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Abstract. Despite showing a great success of applications in many commercial fields, machine learning and data science 

models generally show limited success in many scientific fields, including hydrology (Karpatne et al., 2017). The approach is 

often criticized for its lack of interpretability and physical consistency. This has led to the emergence of new modelling 

paradigms, such as Theory Guided Data Science (TGDS) and physics informed machine learning. The motivation behind such 

approaches is to improve the physical meaningfulness of machine learning models by blending existing scientific knowledge 10 

with learning algorithms.  Following the same principles in our prior work (Chadalawada et al., 2020), a new model induction 

framework was founded on Genetic Programming (GP), namely Machine Learning Rainfall-Runoff Model Induction Toolkit 

(ML-RR-MI). ML-RR-MI is capable of developing fully-fledged lumped conceptual rainfall-runoff models for a watershed of 

interest using the building blocks of two flexible rainfall-runoff modelling frameworks. In this study, we extend ML-RR-MI 

towards inducing semi-distributed rainfall-runoff models. The meaningfulness and reliability of hydrological inferences gained 15 

from lumped models may tend to deteriorate within large catchments where the spatial heterogeneity of forcing variables and 

watershed properties is significant. This was the motivation behind developing our machine learning approach for distributed 

rainfall-runoff modelling titled Machine Induction Knowledge Augmented - System Hydrologique Asiatique (MIKA-SHA). 

MIKA-SHA captures spatial variabilities and automatically induces rainfall-runoff models for the catchment of interest without 

any explicit user selections. Currently, MIKA-SHA learns models utilizing the model building components of two flexible 20 

modelling frameworks. However, the proposed framework can be coupled with any internally coherent collection of building 

blocks. MIKA-SHA's model induction capabilities have been tested on the Rappahannock River basin near Fredericksburg, 

Virginia, United States. MIKA-SHA builds and tests many model configurations using the model building components of the 

two flexible modelling frameworks and quantitatively identifies the optimal model for the watershed of concern.  In this study, 

MIKA-SHA is utilized to identify two optimal models (one from each flexible modelling framework) to capture the runoff 25 

dynamics of the Rappahannock River basin. Both optimal models achieve high-efficiency values in hydrograph predictions 

(both at catchment and subcatchment outlets) and good visual matches with the observed runoff response of the catchment. 

Further, the resulted model architectures are compatible with previously reported research findings and fieldwork insights of 

the watershed and are readily interpretable by hydrologists. MIKA-SHA-induced semi-distributed model performances were 

compared against existing lumped model performances for the same basin. MIKA-SHA-induced optimal models outperform 30 
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the lumped models used in this study in terms of efficiency values while benefitting hydrologists with more meaningful 

hydrological inferences about runoff dynamics of the Rappahannock basin. 

1 Introduction 

Understanding the underlying environmental dynamics occurring within watersheds is an essential and fundamental task in 

hydrology. Hydrological models play a key role in capturing the discharge dynamics of watersheds. Irrespective of 35 

considerable advances over past decades, there is still some scope to advance state of the art in hydrological knowledge to 

fully describe the functioning of a watershed upon a rainfall event owing to the highly complex, interdependent, and non-linear 

behaviours of governing physical phenomena. So far, no hydrological model structure can perform equally well over the entire 

range of problems (Fenicia et al., 2011; Beven, 2012a). This leads to different research directions seeking different hydrological 

models based on different modelling strategies (Beven, 2012b). Hydrological models are expected not only to have good 40 

predictive power but also to be interpretable in capturing relationships among the forcing terms and catchment response which 

may lead to the advancement of scientific knowledge (Babovic, 2005, 2009; Karpatne et al., 2017). Ideally, the final goal of 

any successful hydrological model must be based on a physically meaningful model architecture along with a good predictive 

performance. 

It is often observed that simple data-driven models outperform the theory-driven models, such as physics-based and conceptual 45 

models, in terms of prediction accuracy in many hydrological applications (Nearing et al., 2020). At the same time, the machine 

learning models are heavily criticized for the lack of interpretability of induced models (often referred to as the black-box 

paradigm). As a result of lack of interpretability, the contribution from data-driven models, such as machine learning models, 

towards scientific advancement is minimal. This hindered achieving the level of success machine learning models achieved in 

the commercial domain (Karpatne et al., 2017). Incorporating available scientific knowledge to guide learning algorithms to 50 

generate more physically reliable and consistent models will be an effective way to improve the explainability of machine 

learning models. This concept is presently recognized as a new modelling paradigm in the machine learning community as 

Physics Informed Machine Learning (Physics Informed Machine Learning Conference, 2016) or Theory Guided Data Science 

(Karpatne et al., 2017).  

In this contribution, following the above-mentioned modelling paradigm, we introduce a novel model induction engine called 55 

Machine Induction Knowledge Augmented - System Hydrologique Asiatique (MIKA-SHA) for automatic induction of semi-

distributed rainfall-runoff models for an area of concern. This work is motivated by the success of our previously introduced 

(Chadalawada et al., 2020) model induction toolkit titled Machine Learning Rainfall-Runoff Model Induction Toolkit (ML-

RR-MI). ML-RR-MI is capable of inducing fully-fledged lumped conceptual rainfall-runoff models. We use the term 

"hydrologically informed machine learning" to refer that the existing body of hydrological knowledge is used to govern the 60 

machine learning algorithms to induce rainfall-runoff model configurations that are consistent with basic hydrological 
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understanding. The proposed framework uses Genetic Programming (GP) as its learning algorithm, whereas the model building 

modules of two flexible rainfall-runoff modelling frameworks, namely FUSE (Clark et al., 2008) and SUPERFLEX (Fenicia 

et al., 2011; Kavetski and Fenicia, 2011) represent the elements of existing hydrological knowledge.  

By being a TGDS approach, the top priority of MIKA-SHA remains as the induction of readily interpretable rainfall-runoff 65 

models with high prediction accuracy. However, the specific objectives of the current study involve 1) Utilize GP for semi-

distributed model induction by incorporating spatial heterogeneities of catchment properties and climate variables into the 

rainfall-runoff modelling, 2) Adopting a quantitative model selection approach to select an optimal model with appropriate 

complexity to represent runoff dynamics of the catchment of interest instead of the "simpler the better" paradigm used in ML-

RR-MI. The approach addresses common hydrological issues, such as equifinality, subjectivity, and uncertainty, in the context 70 

of semi-distributed modelling and machine learning. This study is a part of the larger ongoing research effort of using 

hydrologically informed machine learning for automatic model induction. 

The following is how the rest of the text is organized. Section 1 provides a brief discussion on the background behind the 

development of the MIKA-SHA toolkit. The proposed model induction framework is introduced in Sect. 2. An application of 

the proposed framework is given in Sect. 3, followed by a discussion on research findings in Sect. 4. The last section (Sect. 5) 75 

presents the conclusions of the current study. Additional details are given in the Appendix.   

1.1 Uniqueness of the place   

Considering the uniqueness of the place is an important aspect of hydrological modelling (Beven, 2020). The Spatio-temporal 

heterogeneity of landscape characteristics, such as topography, bedrock geology, soil types, land use and climate variables, 

forces each watershed to behave uniquely. In general, this variability is scale-dependent. More heterogeneity can be observed 80 

in both surface and subsurface levels in higher scales, such as at the catchment scale. Namely, there is a possibility that macro-

scale patterns of catchments are governed by heterogeneity (Nearing et al., 2020). The use of flexible/ modular modelling 

frameworks and distributed modelling concepts are two available toolsets to incorporate spatial heterogeneity into the model 

building phase.   

The majority of hydrological models are developed using a generic model configuration that provides reasonable results across 85 

a relatively wide spectrum of catchments and meteorological conditions (known as fixed models). At the same time, it is quite 

improbable for a model to perform equally well in completely different climates and geological regions. In contrast to fixed 

models, modular modelling frameworks provide more flexibility in the model development by allowing the hydrologist to 

customize the model structure to suit the intended task. Instead of a single hypothesis available in fixed models, model building 

components of these modular modelling frameworks can be structured diversely to evaluate multiple hypotheses on watershed 90 

functionings. The high degree of transferability of flexible modelling frameworks is an aiding factor in proceeding in the 

direction of a unified hydrological theory at a watershed level. Simultaneously due to the dynamic modularity and high level 
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of granularity of modular modelling frameworks, constructing a suitable model for the watershed of concern may require 

significant effort and expert knowledge. Hence, a hydrologist with novice knowledge would require to test many model 

structures before selecting an optimal model that is time demanding and computationally intensive. Consequently, it hinders 95 

the opportunity to use the flexible modelling frameworks to their full potential.  

In addition to incorporating spatial heterogeneity in its modelling process, if the modeller's requirement lies within the 

catchment (e.g. discharge at a particular location within the catchment), then the only option would be to adopt a distributed 

model. At the early stages of distributed modelling, the approach (fully distributed modelling) was constrained due to the lack 

of data and computational power (Wood et al., 2011; Beven, 2012b; Fatichi et al., 2016). Hence, it was thought that this 100 

approach would gain success with the advancement of technology. However, until today, fully distributed models have not 

achieved the expected outcome (Beven, 2020). This points out that the problem lies not only in the lack of local information 

but also due to the issues in how processes are represented within the distributed model (Beven, 2020). An effective alternative 

for fully distributed models would be the semi-distributed models, where different conceptual models are allocated to 

functionally distinct catchment areas. In the semi-distributed modelling approach, each model operates individually with no 105 

dependencies or interconnections with others of the network (Boyle et al., 2001; Fenicia et al., 2016). This and using conceptual 

models rather than small-scale physics enable semi-distributed models to be several orders simpler than fully distributed 

models.  

1.2 Choice of the model 

There is an overwhelming number of hydrological models in practice. Selecting an optimal model from among suitable 110 

competing models is not a trivial matter. According to Wainwright and Mulligan (2013), the optimal model is defined as the 

model with enough complexity to explain the underlying physical phenomenon. Ideally, optimal model selection should be 

based on bias-variance tradeoff as the more complex models result in low bias and high variance, while simpler models result 

in low variance and high bias in their predictions (Hoge et al., 2018). However, there is no clear cut definition for model 

complexity, and existing definitions differ across different disciplines (Guthke, 2017). In the context of hydrology, model 115 

complexity is often defined based on the process complexity and spatial complexity of the model (Clark et al., 2016), where 

process complexity is a measure of the number of hydrological processes explicitly represented by the model and spatial 

complexity is a measure of the degree of model's spatial discretization and their connectivity.  

As per the survey conducted by Baartman et al. (2019), most researchers believe selecting a model among competing models 

should be governed based on the question at hand (i.e. suitability of a model to achieve research objectives). However, Addor 120 

and Melsen (2018) have reported that the choice of the model in hydrological applications is often based on familiarity with 

the model (i.e. based on legacy rather than adequacy). The inherent model complexity is frequently assessed concerning either 

the number of model parameters, number of state variables, number of physical processes included or computational 
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complexity, and the choice of such matrix to measure complexity is often subjective (Baartman et al., 2019). One possible 

alternative to measuring model complexity would be through the analysis of time series complexity of resulted output 125 

signatures of the models based on information theory and pattern matching (Sivakumar and Singh, 2012). Regardless of the 

matrix used to measure the model complexity, model parsimony should be a part of that as unwarranted complexity may lead 

to overfitting and high uncertainty (Guthke, 2017). 

1.3 Machine Learning in Water Resources 

Machine learning, or data science in general, has become an irreplaceable tool, not only in commercials but also in many 130 

scientific fields, with advancements in computing power and data acquisition through remote sensing and geographical 

information systems (Yaseen et al., 2015). Especially within the last two decades, there is an increase in data science model 

applications, such as machine learning models in hydrological modelling (Yaseen et al., 2015). Evolutionary Computation 

(EC), Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), Wavelet-Artificial Intelligence models (W-AI), 

and Fuzzy set are the most popular data science techniques in hydrological modelling (Yaseen et al., 2015). Each of these 135 

techniques has its strengths and weaknesses. The scope of this paper does not discuss different data-driven methods in detail. 

Alternatively, interested readers may refer to the textbook by Hsieh (2009) and review articles by ASCE Task Committee 

(2000), Oyebode and Adeyemo (2014), Yaseen et al. (2015), and Mehr et al. (2018). Machine learning models have shown 

encouraging performances in a range of water resources applications because of their capability to handle noise complexity, 

non-stationarity, non-linearity, and dynamism of data (Yaseen et al., 2015). Certainly, if we are only interested in better 140 

forecasting results then, the machine learning models might be the preferred choice over the conceptual or physics-based 

models (provided no data scarcity) due to their better predictive capability (Nearing et al., 2020). A machine learning model 

also has the advantage of requiring much less human effort to design and train than a theory-based model (Nearing et al., 

2020).  

Data-driven techniques have made it possible to develop implementable models with high prediction accuracy using the 145 

available data with limited dependence on domain knowledge. At the same time, this very nature of data-driven models has 

become the main point of criticism, especially in scientific fields, including hydrology. They are regularly quoted as black-

box models where the user has a limited understanding of how models generate their forecasts. There are two main reasons 

for the limited success of data-driven models in scientific fields (Karpatne et al., 2017). The first reason is the data scarcity for 

the model training, making it harder to extrapolate model predictions beyond the available labelled data. The second reason is 150 

associated with the objectives of scientific discovery, where the final goal is not only to have actionable models but also to 

convey a mechanistic awareness of underlying operations that may lead to the advancement of scientific knowledge. However, 

data-driven models, like Deep Learning (DL) models, have demonstrated better hydrograph forecasts even in ungauged basins 

(one of the most challenging tasks in hydrological modelling) over the conventional methods (Kratzert et al., 2019).  
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Not recognizing the potential of machine learning models in hydrological modelling has been identified as a danger to the 155 

hydrological modelling community (Nearing et al., 2020). Nearing et al. (2020) argue that machine learning models can 

identify catchment similarities by producing good performances even for the watersheds that were not utilized for training 

those models. This illustrates machine learning model capabilities in developing basin-scale theories that traditional models 

could not do so well. Further, the authors refuse the most frequent critique on machine learning models (difficulties in 

interpretation) by arguing that even the accuracy of process representation in physics-based models is questionable owing to 160 

their poorer forecasting accuracies, criticizing only on machine learning models is unfair and meaningless. Despite having a 

huge potential within machine learning models, state-of-the-art machine learning capacities have not yet been thoroughly 

explored in hydrological modelling (Shen et al., 2018). Nearing et al. (2020) expect even distributed hydrological models are 

likely to establish primarily utilizing machine learning soon. Interestingly, recent studies like Nevo (2020), Xiang and Demir 

(2020) have already explored the potential of DL in distributed streamflow and flood prediction, respectively. Beven (2020) 165 

emphasizes the significance of DL models' interpretability and proposes a more explicit integration of process information 

with DL models. Further, he highlights that machine learning models should also consider issues, such as equifinality, 

parameter and data uncertainties, common in conventional modelling approaches.  

1.3.1 Genetic Programming (GP) 

Genetic Programming is an EC algorithm (Koza, 1992) inspired through the basic principle of Darwin's evolution theory. The 170 

symbolic form of individual solution representation (known as parse trees) distinguishes GP from the other EC methods. GP 

is a form of supervised machine learning that allows computer programs to be generated automatically. The ability of GP to 

generate explicit mathematical expressions of input-output relationships distinguishes it from other machine learning 

techniques. As a result, GP is referred to as a grey-box data-driven mechanism and differentiates it from the other black box 

data-driven approaches, like ANNs (Mehr et al., 2018). Other than that, GP has become a powerful machine learning approach 175 

due to its conceptual simplicity, parallel processing capability, and ability to obtain a near-global or global solution.  

GP generates its solutions (GP individuals) by arranging mathematical functions, input variables, and random constants. These 

are known as the building blocks of the GP algorithm. The algorithm begins with a collection of randomly generated candidate 

solutions for the problem to be solved. The performance of each candidate is then assessed using a user-defined objective 

function. Following that, genetic operators, including mutation and crossover, are performed on current generation GP 180 

individuals to produce offspring for the next generation. The procedure for selecting parent individuals for breeding guarantees 

that more fit individuals have a better chance of being chosen. The new set of offspring becomes the candidate solutions in the 

next generation. This process is repeated until the algorithm meets its termination criteria (usually a maximum number of 

generations). The candidate solutions evolve towards the global optimum when the GP algorithm curtails the error margin 

between the simulated values of its individuals and measured observations (Babovic and Keijzer, 2000).  185 
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GP has been utilized extensively in water resources, including rainfall-runoff modelling (Babovic and Keijzer, 2002; Babovic 

et al., 2020), meteorological data analysis (Bautu and Bautu, 2006), streamflow forecasting (Meshgi et al., 2014, 2015; Karimi 

et al., 2016), soil moisture estimation (Elshorbagy and El-Baroudy, 2009), water quality simulations (Savic and Khu, 2005), 

sediment transport modelling (Babovic and Abbott, 1997; Safari and Mehr, 2018), reservoir operations (Giuliani et al., 2015), 

and groundwater simulations (Datta et al., 2014).  190 

1.3.2 Physics Informed Machine Learning   

While the community frequently admires theory-based models (physics-based and conceptual models) owing to their 

explainability, which may serve to understand watershed functioning better, they often experience poorer predictive power 

than data science models. At the same time, simplistic applications of data-driven models, which often result in higher 

prediction accuracy than theory-based models, may suffer serious difficulties with interpretation as they are unable to provide 195 

basic hydrological insights (Chadalawada et al., 2020). This dichotomy led to the evolution of two major communities in water 

resources engineering: those who work with theory-based modelling and those who deal with machine learning techniques, 

which appear to be working quite separately (Todini, 2007; Sellars, 2018).  

One promising way to bridge the gap between theory-based and machine learning modelling communities would be to couple 

the current hydrological understanding to govern machine learning models (Babovic and Keijzer, 2002; Babovic, 2009). This 200 

recent paradigm is presently referred to as Physics Informed Machine Learning (Physics Informed Machine Learning 

Conference, 2016) or Theory Guided Data Science (TGDS) (Karpatne et al., 2017). This paradigm intends to simultaneously 

address the limitations of data science and physics-based models (primarily, lack of interpretability of data science models and 

poorer predictive capabilities of physics-based models) and to generate physically consistent and more generalizable models. 

According to the taxonomy presented by Karpatne et al. (2017), there are five different approaches to incorporating scientific 205 

knowledge into data science models. They are 1. theory-guided design of data science models, 2. theory-guided learning of 

data science models, 3. theory-guided refinement of data science outputs, 4. learning hybrid models of theory and data science, 

5. augmenting theory-based models using data science. To bring together scientific knowledge and data science techniques, a 

typical physics informed data science model might use one or more of the approaches mentioned above. Only a few explainable 

artificial intelligence utilizations in hydrological modelling are reported in the past (Cannon and Mckendry, 2002; Keijzer and 210 

Babovic, 2002; Fleming, 2007). However, there is an increasing trend of adopting TGDS models for recent water resources 

applications (McGovern et al., 2019), such as hydroclimatic model building (Snauffer et al., 2018), automated model building 

(Chadalawada et al., 2020) and hydrologic process simulation (Solander et al., 2019).   

 

Physics informed GP 215 
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While physics informed machine learning is a relatively new modelling paradigm, there have been attempts over the past two 

decades to blend the hydrological understanding with the basic GP framework to improve the physical consistency of induced 

models. Past research, such as Babovic and Keijzer (1999, 2002) and Keijzer and Babovic (2002), use the definitions of units 

of measurement to bias the search process of the GP algorithm to induce dimensionally correct expressions (a so-called 

dimensionally aware GP). The authors examined two different approaches, a coercion approach (i.e. a soft constraint on 220 

dimensional correctness) and a strongly-typed approach (i.e. a hard constraint on dimensional correctness) and found out that 

the coercion approach may be more appropriate for scientific discovery. More importantly, the dimensionally aware GP 

expressions were able to provide additional insights into the underlying problem. Babovic et al. (2001) utilized the 

dimensionally aware GP to derive hydraulic formulas from measured data and reported that GP induced expressions are quite 

similar to those identified by human experts with similar or improved accuracy. In a separate study (Baptist et al., 2007; 225 

Babovic, 2009), dimensionally aware GP was used to identify expressions to describe resistance induced by vegetation and 

found that GP induced expressions were superior to the expressions derived by domain experts. 

Another augmented version of GP was used to identify predominant processes in hydrological system dynamics by Selle and 

Muttil (2011). A reservoir model, a cumulative sum and delay function, and a moving average operator were incorporated as 

basic hydrological insights into the GP function set by Havlicek et al. (2013) to develop a rainfall-runoff prediction programme 230 

called SORD. They achieved superior performances in prediction accuracy with SORD than with ANNs and GP without the 

above-mentioned special functions. GP was utilized by Chadalawada et al. (2017) to induce the most suitable reservoir 

configuration for a catchment of interest using a customized function set with conceptual modelling concepts extracted from 

the Sugawara Tank model architecture (Sugawara, 1979). Previously, we introduced (Chadalawada et al., 2020) an automated 

hydrologically informed lumped rainfall-runoff model induction toolkit based on GP titled Machine Learning Rainfall-Runoff 235 

Model Induction Toolkit.  

2 Methodology 

Chadalawada et al. (2020) introduced a new hydrologically informed rainfall-runoff model induction toolkit (ML-RR-MI)  

based on GP for developing lumped conceptual hydrological models utilizing model building components of FUSE and 

SUPERFLEX frameworks. The unique feature of ML-RR-MI is that it uses the existing body of hydrological knowledge to 240 

govern the GP algorithm to generate physically consistent models with high prediction accuracies. The building components 

of the two flexible modelling frameworks are used to incorporate hydrological knowledge with ML-RR-MI's learning 

algorithm. These building blocks are incorporated as purpose-built functions (named as FUSE and SUPERFLEX) into the 

function set of ML-RR-MI along with basic mathematical functions.  

Successful applications of the ML-RR-MI toolkit motivated the present research to extend its modelling capabilities towards 245 

distributed hydrological modelling. Although applying the ML-RR-MI toolkit is more meaningful for small catchments due 
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to its lumped watershed representation, there is no strict catchment size limitation for using it. However, with the increase of 

basin sizes, the meaningfulness of the lumped values decreases. Hence, the inferences made on the basis of a lumped model 

may be accurate but not reasonable or realistic. Due to the limited success and higher-order complexity of fully distributed 

models, the semi-distributed modelling concept is used for the current study, where a network of functionally distinguishable 250 

conceptual models from flexible modelling frameworks is developed to represent the watershed dynamics. As a result of the 

higher granularity and flexibility provided by the flexible modelling frameworks, even with a lumped application, one can try 

thousands of possible model architectures for a catchment of interest. This may rise to millions of possible model combinations 

in the context of semi-distributed modelling, which makes it almost impossible to test them manually. 

Further, selecting a model configuration without testing alternative model configurations would become highly subjective and 255 

require considerable expert knowledge and time. Upon review of 1500+ peer-reviewed articles, Addor and Melsen (2019) 

reported that selecting the hydrological model is frequently based on legacy factors such as prior experience, habit, easiness, 

the popularity of the model rather than adequacy factors like appropriateness of the model to achieve research objectives. A 

semi-distributed model choice based on a subjective model selection may introduce biased research findings. Therefore, we 

see a necessity to automate the model building phase to overcome these limitations. Henceforth, our machine learning approach 260 

for rainfall-runoff modelling titled Machine Induction Knowledge Augmented - System Hydrologique Asiatique (MIKA-

SHA) captures spatial variabilities and automatically induces rainfall-runoff models for the catchment of interest without any 

explicit user selections. 

GP has been selected as the machine learning technique here due to its ability to generate explicit mathematical relationships 

among independent (forcing) and dependent (response) variables. Therefore, incorporating hydrological knowledge can be 265 

done more explicitly with GP than other black-box type machine learning techniques. Yet, most state of the art GP utilizations 

in water resources (Oyebode and Adeyemo, 2014; Mehr et al., 2018), GP is still utilized as a short-term prediction mechanism 

that is analogous to ANN applications. In our contribution, we test the full potential of GP by developing fully-fledged rainfall-

runoff models. As MIKA-SHA relies on GP, there is no requirement for pre-definition of a model structure (hypothesis on 

catchment runoff dynamics). Instead, identifying an appropriate model structure is part of the machine learning framework, 270 

meaning that GP simultaneously optimizes model structure and model parameters. Here hydrological insights are introduced 

through integrating process understanding by including model building components from existing flexible modelling 

frameworks into the function set of the GP algorithm. As per the classification presented by Karpatne et al. (2017), our 

framework falls under the hybrid TGDS category. Currently, MIKA-SHA learns models utilizing the model building 

components of two flexible modelling frameworks. However, the proposed framework can be coupled with any internally 275 

coherent collection of building blocks. R (R Core Team, 2018) programming language has been used to implement MIKA-

SHA. 
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2.1 MIKA-SHA workflow 

The workflow diagram of the MIKA-SHA is given in Fig. 1. Details about each module of MIKA-SHA (data preprocessing, 

model identification, model selection, and uncertainty analysis) are given in the sequel. 280 

 

Figure 1: Workflow diagram of MIKA-SHA 

2.1.1 Data Preprocessing 

The data preprocessing stage includes quality checking of forcing terms (precipitation, potential evaporation, temperature) and 

runoff data, identification of subcatchments and Hydrological Response Units (HRUs) through watershed delineation, 285 

preparation of subcatchment averaged forcing terms vectors and setting algorithmic parameters (e.g. number of generations, 

population size, number of independent runs, etc.). In general, there are no specific rules to select the appropriate algorithmic 

settings. However, the chosen settings eventually decide the computational time and demand. MIKA-SHA uses QGIS software 

(QGIS, 2020) to prepare the required Digital Elevation Maps (DEM), land use maps, geological maps and soil maps for 

watershed delineation. Then, the SWAT+ plugin of QGIS software is used for the watershed delineation. HRUs can either be 290 

identified based on the topography, soil type, land use, geology or combination of different landscape types of the catchment 

of interest. 
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2.1.2 Model Identification 

At the model identification stage, GP based machine learning framework of MIKA-SHA optimizes both model structure and 

parameter values of candidate solutions which involves the following steps. 295 

Step 1: A set of candidate model structures (semi-distributed model structures made from the purpose-built functions, basic 

mathematical functions and random constants) are randomly generated to capture the watershed's runoff dynamics (known as 

the initial population). These model structures (GP individuals) may differ from each other in terms of model structural 

components and parameter values. MIKA-SHA consists of three different initialization procedures. (i) Full method (all 

individuals have the maximum allowable initial tree depth), (ii) Grow method (individuals of different tree depths up to the 300 

maximum allowable initial tree depth are possible), (iii) Ramped half-and-half method (individuals are generated both using 

the full method and grow method in equal proportions). 

Step 2: The performance of each candidate model structure is evaluated on a user-defined multi-objective criterion. Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002) is used to found the multi-objective optimization scheme 

of MIKA-SHA. Each individual in the population is evaluated on each objective function separately. MIKA-SHA utilizes 305 

parallel computation at this stage to reduce computational time.  

Step 3: Each individual is assigned a non-domination rank and a crowding distance value based on the objective function 

values. The ranks are identified based on the Pareto-optimality concept. For example, all the individuals with non-domination 

rank two are dominated by individuals with rank one. However, individuals with rank two are not dominated by any other 

individuals with a higher rank (lower the rank, better the individual). On the other hand, crowding distance measures how an 310 

individual located relative to the other individuals of the same rank (more the distance better the individual – more diversity). 

Step 4: Individuals are selected for a mating pool to create offsprings using the tournament selection mechanism (a user-

defined number of individuals are chosen randomly. If they have different ranks, the individual with the lowest rank is selected. 

If all of them have the same rank, then the individual with the highest crowding distance is selected). The selection mechanism 

ensures that individuals with higher performance values in terms of the objective functions used have a higher chance of 315 

selection. 

Step 5: Genetic operators, mainly crossover (two parent individuals are divided and recombined to form two offsprings) and 

mutation (sub-tree of a parent individual is randomly substituted with another sub-tree), are applied to parent individuals to 

create the child population. Then, Step 2 is followed for the child population. 
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Step 6: Both parent population and child population are combined, and Step 3 is followed. Individuals are selected for the next 320 

parent population from the combined population using non-domination ranks and crowding distance values (e.g. individuals 

with lower ranks proceed first into the next generation until the population size reaches).  

Step 7: Step 2 to Step 6 are repeated until the algorithm reaches the maximum number of generations. Rank one individuals 

of the final generation are saved into a different file. 

Step 8: Step 1 to Step 7 are repeated for a user-defined number of independent runs to cover the solution space to a greater 325 

extent. The model identification stage's output consists of a set of non-dominated models (Pareto-optimal models) based on 

the selected objective criteria. 

2.1.3 Model Selection 

By nature, the GP algorithm drives its total population towards the global or near-global solution, which results in a set of 

possible solutions instead of one solution. In the context of rainfall-runoff model induction, such possible solutions may 330 

represent different model structures (different hypotheses about catchment dynamics). Identifying the best performing model 

from Pareto front of non-dominated solutions for a watershed of interest is not a trivial matter. Hence, it is often required to 

use a model selection scheme to select the optimal model from the competing models. The model selection stage of MIKA-

SHA starts with the best models of each independent run derived through the GP framework at the model identification stage. 

The quantitative optimal model selection process is streamlined as follows.  335 

Step 1: Performance evaluation using the same multi-objective criterion on validation data for all identified models from the 

model identification stage. 

Step 2: Re-identification of Pareto-optimal models based on calibration and validation fitness performances. 

Step 3: Calculation of Standardized Signature Index Sum (SIS) of each Pareto-optimal model. 

• Standardized Signature Index Sum (SIS) 340 

The SIS value is a comparative performance metric that quantifies a model's capability in capturing the observed Flow Duration 

Curve (FDC) relative to other competitive models (Ley et al., 2016). A model with a negative SIS value indicates over average 

capability in capturing observed FDC and vice versa. In SIS calculation, both observed and simulated FDCs are divided into 

four flow regimes based on flow exceeding probabilities and calculate the absolute difference in observed and simulated 

cumulative discharges in each region. Then, four separate Z-score values (representing four regions) are assigned to each 345 

model based on the standard deviation and mean of all models considered. The algebraic sum of those four Z-score values 

becomes the SIS value of the model. 
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𝑍𝑠𝑎 =
|𝑥𝑠𝑎| − 𝑥𝑎̅̅ ̅

𝜎𝑎

                                                                                                                                                                                      (1)        

𝑆𝐼𝑆𝑎 = 𝑍𝑠𝐹𝐻𝑉 + 𝑍𝑠𝐹𝑀𝑉 + 𝑍𝑠𝐹𝑀𝑆 + 𝑍𝑠𝐹𝐿𝑉                                                                                                                                             (2)       

where |𝑥𝑠𝑎| : modulus of the signature index where, s: model, a: FDC signature based on Flow Exceeding Probability (FEP) 350 

(FHV: FEP less than 2%, FMV: FEP between 2% and 20%, FMS: FEP between 20% and 70%, FLV: FEP greater than 70%) 

and x: value, Z: standard score,  𝑥𝑎̅̅ ̅  and 𝜎𝑎 : average and standard deviation of |𝑥𝑠𝑎|. 

Step 4: Selection of Pareto-optimal models with SIS scores below zero over the calibration and validation periods. 

Step 5: Identify unique model structures (referred to as competitive models) from the models in Step 4. If there is more than 

one model with the same model structure, the model with the most negative SIS value is selected. 355 

Step 6: Competitive models are ranked separately according to three relative measures: Cross sample entropy value (Cross-

SampEn), Dynamic Time Warping (DTW) distance and model parsimony (lower the value better the performance, lower the 

rank). The model with the lowest sum up rank is identified as the optimal model for the catchment in consideration. 

• Cross sample entropy value (Cross-SampEn) 

Cross-SampEn value is a derivation from the commonly used Sample Entropy value (Richman and Moorman, 2000). Sample 360 

Entropy is a complexity measure of data series which has its origin in information theory. Sample Entropy value gives an idea 

about the complexity of the data series based on the information content in a mathematical way. Cross-SampEn value also 

follows the same concept but is used to measure the correlation between two series by matching patterns from one series with 

another. A low Cross-SampEn value indicates that the two series are more similar to each other. More details about Cross-

SampEn can be found in Delgado-Bonal and Marshak (2019). 365 

  

• Dynamic Time Warping (DTW) distance 

DTW distance (Sakoe and Chiba, 1978) is a similarity measure between two time series, including warping of their time axes 

to find the optimal temporal alignment between the two. DTW distance is derived as an alternative to the commonly used 

Euclidean distance. Two identical time series with a small-time shift may ending up with a large Euclidean distance and may 370 

consider them as two dissimilar time series. The DTW method captures them as two similar time series as it ignores the shift 

in the time axes. A low DTW distance indicates more similarity between the two time series compared. Details and applications 

of the DTW method can be found in Salvador and Chan (2007), Giorgino (2009) and Vitolo (2015). 
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• Model parsimony 375 

Here, the model parsimony is evaluated in terms of each model's number of associated model parameters. One model is 

considered more parsimonious than another model if the number of model parameters of the former is lower than the latter. 

2.1.4 Uncertainty Analysis 

Once the optimal model is identified for the catchment of interest, the Generalized Likelihood Uncertainty Estimation (GLUE) 

approach (Beven and Binley, 1992) is used to perform its sensitivity and uncertainty analysis as described below. 380 

Step 1: A random subset of model parameters of the identified optimal model structure is uniformly changed within their 

parameter range (in this case, between 0 and 1 as all parameter ranges are normalized within the MIKA-SHA framework) 

while keeping the remaining model parameters at their calibrated values (parameter values determined in the model 

identification stage). Then, the performance of the parameter set is evaluated using a user-defined objective function 

(likelihood estimator). If the model parameter set provides an objective function value greater than the likelihood threshold, 385 

the parameter set (known as a behavioural model), its objective function value and the simulated discharge are recorded.  

Step 2: Repeat the above step until the number of behavioural models reaches a user-defined value. Each time the number of 

parameters to change and which parameters to change are randomly chosen from a uniform distribution. 

Step 3: For each time step, simulated discharge values of all behavioural models are sorted in ascending order. Then, a weight 

is assigned to each model (objective function value itself can be used as the weight). Finally, the Cumulative Probability 390 

Distribution Function (CDF) of the weights is calculated at each time step.  

Step 4: For each time step, a relationship diagram is obtained by taking CDF as the x-axis and simulated discharge at the y-

axis. From the diagram, corresponding simulated discharge values of 95% and 5% quantile of CDF are selected as the upper 

and lower bounds of the 90% confidence band.  

Step 5: Percentage of measured streamflows of the calibration period, which fall inside the 90% confidence band, is used to 395 

measure the uncertainty estimation capability of the selected optimal model (i.e., check whether the chosen model’s parameter 

uncertainty is capable or not to account for total output uncertainty).  

Step 6: If the uncertainty estimation capability is satisfactory (above a user-defined % value), the model performance of the 

optimal model is tested for an independent time frame (testing period) which is not used in model selection or identification 

stages. If the uncertainty estimation is not satisfactory, then all the above steps will be repeated with the next best competitive 400 

model. 
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Step 7: Sensitivity scatter plot diagrams are constructed for every model parameter using the parameter values of behavioural 

models. The shape of the scatter plot (the x-axis – normalized parameter range, the y-axis – objective function values) is used 

to identify the degree of sensitivity of each model parameter.   

MIKA-SHA has been developed by following good practices to handle general modelling issues related to both hydrological 405 

modelling and machine learning. Multi-objective optimization is used to ensure the selected models perform better in many 

flow characteristics instead of fitting to a particular segment of measured flow. The automated and quantitative approach of 

the toolkit ensures no direct human involvement (no subjectivity in model induction or selection except setting algorithmic 

parameters). Model performance is evaluated on different absolute and relative performance measures. A model performing 

well in many performance measures may suffer less from equifinality (model performs for the right reasons). To prevent 410 

overfitting, the optimal model selection process considers performances of both calibration and validation periods. Further, 

model parsimony is considered in the model selection stage as more complex models are more susceptible to overfitting and 

over-parameterization. Parallel computing significantly reduces overall computation time since purpose-built functions take 

much longer to compute than basic mathematical functions. The more stable fixed-step implicit Euler's method is used to solve 

partial differential equations. 415 

2.2 Purpose-built functions  

Incorporating existing hydrological knowledge is done by adding purpose-built functions into the function set of the GP-based 

optimization framework (model identification stage) of the MIKA-SHA toolkit. At present, there are two different model 

building block libraries in MIKA-SHA, SUPERFLEX library and FUSE library. Functional argument values of purpose-built 

functions decide the structure and corresponding parameter values of induced rainfall-runoff models. 420 

2.2.1 SUPERFLEX Library 

SUPERFLEX library of MIKA-SHA includes model building components of popular SUPERFLEX (Fenicia et al., 2011; 

Kavetski and Fenicia, 2011) flexible rainfall-runoff modelling framework. SUPERFLEX framework facilitates hydrologists 

to test many different hypotheses about the functioning of the watershed of interest using the model building components 

(reservoirs, junctions, and lag functions) available in the framework. The water storages within the catchment, such as soil 425 

moisture, interception, groundwater, snow, and their release of water, are represented through reservoir units. Junction 

elements conceptualize the merging and splitting different fluxes in catchment dynamics (e.g. Hortonian flow, evaporation). 

Channel routing (delays in flow transmission) is described using lag functions. A number of constitutive functions are available 

to describe lag function characteristics and storage-discharge relationships of storage units (reservoirs). SUPERFLEX 

applications in rainfall-runoff modelling are found in van Esse et al. (2013), Fenicia et al. (2014, 2016), and Molin et al. (2020). 430 

Within MIKA-SHA, a purpose-built function named SUPERFLEX assembles these generic components in a meaningful and 

guided manner to induce different rainfall-runoff model structures. 
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2.2.2 FUSE Library 

FUSE library of MIKA-SHA consists of model building components of Framework for Understanding Structural Errors 

(FUSE) (Clark et al., 2008) modular rainfall-runoff modelling framework. FUSE was developed to examine the effect of model 435 

structural differences on rainfall-runoff modelling. FUSE conceptualizes the functioning of a catchment using a two-zone 

model architecture: an unsaturated zone (upper soil layer) and a saturated zone (lower soil layer). The model building modules 

of FUSE involve the choice of upper and lower soil configurations and parameterization for different hydrological processes, 

such as evaporation, percolation, interflow, surface runoff, and baseflow. The modeller has the freedom of selecting these 

model building modules from four rainfall-runoff models (TOPMODEL, ARNO/VIC, SACRAMENTO, and PRMS), which 440 

are known as FUSE parent models. For more details and applications of FUSE, please refer to Clark et al. (2011) and Vitolo 

(2015). Inside the MIKA-SHA FUSE library, a purpose-built function named FUSE integrates model building decisions of the 

FUSE framework to develop different rainfall-runoff model configurations. 

In the present contribution, a new function called DISTRIBUTED has been incorporated into the GP function set along with 

FUSE, SUPERFLEX and other mathematical functions. The DISTRIBUTED function represents the induced semi-distributed 445 

models (GP individuals) within the framework. The parse tree demonstration of the DISTRIBUTED function is shown in Fig. 

2. As it can be seen, the DISTRIBUTED function uses either FUSE or SUPERFLEX functions as its function arguments 

depending on the selected model inventory library by the user. The length of the function arguments of DISTRIBUTED 

function relies on the count of HRUs within the watershed. The DISTRIBUTED function assigns separate model structures to 

each HRU, and HRUs within the same subcatchment share the same forcing variables. The last two arguments of the 450 

DISTRIBUTED function are the lag parameters used to route HRU outflows into the subcatchment outlets (Lag_HRU) and 

subcatchment outflows into the catchment outlet (Lag_Sub). Here, the routing module is based on two-parameter gamma 

distribution with the shape parameter equals 3 (Clark et al., 2008). Nodes from depth = 2 to depth = maximum allowable tree 

depth are the function arguments of either FUSE or SUPERFLEX functions. For more details on FUSE and SUPERFLEX 

functions, such as function arguments and parse tree representations, please refer to Chadalawada et al. (2020). 455 

2.3 Performance Measures 

MIKA-SHA consists of a performance measures library, including the most widely adopted performance matrices. The 

explanatory power of the performance measure used to assess the prediction accuracy of model simulations has a direct impact 

on the optimal model selection (Chadalawada and Babovic, 2017). In the present study, we have selected four absolute 

performance measures, namely volumetric efficiency (Criss and Winston, 2008), Kling-Gupta efficiency (Gupta et al., 2009), 460 

Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) and log Nash-Sutcliffe efficiency (Krause et al., 2005) from the MIKA-

SHA's performance measures library to evaluate the simulated discharge values against the measured discharge values. The 

four selected objective functions are sensitive to different regions of measured and simulated runoff signatures, and their details 

are given in Table 1. The four selected objective functions are used in the multi-objective optimization scheme of MIKA-SHA. 
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 465 

Figure 2: Parse tree representation of the DISTRIBUTED function of MIKA-SHA 

Table 1: Absolute performance measures used in the current study  

Name Equation Sensitivity Optimum 

Volumetric Efficiency 

(VE)  
𝑉𝐸 = 1 − 

|∑ (𝑄𝑜𝑡 − 𝑄𝑠𝑡)𝑁
𝑡=1 |

∑ 𝑄𝑜𝑡
𝑁
𝑡=1

    

N: Time steps, 𝑄𝑜𝑡 : Observed streamflow,  𝑄𝑠𝑡  : 

Simulated streamflow 

Water balance 1 

Kling-Gupta Efficiency 

(KGE)  

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2     

r: Linear correlation coefficient,  𝛼 =  
𝜎𝑠

𝜎𝑜
, 𝛽 =  

𝜇𝑠

𝜇𝑜
, 

𝜎: Standard deviation, 𝜇: Mean 

Flow variability 1 

Nash-Sutcliffe Efficiency 

(NSE)  
𝑁𝑆𝐸 = 1 − 

∑ (𝑄𝑜𝑡 − 𝑄𝑠𝑡)2𝑁
𝑡=1

∑ (𝑄𝑜𝑡 − 𝑄𝑜𝑡
̅̅ ̅̅ )2𝑁

𝑡=1

         

 𝑄𝑜𝑡
̅̅ ̅̅  : Average of measured discharge values 

High flows 1 

Log Nash-Sutcliffe 

Efficiency (logNSE)  
𝑙𝑜𝑔𝑁𝑆𝐸 = 1 −

∑ (𝑙𝑜𝑔𝑄𝑜𝑡 − 𝑙𝑜𝑔𝑄𝑠𝑡)2𝑁
𝑡=1

∑ (𝑙𝑜𝑔𝑄𝑜𝑡 − 𝑙𝑜𝑔𝑄𝑜𝑡
̅̅ ̅̅ )2𝑁

𝑡=1

       

𝑙𝑜𝑔: Natural logarithm  

Low flows 1 
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3 Application of MIKA-SHA 

This section aims to demonstrate how MIKA-SHA works through a one case study using a watershed in the United States. 

MIKA-SHA was applied to induce two optimal semi-distributed models for the watershed using SUPERFLEX and FUSE 470 

model inventory libraries independently.  

3.1 Study Area  

The Rappahannock River basin at Fredericksburg, Virginia (Fig. 3) was selected to test the semi-distributed model induction 

capabilities of MIKA-SHA. Rappahannock River basin is an Intermediate Scale Area (ISA) river basin with a drainage area 

of 4134 km2 located in the southeastern quadrant of the United States. Basin details are summarized in Table 2. Digital 475 

Elevation Data (DEM) of the Rappahannock River basin at 30 m resolution were obtained from the United States Geological 

Survey (USGS) EarthExplorer's Shuttle Radar Topography Mission (SRTM) data (USGS EarthExplorer, 2020). The entire 

basin was split into three subcatchments for the current application. The topography of the region was used to identify HRUs, 

and three HRUs, namely, Hill (slope band % > 10), Floodplain (slope position threshold = 0.1), and plateau (slope band % < 

10), were selected. The HRU details are given in Table 3. 480 

 

Figure 3: Rappahannock River basin at Fredericksburg, Virginia, United States (map was generated through SWAT+ 

plugin in QGIS software using USGS EarthExplorer's Shuttle Radar Topography Mission DEM data) 
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Fifteen years (1 January 1987 to 31 December 2001) of forcing terms and discharge data of Rappahannock River basin were 

utilized for model spin-up (1 January 1987 – 31 December 1987), calibration (1 January 1988 – 31 December 1992), validation 485 

(1 January 1993 – 31 December 1997) and testing (1 January 1998 – 31 December 2001). Daily catchment average potential 

evaporation, temperature, and streamflow data were downloaded from the MOPEX dataset (USGS ID: 1668000) (MOPEX, 

2021). The spatial distribution of daily precipitation data was taken into account and lumped at the subcatchment scale. 

Precipitation data were downloaded from the Dayment dataset (Dayment, 2020), which provides daily weather parameters 

(resolution: 1 km x 1 km) over North America. The time series diagrams of precipitation, potential evaporation, temperature, 490 

and streamflow of the Rappahannock River basin are displayed in Fig. 4. Additionally, hydrometeorological data of 

subcatchment 1 and 2 are available in the CAMELS dataset (USGS ID: 1667500 and 1664000, respectively) (Newman et al., 

2015). Even though MIKA-SHA only utilizes runoff at the catchment outlet for model training (calibration period), it can 

predict runoff at every subcatchment outlet. Therefore, once MIKA-SHA identifies the optimal models, their internal 

prediction capabilities are assessed using observed runoff data of subcatchment 1 and 2. Once the relevant data are processed, 495 

the user can set the algorithmic parameters of MIKA-SHA. Table 4 summarizes the algorithmic setting of MIKA-SHA used 

in the current study. 

Table 2: Basin details 

Parameter Details  

Drainage area 4134 km2 

Outlet coordinates  38.3222o, -77.5181o 

Sub catchment area % Sub 1 – 29.2%, Sub 2 – 38.8%, Sub 3 – 32.0% 

Floodplain/ Upslope  20.3% / 79.7% 

Annual average discharge 378 mm/year 

Annual average potential evaporation 921 mm/year 

Annual average temperature 12.46 0C 

Annual average precipitation 1030 mm/year 

Average slope 0.03035 

Average elevation 198.9 m 

Length from subcatchment outlet to catchment 

outlet along the main river 

Sub 1 – 60.6 km, Sub 2 – 47.8 km, Sub 3 – 0 km 

Vegetation type/ Soil type Mixed forest/ Silt loam and clay loam 

 

 500 
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Table 3: Area percentages of topography-based HRUs 

Subcatchment Hill (%) Floodplain (%) Plateau (%) 

1 45.2 20.6 34.2 

2 44.6 23.9 31.5 

3 19.0 15.6 65.4 

 

Figure 4: Forcing terms and streamflow data of Rappahannock River basin 505 
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Table 4: Algorithmic settings of MIKA-SHA used in the current study 

Option Setting  

Number of independent Runs 40 

Size of population  2000 

Termination criteria Generation number = 50 

The randomized method used for initialization  Ramped half-and-half  

Purpose built functions/ Mathematical functions SUPERFLEX, FUSE, DISTRIBUTED/  +, -, /, * 

Input variables – SUPERFLEX Precipitation, temperature, potential evaporation 

Input variables – FUSE Precipitation, potential evaporation  

Dependent variable  Streamflow 

Objective functions used NSE, VE, logNSE, KGE 

Normalized range of random constants  0 to 1 

Depth of parse trees- initial/ maximum SUPERFLEX – 3/5, FUSE – 2/5 

The mating pool selection strategy  Tournament selection with four competitors at once 

Genetic operator probability: mutation  

          Constant/ Tree/ Separation/ Node 

 

0.5/0.5/0.3/0.3 

Genetic operator probability: crossover  0.7 

Count of CPUs used for parallel computation 40 units  

Level of parallel computation  Performance evaluation level  

Likelihood threshold – GLUE Nash Sutcliffe efficiency = 0.6 (Beven and Free, 2001) 

Behavioural models – GLUE 5000 

Satisfactory uncertainty estimation threshold  60% 

3.2 Results 

3.2.1 MIKA-SHA models induced using SUPERFLEX Library 

Adhering to the methodology given in Sect. 2, the model architecture presented in Fig. 5 (hereinafter referred to as MIKA-

SHA_SUPERFLEX) was identified to capture the runoff response of the Rappahannock River basin. The hillside structure of 510 

the MIKA-SHA_SUPERFLEX consists of four reservoirs: a fast-reacting reservoir (FR), an unsaturated reservoir (UR), a 

slow-reacting reservoir (SR), and a riparian reservoir (RR). The hillside model structure also includes a half-triangular delay 

function associated with SR. The discharge of the UR incorporates a modified logistic curve function relationship with its 

storage. The storage-discharge relationships of both RR and SR are linear, while FR has a power function relationship. The 

model structure representing the floodplain consists of only a UR with a power function storage-discharge relationship. The 515 

second link from the top of the floodplain model structure represents the runoff generation through infiltration excess overland 
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flow. The Plateau area model structure of MIKA-SHA_SUPERFLEX is based on a three-reservoir configuration with a UR, 

an FR, and an SR. The power function governs the storage-discharge relationships of both UR and FR of the plateau area 

model structure, while the storage-discharge relationship of SR is linear.  

 520 

 

Figure 5: MIKA-SHA_SUPERFLEX model configuration (P: precipitation, E: evaporation, Q: total discharge, RR: riparian 

reservoir, SR: slow-reacting reservoir, FR: fast-reacting reservoir, UR: unsaturated reservoir, L: half-triangular lag function) 

The performance matrix over calibration, validation and testing phases of MIKA-SHA_SUPERFLEX is given in Table 5. The 

high-efficiency values of all four absolute performance measures suggest that MIKA-SHA_SUPERFLEX is competent in 525 

capturing the catchment dynamics of the Rappahannock River basin. More importantly, MIKA-SHA_SUPERFLEX is capable 

of predicting discharge at two subcatchment outlets satisfactorily. Throughout the calibration, validation, and testing phases, 

the model behaves consistently. As a result, we may anticipate no overfitting problems with training data (calibration data). 

Figure 6 illustrates the simulated hydrograph of MIKA-SHA_SUPERFLEX along with the observed hydrograph of the 

watershed. As can be seen, the simulated discharge signature matches the observed discharge signature reasonably well. It is 530 

noteworthy that MIKA-SHA_SUPERFLEX underestimates the peak discharges in some instances. Figure 7 illustrates the 

observed FDCs of the watershed and the simulated FDCs of MIKA-SHA_SUPERFLEX for calibration, validation, and testing 

periods. Modelled FDCs nearly follow the measured FDCs both in medium and high flow regimes but diverge slightly at low 

flow regimes.  

Uncertainty analysis reveals that 60.2% of the measured streamflow data of the calibration period lie inside the 90% uncertainty 535 

bands of MIKA-SHA_SUPERFLEX, which is higher than the threshold set for the current study (60%). Hence, it is assumed 

that the MIKA-SHA_SUPERFLEX’s parameter uncertainty alone sufficiently estimates the total output uncertainty. Out of 

the 37 model parameters included in MIKA-SHA_SUPERFLEX, 13 model-sensitive parameters can be recognized by 

analyzing the shapes of sensitivity scatterplots. Five of them are associated with the hillside model structure (D_R, D_F, Ce, 

Tlag, and Beta_Qq_UR). The Floodplain model structure consists of two model-sensitive parameters (Ce and D_S), while the 540 

plateau area model structure includes four model-sensitive parameters (Beta_Qq_UR, Ce, Smax_UR, and K_Qb_FR). Further, 

the two lag parameters of the DISTRIBUTED function are also identified as model-sensitive parameters (lag_HRU and 
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lag_Sub). The sensitivity scatterplots and the model parameters details of MIKA-SHA_SUPERFLEX are provided in the 

Appendix. 

Table 5: Performance matrix of MIKA-SHA_SUPERFLEX 545 

Outlet 
Efficiency (Calibration/ Validation/ Testing) 

KGE NSE logNSE VE 

Catchment 0.83/ 0.82/ 0.83 0.74/ 0.66/ 0.82 0.76/ 0.73/ 0.74 0.65/ 0.57/ 0.61 

Subcatchment 1 0.73/ 0.69/ 0.89 0.55/ 0.55/ 0.79 0.67/ 0.67/ 0.73 0.60/ 0.53/ 0.59 

Subcatchment 2 0.72/ 0.72/ 0.86 0.60/ 0.44/ 0.74 0.68/ 0.67/ 0.70 0.57/ 0.51/ 0.56 

 

Figure 6: Simulated hydrograph of MIKA-SHA_SUPERFLEX with the observed hydrograph of the basin 

 

Figure 7: Simulated FDCs of MIKA-SHA_SUPERFLEX with the observed FDCs of the basin 
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3.2.2 MIKA-SHA models induced using FUSE Library 550 

The identified optimal semi-distributed model for the Rappahannock River basin using the FUSE library of MIKA-SHA is 

shown in Fig. 8 (hereinafter referred to as MIKA-SHA_FUSE). Hillside, floodplain, and plateau area model structures of 

MIKA-SHA_FUSE, consisting of the same upper-zone configuration identical to FUSE parent model ARNO-VIC/ 

TOPMODEL, a single state soil reservoir. Like in the FUSE parent model SACRAMENTO, the lower-layer architecture of 

the hillside model structure has a tension reservoir with two parallel tanks. The Floodplain model structure incorporates a 555 

lower zone configuration like the FUSE parent model TOPMODEL with an unlimited size reservoir with power recession. In 

comparison, the lower zone configuration of the plateau area model structure consists of single fixed-size storage similar to 

the ARNO-VIC model. Surface flow from all three model structures is developed as saturation-excess overland flow and 

described using the flux equations in the FUSE parent model TOPMODEL. Both hillside and plateau area model structures 

have the same percolation mechanism, allowing water to percolate from the field capacity to saturation, and is described using 560 

the flux equations of the FUSE parent model PRMS/ TOPMODEL. In contrast, percolation in the plateau area is controlled by 

the saturated zone's moisture amount as in the SACRAMENTO model. A root weighting evaporation model is used in hillside 

and floodplain model structures, while a sequential evaporation model is used in plateau area model structure. Interflow and 

routing are not allowed in any model structure of MIKA-SHA_FUSE.  

 565 

 

Figure 8: MIKA-SHA_FUSE model configuration (P: precipitation, E: evaporation, qb: base flow, qsx: surface flow, q12: 

percolation, Zuz, and Zlz: depth of unsaturated zone and saturated zone, S1, S2: unsaturated zone and saturated zone water 

content, S2
T: tension water content, S2

FA, and S2
FB: free water content in the primary and secondary baseflow storages, qb

A and 

qb
B: baseflow from the primary and secondary baseflow storages, ϴwlt, ϴfld, ϴsat: soil moisture at wilting point, field capacity 570 

and saturation) 

The performance matrix of MIKA-SHA_FUSE is presented in Table 6. According to the high-efficiencies, the simulated 

discharge of MIKA-SHA_FUSE shows a good match with the observed discharge data. Further, MIKA-SHA_FUSE performs 
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consistently over the calibration, validation, and testing periods. MIKA-SHA_FUSE also demonstrates reasonable prediction 

accuracy for the two subcatchment outlets. Further, the simulated hydrograph (Fig. 9) of MIKA-SHA_FUSE can reasonably 575 

well capture the observed flow signature of the watershed. Simulated FDCs of MIKA-SHA_FUSE are presented in Fig. 10, 

along with the observed FDCs of the catchment. The simulated FDC at the calibration stage nearly follows the observed FDC 

and deviates slightly in validation and testing periods. According to the uncertainty analysis, 82.1% of the measured 

streamflows of the calibration period lie between the 90% uncertainty bands of MIKA-SHA_FUSE. This high percentage 

value suggests that the parameter uncertainty of MIKA-SHA_FUSE alone sufficiently estimates the total output uncertainty. 580 

Out of the total 34 model parameters of MIKA-SHA_FUSE, 11 model-sensitive parameters can be identified. Among them, 

four are related to hillside model structure (fracten, rtfrac1, percexp, and percfrac), three are related to floodplain model 

structure (maxwatr_1, rtfrac1, and loglamb), and two are associated with the plateau area model structure (fracten and 

maxwatr_2). The two lag parameters (lag_HRU and lag_Sub) are the remaining two model-sensitive parameters. Please refer 

to the Appendix for Sensitivity scatterplots and model parameter details of MIKA-SHA_FUSE.  585 

Table 6: Performance matrix of MIKA-SHA_FUSE 

Outlet 
Efficiency (Calibration/ Validation/ Testing) 

KGE NSE logNSE VE 

Catchment 0.87/ 0.79/ 0.79 0.77/ 0.66/ 0.76 0.81/ 0.78/ 0.77 0.68/ 0.60/ 0.58 

Subcatchment 1 0.73/ 0.71/ 0.86 0.61/ 0.54/ 0.80 0.73/ 0.77/ 0.79 0.64/ 0.58/ 0.64 

Subcatchment 2 0.81/ 0.74/ 0.80 0.68/ 0.47/ 0.72 0.77/ 0.78/ 0.77 0.62/ 0.57/ 0.58 

 

 

Figure 9: Simulated hydrograph of MIKA-SHA_FUSE with the observed hydrograph of the basin 
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 590 

Figure 10: Simulated FDCs of MIKA-SHA_FUSE with the observed FDCs of the basin 

3.2.3 Lumped vs. Distributed 

This section compares the optimal semi-distributed models identified by MIKA-SHA (MIKA-SHA_SUPERFLEX & MIKA-

SHA_FUSE) with lumped models calibrated/ induced for the same Rappahannock River basin. First, two widely used 

conceptual rainfall-runoff models, the XINANJIANG model (Zhao, 1992) and the HyMOD model (Wagener et al., 2001), are 595 

calibrated in the lumped setting (catchment averaged forcing terms from the MOPEX dataset are used) to predict the basin's 

catchment outflow using a non-machine learning approach. Model codes of both XINANJIANG and HyMOD models were 

obtained from the MARRMoT framework (Knoben et al., 2019), where model codes of 46 existing hydrological models are 

provided. Two hydrological models were calibrated using Dynamically Dimensioned Search (DDS) algorithm (Tolson and 

Shoemaker, 2007) with the same model spin-up and calibration periods. DDS is a single-objective global search optimization 600 

algorithm that has been used in many hydrological modelling studies (Shafii and Tolson, 2015; Becker et al., 2019; Spieler et 

al., 2020). In this study, the DDS algorithm was used with NSE as the objective function. Ten iterations of the DDS algorithm 

with 5000 model evaluations per one iteration were utilized with each model. The parameter set which gives the highest NSE 

over the calibration period was identified as the optimum parameter set. For the comparison purpose, VE, KGE, and logNSE 

values of each model (using the optimum parameter set identified with NSE) were also calculated. The performance matrix of 605 

two calibrated models is presented in Table 7. According to the efficiency values, both the XINANJIANG and HyMOD models 

perform poorly for the Rappahannock basin compared to MIKA-SHA-induced semi-distributed models. 

Table 7: Performance matrix of XINANJIANG model and HyMOD model 

Model 
Efficiency (Calibration/ Validation/ Testing) 

KGE NSE logNSE VE 

XINANJIANG 0.55/ 0.51/ 0.61 0.49/ 0.42/ 0.56 0.70/ 0.68/ 0.65 0.57/ 0.51/ 0.44 

HyMOD 0.65/ 0.60/ 0.65 0.57/ 0.52/ 0.63 0.39/ 0.51/ 0.36 0.50/ 0.47/ 0.36 
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Next, our priorly introduced GP-based ML-RR-MI toolkit was used to induce optimal lumped models for the same 

Rappahannock River basin using SUPERFLEX and FUSE libraries. ML-RR-MI was run using the same settings given in 610 

Table 4. In contrast to the MIKA-SHA, once the ML-RR-MI identifies the competitive models, the most parsimonious model 

in terms of the number of model parameters is recognized as the optimal model. The model configurations of the two optimal 

models identified by ML-RR-MI with SUPERFLEX library (hereinafter referred to as ML-RR-MI_SUPERFLEX) and FUSE 

library (hereinafter referred to as ML-RR-MI_FUSE) are shown in Fig. 11. ML-RR-MI_SUPERFLEX is similar to the plateau 

area model structure of MIKA-SHA_SUPERFLEX regarding the reservoir units and storage-discharge relationships. 615 

Additionally, ML-RR-MI_SUPERFLEX consists of a half-triangular lag function with SR. Interestingly, ML-RR-MI_FUSE's 

upper- and lower-layer architectures and percolation mechanism are similar to the plateau area model structure of MIKA-

SHA_FUSE. In contrast, surface runoff of ML-RR-MI_FUSE is controlled by the upper layer, and the evaporation module is 

root weighting as in FUSE parent model ARNO-VIC. Further, routing is also allowed in ML-RR-MI_FUSE. 

 620 

Figure 11: ML-RR-MI_SUPERFLEX and ML-RR-MI_FUSE model configurations (P: precipitation, E: evaporation, Q: 

total discharge, SR: slow-reacting reservoir, FR: fast-reacting reservoir, UR: unsaturated reservoir, L: half-triangular lag 

function, qb: base flow, qsx: surface flow, q12: percolation, Zuz, and Zlz: depth of unsaturated zone and saturated zone, S1 and 

S2: unsaturated zone and saturated zone water content, ϴwlt, ϴfld, ϴsat: soil moisture at wilting point, field capacity and 

saturation) 625 

The performance matrix of ML-RR-MI_SUPERFLEX and ML-RR-MI_FUSE is given in Table 8. In contrast to the two fixed 

conceptual models (XINANJIANG & HyMOD), two optimal lumped models identified by ML-RR-MI demonstrate higher 

prediction capabilities. MIKA-SHA_FUSE model outperforms the ML-RR-MI_FUSE model in all four objective functions 

over the calibration, validation, and testing periods. However, the ML-RR-MI_SUPERFLEX model outperforms/ equally 

performs the MIKA-SHA_SUPERFLEX model in the calibration and validation periods. Yet, the MIKA-SHA_SUPERFLEX 630 

model outperforms ML-RR-MI_SUPERFLEX in all objective functions over the testing period. As per the workflow of both 
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MIKA-SHA & ML-RR-MI, calibration and validation periods are used in the optimal model identification process. Therefore, 

the performance in the testing period demonstrates the out-of-sample performance of induced models. 

Table 8: Performance matrix of  ML-RR-MI_SUPERFLEX and ML-RR-MI_FUSE 

Model 
Efficiency (Calibration/ Validation/ Testing) 

KGE NSE logNSE VE 

ML-RR-MI_SUPERFLEX 0.88/ 0.82/ 0.65 0.77/ 0.66/ 0.76 0.80/ 0.77/ 0.67 0.68/ 0.60/ 0.54 

ML-RR-MI_FUSE 0.82/ 0.78/ 0.69 0.67/ 0.60/ 0.67 0.78/ 0.77/ 0.75 0.63/ 0.58/ 0.51 

4 Discussion  635 

4.1 MIKA-SHA_SUPERFLEX 

Among the three model structures of MIKA-SHA_SUPERFLEX, the hillside model structure has the most complex 

configuration in terms of reservoir units and model parameters. Further, the hillside model structure is correlated with the 

majority of model-sensitive parameters, and runoff per unit area is also highest in the hillside model structure. Therefore, 

runoff generation from the hillside structure is a significant component of the total runoff of MIKA-SHA_SUPERFLEX. This 640 

is quite meaningful due to the higher topographic gradients in upper subcatchments (subcatchment 1: 23.4 m km-1 and 

subcatchment 2: 30.3 m km-1) of the Rappahannock basin.  

On the other hand, the plateau area model structure has the lowest runoff generation per unit area (i.e., highest storage). We 

find this behaviour of plateau area model structure reasonable as more subsurface oriented delayed response may expect in 

plateau area due to milder slopes which may result in higher resident times (water may have more time to reach deeper soil 645 

layers). Further, most of the catchment area of the Rappahannock basin consists of moderately permeable silty loam and clay 

loam soils which may also encourage vertical drainage. Conceptually, SRs are used to represent the slow runoff components 

like groundwater flow. SRs in both hillside and plateau area model structures have linear storage-discharge relationships. 

Interestingly, it is reported that (Fenicia et al., 2006) linear reservoirs best describe the slow flow dynamics of groundwater 

movement. Further, the inclusion of stable baseflow components (SRs in both hillside and plateau area model structures) in 650 

the model configuration of MIKA-SHA_SUPERFLEX is reasonable because the main river channel of the basin can be 

categorized as a perennial river where a continuous groundwater supply is required to sustain water throughout the year. 

The floodplain model structure of MIKA-SHA_SUPERFLEX has a relatively simple model architecture with only one 

reservoir. The floodplain area is expected to be saturated or nearly saturated and continuously connected with the stream. In 

earlier FLEX and SUPERFLEX applications (Savenije, 2010; Fenicia et al., 2016), where the model selection for each HRU 655 

was based on expert judgement, a simple linear reservoir model was identified as sufficient enough to represent quick runoff 
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responses of riparian zones. Consistent with this in the current application, MIKA-SHA also identified a simpler model with 

one reservoir to capture the runoff dynamics of floodplains. However, the UR in the floodplain model structure has a power 

function relationship between its discharge and storage. As mentioned earlier, infiltration excess overland flow is included as 

a runoff component of the floodplain model structure. Often floodplains consist of soil types with poor permeabilities and 660 

hence may cause quick runoff generation mechanisms like infiltration excess overland flow. The constitutive functions of FRs 

and URs in MIKA-SHA_SUPERFLEX are non-linear, which may help capture the non-linear and threshold-like response of 

runoff generation. 

4.2 MIKA-SHA_FUSE 

The hillside model structure of MIKA-SHA_FUSE has the highest runoff generation per unit area (approximately 2.1 x plateau 665 

area runoff generation), followed by the floodplain model structure (about 1.6 x plateau area runoff generation). Interestingly, 

a similar order was observed with MIKA-SHA_SUPERFLEX. Similar to the hillside model structure of MIKA-

SHA_SUPERFLEX, the hillside model structure of MIKA-SHA_FUSE has the most complex model configuration in terms 

of the number of model parameters and is associated with most of the model-sensitive parameters. Hence, it is clear that runoff 

generation from the hillside model structure dominates the total runoff generation of MIKA-SHA_FUSE, which is logical due 670 

to the high topographic relief of the basin. Further, a high runoff generation in floodplain model structure is meaningful due 

to high water table levels in floodplains, resulting in quick runoff generation mechanisms like saturation excess overland flow. 

Comparatively, lower percolation can be expected in floodplain model structure as its percolation is controlled by the moisture 

content in the lower zone (percolation is higher when the lower zone is dry). This goes in line with the characteristics of 

floodplains, where most of the time remain saturated or nearly saturated.  675 

On the other hand, a comparatively lower runoff contribution from the plateau area model structure is reasonable as more 

vertical drainage can be expected than lateral drainage in plateau areas due to milder slopes and moderately permeable soil 

types. As per the calibrated model parameters and model-sensitive parameters, runoff from the plateau area model structure is 

dominated by the subsurface flow component. Lower-layer reservoirs of both floodplain and plateau area model structures 

consist of non-linear storage-discharge relationships (baseflow), which may help them capture the non-linear runoff response 680 

of the Rappahannock basin. In contrast, baseflow from the hillside model structure is generated through two parallel linear 

reservoirs. 

4.3 Model induction capability of MIKA-SHA 

The proposed MIKA-SHA toolkit incorporates spatial heterogeneity in catchment properties and forcing terms into the model 

building phase and induces representative semi-distributed rainfall-runoff models based on measured data to capture the 685 

discharge response of watershed of interest. In comparison to the lumped model performances presented in Sect. 3.2.3, two 

optimal semi-distributed models identified by MIKA-SHA with FUSE and SUPERFLEX libraries achieve higher efficiency 
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values, especially for the testing period. The difference in efficiency values is significant between MIKA-SHA-induced semi-

distributed models and two fixed lumped hydrological models (XINANJIANG and HyMOD). MIKA-SHA-induced semi-

distributed models may achieve high-efficiency values than fixed hydrological models used in this study due to (i) flexibility 690 

offered by modular modelling frameworks to customize the model structure in contrast to the single model structure in fixed 

hydrological models, (ii) incorporation of spatial heterogeneity in catchment properties and climate variables, (iii) capability 

of GP based machine learning framework to optimize both model structure and parameters over non-machine learning method. 

Even though the two fixed lumped models could not achieve satisfactory performance, two lumped models induced by our 

priorly introduced ML-RR-MI toolkit performed well in capturing the Rappahannock River basin runoff response. This 695 

demonstrates the capability of lumped models to perform satisfactorily, even for large catchments with substantial spatial 

heterogeneities. However, the inferences gain through a lumped model for a large watershed may be limited, and the lumped 

representation may not reflect the physical reality in runoff generation. As seen with MIKA-SHA_SUPERFLEX and MIKA-

SHA_FUSE, the inferences made through the semi-distributed models are much meaningful and compatible with catchment 

characteristics. On top of that, MIKA-SHA-induced models have a unique advantage over the lumped models of predicting 700 

discharge inside the watershed (at subcatchment outlets). 

In this study, spatial heterogeneity of the catchment was incorporated into the model building process based on the topography 

(i.e., three HRUs, namely hills, floodplain, and plateau, were identified based on the topography of the area). The results 

obtained based on topography-based HRUs, such as achieving high-efficiency values for the absolute performance measures 

and obtaining a good visual equivalent between measured and modelled hydrographs, suggest that topography of the catchment 705 

may have a strong impact on runoff generation. This illustrates another potential utilization of the MIKA-SHA to use the 

toolkit to identify the runoff drivers of a catchment of interest. For example, one can also define the HRUs based on either 

geology or soil type of the catchment of interest and use MIKA-SHA to identify optimal model configurations. This way, one 

can determine the relative dominance of runoff drivers towards the total catchment runoff response.  

One of the major issues with machine learning models is the overfitting of the model to its training dataset. However, the 710 

optimal model selection strategy used in MIKA-SHA, which considers both calibration and validation model performances, 

ensures the selected optimal model performs satisfactorily not only in the training period (more generalizability). Deterministic 

semi-distributed modelling would require/ rely on a large number of model parameters, by comparison, a smaller number of 

model parameters are sensitive towards the total model performance. Further, the values of two lag parameters associated with 

the DISTRIBUTED function (lag_HRU and lag_Sub) were found to be crucial in achieving high model performances. As the 715 

research findings of MIKA-SHA demonstrate a logical match with previously reported research findings and fieldwork 

insights, it may be safe to assume that MIKA-SHA is capable of handling equifinality phenomenon satisfactorily (i.e., selected 

optimal models perform for the right reasons). Additionally, the quantitative model selection scheme of MIKA-SHA ensures 
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the selected optimal model has the appropriate complexity to describe the dominant runoff generation processes of the 

catchment instead of selecting an optimal model only based on model parsimony.  720 

More importantly, both MIKA-SHA_SUPERFLEX and MIKA-SHA_FUSE share similarities among their model 

configurations, such as model outflows dominated by the runoff generated through hillside model structures, having the most 

complex configurations for hillside model structures, demonstration of more subsurface type delayed responses by plateau 

area model structures. Further, finding a reasonable match between the model structural components of optimal models and 

the catchment characteristics was possible. This consistency and compatibility demonstrated by the MIKA-SHA in capturing 725 

similar runoff dynamics across different model inventories show that the toolkit is capable of extracting information from data, 

making it feasible to depend on the derived model configurations beyond just statistical confidence.  

5 Conclusions 

In this contribution, we introduce Model Induction Knowledge Augmented-System Hydrologique Asiatique (MIKA-SHA) for 

learning semi-distributed models where the spatial distributions of catchment properties and climate variables are taken into 730 

account. MIKA-SHA utilizes the existing hydrological knowledge to guide the machine learning algorithm, which eventually 

results in physically meaningful hydrological models that can be readily interpretable by domain specialists. In the current 

study, background hydrological knowledge is blended with the machine learning algorithm through the model building 

components of flexible rainfall-runoff modelling frameworks. 

Results of this study indicate that the consideration of spatial distributions of forcing data and catchment properties gives more 735 

meaningful insights regarding the environmental dynamics occurring within the watershed. MIKA-SHA’s unique and distinct 

feature is that it can be combined with any internally coherent set of building blocks reflecting the hydrological knowledge 

elements. Further, it uses genetic programming to optimize both model architecture and model parameters simultaneously. 

This approach enables hydrologists to utilize flexible modelling frameworks to their full potential by trying many hypotheses 

before selecting an optimal model. By automatically identifying optimal model structures for a catchment of interest relying 740 

on adequacy in place of legacy, MIKA-SHA can serve as an alternative to the conventional subjective model selection. MIKA-

SHA is expected to be most valuable in circumstances where there may be a lack of experimental insights regarding the 

catchment of interest or human expert's knowledge.  

We see machine learning algorithms as having great potential in hydrological modelling. However, simplistic black-box type 

data-driven models may contribute to developing accurate models with severe interpretation difficulties that may not advance 745 

hydrological understanding. Thus, the most promising way forward would be to integrate current hydrological understanding 

with learning algorithms to generate physically consistent and more generalizable models. This was the driving force behind 

the proposed MIKA-SHA framework’s development, which has been founded on both machine learning and hydrological 
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theories. As a result, we anticipate that current research will reinforce the connection between two important but traditionally 

separate communities in water resources: those operating with machine learning and those dealing with theory-based 750 

modelling. Lastly, we foresee that more theory-guided machine learning research in hydrological modelling will be geared 

towards automated model building and knowledge discovery. 

Appendix A 

Table A1: Model parameter details of ML-RR-MI_SUPERFLEX & MIKA-SHA_SUPERFLEX 

Model parameter (Unit/ Range/ Symbol) 

ML-RR-MI 

SUPERFLEX 

MIKA-SHA_SUPERFLEX 

Hill Flood Plateau 

K in Q = K*(S) from RR (t-1/ 0.05 – 4/ K_Qq_RR) - 0.476 - - 

Fraction of inflow to RR (No units/ 0 – 1/ D_R)  0.003 0.083 - - 

K in Q = K ∗ Sα of FR (mmα t-1/ 0.0001 – 10/ K_Qq_FR) 10 1.790 - 1.084 

K in Q = K*S from FR to SR (t-1/ 0 – 4/ K_Qb_FR) 1.86 4 - 4 

Smoothing parameter for E of FR (No units/ 0.01- 2/ m_E_FR)  1.679 0.815 - 0.262 

α in Q = K ∗ Sa of FR (No units/ 0.1 – 10/ α_Qq_FR)  9.745 7.394 - 7.394 

Portion of inflow from QUR to SR (No units/ 0 – 1/ D_F)  0.273 0.093 0 0 

Evaporation multiplying parameter (No units/ 0.1 – 2/ Ce)  0.795 2 0.935 1.015 

Base of rising limb of half triangular lag (t/ 1 – 10/ Tlag)  2.415 2.368 - - 

Portion of rainfall to FR (No units/ 0 – 1/ D_S)  0.09 - 0.02 - 

Runoff coefficient parameter of UR (No units/ 0.001 – 10/ β_Qq_UR)  2.942 4.559 10 5.989 

Maximum reservoir capacity (mm/ 0.1 – 1000/ Smax_UR)  159.7 114.8 159.3 191.8 

Smoothing parameter for E of UR (No units/ 0.01 – 5/ Beta_E_UR)  0.010 0.138 0.355 0.201 

State initial factor (No units/ 0 - 0.1/ SiniFR_UR)  0.073 0.046 0.062 0.072 

Parameter of modified logistic curve (No units/ 0.1 – 0.2/ mu_Qq_UR)  - 0.155 - - 

K in Q = K * Sα of SR (mmα t-1/ 1e-7 - 0.6/ K_Qq_SR) 0.146 0.046 - 0.060 

Smoothing parameter E of SR (No units/ 0.001 – 1/ m_E_SR) 0.193 0.001 - 0.192 

Infiltration excess threshold (mm t-1/ 0.1 - 1e7/ P_ED_max) - - 0.1 - 

Infiltration excess flow smoothing factor (mm t-1/ 0.001 – 10/ m_P_ED) - - 10 - 

Time delay-HRU to subcatchment outlet (t/ 0.01 – 5/ lag_HRU)  - 1.570 

Time delay-Subcatchment to catchment outlet (t/ 0.01 – 5/ lag_Sub)  - 0.404 

* For more details, please refer to Fenicia et al. (2016) 755 
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Figure A1: Sensitivity scatter plots of MIKA-SHA_SUPERFLEX 

Table A2: Model parameter details of ML-RR-MI_FUSE & MIKA-SHA_FUSE 

Model parameter (Unit/ Range/ Symbol) 
ML-RR-MI 

_FUSE 

MIKA-SHA_FUSE 

Hill Flood Plat. 

Maximum total storage in upper soil layer (mm/ 25 – 500/ maxwatr_1)  142.6 165.1 250.5 121.0 

Maximum total storage in lower soil layer (mm/ 50 – 5000/ maxwatr_2)  745.7 2399.4 3739.5 995.5 

Fraction total storage as tension storage (No units/ 0.05 - 0.95/ fracten) 0.467 0.685 0.495 0.573 

Fraction storage in 1st baseflow reservoir (No units/ 0.05 - 0.95/ fprimqb) - 0.95 - - 

Percolation rate (mm day-1/ 0.01 - 1000/ percrte)  94.8 214.2 - 192.1 

Percolation exponent (No units/ 1 – 20/ percexp)  16.52 11.05 - 11.10 

Fraction of percolation to tension storage (No units/ 0.05 - 0.95/ percfrac) - 0.858 - - 

Range of the baseflow rate (No units/ 0.001 – 1000/ baserte) 662.1 - 380.2 139.9 
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Baseflow exponent (No units/ 1 – 10/ qb_powr) 4.753 7.708 3.785 7.205 

Baseflow depletion rate 1st reservoir (day-1/ 0.001 - 0.25/ qbrate_2a) - 0.002 - - 

Baseflow depletion rate 2nd reservoir (day-1/ 0.001 - 0.25/ qbrate_2b) - 0.223 - - 

Mean value:log-transformed topographic index (m/ 5 – 10/ loglamb) 6.129 8.957 9.176 6.418 

Shape para: topo index gamma distribution (No units/ 2 – 5/ tishape) 2.284 2.134 3.201 3.621 

Range of the fraction of roots in the upper layer (No units/ 0.05 - 0.95/ rtfrac1) 0.721 0.634 0.878 - 

SAC percolation multiplier for dry soil layer (No units/ 1 – 250/ sacpmlt)  - - 71.6 - 

SAC percolation exponent for dry soil layer (No units/ 1 – 5/ sacpexp)  - - 4.193 - 

Time delay in runoff (day/ 0.01 – 5/ timedelay) 2.548 - - - 

ARNO/VIC model “b” exponent (No units/ 0.001 – 3/ axv_bexp) 0.048 - - - 

Time delay-HRU to subcatchment outlet  (day/ 0.01 – 5/ lag_HRU)  - 1.332 

Time delay-Subcatchment to catchment outlet (day/ 0.01 – 5/ lag_Sub)  - 0.207 

* For more details, please refer to Clark et al. (2008, 2011) 

 760 

Figure A2: Sensitivity scatter plots of MIKA-SHA_FUSE 
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