 

discussion, summarized below: 

1. Adding a paragraph: 

a. with a practical example of the three aggregation methods (Sect. 2.3.1) 

b. discussing real-world data and GP (Sect. 4.3) 

c. discussing undesired uncertainty when predicting at measurement locations (Sect. 4.3) 

d. discussing redundant measurements (Sect. 4.3) 

2. Making the method clearer (e.g., infogram cloud, infogram, etc.) 

3. Reviewing and restructuring discussion(Sect. 4.3) and conclusion (Sect. 5) 

4. Reviewing math notation 

5. Adding Dr. Ralf Loritz as co-author   

6. Reviewing all figures (300 dpi quality, readability, and consistency) 

7. Improving text readability and fluidity 

Best regards, 

Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret 

Referee #1 

Dear Authors,  

Thank you very much for this work. I think the work is very interesting but the paper requires some reviews 

before it can be published. 

My main concerns are with respect to the structure of the paper. In its current status, I think the sections 

are unbalanced in terms of the length and some of them are mixed. E.g. in section 5. Summary and 

conclusions, the section is missed with the discussion – also i would suggest not including references in 

the conclusions. 

I would suggest to shorten the paper by 1) stating clearly the messages in the paragraphs, 2) rephrasing 

unclear wording (e.g. lines 31-33, 37-43, etc), 3) removing un necessarily wording (e.g. 87-88 “This section 
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is based on. . .”-> see detains in Cover and thomas, 2006) and/or, 4) including necessary explanations (e.g. 

line 101, i suggest remove the word “best” or include from what point of view is "best"). 

I also recommend using math notation consistently, e.g. bold for vectors, capital for random variables, 

etc. 

Please, also:  

- add references for nearest neighbors, and inverse distance weighting (see line 25),  

- use complete names before using abbreviations (e.g. Sect.2 – the full name should be given before 

providing any abbreviation),  

- have a look at the typos (there are many), and - maybe, good to briefly explain what is the "infogram 

cloud" - i am not sure that all readers are familiar with it. 

In case that the editor asks a revised version of the the manuscript, i am very happy to serve as reviewer 

of the revised version. Once again, thank you very much for this work.  

Kind Regards,  

Reviewer 

Response: We thank referee #1 for reviewing our manuscript and providing his/her feedback. Since the 

recommendations encompass a more general aspect, the authors will consider all suggestions (review 

paper structure, math notation, and abbreviations, insert/exclude references, include clarifications) 

during a textual revision of the manuscript. 

We revised and restructured the discussion (Sect. 4.3) and the conclusion (Sect. 5) sections. Furthermore, 

we proceeded with all specific suggestions (where the line number was stated by the referee) and 

endeavored to follow all his/her general suggestions, i.e, a thorough revision of the manuscript 

considering: i) math notation, ii) misplaced references, iii) unbalanced sections, iv) unclear abbreviations, 

v) missing references, and vi)  lack of clarity. 

Referee #2 

This paper presents a method called Histogram via Entropy Reduction (HER) for the interpolation of spatial 

geophysical data. This method is based on information theory measures of entropy and relative entropy, 

and has advantages over benchmarks of kriging and nearest neighbor methods in terms of its generality 

and lack of assumptions. The authors present the methodology which determines spatial dependency 

structure based on observed data points, and estimates optimal weighting parameters used to predict a 

given variable at a location. An application to several synthetic datasets shows high effectiveness of the 

method relative to three existing interpolation techniques. 

Overall this paper was interesting and clearly written, and the figures are very informative and help to 

illustrate complex concepts. Although I do not have a background in geostatistics or interpolation of 

sparse datasets, this paper seems to introduce a promising avenue of how IT measures can be 

advantageous in this field. Some comments and suggestions listed below, which consist of minor 
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revisions/technical corrections. They mainly highlight places that could use additional explanation or 

clarification. 

Main Comments:  

Comment 1: Line 111: on the description of creating the “infogram cloud”: at first it was not clear to me 

whether an “infogram” was an existing technique that I was unfamiliar with, or designed by the authors. 

I think it is the latter (based on line 134) – either way, this aspect could be made more clear earlier in the 

subsection, that you have developed this graphical technique called an infogram that shows spatial 

correlation structure. 

Response 1: Indeed, the term “infogram cloud” in L.111 is out of place. The same observation was made 

by referee #1. To avoid early questions, we propose rephrasing the sentence and including the name of 

the 3 assets used for the spatial characterization (Infogram cloud, Δz PMFs, and Infogram) when they first 

appear (L.112-121) as follows:  

“As shown in Fig. 1a, the spatial characterization phase aims to obtain: Δz probability mass functions 

(PMFs), where z is the variable under study; the behavior of entropy as a function of lag distance (which 

the authors denominate ‘infogram’); and, finally, the correlation length (range). These outputs are 

outlined in Fig. 2 and attained in the following steps: i. Infogram cloud (Fig. 2a): [...] ii. Δz PMFs (Fig. 2b): 

[...] iii. Infogram (Fig. 2c)”.  

As previously proposed, we rephrased the sentence and improved the explanation regarding infogram 

cloud (Sect. 2.2, p. 4, l. 102-115). 

Comment 2: Line 145: Could you add a bit more information on what effect/advantage this has? It seems 

like attributing a small probability to every category would make a larger difference to some types of 

distributions than to others. 

Response 2: For the application of HER (mainly when using the log-linear aggregation method), it is 

desirable to assure that all bins of the distribution have a nonzero probability. This guarantees that there 

is always an intersection when aggregating PMFs. In this way, when the intersection between two PMFs 

happens only on the previously empty bins, the resulting PMF is a uniform distribution, i.e., the method 

effectively applies a maximum-entropy approach.  

In addition, Darscheid et al. (2018) checked the impact of five alternatives for nonzero probability to a 

range of typical distributions (uniform, Dirac, normal, multimodal, and irregular) and concluded that, for 

the cases where no distribution is known a priori, three methods (including the one used in the paper) 

performed well across analyzed distributions. In order to add more information regarding the nonzero 

probability, we suggest rewriting the paragraph as follows:  

“[...] The bin size was defined based on Thiesen et al. (2018), by comparing the cross entropy 

(Hpq=H(p)+DKL(p||q)) between the full learning set and subsamples for various bin widths. The selected 

one shows a stabilization of the cross entropy for small sample sizes, meaning that the bin size is 

reasonable for small and large sample sizes and analyzed distribution shapes. For favoring comparability, 

the bins were kept the same for all applications and performance calculations.   
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Additionally, to avoid distributions with empty bins which might make the PMF combination (presented in 

Sect. 2.3.1) unfeasible, as recommended by Darscheid et al. (2018), we assigned a small probability 

equivalent to the probability of a single point-pair count to all bins in the histogram after converting it to 

a PMF by normalization. This guarantees that there is always an intersection when aggregating PMFs, and 

that we obtain a uniform distribution (maximum-entropy) in case we multiply distributions where the 

overlap happens uniquely on the previously empty bins. Furthermore, as shown in the Darscheid et al. 

(2018) study, for the cases where no distribution is known a priori, adding one counter to each empty bin 

performed well across different distributions.”  

We added a brief discussion of the nonzero probabilities and bin selection in the revised version of the 

manuscript (Sect. 2.2, p. 5, l. 145-152). 

Comment 3: Section 2.3.1: For readers less familiar with aggregating probabilities towards a spatial 

context, I this description could benefit from some sort of illustration or simple example that shows the 

difference between the different pooling operators in Eqs 4-7. For example, show two measurement 

points D1 and D2 with a target location A somewhere between them, and show how the measures differ. 

This actually become more clear to me with the later discussion in Line 445 onward, so maybe some of 

these aspects could be brought forward earlier. 

Response 3: The authors agree that an illustration of the aggregation methods could be beneficial for 

showing the practical meaning of each one of the aggregation options later explored in the application 

case. Since the example in the spatial context is given (without illustration) in L.185-201 and L.445-448, 

we believe that we could explore the practical implication of the methods in the end of the section 2.3.1. 

We estimate that it will increase the size of the paper in half page (figure plus brief explanation). A preview 

of the additional figure and explanation is shown below. 

“The practical differences between the pooling operators used in this paper are illustrated in Fig. 3, where 

Fig. 3a introduces the two PMFs to be combined, and Figs. 3b,c,d show the resulting PMFs for Eqs. (5), (4), 

and (7), respectively. In Fig. 3b, we use unitary PMF weights, so that the multiplication of the bins (AND 

aggregation) leads to a simple intersection of PMFs weighted by the bin height. In Fig. 3c, we use equal 

weights to both PMFs, and the resulting distribution is the arithmetic average of the bin probabilities. Fig. 

3d shows a log-linear aggregation of the two previous distributions (Figs. 3b,c). In all three cases, if the 

weight of one distribution is set to one and the other is set to zero (not shown), the resulting PMF would 

be equal to the distribution which receives all the weight. Specifically for Eq. (7), this means that the final 

distribution may result in a pure AND, Eq. (5), or pure OR aggregation, Eq. (4), as special cases.” 
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Figure 3: Examples of the different pooling operators. a) Normal PMFs N(μ,σ2) to be combined; b) log-

linear aggregation, Eq. (5); c) linear aggregation, Eq. (4); and d) log-linear aggregation of (b) and (c), Eq. 

(7).  

We included a practical example (figure + discussion) of the three aggregation methods in the revised 

version of the manuscript (Sect. 2.3.1, p. 8, l. 228-234 + Figure 3 p.28). 

Comment 4: Section 3.1: Are there implications to model performance of the Gaussian process used to 

make the test cases? I wonder how this would compare to a realistic landscape (or whether this is 

considered very close to a “real world” case). Something is mentioned later about this in the discussion 

regarding the OK method, but more information would be beneficial here. 

Response 4: Thanks for raising this question. The purpose of the paper is to test HER and demonstrate its 

performance in face of an established geostatistical method, namely OK. Thus, for testing HER, a field 

generated by Gaussian Process (GP) enables us to have a controlled dataset where we could examine their 

performance in fields with different characteristics (short and long range, with and without noise, small 

or large sample size). Since GP datasets fulfill the assumptions of Ordinary Kriging, it allows a fair 

comparison between the methods. We can say that GP and OK are the inverse of each other. While GP 

generates a dataset which follows a multivariate gaussian distribution with a known covariance function, 

OK estimates the stochastic process behind a dataset by fitting a variogram (or covariance function) and 

assuming that the residuals (i.e., estimation error) follow a gaussian distribution (Kitanidis, 1997, p.95).  

It is true that a real-world dataset may not necessarily have the gaussianity properties given by the GP. 

Therefore it is the role of the geostatistician to guarantee that the data fulfill the method assumptions. . 

When it is not the case, e.g., it is common to transform the data so that it fits the assumptions, and back-

transform it in the end. It is worth mentioning that, while developing the manuscript, the authors tested 

HER in a real-world case of digital elevation model data. Although HER and OK both performed well, its 

inclusion would require a proper geostatistical description of the dataset, which would be out of the scope 

of this paper and therefore we discarded its presentation to keep the paper as short as possible and 

because GP covered a broader scope of fields. Altogether, this  means that the test proposed using GP is 

also related to a real-world problem.  

The authors understand that, due to being non-parametric, HER can deal with different data properties 

without the need of transforming the available data. HER does not require fitting of a theoretical function 

for extracting the spatial correlation, because its spatial dependence structure is derived directly from the 
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available data. And since HER uses binned transformation of  the data, it is also possible to handle binary 

(e.g. contaminated and safe areas) or even, with small adaptations, handle categorical data (soil types), 

covering another spectrum of real data. 

Although parts of the above discussion were mentioned in L.470 and L.484, the authors believe that it 

would be beneficial to review the discussion section (Sect. 4.3) to include the above arguments in the 

manuscript.  

We included the previous discussion regarding real-word data and implications of using GP in the revised 

version of the manuscript (Sect. 4.3.2, p. 17, l. 486-492). 

Comment 5: Line 360: I think this is explaining why the infogram illustration in Figure 2a is very different 

from that in Figure 4a for the farther distances (which is because with the data, there are fewer pairs that 

exist at those farthest distances). If this is correctly interpreted, it could be brought up in the description 

of Figure 2a and the infogram cloud-shape in general. 

Response 5: Thanks for pointing it out. As Fig. 2 as a whole merely illustrates what one could expect to 

get from the spatial characterization part, we decided to show basically the behavior of the first distance 

classes, where the spatial correlation is stronger. “Ignoring” the last classes is a common practice when 

analyzing spatial correlation, when the geostatistician defines a distance cutoff (maximum lag) for their 

analysis. Thus, considering that this omission, although discussed in Fig.4a, is in principle expected, the 

authors suggest including in L.129 the following clarification “Note that in the illustrative case of Fig. 2, we 

limited the number of classes shown to four classes beyond the range. A complete infogram cloud and 

infogram is presented and discussed in the method application, Fig. 4. ” 

We included the previous clarification in the revised version of the manuscript (Sect. 2.2, p. 5, l. 123-125). 

Technical/writing style comments:  

Comment 6: Abstract: There are several sentences here with parenthesis for additional context, I would 

recommend re-writing these without as many parentheses to potentially simplify and help the flow. 

Response 6: Thanks. We will adapt the writing style in a revised version of the manuscript considering this 

point. The authors restructured the whole abstract. 

Comment 7: Line 38: applying 

Response 7: Ok, thanks. Adjusted.  

Comment 8: Line 90: H(X) is upper bounded by infinity in a continuous case, but as you mention in the 

next sentence and the equation that this case is discrete – the upper bound should be log2(N) where N is 

the number of bins or categories.  

Response 8: We agree that it can cause misunderstanding, we will refine this paragraph. The authors 

adjusted the paragraph considering entropy in discrete distributions (Sect. 2.1, p. 3, l. 85-86). 

Comment 9: Figure 6: It is hard to see the targets in a few of the maps, I think because the markers are in 

the background behind the observation markers. It would help to make outlines of the marker shapes 

bolder or colored to show which target is which.  

Response 9: Thanks. We will endeavor to improve the visibility of the points. The authors adjusted the 

previous Figure 6 (Figure 7, p.32). 
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Comment 10: Line 379: “differentiate between”, instead of differ?  

Response 10: Ok, thanks. Adjusted. 

Comment 11: Line 429: I found this sentence to be unecessary 

Response 11: Thanks. We will consider removing it in the paper writing style revision. Sentence removed. 

References:  

Darscheid, P., Guthke, A. and Ehret, U.: A maximum-entropy method to estimate discrete distributions from samples ensuring 

nonzero probabilities, Entropy, 20(8), 601, doi:10.3390/e20080601, 2018.   

Kitanidis, P. K.: Introduction to geostatistics: applications in hydrogeology, Cambridge University Press, Cambridge, United 

Kingdom., 1997. 

To the editor 

We also suggest including in the discussion section (Sect. 4.3) two issues noticed by the authors during 

the revision process and while testing the method for assessing data uncertainty. The first one is that, 

since the dataset was evenly spaced, a possible issue of redundant information in case of clustered 

samples was not considered. Another matter that we wish to briefly discuss and propose theoretical 

solutions to is that, depending on how the first distance class is chosen, HER can lead to undesired 

uncertainty when predicting the value at the observations themselves. 

We included a brief discussion and proposed theoretical solutions for undesired uncertainty and 

redundancy issues in the revised version of the manuscript (Sect. 4.3.3, p. 18, l. 518-523 & Sect. 4.3.4, 

p. 18, l. 531-537). 

In addition, we would also like to review the manuscript including some terminologies which are more 

precise to describe the method and its implications, and they could assist to foster the proper search for 

scholarly literature, mainly: E-type estimate (for the expected value obtained using HER) and conditional 

distribution (for the results of the aggregation method and PMFs obtained with HER). Although these 

terms are implicit in the method and explained, the authors would like to include them explicitly. 

The mentioned terminologies were explicitly mentioned throughout the new version of the manuscript. 
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Correspondence to: Stephanie Thiesen (stephanie.thiesen@kit.edu) 

Abstract. Interpolation of spatial data has been regarded in many different forms, varying from deterministic to stochastic, 

parametric to non-parametricpurely data-driven to geostatistical, and purely data-driven to geostatisticalparametric to non-10 

parametric methods. In this study, we propose a non-parametric stochastic, geostatistical estimator interpolator which 

combines information theory with probability aggregation methods in a geostatistical framework for stochastic estimation of 

unsampled points.minimizing predictive uncertainty, and predicting distributions directly based on empirical probability. 

Histogram via entropy reduction (HER) predicts conditional distributions based on empirical probabilities, relaxing es 

parametrizations and therefore, avoiding the risk of adding information not present in data (or losing available information). 15 

By construction, Iit provides a proper framework for uncertainty estimation, since it that takes into  accounts for both spatial 

configuration and data values, while allowinging to infer (or introduce or infer) physical properties (continuous or 

discontinuous characteristics) of the field through the aggregation method. We investigate the framework utility using 

synthetically generated datasets and demonstrate its efficacy in ascertaining the underlying field with varying sample densities 

and data properties (different spatial correlation distances and addition of noise). HER shows comparable performance with to 20 

popular benchmark models and with the additional advantage of higher generality. The novel method brings a new perspective 

of spatial interpolation and uncertainty analysis to geostatistics and statistical learning, using the lens of information theory. 

1 Introduction 

Spatial interpolation methods are useful tools for filling gaps in data. Since information of natural phenomena is often collected 

by point sampling, interpolation techniques are essential and required for obtaining spatially continuous data over the region 25 

of interest (Li and Heap, 2014). There is a broad range of methods available that have been considered in many different forms, 

from simple approaches such as nearest neighbors (NN, Fix and Hodges, 1951) and inverse distance weighting (IDW, Shepard, 

1968) to geostatistical and, more recently, machine learning methods.  

Geostatistical, stochastic approaches, such as ordinary kriging (OK), have been widely studied and applied in various 

disciplines since their introduction to geology and mining by Krige (1951), bringing powerful significant results in the context 30 

of environmental sciences context. However, 'kriging', like other parametric regression methods (Yakowitz and Szidarovszky, 
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1985), it relies on prior assumptions about theoretical functions, and, therefore, includes the risk of sub-optimal performance 

due to sub-optimal user choices (Yakowitz and Szidarovszky, 1985). If, on the one hand, OK is probabilistic and therefore 

uses fitted functions to offers as a result the estimator's uncertainty estimates (through variance), while on the other hand, 

deterministic estimators (NN and IDW) avoid these function parametrizations at the cost of neglecting uncertainty analysis. In 35 

this sense, researchers are confronted with the trade-off between avoiding parametrization assumptions and obtaining 

uncertainty results (stochastic predictions).  

More recently, with the increasing availability of data volume and computer power (Bell et al., 2009), machine learning 

methods (here referred to 'data-driven' methods) methods have become increasingly popular as a substitute or complement to 

established modeling approaches. However, most of the popular data-driven methods have been developed in the 40 

computational intelligence community and since they are not built for solving particular problems, such as spatial interpolation, 

apply these methods remains a challenge for the researchers outside the computational intelligence (Solomatine and Ostfeld, 

2008). And, even though they enable automated learning from data in stochastic and non-parametric framework; according to 

Solomatine and Ostfeld (2008), they are not always appreciated for working essentially data-based, replacing the 'knowledge-

driven' models describing physical behavior.  45 

In the context of data-based modeling in the environmental sciences, concepts and measures from information theory are being 

used for describing and inferring relations among data (Liu et al., 2016; Thiesen et al., 2019; Mälicke et al., 2020), quantifying 

uncertainty and evaluating model performance (Chapman, 1986; Liu et al., 2016; Thiesen et al., 2019), estimating information 

flows (Weijs, 2011; Darscheid, 2017), and measuring similarity, quantity and quality of information in hydrological models 

(Nearing and Gupta, 2017; Loritz et al. 2018; Loritz et al. 2019). In the spatial context, information-theoretic measures were 50 

used to obtain the longitudinal profiles of rivers (Leopold and Langbein, 1962), to derive rank-size rule for human settlements 

(Berry and Garrison, 1958; Curry, 1964), to explore the amount of information in spatial probability distributions for 

geographical differentiations (Gurevich, 1969), to solve problems of spatial aggregation and, analyze quantify spatial 

redundancy and information gain,  and loss and redundancy (Batty, 1974; Singh, 2013), to analyze spatiotemporal variability 

(Mishra et al., 2009; Brunsell, 2010), to address risk of landslides (Roodposhti et al., 2016), and to assess to measure spatial 55 

dissimilarity (Naimi, 2015), similarity and complexity (Pham, 2010), to analyze spatial uncertainty (Wellmann, 2013), and to 

assess the risk of landslides (Roodposhti et al., 2016), and to describe spatial heterogeneity (Bianchi and Pedretti, 2018). 

Most of the popular data-driven methods have been developed in the computational intelligence community and, since they 

are not built for solving particular problems, applying these methods remains a challenge for the researchers outside this field 

(Solomatine and Ostfeld, 2008). According to Solomatine and Ostfeld (2008), tThe main challenges for researchers in 60 

hydroinformatics to apply data-driven methods lie in testing various combinations of methods for particular water-related 

problems, in combining them with optimization techniques, in developing robust modelling procedures able to work with noisy 

data, and in developing methods providing the adequate model uncertainty estimates (Solomatine and Ostfeld, 2008). To 

overcome these challenges in the framework of spatial interpolation and the mentioned parametrization-uncertainty tradeoff 

in the context of spatial interpolation (parametrization and uncertainty), this paper is concerned with formulating and testing a 65 
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novel method based on principles of geostatistics, data-based modeling, information theory and probability aggregation 

methods to describe spatial patterns and to solve obtain spatial stochastic interpolationpredictions problems. In order to avoid 

fitting of spatial correlation functions and making assumptions about the underlying distribution of the residues or about 

uncertaintydata, it relies on empirical, discrete probability distributions to: i)  extract the spatial dependence structure of the 

field, ii) minimize entropy of predictions, and iii) produce stochastic estimation of unsampled pointsa probabilistic 70 

interpolation. Thus, the proposed histogram via entropy reduction (HER) approach allows non-parametric and stochastic 

predictions, avoiding the shortcomings of fitting deterministic curves and therefore the risk of adding information that is not 

contained in the data (or losing available information), but still relying on geostatistical concepts. HER is seen as an in-between 

geostatistics (knowledge-driven) and statistical learning (data-driven) in the sense that it allows automated learning from data, 

bounded in by a geostatistical framework.  75 

Our experimental results show that the proposed method is flexible for combining distributions in different ways and presents 

comparable performance to ordinary kriging for various sample sizes and field properties (short and long range, with and 

without noise). Furthermore, we show that its potential goes beyond data prediction, since, by construction, HER allows 

inferring (or introducing) physical properties (continuity or discontinuity characteristics) of a field under study, and provides 

a proper framework for uncertainty prediction, which takes into account not only the spatial configuration of the data, as is the 80 

case for geostatistical procedures like kriging (Bárdossy and Li, 2008), but also the data values.  

The paper is organized as follows. The method is presented in Sect. 2. In Sect. 3, we describe the data properties, performance 

parameters, validation design and benchmark models. In Sect. 4, we explore the properties of three different aggregation 

methods, present the results of HER for different samples sizes and data types, and compare the results e them to benchmark 

models, and, in the end, discuss the achieved outcomes and model contributions. Finally, we draw conclusions in Sect. 5. 85 

2 Method description 

The core of Histogram via entropy reduction HER method (HER) has three main steps: i)  characterization of the spatial 

correlation; ii)  selection of aggregation method and optimal weights via entropy minimization; and iii)  prediction of the target 

probability distributionies (which uses the spatial structure, aggregation method and optimal weightsthe two first steps to 

interpolate conditional distributions for the unsampled targets). The first and third steps are shown in Fig.  1.  90 

In the following sections, we start with a brief introduction of information theoreticy measures employed in the method, and 

then describe in detail all the three method steps. 

2.1 Information theory 

Information theory provides a framework for measuring information and quantifying uncertainty. In order to extract the spatial 

correlation structure from observations and to minimize the uncertainties of predictions, two information theoretic measures 95 

are used in HER and will be described here: Shannon entropy and Kullback-Leibler divergence. We recommend. This section 
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is based on Cover and Thomas (2006) for further referencemore details, which we suggest for a more. detailed introduction to 

concepts of information theory.  

The entropy of a probability distribution can be seen ameasuress a measure of the average uncertainty in a random variable. 

The measure, first derived by Shannon (1948), varies from zero to infinity and it is additive for independent events (Batty, 100 

1974). The formula of Shannon entropy (𝐻) for a discrete random variable 𝑋 with a probability 𝑝(𝑥), 𝑥 ∈  𝜒, is defined by 

H(𝑋) =  − ∑ 𝑝(𝑥) log2 𝑝(𝑥) .

𝑥 ∈ 𝜒

 (1) 

We use the logarithm to base two, so that the entropy is expressed in unit bits. Each bit corresponds to an answer to one optimal 

yes/no question asked with the intention of reconstructing the data. It varies from zero to log2𝑛 , where 𝑛 represents the number 

of bins of the discrete distribution. In the study, Shannon entropy is used to extract the infogram and range (correlation length) 

of the dataset (explored in more depth in Sect. 2.2).  105 

Besides quantifying the uncertainty of a distribution, it is also possible to compare similarities betweenof two probability 

distributions 𝑝 and 𝑞 using the Kullback-Leibler divergence (𝐷KL). Comparable to the expected logarithm of the likelihood 

ratio (Cover and Thomas, 2006; Allard et al., 2012), the Kullback-Leibler divergence quantifies the statistical 'distance' 

between two probability mass functions 𝑝 and 𝑞 using the following equation 

DKL(𝑝||𝑞) = ∑ 𝑝(𝑥) log
2

𝑝(𝑥)

𝑞(𝑥)
.

𝑥 ∈ χ

 (2) 

Also referred to as relative entropy, 𝐷KL can be understood as a measure of information loss of assuming that the distribution 110 

is 𝑞 when in reality it is 𝑝 (Weijs et al., 2010). It is always nonnegative and is zero strictly if 𝑝 = 𝑞. In the HER context, 

Kullback-Leibler divergence is optimized used to select the best weights for aggregating distributions (detailed in Sect. 2.3). 

The measure was is also used as a scoring rule for performance verification of probabilistic predictions (Gneiting and Raftery, 

2007;, and Weijs et al., 2010). 

Note that the measures presented by Eqs. (1) and (2) are defined as functionals of probability distributions, not depending on 115 

the variable 𝑋 value or its unit. This is favorable, as it allows joint treatment of many different sources and sorts of data in a 

single framework.  

2.2 Spatial characterization 

The spatial characterization (Fig.  1a) is the first step of HER. It consists of quantifying the spatial information available in 

data and of using it to infer its spatial correlation structure. For capturing the spatial variability and related uncertainties, 120 

concepts of geostatistics and information theory are incorporatedintegrated into the method. As shown in Fig.  1a, the spatial 

characterization phase aims, through the infogram cloud, to obtain: Δ𝑧 probability mass functions (PMFs), where 𝑧 is the 

variable under study; the behavior of entropy as a function of lag distance (which the authors denominate 'infogram'); and, 

finally, the correlation length (range). These outputs are outlined in Fig.  2 and attained in the following steps: 
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i. Infogram cloud (Fig.  2a): Calculate the difference of the 𝑧-values (Δ𝑧) between pairs of observations; associate each 125 

Δ𝑧 to the Euclidean separation distance of its respective point pairs. Define the lag distance (demarcated by red dashed 

lines), here called distance classes, or simply classes. Divide the range of Δ𝑧 values into a set of bins (demarcated by 

horizontal gray lines). 

ii. Δ𝑧 PMFs (Fig.  2b): For each distance class, construct the Δ𝑧  PMF from the Δ𝑧 values inside the class (conditional 

PMFs). Also construct the Δ𝑧  PMF from all data in the dataset (unconditional PMF). 130 

iii. Infogram (Fig.  2c): Calculate the entropy of each Δ𝑧 PMF and of ; calculate the entropy of the unconditional PMF. 

Compute the range of the data: this is the lag classdistance where the conditional entropy exceeds the unconditional 

entropy. Beyond this point, the neighbors start becoming un-informative, and it would isbe pointless to use 

information outside this neighborhood. 

The infogram cloud is a preparation to construct the infogram. Ijust the previous step to the infogram since it contains complete 135 

cloud of pair points. The infogram plays a role similar to that of the variogram: Tthrough the lens of information theory, we 

can characterize the spatial dependence of the dataset, calculate the spatial (dis)similarities, and compute its correlation length 

(range). It describes the statistical dispersion structure of pairs of observations for the distance class separating these 

observations. Quantitatively, it is a way of measuring the uncertainty about Δ𝑧 given the class. Graphically, the infogram shape 

is the fingerprint of spatial dependence, where the larger the entropy of one class, the more uncertain (disperse) its distribution 140 

is. It reaches a threshold (range), where the data no longer show significant spatial correlation. This procedureWe associate 

neighbors beyond the range with the Δ𝑧 PMF of the full dataset. B, besides guaranteeing less uncertainty in the results By 

(sincedoing so, we restrict ourselves to are using the more informative relations through the classes) and , reduces the number 

of classes to be mapped, thus improving the results and the speed of calculation. Note that in the illustrative case of Fig. 2, we 

limited the number of classes shown to four classes beyond the range. A complete infogram cloud and infogram is presented 145 

and discussed in the method application, Fig. 5 in Sect. 4.1. 

Naimi (2015) introduced a similar concept to the infogram called entrogram, which is used for the quantification of the spatial 

association of both continuous and categorical variables. In the same direction, Bianchi and Pedretti (2018) employed the term 

entrogram for quantifying the degree of spatial order and ranking different structures. Both works, as well as the present study, 

are carried out with variogram-like shape, entropy-based measures, and looking for data (dis)similarity, yet with different 150 

purposes and metrics. The proposed infogram terminology seeks to provide an easy-to-follow association with the 

quantification of information available in the data. 

The spatial characterization stage provides a way of inferring conditional distributions of the target given its observed 

neighbors without the need, for example, of fitting a theoretical correlation function. The way we can combine the distributions 

and the contribution weight of each neighbor are topics of the next section. 155 

Converting the frequency distributions of Δ𝑧 into probability mass function (PMF) requires a cautious choice of bin width, 

since this decision will frame the PMFs distributions which will be used as a model and directly influence the statistics we 
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compute for evaluation (𝐷KL). Many methods for choosing an appropriate binning strategy have been suggested (Knuth, 2013; 

Gong et al., 2014; Pechlivanidis et al., 2016; Thiesen et al., 2018). These approaches are either founded on a general physical 

understanding and relate, for instance, measurement uncertainties to the binning width (Loritz et. al., 2018) or are exclusively 160 

based on statistical considerations of the underlying field properties (Scott, 1979). Regardless of which approach is chosen, 

the choice of bin width should be communicated in a clear manner to make results as reproducible as possible. Throughout 

this paper, we will stick to equidistant bins, since they have the advantage of being simple, computationally efficient (Ruddell 

and Kumar, 2009), and introduce minimal prior information (Knuth, 2013). The bin size was defined based on Thiesen et al. 

(2018), by comparing the cross entropy (𝐻𝑝𝑞 = 𝐻(𝑝) + DKL(𝑝||𝑞)) between the full learning set and subsamples for various 165 

bin widths. The selected one shows a stabilization of the cross entropy for small sample sizes, meaning that the bin size is 

reasonable for small and large sample sizes and analyzed distribution shapes. For favoring comparability, the bins are kept the 

same for all applications and performance calculations. 

FurthermoreAdditionally, to avoid distributions with empty bins, which might make the PMF combination (discussed in Sect. 

2.3.1) unfeasible, as recommended by Darscheid et al. (2018), we assigned a small probability equivalent to the probability of 170 

a single- pair-point count to all bins in the histogram after converting it to a PMF by normalization, to assure nonzero 

probabilities when estimating distributions. This procedure does not affect the results when the sample size is large enough 

(Darscheid et al., 2018), and it was inspected by result and cross-entropy comparison (as described in the previous paragraph). 

It also guarantees that there is always an intersection when aggregating PMFs, and that we obtain a uniform distribution 

(maximum-entropy) in case we multiply distributions where the overlap happens uniquely on the previously empty bins. 175 

Furthermore, as shown in the Darscheid et al. (2018) study, for the cases where no distribution is known a priori, adding one 

counter to each empty bin performed well across different distributions. 

Altogether, the spatial characterization stage provides a way of inferring conditional distributions of the target given its 

observed neighbors without the need, for example, of fitting a theoretical correlation function. In the next section, we describe 

how these distributions can be jointly used to estimate unknown points and how to weight them when doing soThe way we 180 

can combine the distributions and the contribution weight of each neighbor are topics of the next section. 

2.3 Minimization of estimation entropy 

For inferring the conditional distribution of the target (unknown point) 𝑧0 (unsampled point) given its neighbors each one of 

the known 𝑧i ( observations (where 𝑖 =  1, . . . , 𝑛 are the indices of the sampled observationspoints), we used the Δ𝑧  PMFs 

obtained at the spatial characterization step (Sect. 2.2). To do so, each neighbor 𝑧i (known observation) is associated to a class, 185 

and hence to a Δ𝑧  distribution, according to their distance to the target 𝑧0 . This implies the assumption that the 

empirical Δ𝑧  PMFs apply everywhere in the field, irrespective of specific location, and only depend on the distance between 

points (distance class). Each Δ𝑧  PMF is then shifted by the 𝑧i value of the observation it is associated with, yielding the 𝑧 PMF 
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of the target given the neighbor 𝑖, denoted by 𝑝(𝑧0|𝑧i). Assume for instance three observations 𝑧𝐷1, 𝑧𝐷2, 𝑧𝐷3 from the field 

and that we want to predict the probability distribution of the target 𝑧0𝐴. In this case, what we infer at this stage are the 190 

conditional probability distributions 𝑃𝑝(𝐴𝑧0|𝑧𝐷1), 𝑃𝑝(𝐴𝑧0|𝐷𝑧2), and 𝑃𝑝(𝐴𝑧0|𝐷𝑧3).  

Now, since we are in fact interested in the probability distribution of the target conditioned to multiple observations 

𝑃𝑝(𝐴𝑧0|𝐷𝑧1, 𝐷𝑧2 , 𝐷𝑧3), how can we optimally combine the information gained from individual observations to predict this 

target probability? In the next sections, we address this issue by using aggregation methods. After introducing potential ways 

to combine PMFs (Sect. 2.3.1), we propose an optimization problem via entropy minimization for defining the weight 195 

parameters needed for the aggregation (Sect. 2.3.2). 

2.3.1 Combining distributions 

The problem of combining multiple conditional probability distributions into a single one is treated here by using aggregation 

methods. This subsection is based on the work by Allard et al. (2012), which we recommend as a summary of existing 

aggregation methods (also called opinion pools), with a focus on their mathematical properties.  200 

The main objective of this process is to aggregate probability distributions 𝑃i coming from different sources into a global 

probability distribution. 𝑃G. For this purpose, the computation of the full conditional probability 𝑃𝑝(𝐴𝑧0|𝐷𝑧1, … , 𝐷𝑧n) – where 

𝐴𝑧0 is the event we are interested in (the target) and 𝐷𝑧i, 𝑖 = 1, . . . , 𝑛 is a set of data events (or neighbors) – is done obtained 

by the use of an aggregation operator 𝑃𝑃G, called pooling operator, such that 

𝑃𝑝(𝐴𝑧0|𝐷𝑧1, . . . , 𝐷𝑧n) ≈ 𝑃𝑃G(𝑃𝑝(𝐴𝑧0|𝐷𝑧1), … , 𝑃𝑝(𝐴𝑧0|𝐷𝑧n)). (3) 

From now on, we will adopt a similar notation to that of Allard et al. (2012), using the more concise expressions 𝑃𝑃i(𝐴𝑧0) to 205 

denote 𝑃𝑝(𝐴𝑧0|𝐷𝑧i) and 𝑃𝑃G(𝐴𝑧0) for the global probability 𝑃𝑃G(𝑃𝑃1(𝐴𝑧0), … , 𝑃𝑃n(𝑧0𝐴)). 

The most intuitive way of aggregating the probabilities 𝑃𝑝
1

, … , 𝑃𝑝
n
 is by linear pooling, which is defined as 

𝑃GOR (𝑧0𝐴) = ∑ 𝑤ORi
 𝑃𝑃i(𝑧0𝐴),

𝑛

𝑖=1

  (4) 

where 𝑛 is the number of neighbors, and 𝑤ORi
 are positive weights verifying ∑ 𝑤ORi

= 1𝑛
𝑖=1 . Eq.  (4) describes mixture models 

in which each probability 𝑃𝑝
i
 represents a different population. If we set equal weights 𝑤ORi

 to every probability 𝑃𝑃i, the 

method reduces to an arithmetic average, coinciding with the disjunction of probabilities proposed by Tarantola and Valette 210 

(1982) and Tarantola (2005), illustrated in Fig. 3b. Since it is a way of averaging distributions, the resulting probability 

distribution 𝑃GOR
 is often multi-modal. Additive methods, such as linear pooling, are related to union of events and to the 

logical operator OR.  
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Multiplication of probabilities, in turn, is described by the logical operator AND, and it is associated to the intersection of 

events. One aggregation method based on the multiplication of probabilities is the log-linear pooling operator, which is defined 215 

by 

ln 𝑃GAND  (𝑧0A) = ln 𝑍𝜁 +  ∑ 𝑤ANDi
ln 𝑃i(𝑧0𝐴) ,

𝑛

𝑖=1

 (5) 

or equivalently 𝑃GAND
(𝑧0) ∝  ∏ 𝑃𝑖(𝑧0)𝑤ANDi𝑛

𝑖=1 , where 𝜁 is a normalizing constant, 𝑛 is the number of neighbors, and 𝑤ANDi
 

are positive weights. One particular case consists of setting 𝑤ANDi
= 1  for every 𝑖 . This refers to the conjunction of 

probabilities proposed by Tarantola and Valette (1982) and Tarantola (2005), shown in Fig. 3c. In contrast to linear pooling, 

log-linear pooling is typically unimodal and less dispersed.  220 

 

𝑃GAND
(𝐴) ∝  ∏ 𝑃𝑖(𝐴)𝑤ANDi ,

𝑛

𝑖=1

 (6) 

where 𝑍 is a normalizing constant, 𝑛 is the number of neighbors, and 𝑤ANDi
 are positive weights. One particular case consists 

of setting 𝑤ANDi
= 1 for every 𝑖. This refers to the conjunction of probabilities proposed by Tarantola and Valette (1982) and 

Tarantola (2005). In contrast to linear pooling, log-linear pooling is typically unimodal and less dispersed.  

AThe aggregation methods are not limited to log-linear and linear pooling presented here. However, the selection of these two 225 

different approaches to PMF aggregation seeks to embrace distinct physical characteristics of the field. The authors naturally 

associate the intersection of distributions (AND combination, Eq.  (5)) to fields with continuous properties. This idea is 

supported by Journel (2002) when remarking that a logarithmic expression evokes the simple kriging expression (used for 

continuous variables). For example, if we have two points 𝐷𝑧1  and 𝐷𝑧2  with different values and want to estimate the 

target  point 𝑧0𝐴 at a location between them in a continuous field, we would expect that the estimate 𝑧0 at point 𝐴 would be 230 

somewhere between 𝐷𝑧1 and 𝐷𝑧2, which can be achieved by an AND combination. In a more intuitive way, if we notice that, 

for kriging, the shape of the predicted distribution is assumed to be fixed (Gaussian, for example), multiplying two distributions 

with the same variance and different means would result in a Gaussian distribution tooas well, less dispersed than the original 

ones, as also seen for the log-linear pooling. It is worth mentioning that some methods for modelling spatially dependent data 

such as Copulas (Bárdossy, 2006; Kazianka and Pilz, 2010) and Effective Distribution Models (Hristopulos and Baxevani, 235 

2020) also use log-linear pooling for constructing conditional distributions. 

On the other hand, Krishnan (2008) pointed out that the linear combination, given by linear pooling, identifies a dual indicator 

kriging estimator (kriging used for categorical variables), which we see as an appropriate method for fields with discontinuous 

properties. Along the same lines, Goovaerts (1997, p.420) defended that phenomena that show abrupt changes should be 

modeled as mixture of populations.  In this case, if we have two points 𝐷𝑧1 and 𝐷𝑧2 belonging to different categories, a target 240 
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𝑧0𝐴 between them will either belong to the category of 𝐷𝑧1 or 𝐷𝑧2, which can be achieved by the mixture distribution given 

by thean OR combinationpooling. In other words, the OR aggregation is a way of combining information from different sides 

of the truth, thus, a conservative way of considering the available information from all sources.  

Note that, for both linear and log-linear pooling, weights equal to zero will lead to uniform distributions, therefore bypassing 

the PMF in question. Conveniently, the uniform distribution is the maximum entropy distribution among all discrete 245 

distributions with the same finite support. A practical example of the pooling operators is illustrated in the end of this section. 

The selection of the most suitable aggregation method depends on the specific problem (Allard et al., 2012), and it will 

influence the PMF prediction and, therefore, the uncertainty structure of the field. Thus, depending on the knowledge about 

the field, a user can either add information to the model by applying an a-priori chosen aggregation method or infer these 

properties from the field. Since, in practice, there is often a lack of information to accurately describe the interactions between 250 

the sources of information (Allard et al., 2012), inference is the approach we tested for in the comparison analysis (Sect. 4.2). 

For that, we propose to estimate the distribution of a target 𝑃G of a target, by combining PGAND
 and 𝑃GOR , using the log-linear 

pooling operator, such that  

𝑃G(𝑧0𝐴) ∝ 𝑃GAND  (𝑧0𝐴)𝛼 𝑃GOR  (𝑧0𝐴)𝛽, (6) 

where 𝛼 and 𝛽 are positive weights varying from 0 to 1, which will be found by optimization. Eq.  (6) iwas thea choice made 

by the authors as a way of balancing both natures of PMF aggregation. The idea is to find the appropriate proportion of 𝛼 255 

(continuous) and 𝛽 (discontinuous) properties of the field by minimizing relative estimation entropy. Note that, when the 

weight 𝛼 or 𝛽 is set to zero, the final distribution may results respectively in a pure OR, Eq. (4), or pure AND aggregation, 

Eq. (5), as special cases. The equation is based on the log-linear aggregation, as opposed to linear aggregation, since the latter 

is often multi-modal, which is an undesired property for geoscience applications (Allard et al., 2012). Alternatively, Eqs. (4) 

or (5) or a linear combination polling of 𝑃GAND  (𝑧0𝐴) and 𝑃GOR (𝑧0𝐴) could be used. We explore the properties of the pure 260 

linear and log-linear pooling in Sect. 4.1.  

The practical differences between the pooling operators used in this paper are illustrated in Fig. 3, where Fig. 3a introduces 

two PMFs to be combined, and Figs. 3b,c,d show the resulting PMFs for Eqs (4), (5), and (6), respectively. In Fig. 3b, we use 

equal weights to both PMFs, and the resulting distribution is the arithmetic average of the bin probabilities. In Fig. 3c, we use 

unitary PMF weights so that the multiplication of the bins (AND aggregation) leads to a simple intersection of PMFs weighted 265 

by the bin height. Fig. 3d shows a log-linear aggregation of the two previous distributions (Figs. 3b,c). In all three cases, if the 

weight of one distribution is set to one and the other is set to zero (not shown), the resulting PMF would be equal to the 

distribution which receives all the weight. 

The following section addresses the optimization problem for estimating the weights of the aggregation methods of Eqs. (4), 

(5) and (7).  270 
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2.3.2 Weighting PMFs 

Scoring rules assess the quality of probabilistic estimations (Gneiting and Raftery, 2007) and, therefore, can be used for 

estimating the parameters of a pooling operator (Allard et al., 2012). We select the Kullback-Leibler divergence (𝐷KL, Eq. (2)) 

as loss function for optimizing 𝛼 and 𝛽, Eq. (6), as well as the 𝑤ORk  and 𝑤ANDk
 weights (Eqs. (4) and (5), respectively), here 

generalized as 𝑤k. The logarithmic score proposed by Good (1952), associated to Kullback-Leibler divergence by Gneiting 275 

and Raftery (2007), and reintroduced from an information-theoretical point of view by Roulston and Smith (2002) are is a 

strictly proper scoring rules (Gneiting and Raftery, 2007) since they it provides summary metrics of performance that address 

calibration and sharpness simultaneously, by rewarding narrow prediction intervals and penalizing intervals missed by the 

observation (Gneiting and Raftery, 2007)Gneiting and Raftery, 2007). According to Gneiting and Raftery (2007), the 

divergence function associated with the logarithmic score is the Kullback-Leibler divergence (𝐷KL, Eq. (2)), which we used 280 

for selecting the proportion of the log-linear and linear pooling (𝛼 and 𝛽, Eq. (7)), as well as the 𝑤OR and 𝑤AND weights (Eq. 

(4) and (5), respectively), here generalized as 𝑤.  

By means of leave-one-out cross-validation (LOOCV), the optimization problem is then defined in order to find the set of 

weights  which minimizes the expected relative entropy (𝐷KL) of all targets. The idea is to choose weights such that the 

disagreement of the 'true' distribution (or observation value, when no distribution is available) and estimated distribution is 285 

minimized. Note that the optimization goal can be tailored for different purposes, e.g., by binarizing the probability distribution 

(observed and estimated) with respect to a threshold in risk analysis problems or categorical data. In Eqs.  (4) and (5), we 

assign one weight for each distance class 𝑘. This means that, given a target 𝑧0, the neighbors grouped in the same distance 

class will be assigned the same weight. For a more continuous weighting of the neighbors, as an extra step, we linearly 

interpolate the weights according to the Euclidean distance and the weight of the next class. Another option could be narrowing 290 

down the class width, in which case more data areis needed to estimate the respective PMFs. 

Firstly, we obtained in parallel the weights of Eqs.  (4) and (5) by convex optimization, and later 𝛼 and 𝛽 by grid search with 

both weight values ranging from 0 to 1 (steps of 0.05 were used in the application case). In order to facilitate the convergence 

of make the convex optimization more well behaved, the following constraints were employed: i)  for linear pooling, set 

𝑤OR11 = 1, to avoid non-unique solutions; ii)  force weights to decrease monotonically (i.e., 𝑤k+1 ≤  𝑤k); iii)  define a lower 295 

bound, to avoid numerical instabilities (e.g., 𝑤k ≥ 10−6); iv)  define an upper bound (𝑤k ≤ 1). Finally, after the optimization, 

normalize the weights to verify ∑ 𝑤ORk𝑘 = 1 ∑ 𝑤ORi
= 1𝑘

𝑖=1  for the linear pooling (for log-linear pooling, the resulting PMFs 

are normalized). 

In order to increase computational efficiency, and due to the minor contribution of neighbors in distance classes far away from 

the target, the authors only used the twelve neighbors closest to the target when optimizing 𝛼 and 𝛽 and when predicting the 300 

target. Note that this procedure is not applicable for the optimization step of the 𝑤ORk
 and 𝑤ANDk

 weightsusing Eqs. (4) and 
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(5), since we are looking for one weight 𝑤k for each class 𝑘, and therefore we cannotcan't risk neglecting classes whose weights 

we have an interest in. For the optimization phase discussed here, as well as for the prediction phase (next section topic), the 

limitation of number of neighbors together with the removal of classes beyond range are efficient means of reducing the 

computational effort involved in both phases.  305 

2.4 Prediction 

With the results of the spatial characterization step (classes, Δ𝑧 PMFs, and range, as described in Sect. 2.2), the definition of 

the aggregation method and its parameters (Sects. 2.3.1 and 2.3.2, respectively), and the set of known observations, we have 

the model available for predicting distributions.  

Thus, for estimating a specific unknown unsampled point (target), first, we calculate the Euclidean distance from the target to 310 

its neighbors (known sampled observations). Based on this distance, we obtain the distance class of each neighbor, and 

associate to each its corresponding Δ𝑧 PMF. As mentioned in Sect. 2.2, neighbors beyond the range are associated with the 

Δ𝑧 PMF of the full dataset. For obtainingTo obtain the 𝑧 PMF of target 𝑧0 given each neighbor 𝑧i, we simply shift the Δ𝑧 PMF 

of each neighbor by its 𝑧i value. Finally, by applying the defined aggregation method, we combine the individual 𝑧  PMFs of 

the target given each neighbor to obtain the predicted PMF of the target conditional on all neighbors. Fig.  1b presents a 315 

schemethe  of the main steps for 𝑧 PMF prediction steps ofa single one  target. 

3 Testing HER 

For the purpose of benchmarking, this section presents the data used for testing the method, establishes the performance 

metrics, and introduces the calibration and test design. Additionally, we briefly present the benchmark interpolators used for 

the comparison analysis and some peculiarities of the calibration procedure. 320 

3.1 Data properties 

To test the proposed method in a controlled environment, four synthetic 2D spatial datasets with grid size 100x100 were 

generated from known Gaussian processes. A Gaussian pProcess is a stochastic method that is specified by its mean and a 

covariance function, or kernel (Rasmussen and Williams, 2006). The data points are determined by a given realization of a 

prior, which is randomly generated from the chosen kernel function and associated parameters. In this work, wWe used rational 325 

quadratic kernel (Pedregosa et al., 2011) as the covariance function, with two different correlation lengths parameters for the 

kernel, namely 6 and 18 units, to produce two datasets with fundamentally different spatial dependence. For both, short- and 

long-range fields, a white noise was introduced given by Gaussian distribution with mean 0 and standard deviation equal to 

0.5. The implementation wais taken from the Python library scikit-learn (Pedregosa et al., 2011). The generated sets comprise:s 

i)  a short-range field without noise (SR0), ii)  a short-range field with noise (SR1), iii)  a long-range field without noise (LR0), 330 



12 

 

and iv)  a long-range field with noise (LR1). Fig.  4 Figure 3 presents the field characteristics (parameters and image) and their 

summary statistics. TFor each field, the summary statistics of each field type for isthe learning, validation, and test subsets are 

included in Supplement S1. 

3.2 Performance criteria 

For To elucidating differences inevaluate the predictive power of the models, a quality assessment was carried out with three 335 

criteria: mean absolute error (𝐸MA), and Nash–Sutcliffe efficiency (𝐸NS), for the deterministic cases, and the mean of the 

logarithmic score rule, based on the Kullback-Leibler divergence (𝐷KL), for the probabilistic cases. 𝐸MA was selected because 

it gives the same weight to all errors, while 𝐸NS penalizes variance as it gives more weight to errors with larger absolute values. 

𝐸NS also shows a normalized metric (limited to 1) which favors general comparison. All three metrics are shown in Eqs. (7), 

(8) and (2), respectively. The validity of the model can be asserted when the mean error is close to zero, Nash–Sutcliffe 340 

efficiency is close to one, and mean of Kullback-Leibler divergence is close to zero. The deterministic performance coefficients 

are defined as  

EMA =
1

𝑛
 ∑ |�̂�i − 𝑧i|

𝑛

𝑖=1

, (7) 

ENS = 1 −
∑ (�̂�i − 𝑧i)

2 𝑛
𝑖=1

∑ (𝑧i −  z̅)2 𝑛
𝑖=1

, (8) 

where �̂�i and 𝑧i are, respectively, the predicted and observed values observation and the prediction at the 𝑖th location, z̅ is the 

mean of the observations, and 𝑛 is the number of predicted observationstested locations. For the probabilistic methods, �̂�i is 

the expected value of the predictions. 345 

For the applications in the study, we considered that there is no true distribution (ground truth) available for the observations 

in all field types. Thus, the 𝐷KL scoring rule was calculated by comparing the filling of the single bin where the observed value 

is located, i.e., in Eq.  (2), we set 𝑝 equal to one for the corresponding bin and compare it to the probability of the same bin in 

the predicted distribution. This procedure is just applicable to probabilistic models, and it enables to measure how confident 

the model is in predicting the correct observation. In order to calculate this metric for ordinary kriging, we must converted the 350 

predicted PDFs (probability density functions) to PMFs employing the same bins used for in HER. 

3.3 Calibration and test design 

For the purpose of benchmarkingTo benchmark and to investigate the effect of sample size, we applied holdout validation as 

follows.: Firstly, we randomly shuffled the data, and then divided it in three mutually exclusive sets: one to generate the 

learning subsets (containing up to 2000 data points), one for validation (containing 2000 data points), and another 2000 data 355 

points (20% of the full dataset) used as test set. We calibrated the models with on learning subsets with increasing sizes of 
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sizes between 200 and 2000 observations in the increments of 200, 400, 600, 800, 1000, 1500, and 2000 observations. We 

used the validation set for fine adjustments and plausibility checks. For avoiding multiple calibration runs, the resampling was 

designed in a way that the learning subsets increased in size by adding new data to the previous subset, i.e., the observations 

of small sample sizes were always contained in the larger sets. To facilitate model comparison, tThe validation and test datasets 360 

were fixed for all performance analyses, independently of the analyzed sample sizelearning set, to facilitate model comparison. 

This procedure also avoided variability of results coming from multiple random draws, since, by construction, we improved 

the learning with growing sample size, and we evaluatedassessed the results always in the same test set. The test set was kept 

unseen until the final application of the methods, as a 'lock box approach' (Chicco, 2017), and its results were used for 

evaluating the model performance presented in Sect. 4. See Supplement S1 for the The summary statistics for theof learning, 365 

validation, and test subsets are presented in Supplement S1. 

3.4 Benchmark interpolators 

In addition to presenting a complete application of HER (Sect. 4.1), a comparison analysis among the best-known and used 

methods for spatial interpolation in the earth sciences (Myers, 1993; Li and Heap, 2011) was is performed (Sect. 4.2). Covering 

deterministic, probabilistic, and geostatistical methods, three interpolators were chosen for the comparison, namely nearest 370 

neighbors (NN), inverse distance weighting (IDW), and ordinary kriging (OK).  

As in HER, all of these methods assume that the similarity of two- point values decrease with increasing distance. Since NN 

simply selects the value of the nearest sample to predict the values at an unsampled points without considering the values of 

the remaining observations, it was employed as a baseline comparison. IDW, in turn, linearly combines the set of sample points 

for predicting the target, inversely weighting the observations according with their distance to the target. The particular case 375 

where the exponent of the weighting function equals two is the most popular choice (Li and Heap, 2008). I, and it is known as 

the inverse distance squared (IDS), which and it is also the one applied here. 

OK is more flexible than NN and IDW, since the weights are selected depending on how the correlation function varies with 

distance (Kitanidis, 1997, p.78). The spatial structure is extracted by the variogram, which is a mathematical description of the 

relationship between the variance of pairs of observations and the distance separating these observations (also known as lag). 380 

It is also described as the best linear unbiased estimator (BLUE) (Journel and Huijbregts, 1978, p.57), which aims at 

minimizing the error variance, and provides an indication of the uncertainty of the estimate. The authors suggest Kitanidis 

(1997) and Goovaerts (1997) for a more detailed explanation of variogram and OK, and Li and Heap (2008) for NN and IDW. 

NN and IDS do not require calibration. For To calibrateting HER aggregation weights, we applied LOOCV, as described in 

Sect. 2.3.2ion 2.3, for optimizing the performance of the left-out sample in the learning set. As a loss function, minimization 385 

of the mean 𝐷KL was applied. After learning the model, we used the validation set for a plausibility check of the calibrated 

model and, eventually, adjustment ing of parameters. Note that no curve function fitting is needed for to the applyication of 

HER.  
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For OK, the fitting of the model was applied in a semi-automated approach. The variogram range, sill and nugget were fitted 

to each of the samples taken from the four fields individually. They were selected by least squares (Branch et al., 1999). The 390 

remaining parameters, namely the semi-variance estimator, the theoretical variogram model, the minimum and the maximum 

number of neighbors considered during OK were jointly selected for each field type (SR and LR), since they derive from the 

same field characteristics. This means that for all sample sizes of SR0 and SR1 the same parameters were used, except range, 

sill, and nugget, which were fitted individually to each sample size. The same applies to LR0 and LR1. These parameters were 

chosen by expert decision, supported by result comparison (interpolated fields)for different theoretical variogram functions, 395 

validation, and cross-validationLOOCV. Variogram fitting and kriging interpolation were applied using the scikit-gstat Python 

module (Mälicke and Schneider, 2019). 

The selection of lag size has important effects on the HER infogram (HER) and, as discussed in Oliver and Webster (2014), 

on the empirical variogram of (OK). However, since the goal of the benchmarking analysis was to find a fair way to compare 

the methods, we fixed the lag distances of OK and distance classes of HER in equal intervals of two distance units (three times 400 

smaller than the kernel correlation length of the short-range dataset).  

Since all methods are instance-based learning algorithms, due to the fact that the predictions are based on the sample of 

observations, the learning set is stored as part of the model and used in the test phase for the performance assessment. 

4 Results and discussion 

In this section, three analyses are presented. Firstly, we explore the results of three distinct models of HER using three different 405 

aggregation methods on one specific the synthetic dataset LR1 with learning set of 600 observations (Sect. 4.1). In Sect. 4.2, 

we summarize the results on synthetic datasets LR0, LR1, SR0, SR1 for all learning calibration sets and numerically compare 

HER performance with traditional interpolators. For all applications, the performance was calculated on the same test set. For 

all applications, the test set was used to assess the performance of the methods.For brevity, the model outputs were omitted in 

the comparison analysis, and only the performance metricss for each dataset and interpolator are shown. Finally, Sect. 4.3 410 

discusses provide a theoretical discussion on the probabilistic methods (OK and HER), comparing their performance and 

contrasting their different properties and assumptions. For all applications, the test set was used to assess the performance of 

the methods. 

4.1 HER application 

This section presents three variants of HER, models applied to the LR1 field with a learning calibration subset of 415 

600  observations (LR1-600). This dataset was selected since, due to its optimized weights results 𝛼 and 𝛽 (which reach almost 

the maximum value of (one) proposed suggested in for Eq.  (6)), it favors to contrast uncertainty results of HER applying the 

three distinct aggregation methods proposed by Eqs. (4), (5), and (6). For LR1-600, the optimized weights are 𝛼 = 1 and 𝛽 =

0.95. 
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As a first step, the spatial characterization of the selected field is obtained and shown in Fig. 5. For brevity, only the odd classes 420 

are shown in Fig. 5b. In the same figure, the Euclidean distance (in grid units) relative to where thethe class was extracted is 

indicated after the class name in interval notation (left-open, right-closed interval). For both 𝑧  PMFs and 𝛥𝑧  PMFs, a bin 

width of 0.2 (10% of the distance class width) was selected and kept the same for all applications and performance calculations. 

As mentioned in Sect. 3.4, we fixed the lag distances in equal intervals of two distance units. 

Based on the infogram cloud (Fig. 5a), the 𝛥𝑧  PMFs for all range classes were obtained. Then Subsequently, the range was 425 

identified as the class point beyond which the class entropy of the class PMFs exceeded the entropy of all data the full 

dataset(class 23 corresponding to a Euclidean distance of 44 grid units), see seen as the intersect of the blue line and  the red 

red-dotted lines in Fig. 5Figure 4b). This occurs at class 23, corresponding to a Euclidean distance of 44 grid units. In Fig. 5c, 

it is also possible to notice a steep reduction in entropy (red curve) for furthest classes . It occurs due to the reduced number 

of pairs composing the 𝛥𝑧  PMFs. A similar behavior is also typically found in experimental variograms (not shown).  430 

The number of pairs forming each 𝛥𝑧  PMFs, and the optimum weights obtained for Eqs. (4) and (5) are presented in Fig. 6. 

Fig. 6Figure 5a shows the number of pairs which compose the 𝛥𝑧  PMFs by class, where the first class has just under 500 pairs 

and the last class inside the range (light blue) has almost 10, 000 pairs. About 40% of the pairs (142 ,512 out of 359 ,400 pairs) 

are inside the range.  

In Figure 5b, wWe obtained the weight of each class by convex optimization as described in Sect. 2.3.2 on the test data set. 435 

The dots in Fig. 6Figure 5b represent the optimized weights of each class. As expected, the weights reflect the decreasing 

spatial dependence of variable z with distance. Regardless of the aggregation method, the LR1-600 models are highly 

influenced by neighbors up to a distance of about 10 grid units (distance class 5).  

For estimating 𝑧  PMFs of target points, three different methods were tested:  

i. Model  1: AND/OR combination, proposed by Eq.  (6), where the LR1-600 optimized weights resulted in 𝛼 = 1 and 440 

𝛽 = 0.95;  

ii. Model  2: pure AND combination, given by Eq.  (5); 

iii. Model  3: pure OR combination, given by Eq.  (4). 

The model results are summarized in Table 1 and illustrated in Fig. 7, where the first column of the panel refers to the results 

of the AND/OR combination, the second column to the pure AND combination, and the third column to the pure OR 445 

combination. In Figure 6a and b, tTo assist in visually checking the heterogeneity (or homogeneity) of 𝑧 in the uncertainty 

maps (Figure 6b), the calibration set representation is scaled by its 𝑧 value, with the size of the cross increasing with 𝑧. In 

general, fFor the target identification, we use its grid coordinates (x,y). 

Fig. 7Figure 6a shows the E-type estimatea1of 𝑧 (predicted expected 𝑧 mean (obtained from the predicted 𝑧 PMF) for the three 

analyzed models. Neither qualitatively (Fig. 7Figure 6a) nor quantitatively (Table 1) is it possible to distinguishdiffer the three 450 

 

a1E-type estimate refers to the expected value derived from a conditional distribution which depends on data values (Goovaerts, 

1997, p.341). They differ, therefore, from ordinary kriging estimates, which are obtained by linear combination. 
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models based on their mean E-type estimate or its  summary statistics of the predicted mean. Deterministic performance 

parameters metrics (𝐸MA and 𝐸NS, Table 1) are also quite similar among the three models. However, in probabilistic terms, 

both the representation given by the entropy map (Fig. 7Figure 6b, which shows the Shannon entropy of the predicted 𝑧 PMFs), 

and the statistics of predicted 𝑧  PMFs, and together with the 𝐷KL performance (Table 1) reveal differences.  

By construction, HER takes into account not only the spatial configuration of data but also the data values. In this fashion, 455 

targets close to known observations will not necessarily lead to reduced predictive uncertainty (or vice-versa). This is, e.g., the 

case for of targets A (10,42) and B (25,63). Target  B  (25,63) is located in between two sampled points in a heterogeneous 

region (small and large z values, both in the first distance class), and presents distributions with bimodal shape and higher 

uncertainty (Fig. 7Figure 6c) especially for model  3 (4.68 bits). For the more assertive models (1 and 2), the distributions of 

target  B  (25,63) has lower uncertainty (Figure 6c, 3.42 and 3.52 bits, respectively). It shows some peaks, due to small bumps 460 

in the PMF neighbors (not shown) which are boosted by the 𝑤ANDk
 exponents in Eq.  (5). In contrast, target  A  (10,42), which 

is located in a more homogeneous region, with the closest neighbors in the second distance class, shows a sharper 𝑧  PMF in 

comparison to target  B A (25,63) for models 1 and 3, and for all models a Gaussian-like shape.  

Targets C (47,16) and D (49,73) are predictions for locations where observations are available. They were selected in regions 

with high and low 𝑧 values to demonstrate the uncertainty prediction in locations coincident with the calibration set. For all 465 

three models, target  C  (47,16) presented lower entropy and 𝐷KL in comparison to target  D  (49,73), due to its distance to 

known samples and the homogeneity of z-values in the region. 

Although the 𝑧 provided PMFs (Fig. 7Figure 6c) from models 1 and 2 present similarcomparable shapes, the uncertainty 

structure (color and shape displayed by the colors in Fig. 7Fig. 6b) of the overall field differs. Since mmodel  1 is derived from 

the aggregation of models 2 and 3, as presented in Eq. . (6), this combination is also reflected in its uncertainty structure, lying 470 

somewhere in-between models 2 and 3.  

Model  1 is the bolder (more confident) model, since it has the smallest median entropy (3.45 bits, Table 1). On the other hand, 

due to the averaging of PMFs, model  3 is the more conservative model, verified by the highest overall uncertainty (4.17 bits). 

Model  3 also predictsed smaller minimum and higher maximum of E-type estimatemean values of 𝑧, as well, for the selected 

targets, and it provides the widest confidence interval. 475 

The authors selected mModel  1 (AND/OR combination) for the sample size and benchmarking investigation presented in the 

next section. There, we evaluate various models via direct comparison of performance measures.  

4.2 Comparison analysis 

In this section, tHER was applied using the more confident AND/OR model proposed by Eq. (7). The test set was used to 

calculate the performance of all methods (NN, IDS, OK, and HER) as a function of sample size and dataset type (SR0, SR1, 480 

LR0, and LR1). HER was applied using the more confident AND/OR model proposed by Eq.  (6). TSee Supplement S2 for 

the calibrated parameters of all models discussed in this section. 
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Fig. 8 summarizes values of mean absolute error ( 𝐸MA ), Nash–Sutcliffe efficiency ( 𝐸NS ) and mean Kullback-Leibler 

divergence (𝐷KL) for all interpolation methods, sampling sizes, and dataset types. The SR fields are located  is presented in the 

left column and the LR in the right. Datasets without noise are represented by continuous lines and datasets with noise by 485 

dashed lines. 

𝐸MA is presented in Figs. 8Figure 7a,b for the SR and LR fields, respectively. All models have the same order of magnitude of 

𝐸MA for the noisy datasets (SR1 and LR1, dashed lines), with the performance of the NN model being the poorest, and OK 

being slightly better than IDS and HER. For the datasets without noise (SR0 and LR0, continuous lines), OK performed better 

than the other models, with a decreasing difference given sample size. In terms of 𝐸NS, all models have comparable results for 490 

LR (Fig. 8Figure 7d), except NN in the LR1 field. A larger contrast in the model performances can be seen for the SR field 

(Fig. 8Figure 7c), where for SR1, NN performeds worst and OK best. For SR0, especially for small sample sizes, OK 

performed better and NN poorly, while IDS and HER have similar results, with a slightly better performance for HER. 

The probabilistic models OK and HER were comparable in terms of 𝐷KL, with OK being slightly better than HER, especially 

for small sample sizes (Figs. 8e,f). An exception is made for OK in LR0. Since 𝐷KL scoring rule penalizes extremely confident 495 

but erroneous predictions, 𝐷KL of OK tended to infinity for LR0 and, therefore, it is not shown in Fig. 8Figure 7f.  

For all models, the performance metrics for LR showed better results when compared to SR (compare left and right column in 

Fig. 8Fig. 7). The performance improvement given the sample size is similar for all models, as can be seen by the similar 

slopes of the curves. In general, we noticed an prominent improvement in the performance in SR fields up to a sample size of 

1000 observations. On the other hand, in LR fields, the learning process given sample sizes already stabilizes at around 400 500 

observations. In addition to the model performance presented in this section, the summary statistics of the predictions and their 

residue correlation of the true value and the residue of predictions can be found in Supplement S3.  

In this section we evaluated various models via direct comparison of performance measures. In the next section, we discuss 

fundamental aspects of HER, and debate its properties with a focus on comparing it to ordinary OKkriging. 

4.3 Discussion 505 

4.3.1 Aggregation methods 

Several important points emerge from this study. Because the primary objective was to explore the characteristics of HER, we 

first consider the effect of selecting the aggregation method (Sect. 4.1). Independent of the choice of the aggregation 

aggregation pooling method, the deterministic results (predicted E-type estimate mean of 𝑧 ) of all models were very 

similarremarkably similar. On the other handIn contrast, we could see different uncertainty structures of the estimates for all 510 

three cases analyzed, ranging from a more confident method (AND/OR) to a more conservative one (OR). The uncertainty 

structures also reflected the expected behavior of Considering that larger errors are expected in locations surrounded by data 

that are very different in value as mentioned in (Goovaerts (, 1997, p.180, p.261). In this sense, , HER has proved effective in 

considering both spatial configuration of data and the data values regardless of thewhich aggregation method is selected.  
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As previously introduced in Sect. 2.3.1, the choice of aggregation pooling method can happen beforehand in order to introduce 515 

physical knowledge to the system, or several can be tested to learn about the response of the field to the selected model. Aside 

from their different mathematical properties, the motivation behind the selection of the two aggregation methods (linear and 

log-linear) was the incorporation of continuous or discontinuous field properties. The interpretation of the aggregation method 

is supported by Journel (2002), Goovaerts (1997, p.420), and Krishnan (2008) where the former connects a logarithmic 

expression (AND) to continuous variables and simple kriging), while the latter two associates linear pooling (OR) to dual 520 

indicator kriging and therefore to categoricalabrupt changes in the field and categorical variables.  For example, if we have 

two points 𝐷1 and 𝐷2 with different values and want to estimate the target point 𝐴 in a continuous field, we would expect that 

the estimate at point 𝐴 would be somewhere between 𝐷1 and 𝐷2, which can be achieved by an AND combination. On the other 

hand, in the case of categorical data, and 𝐷1 and 𝐷2 belonging to different categories, target 𝐴 will either belong to the category 

of 𝐷1 or 𝐷2, which can be achieved by an OR combination.  525 

As verified in Sect. 4.1, the OR (=averaging) combination of PMFs distributions to estimate target PMFs was the most 

conservative (not confidentwith largest uncertainty) method among all those tested. For this way of PMF merging, all 

distributions are considered feasible and each point adds new possibilities to the result. Whereas the On the other hand, AND 

combination of PMFs was a bolder approach, where we intersecting distributions to extract their agreements. In other 

wordsHere, we are narrowing down the range of possible values and so that the final distribution satisfies all observations at 530 

the same time. Complementarily, considering the lack of information to accurately describe the interactions between the 

sources of information, we proposed to infer 𝛼 and 𝛽 weights (proportion of AND and OR contributions, respectively) using 

Eq.  (6). It turned out to beresulted in a good reasonable tradeoff between the pure AND and the pure OR model and was hence 

used for benchmarking HER against traditional interpolation models in Sect. 4.2. 

WithIn HER, the spatial dependence was analyzed by extracting Δ𝑧  PMFs and expressed by the infogram, where classes 535 

composed by point- pairs further apart were more uncertain (presented higher entropy) than classes formed by point -pairs 

close to each other. Aggregation weights (Supplement S2, Figs. S2.1 and S2.2) also characterize the spatial dependence 

structure of the field. In general, as expected, noisy fields (SR1 and LR1) lead to smaller influence (weights) of the closer  

observations than non-noisy datasets (Figs. S2.1). In terms of 𝛼 and 𝛽 contribution (Fig. S2.2), while 𝛼 received for all sample 

sizes the maximum weight, 𝛽 increased with the sample size. As expected, in general, the noisy fields reflected a higher 540 

contribution of 𝛽 due to their discontinuity. For LR0, starting at 1000 observations, 𝛽 also stabilized at 0.55, indicating that 

the model identified the characteristic 𝛽 of the population. The most noticeable result along these lines was that the aggregation 

method directly influences the probabilistic results, and, therefore, the uncertainty (entropy) maps can be adapted according to 

the characteristics of the variable or expert interest of the expert. 

4.3.2 Benchmarking and applicability 545 

Although the primary objective of this study was is to investigate the characteristics of HER, Sect. 4.2 compares it to three 

traditional established interpolation methods. In general, HER performed comparable to OK, the best performing method 
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among the analyzed ones. The probabilistic performance comparison was only possible between HER and OK, where both 

methods also produced comparable results. Note that the datasets were generated using Gaussian pProcess (GP), so that they 

perfectly fulfilled remained within theall recommended settings requisites offor OK (field mean independent of location, 550 

normally distributed data and residues), thus favoring its performance. Additionally, OK was also favored when converting 

their predicted PDFs to PMFs, since the defined bin width was often orders of magnitude larger than the standard deviation 

estimated by OK. However, the procedureat was a necessary step for the comparison, since HER does not fit PDFs continuous 

functions for their predicted PMFs. 

Although environmental processes hardly fulfill Gaussian assumptions (Kazianka and Pilz, 2010; Hristopulos and Baxevani, 555 

2020), GP allows the generation of a controlled dataset where we could examine the method performances in fields with 

different characteristic. Considering that it is common to transform the data so that it fits the model assumptions and back-

transform it in the end, the used datasets are, to a certain extent, related to environmental data. However, the authors understand 

that, due to being non-parametric, HER handles different data properties without the need of transforming the available data. 

And since HER uses binned transformation of the data, it is also possible to handle binary (e.g., contaminated and safe areas) 560 

or even, with small adaptations, categorical data (e.g., soil types), covering another spectrum of real-world data. 

4.3.3 Model generality 

Especially for HER, which works with non-parametric PMFs, the number of distance classes and bin width basically defines 

how accurate we want to be in the accuracy of our prediction. For comparison purposes, bin widths and distance classes were 

kept the same for all models and were defined based on small sample sizes. However, with more data available, it would be 565 

possible to better describe better the spatial dependence of the field in HER by increasing the number of distance classes and 

the number of PMF bins. Although the increase in the number of classes would also affect OK performance (as it improves 

the theoretical variogram fitting), it would allow more degrees of freedom for HER (since it optimizes weights for each distance 

class), which would result in a more flexible model and closer reproducibility of data characteristics. In contrast, the degrees 

of freedom in OK would be unchanged, since the number of parameters of the theoretical variogram does not depend on the 570 

number of classes.  

HER does not require fitting of a theoretical function, its spatial dependence structure (Δ𝑧 PMFs, infogram) are is derived 

directly from the available data, while, according to Putter and Young (2001), OK predictions are only optimal if the weights 

are calculated from the correct underlying covariance structure, which in practice is not the case, since the covariance is 

unknown and estimated from the data. Thus, the choice of the theoretical variogram for OK can strongly influences the 575 

predicted 𝑧  depending on the data. In this sense, for E-type estimates, HER wasisis more robust against user decisions 

compared tothan OK. Moreover, HER is flexible in the way it aggregates the probability distributions, not being a linear 

estimator as OK. In terms of number of observations, being a non-parametric method, HER requires sufficient data to extract 

the spatial dependence structure, while OK can fit a mathematical equation with fewer data points. The mathematical function 

of the theoretical variogram provides advantages in respect to computational effort. Nevertheless, relying on fitted functions 580 
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can mask the lack of observations, since it still produces attractive but not necessarily reliable maps (Oliver and Webster, 

2014). 

Considering the probabilistic models, both OK and HER present similarities. Both approaches take into consideration the 

spatial structure of the variables, since their weights depend on the spatial correlation of the variable. Just as OK (Goovaerts, 

1997, p.261), HER turned out to be a smoothing method, since the true values are overestimated in low-valued areas and 585 

underestimated in high-valued areas. However, as verified in Supplement S3 (Fig. S3.1), HER revealed a reduced smoothing 

(residue correlation closer to zero) compared to OK for SR0, SR1 and LR1. In particular, for points beyond the range, both 

methods predict by averaging the available observations. While OK calculates the same weight for all observations beyond 

the range and proceeds with their linear combination, HER associates Δ𝑧 PMF of the full dataset to all observations beyond 

the range and aggregates them using the same weight (weight of the last class).  590 

OK and HER have different levels of generality: OK weights depend on how the fitted variogram varies in space (Kitanidis, 

1997, p.78), HER weights take into consideration the spatial dependence structure of the data (via Δ𝑧  PMFs) and the 𝑧 values 

of the observations, since they are found by minimizing 𝐷KL between the true 𝑧 and its predicted distribution. In this sense, the 

variance estimated by kriging ignores the observation values, retaining from the data only their spatial geometry (Goovaerts, 

1997, p.180), while for HER, it is additionally influenced by the 𝑧 value of the observations. This means that HER predicts 595 

distributions for unsampled points that are conditioned to the available observations and based on its spatial correlation 

structure, a characteristic which was first possible with the advent of indicator kriging (Journel, 1983). Conversely, when no 

nugget effect is expected, HER can lead to undesired uncertainty when predicting the value very close or at or near sampled 

locations. This can be overcome by defining a small distance class for the first class, changing the binning to obtain a point-

mass distribution as prediction, or asymptotically increasing the weight towards infinity as the distance approaches zero. With 600 

further developments, the matter could be handled by coupling HER with sequential simulation or using kernels to smooth the 

spatial characterization model. 

4.3.4 Weight optimization 

Another important difference is that OK performs multiple local optimizations (one for each target) and the weight of the 

observations varies for each target, whereas HER performs only one optimization for each one of the aggregation equations, 605 

obtaining a global set of weights which are kept fixed for the classes. Additionally, OK weights can reach extreme values 

(negative or greater than 1), which on the one hand it is a useful characteristic for reducinge redundancy and predicting values 

outside the range of the data (Goovaerts, 1997, p.176), but on the other hand can lead to unacceptable results, such as negative 

metal concentrations (Goovaerts, 1997, p. 174-177) and negative kriging variances (Manchuk and Deutsch, 2007). , while 

HER weights are limited to thea range of [0,1]. Since the used dataset was evenly spaced, a possible issue of redundant 610 

information in the case of clustered samples was not considered in this paper. The influence of data clusters could be reduced 

by splitting the search neighborhood into equal angle sectors and retaining within each sector a specified number of nearest 

data (Goovaerts, 1997, p.178) or discarding measurements that contains no extra information (Kitanidis, 1997, p.70). Although 
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kriging weights naturally control redundant measurements based on the data configuration, OK does not account for clusters 

with heterogeneous data since it presumes that two measurements located near each other contribute the same type of 615 

information (Goovaerts, 1997, p.176, p.180; Kitanidis, 1997, p.77). 

Considering the probabilistic models, both OK and HER present similarities. The two approaches take into consideration the 

spatial structure of the variables since their weights depend on its spatial correlation. Just as OK (Goovaerts, 1997, p.261), we 

verified that HER is a smoothing method since the true values are overestimated in low-valued areas and underestimated in 

high-valued (areas. However, as verified in Supplement S3, Fig. S3.1). However, (Fig. S3.1), HER revealed a reduced 620 

smoothing (residue correlation closer to zero) compared to OK for SR0, SR1 and LR1. In particular, for points beyond the 

range, both methods predict by averaging the available observations. While OK calculates the same weight for all observations 

beyond the range and proceeds with their linear combination, HER associates Δ𝑧 PMF of the full dataset to all observations 

beyond the range and aggregates them using the same weight (last-class weight). 

5 Summary and conclusion 625 

In tThis paper we introduced presented a procedure  spatial interpolator which combines statistical learning and geostatistics 

which aims atfor overcoming parametrization with functions  and uncertainty tradeoffs present in many existing methods for 

spatial interpolation. Histogram via entropy reduction (HER)For this purpose, we proposed a new spatial interpolator which is 

free of normality assumptions, covariance fitting, and parametrization of distributions for uncertainty estimation. Histogram 

via entropy reduction (HER)It is designed to globally minimize the predictive uncertainty entropy (uncertainty) expressed by 630 

relative entropy (Kullback-Leibler divergence) between the observation and prediction. More specifically, HER combines 

measures of information theory withand uses probability aggregation methods for introducing or inferring (dis)continuity 

properties of the field  and estimating conditional distributions (target point conditioned to the sampled values)quantifying the 

available information in the dataset, extracting the structure of the data spatial correlation, relaxing normality assumptions, 

minimizing the uncertainty of the predictions, and combining probabilities. 635 

Throughout the paper, three aggregation methods (AND, OR, AND, AND/OR) were analyzed in terms of uncertainty, and 

resulted in predictions ranging from conservative to more confident ones. HER's performance was also compared to popular 

interpolators (nearest neighbors, inverse distance weighting, and ordinary kriging). All methods were tested under the same 

conditions. HER and oOrdinary kKriging (OK) were the turned out to be the most accurate methods for different sample sizes 

and field types. In contrast to OK, HER has featured some advantagesproperties: i)  it is non-parametric, in the sense that 640 

predictions are directly based on empirical probabilitydistribution, thus bypassing function fitting the usual steps of variogram 

fitting done in OK and therefore avoiding the risk of adding information not available on the data (or losing available 

information); ii) it is robust against user decisions, i.e., the choice of a theoretical variogram for OK can strongly influences 

the predicted 𝑧 values, while HER is less sensitive to the aggregation method for prediction 𝑧, and the bin width and distance 

class definitions for predicting PMF (since it does not change the spatial dependence structure, expressed in the model by 645 
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Δ𝑧 PMFs and the infogram, which comes directly from the available data); iii)  it allows to incorporate different uncertainty 

properties according to the dataset and user interest by selecting the aggregation method by selecting the aggregation method; 

iii) it enables the calculation of confidence intervals and probability distributions; ivv) HER is non-linear and the predicted 

conditional distribution depends on both  for uncertainty maps, HER considers not only the spatial configuration of the data 

and , but also the field values, while kriging variance depends on spatial data geometry only (Goovaerts, 1997, p.181;); v) v)it 650 

is flexible  to increase the number of parameters  to be optimized , can be adjusted according to the size of the available amount 

of data availableset; vi) since HER uses binned transformation of the data, it is adaptable to handle binary or even categorical 

data; and vii) it can be extended to conditional stochastic simulation by directly performing sequential simulation on the 

predicted conditional distribution, while OK has the number of parameters fixed according to the theoretical variogram. On 

the other hand, being a non-parametric model, HER requires longer runtime and sufficient data to learn the spatial dependence 655 

from the data.  

Considering that the quantification and analysis of uncertainties areis important in all cases where maps and models of 

uncertain properties are the basis for further decisions (Wellmann, 2013), HER proved to be a suitable method for uncertainty 

estimation, where information theoretic measures, geostatistics, and aggregation method concepts are put together to bring 

more flexibility to uncertainty prediction and analysis. Additional investigation is required to analyze the method in the face 660 

of multiple-point geostatistics, spatio-temporal domains, categorical data, probability and uncertainties maps, sequential 

simulation, sampling designs, and handling and analyzing additional observed variables (co-variates), all of which are possible 

topics to be explored in future studies. 
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Table 1: Summary statistics and model performance of LR1-600. 

Test set predicted by  
HER AND/OR 

(Model 1) 

HER pure AND 

(Model 2) 

HER pure OR 

(Model 3) 
True test set 

Summary 

statistics of 

the E-type 

estimate of 𝒛 

mean 

predicted 

values of 𝒛 

mean -0.98 -0.98 -0.98 -1.00 

standard deviation 0.89 0.89 0.90 1.03 

entropy (𝐻) 4.07 4.04 4.10 4.39 

maximum 1.32 1.26 1.33 2.14 

median -0.83 -0.82 -0.85 -0.96 

minimum -2.82 -2.77 -2.92 -3.75 

kurtosis 2.23 2.19 2.27 2.44 

skewness 0.02 0.02 0.03 0.02 

Summary 

statistics of 

predicted 

distribution 

𝒛 PMF 

median entropy 3.45 3.75 4.17 – 

𝑧 maximum1a 2.40 3.20 2.60 – 

𝑧 minimum1a -4.20 -7.00 -4.80 – 

target (49,73): [95% CI] 

                           mean 

[-0.40, 1.60] 

0.69 

[-0.60, 1.60] 

0.66 

[-1.20, 2.20] 

0.70 

– 

1.35 

target (47,16): [95% CI] 

                           mean 

[-2.00, -0.20] 

-0.99 

[-2.20, 0.00] 

-1.00 

[-2.60, 0.20] 

-0.98 

–  

-1.02 

target (25,63): [95% CI] 

                           mean 

[-2.40, -0.40] 

-1.19 

[-2.40, -0.40] 

-1.33 

[-4.00, 0.60] 

1.20 

–  

-1.34 

target (10,42): [95% CI] 

                           mean 

[-3.00, -1.20] 

-2.06 

[-3.20, -1.20] 

-2.06 

[-3.80, -0.80] 

-2.05 

–  

-1.64 

Performance 

𝐸MA 0.43 0.43 0.44 – 

𝐸NS  0.72 0.72 0.71 – 

mean 𝐷KL  3.54 3.58 3.76 – 
1a Considering a 95% confidence interval (CI).  
CI: confidence interval. 

  



29 

 

 815 

Figure 1: HER method. Flowcharts illustrating the: a) spatial characterization, and b) 𝒛  probability mass functions (PMF) 

prediction. 
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 820 

Figure 2: Spatial characterization. Illustration of: the a) infogram cloud, b) 𝜟𝒛  PMFs by class, and c) infogram. 
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Figure 3: Examples of the different pooling operators. Illustration of: a) Normal PMFs 𝑵(𝝁, 𝝈𝟐)  to be combined; b) linear 

aggregation of (a), Eq. (4); c) log-linear aggregation of (a), Eq. (5); and d) log-linear aggregation of (b) and (c), Eq. (6).  825 
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Figure 4: Synthetic fields and summary statistics: a) SR0, b) SR1, c) LR0, and d) LR1. 
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Figure 5: Spatial characterization of LR1-600: a) infogram cloud, b) 𝚫𝒛  PMFs by class, and c) infogram. 
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835 

 

Figure 6: LR1-600: a) class cardinality, and b) optimum weights, Eqs. (4) and (5).  
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  840 

Figure 7: LR1-600 results: a) predicted meanE-type estimate of 𝒛, b) entropy map (bits), and c) 𝒛  PMF prediction for selected points. 

The first, second and third columns of the panel refer to the results of model 1 (AND/OR), model 2 (AND), and model 3 (OR), 

respectively. 
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Figure 8: Performance comparison of NN, IDS, OK and HER: a,b) mean absolute error, c,d) Nash–Sutcliffe efficiency, and 

e,f)  Kullback -Leibler divergence scoring rule, for the SR datasets in the left column and the LR datasets in the right. Continuous 

line refers to datasets without noise and dashed lines to datasets with noise. 
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Supplement S1: Summary statistics of the resampled datasets 

Table S1.1 and Table S1.2 summarize the statistics of the learning, validation, test, and full datasets.  10 

Table S1.1: Summary statistics of the resampled datasets – Short-range dataset (SR0 and SR1). 

Sample size 200 400 600 800 1000 1500 2000 
2000 

(val. set) 

2000 

(test set) 

10 000 

(full set) 

SR0 

mean -0.57 -0.59 -0.58 -0.59 -0.59 -0.58 -0.57 -0.53 -0.56 -0.55 

sd. 1.05 1.06 1.02 1.01 0.99 0.99 0.99 0.99 1.00 0.99 

𝐻  4.27 4.38 4.34 4.33 4.31 4.32 4.32 4.31 4.34 4.34 

max. 1.76 1.92 1.92 1.92 1.92 1.92 2.05 2.08 2.02 2.08 

median -0.42 -0.50 -0.51 -0.56 -0.54 -0.52 -0.52 -0.46 -0.50 -0.49 

min. -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.67 -3.71 -3.71 

kur. 3.21 3.04 3.12 3.15 3.17 3.14 3.12 3.18 3.07 3.09 

sk. -0.62 -0.43 -0.41 -0.35 -0.35 -0.32 -0.30 -0.36 -0.33 -0.34 

SR1 

mean -0.52 -0.54 -0.55 -0.57 -0.57 -0.57 -0.56 -0.54 -0.54 -0.55 

sd. 1.17 1.17 1.14 1.12 1.11 1.10 1.10 1.11 1.12 1.11 

𝐻  4.46 4.54 4.51 4.50 4.49 4.49 4.49 4.49 4.52 4.50 

max. 2.50 2.70 2.70 2.70 2.70 2.70 2.99 2.96 2.86 2.99 

median -0.36 -0.51 -0.51 -0.55 -0.56 -0.54 -0.53 -0.51 -0.48 -0.51 

min. -3.66 -3.66 -3.66 -3.84 -3.84 -4.01 -4.01 -4.63 -4.25 -4.63 

kur. 2.82 2.83 2.93 2.94 2.99 3.03 3.04 3.24 3.09 3.11 

sk. -0.40 -0.15 -0.19 -0.19 -0.18 -0.20 -0.20 -0.28 -0.26 -0.25 

sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 



2 

 

Table S1.2: Summary statistics of the resampled datasets – Long-range dataset (LR0 and LR1). 

Sample size 200 400 600 800 1000 1500 2000 
2000 

(val. set) 

2000 

(test set) 

10 000 

(full set) 

LR0 

mean -0.98 -0.96 -1.03 -1.01 -1.01 -1.01 -1.02 -1.00 -1.02 -1.01 

sd. 0.90 0.88 0.89 0.89 0.90 0.91 0.91 0.90 0.91 0.90 

𝐻  3.99 4.02 4.07 4.09 4.09 4.11 4.11 4.11 4.12 4.12 

max. 1.04 1.15 1.23 1.23 1.23 1.23 1.23 1.28 1.27 1.28 

median -0.77 -0.81 -0.92 -0.92 -0.91 -0.91 -0.92 -0.88 -0.89 -0.89 

min. -2.78 -2.78 -3.07 -3.07 -3.07 -3.08 -3.08 -3.00 -3.07 -3.08 

kur. 2.11 2.18 2.26 2.24 2.21 2.16 2.20 2.22 2.16 2.20 

sk. -0.09 -0.07 0.02 0.02 0.03 0.03 0.03 -0.03 0.00 -0.01 

LR1 

mean -0.92 -0.91 -0.99 -1.00 -1.00 -1.01 -1.01 -1.01 -1.00 -1.00 

sd. 0.98 1.00 1.01 1.02 1.03 1.04 1.03 1.05 1.03 1.03 

𝐻  4.21 4.31 4.34 4.37 4.38 4.40 4.39 4.41 4.39 4.40 

max. 1.40 1.87 1.87 1.87 1.96 1.96 2.00 2.29 2.14 2.29 

median -0.88 -0.91 -0.97 -0.98 -0.99 -0.99 -0.98 -0.98 -0.96 -0.96 

min. -3.19 -3.65 -3.65 -3.74 -3.74 -3.74 -3.95 -4.02 -3.75 -4.02 

kur. 2.51 2.67 2.56 2.56 2.59 2.50 2.53 2.59 2.44 2.53 

sk. -0.09 0.02 0.06 0.04 0.06 0.05 0.04 -0.02 0.02 0.00 

sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 

Supplement S2: Parameter tuning 

This supplement consolidates the final parameters used in the models presented in Sect. 4.2. Particularly for HER, Fig.  S2.1 

presents the final weights optimized for Eqs.  (4) and (5). It was limited to 18 grid units (nine distance classes), due to the 15 

small contribution of the faraway classes. Similarly, Fig. S2.2 shows 𝛼 and 𝛽 weights of Eq.  (67). Finally, Table S2.1 and 

Table S2.2 summarize the calibrated parameters obtained for each model (varying method, sample size and dataset type). 
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Figure S2.1: HER optimized weights by distance class: a,b) 𝒘𝐎𝐑, Eq.  (4), and c,d) 𝒘𝐀𝐍𝐃, Eq.  (5). SR datasets on the left panel and 20 
LR datasets on the right panel. Continuous line refers to datasets without noise and dashed lines to datasets with noise. 

 

 

Figure S2.2. HER 𝜶 and 𝜷 weights by sample size, Eq.  (67): a) SR datasets on the left panel, and b) LR datasets on the right panel. 25 
Continuous line refers to datasets without noise and dashed lines to datasets with noise. 
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Table S2.1: Method calibration by sample size – Parameters of the models for the short-range dataset (SR0 and SR1). 

Model sample size 200 400 600 800 1000 1500 2000 

Method Parameter1 SR0 

NN n.n. 1 1 1 1 1 1 1 

IDS exp. 2 2 2 2 2 2 2 

OK n.n. 12 12 12 12 12 12 12 

 lag width 2 2 2 2 2 2 2 

 variogram Spherical Spherical Spherical Spherical Spherical Spherical Spherical 

 eff. range 35.99 35.43 33.63 33.50 33.13 33.21 33.65 

 nugget 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 sill 1.24 1.28 1.16 1.13 1.11 1.09 1.08 

 max. lag 60 60 60 60 60 60 60 

 n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] 

HER n.n. 12 12 12 12 12 12 12 

 class width 2 2 2 2 2 2 2 

 bin widths (𝑧, Δ𝑧)  0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 model range 36.00 24.00 26.00 26.00 26.00 26.00 26.00 

 𝛼  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 𝛽  0.70 0.60 0.45 0.40 0.50 0.65 0.80 

Method Parameter1 SR1 

NN n.n. 1 1 1 1 1 1 1 

IDS exp. 2 2 2 2 2 2 2 

OK n.n. 12 12 12 12 12 12 12 

 lag width 2 2 2 2 2 2 2 

 variogram Spherical Spherical Spherical Spherical Spherical Spherical Spherical 

 eff. range 43.53 35.81 35.43 34.69 32.70 32.18 33.30 

 nugget 0.28 0.15 0.18 0.18 0.17 0.17 0.20 

 sill 1.29 1.39 1.25 1.22 1.19 1.16 1.12 

 max. lag 60 60 60 60 60 60 60 

 n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] 

HER n.n. 12 12 12 12 12 12 12 

 class width 2 2 2 2 2 2 2 

 bin widths (𝑧, Δ𝑧) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 model range 38.00 26.00 26.00 26.00 26.00 26.00 26.00 

 𝛼  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 𝛽  0.70 0.55 0.60 0.55 0.55 0.70 0.80 

1n.n. = number of neighbors; exp. = exponent of the weighting function; eff. range = effective range; max. = maximum; min. = minimum. 
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Table S2.2: Method calibration by sample size – Parameters of the models for the long-range dataset (LR0 and LR1). 

Model sample size 200 400 600 800 1000 1500 2000 

Method Parameter1 LR0 

NN n.n. 1 1 1 1 1 1 1 

IDS exp. 2 2 2 2 2 2 2 

OK n.n. 12 12 12 12 12 12 12 

 lag width 2 2 2 2 2 2 2 

 variogram Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian 

 eff. range 67.47 66.93 69.10 68.23 69.12 71.82 73.01 

 nugget 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 sill 1.06 0.99 1.03 1.03 1.05 1.10 1.10 

 max. lag 100 100 100 100 100 100 100 

 n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] 

HER2 n.n. 12 12 12 12 12 12 12 

 class width 2 2 2 2 2 2 2 

 bin widths (𝑧, Δ𝑧) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 model range 46.00 48.00 48.00 46.00 46.00 48.00 48.00 

 𝛼  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 𝛽  0.70 0.20 0.25 0.40 0.55 0.55 0.55 

Method Parameter1 LR1 

NN n.n. 1 1 1 1 1 1 1 

IDS exp. 2 2 2 2 2 2 2 

OK n.n. 12 12 12 12 12 12 12 

 lag width 2 2 2 2 2 2 2 

 variogram Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian 

 eff. range 81.79 76.14 71.43 69.02 74.43 78.75 78.05 

 nugget 0.29 0.31 0.29 0.28 0.30 0.29 0.29 

 sill 0.99 0.95 0.98 1.00 1.03 1.10 1.08 

 max. lag 100 100 100 100 100 100 100 

 n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] 

HER n.n. 12 12 12 12 12 12 12 

 class width 2 2 2 2 2 2 2 

 bin widths (𝑧, Δ𝑧) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 model range 48.00 46.00 44.00 44.00 44.00 46.00 46.00 

 𝛼  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 𝛽  0.70 0.65 0.95 0.75 0.90 0.95 1.00 

1n.n. = number of neighbors; exp. = exponent of the weighting function; eff. range = effective range; max. = maximum; min. = minimum. 
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Supplement S3: Summary statistics of the model predictions 

This supplement summarizes the statistics of the deterministic predictions (mean of 𝑧) for the test set by method and learning 

sets (from 200 to 2000 observations). HER outcomes refer to the AND/OR aggregation. The four random fields types are 

presented from Table S3.1 to Table S3.4. Finally, Fig.  S3.1 illustrates their residue correlation (obtained by calculating the 35 

Pearson correlation coefficient between the true values and the residue of the predictions). 

Table S3.1: Summary statistics of the prediction on test set by model – Short-range dataset without noise (SR0). 

Method Statistics1 200 400 600 800 1000 1500 2000 

SR0 

NN mean -0.54 -0.55 -0.56 -0.56 -0.56 -0.56 -0.56 

 sd. 1.01 1.03 1.01 1.00 1.00 1.01 1.00 

 𝐻 4.17 4.33 4.31 4.31 4.31 4.34 4.33 

 max. 1.76 1.92 1.92 1.91 1.91 1.91 1.91 

 median -0.44 -0.47 -0.57 -0.57 -0.53 -0.53 -0.52 

 min. -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 

 kur. 3.37 3.13 3.06 3.04 3.07 3.08 3.08 

 sk. -0.56 -0.43 -0.36 -0.30 -0.32 -0.30 -0.32 

IDS mean -0.54 -0.57 -0.58 -0.59 -0.57 -0.57 -0.57 

 sd. 0.79 0.88 0.89 0.90 0.91 0.93 0.94 

 𝐻  3.96 4.13 4.16 4.19 4.21 4.24 4.26 

 max. 1.58 1.80 1.79 1.80 1.80 1.79 1.80 

 median -0.55 -0.53 -0.53 -0.56 -0.53 -0.54 -0.53 

 min. -3.49 -3.49 -3.51 -3.53 -3.54 -3.56 -3.58 

 kur. 3.56 3.28 3.27 3.17 3.15 3.13 3.10 

 sk. -0.44 -0.37 -0.37 -0.32 -0.32 -0.30 -0.30 

OK mean -0.53 -0.56 -0.56 -0.57 -0.56 -0.56 -0.56 

 sd. 0.86 0.92 0.93 0.94 0.95 0.97 0.97 

 𝐻  4.11 4.21 4.24 4.26 4.27 4.30 4.30 

 max. 1.63 1.86 1.90 1.90 1.90 1.90 1.90 

 median -0.47 -0.49 -0.49 -0.52 -0.51 -0.51 -0.51 

 min. -3.60 -3.56 -3.57 -3.63 -3.66 -3.67 -3.67 

 kur. 3.46 3.18 3.13 3.09 3.08 3.08 3.08 

 sk. -0.46 -0.41 -0.39 -0.34 -0.35 -0.32 -0.33 

HER mean -0.54 -0.56 -0.58 -0.57 -0.57 -0.57 -0.57 

 sd. 0.87 0.95 0.92 0.96 0.94 0.98 0.98 

 𝐻  4.08 4.23 4.21 4.26 4.24 4.31 4.31 

 max. 1.70 1.82 1.81 1.83 1.82 1.83 1.86 

 median -0.50 -0.51 -0.54 -0.57 -0.54 -0.53 -0.53 

 min. -3.55 -3.55 -3.57 -3.61 -3.58 -3.59 -3.61 

 kur. 3.54 3.18 3.22 3.10 3.13 3.10 3.07 
 sk. -0.54 -0.43 -0.37 -0.31 -0.32 -0.30 -0.31 

1sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 
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 Table S3.2: Summary statistics of the prediction on test set by model – Short-range dataset with noise (SR1). 

Method Statistics1 200 400 600 800 1000 1500 2000 

SR1 

NN mean -0.50 -0.52 -0.55 -0.55 -0.56 -0.55 -0.56 

 sd. 1.15 1.16 1.14 1.14 1.13 1.11 1.11 

 𝐻  4.45 4.51 4.49 4.50 4.50 4.48 4.49 

 max. 2.50 2.70 2.70 2.70 2.70 2.70 2.99 

 median -0.43 -0.51 -0.53 -0.54 -0.54 -0.53 -0.54 

 min. -3.66 -3.66 -3.66 -3.84 -3.84 -3.84 -4.00 

 kur. 2.86 2.79 2.92 2.91 2.90 2.97 2.97 

 sk. -0.27 -0.05 -0.05 -0.09 -0.14 -0.13 -0.18 

IDS mean -0.49 -0.53 -0.55 -0.58 -0.56 -0.56 -0.56 

 sd. 0.85 0.92 0.92 0.95 0.95 0.96 0.96 

 𝐻  4.09 4.22 4.24 4.28 4.27 4.29 4.30 

 max. 2.19 2.37 2.34 2.28 2.27 2.19 2.07 

 median -0.47 -0.47 -0.50 -0.53 -0.51 -0.53 -0.52 

 min. -3.42 -3.30 -3.29 -3.50 -3.52 -3.59 -3.55 

 kur. 3.17 2.84 2.97 2.86 2.91 2.98 2.92 

 sk. -0.23 -0.13 -0.19 -0.21 -0.21 -0.22 -0.23 

OK mean -0.49 -0.52 -0.54 -0.57 -0.55 -0.56 -0.56 

 sd. 0.79 0.90 0.91 0.93 0.93 0.94 0.94 

 𝐻  3.99 4.20 4.21 4.24 4.25 4.25 4.25 

 max. 1.58 2.30 2.22 2.20 2.21 2.17 1.90 

 median -0.48 -0.46 -0.48 -0.51 -0.49 -0.49 -0.49 

 min. -3.17 -3.16 -3.19 -3.31 -3.44 -3.51 -3.45 

 kur. 3.22 2.82 2.84 2.76 2.85 2.94 2.89 

 sk. -0.22 -0.19 -0.24 -0.25 -0.26 -0.27 -0.26 

HER mean -0.50 -0.53 -0.54 -0.57 -0.55 -0.56 -0.56 

 sd. 0.90 0.96 0.98 0.98 0.97 0.97 0.97 

 𝐻  4.16 4.28 4.31 4.33 4.31 4.31 4.30 

 max. 2.24 2.31 2.35 2.28 2.28 2.26 2.00 

 median -0.47 -0.48 -0.50 -0.54 -0.51 -0.53 -0.52 

 min. -3.32 -3.32 -3.38 -3.46 -3.45 -3.55 -3.54 

 kur. 3.11 2.70 2.89 2.82 2.85 2.98 2.89 
 sk. -0.27 -0.13 -0.14 -0.16 -0.20 -0.19 -0.24 

1sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 
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 Table S3.3: Summary statistics of the prediction on test set by model – Long-range dataset without noise (LR0). 

Method Statistics1 200 400 600 800 1000 1500 2000 

LR0 

NN mean -1.03 -1.02 -1.01 -1.02 -1.02 -1.01 -1.02 

 sd. 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

 𝐻  3.98 4.06 4.10 4.11 4.11 4.12 4.11 

 max. 1.04 1.15 1.15 1.23 1.23 1.23 1.23 

 median -0.92 -0.91 -0.90 -0.90 -0.90 -0.90 -0.90 

 min. -2.78 -2.78 -3.07 -3.07 -3.07 -3.08 -3.08 

 kur. 2.10 2.13 2.20 2.18 2.20 2.15 2.16 

 sk. 0.00 0.02 0.03 0.02 0.03 0.01 0.00 

IDS mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02 

 sd. 0.85 0.87 0.88 0.89 0.89 0.90 0.90 

 𝐻  3.91 3.98 4.05 4.07 4.07 4.08 4.09 

 max. 0.99 1.08 1.14 1.15 1.16 1.14 1.14 

 median -0.86 -0.88 -0.89 -0.88 -0.88 -0.88 -0.89 

 min. -2.72 -2.71 -3.01 -3.01 -3.01 -3.02 -3.02 

 kur. 1.95 2.01 2.11 2.12 2.12 2.11 2.13 

 sk. -0.12 -0.03 -0.03 -0.01 -0.01 -0.02 -0.01 

OK mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02 

 sd. 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

 𝐻  4.11 4.11 4.12 4.12 4.12 4.12 4.12 

 max. 1.34 1.28 1.24 1.28 1.27 1.27 1.27 

 median -0.93 -0.88 -0.89 -0.89 -0.89 -0.89 -0.89 

 min. -2.89 -2.97 -3.08 -3.08 -3.07 -3.07 -3.07 

 kur. 2.12 2.15 2.17 2.17 2.16 2.16 2.16 

 sk. 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

HER mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02 

 sd. 0.88 0.88 0.89 0.90 0.90 0.90 0.91 

 𝐻  3.98 4.03 4.07 4.09 4.09 4.09 4.09 

 max. 1.02 1.13 1.14 1.22 1.20 1.15 1.15 

 median -0.89 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 

 min. -2.77 -2.78 -3.06 -3.07 -3.07 -3.08 -3.07 

 kur. 2.02 2.09 2.17 2.16 2.16 2.13 2.14 
 sk. -0.05 0.00 0.00 0.00 0.01 -0.01 -0.01 

1sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 
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Table S3.4: Summary statistics of the prediction on test set by model – Long-range dataset with noise (LR1). 40 

Method Statistics1 200 400 600 800 1000 1500 2000 

LR1 

NN mean -1.00 -0.99 -1.00 -1.01 -1.01 -1.00 -1.01 

 sd. 1.00 1.02 1.03 1.03 1.04 1.05 1.05 

 𝐻  4.23 4.33 4.36 4.35 4.39 4.40 4.40 

 max. 1.40 1.87 1.87 1.87 1.87 1.87 1.87 

 median -0.90 -0.94 -0.97 -0.99 -0.99 -0.99 -0.98 

 min. -3.19 -3.65 -3.65 -3.65 -3.65 -3.65 -3.87 

 kur. 2.50 2.66 2.56 2.57 2.57 2.51 2.49 

 sk. -0.11 0.03 0.02 0.10 0.08 0.06 0.03 

IDS mean -0.99 -0.98 -0.99 -1.01 -1.00 -1.01 -1.01 

 sd. 0.86 0.90 0.91 0.92 0.92 0.93 0.93 

 𝐻  4.04 4.14 4.14 4.16 4.18 4.17 4.16 

 max. 1.21 1.76 1.48 1.45 1.61 1.54 1.43 

 median -0.79 -0.85 -0.85 -0.88 -0.90 -0.88 -0.90 

 min. -3.04 -3.12 -3.12 -3.12 -3.05 -3.15 -3.25 

 kur. 2.21 2.39 2.28 2.31 2.32 2.26 2.26 

 sk. -0.26 0.01 0.04 0.06 0.05 0.05 0.03 

OK mean -0.98 -0.96 -0.98 -1.00 -1.00 -1.01 -1.01 

 sd. 0.79 0.83 0.85 0.86 0.87 0.88 0.89 

 𝐻  3.89 4.01 4.00 4.02 4.02 4.04 4.05 

 max. 0.81 1.29 1.25 1.32 1.30 1.14 1.19 

 median -0.78 -0.81 -0.81 -0.84 -0.84 -0.86 -0.88 

 min. -2.85 -2.82 -2.74 -2.76 -2.69 -2.84 -2.92 

 kur. 2.28 2.38 2.17 2.18 2.18 2.13 2.13 

 sk. -0.40 -0.10 -0.04 -0.01 -0.01 -0.01 -0.01 

HER mean -0.99 -0.97 -0.98 -1.01 -1.00 -1.01 -1.01 

 sd. 0.85 0.89 0.89 0.90 0.90 0.92 0.91 

 𝐻  4.01 4.11 4.07 4.11 4.11 4.12 4.11 

 max. 1.20 1.64 1.32 1.33 1.36 1.30 1.30 

 median -0.80 -0.83 -0.83 -0.86 -0.89 -0.89 -0.89 

 min. -3.00 -2.98 -2.82 -2.90 -2.83 -2.98 -3.13 

 kur. 2.21 2.46 2.23 2.28 2.27 2.23 2.23 
 sk. -0.28 0.03 0.02 0.05 0.04 0.05 0.02 

1sd. = standard deviation; 𝐻 = entropy; max. = maximum; min. = minimum; kur. = kurtosis; sk. = skewness. 

 

Fig. S3.1Figure S3.1 illustrates for the residue correlation of the models calculated using the test set. The more negative the 

residue correlation, the greater the tendency of true 𝑧 values being overestimated in low-valued regions of the field and 

underestimated in high-valued regions. 
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Figure S3.1: Performance comparison of NN, IDS, OK and HER: a) residueal correlation for SR datasets, and b) residueal 

correlation for LR datasets. Continuous line refers to datasets without noise and dashed lines to datasets with noise. 

 




