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Abstract. In this study, we tested the impact of a revised set of soil, vegetation and land cover parameters on the performance

of three different state-of-the-art land surface models (LSMs) within the NASA Land Information System (LIS). The impact of

this revision was tested over the South-American Dry Chaco, an ecoregion characterized by deforestation and forest degradation

since the 1980s. Most large-scale LSMs may lack the ability to correctly represent the ongoing deforestation processes in this

region, because most LSMs use climatological vegetation indices and static land cover information. The default LIS parameters5

were revised with (i) improved soil parameters, (ii) satellite-based interannually varying vegetation indices (Leaf Area Index

and Green Vegetation Fraction) instead of climatological vegetation indices, and (iii) yearly land cover information instead of

static land cover. A relative comparison in terms of water budget components and ‘efficiency space’ for various baseline and

revised experiments showed that large regional and long-term differences
:
in

:::
the

:::::::::
simulated

:::::
water

::::::
budget

::::::::::
partitioning relate to

different LSM structures, whereas smaller local differences resulted from updated soil, vegetation and land cover parameters.10

Furthermore, the different LSM structures redistributed water differently in response to these parameter updates. A time series

comparison of the simulations to independent satellite-based estimates of evapotranspiration and brightness temperature (Tb)

showed that no LSM setup significantly outperformed another for the entire region, and that not all LSM simulations improved

with updated parameter values. However, the revised soil parameters generally reduced the bias between simulated surface soil

moisture and pixel-scale in situ observations, and the bias between simulated Tb and regional Soil Moisture Ocean Salinity15

(SMOS) observations. Our results suggest that the different hydrological response of various LSMs to vegetation changes may

need further attention to gain benefits from vegetation data assimilation.

1 Introduction

Land surface models (LSMs) aim at providing a complete and self-consistent description of the temporal and spatial distribution

of water and energy over land (Clark et al., 2015). The output from LSMs is used for many applications such as the monitoring20

of water resources, floods and droughts, and their impact on natural hazards, biomass production, ecology or soil salinity. In

many cases, the LSM performance is improved by including remotely sensed observations through (i) the dynamic integration

of observations into LSMs via data assimilation, (ii) the mapping of model input parameters to characterize the representation
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of land properties within the model (e.g., soil properties, land cover) and (iii) the validation and development of LSMs. In

addition, contrasting model output with remote sensing is a powerful method to identify unmodelled processes in a LSM,25

such as irrigation (Kumar et al., 2015; Brocca et al., 2018), or groundwater withdrawal (Girotto et al., 2017). Furthermore,

LSMs are an essential part of weather forecast systems and of climate models that simulate past, present and future climate

(Pitman, 2003; Clark et al., 2015). They also offer ancillary information to decompose, inter- and extrapolate sparse ground

measurements and remote sensing data. However, the degree to which LSMs can serve these various purposes depends on how

well their given structure, forcing data and parameters can represent regional land surface processes (Wood et al., 2011; Clark30

et al., 2015).
:::
This

:::::
study

::::
tests

:::
the

::::::
impact

:::
of

:
a
::::::
revised

:::
set

:::
of

::::
soil,

::::::::
vegetation

::::
and

::::
land

:::::
cover

:::::::::
parameters

:::
on

:::
the

::::::::::
performance

:::
of

:::::::
different

::::::
LSMs.

Most LSMs use climatological or time-invariant parameters related to vegetation, land cover and soil properties and thereby

assume stationary land processes, i.e. given similar meteorological input, the statistical distribution of the land surface variables

would by design not change in time. These parameters can be properly calibrated for small-scale applications when suitable35

historical local data is available. However, for large-scale applications, it is common practice to provide the best possible, often

satellite-based, large-scale input datasets to existing modeling systems (Jiang et al., 2010).

Satellite-based green vegetation fraction (GVF) and leaf area index (LAI) are example input datasets that directly or indi-

rectly provide vegetation parameters (also referred to as vegetation indices) to represent the horizontal and vertical density

of plant vegetation (Gutman and Ignatov, 1998), used for the calculation of transpiration, interception and radiative shading.40

Large-scale LSMs without dynamic vegetation modeling are strongly limited by the assumption that vegetation has a recurring

annual cycle, i.e. using climatological LAI and GVF input. In reality, the vegetation’s response to meteorological and climate

conditions varies due to inter- and intra-annual weather and climate anomalies (Case et al., 2013). Furthermore, large-scale

land cover conversions, such as deforestation, can alter the vegetation strongly from its climatological representation or even

from what could be simulated with dynamic vegetation models.45

The current abundance of satellite-based vegetation datasets allows to constrain LSMs and account for unmodeled processes

in order to better understand the impact of vegetation changes on the water budget components. High-quality and long-term

vegetation products from various remote sensing platforms (Tucker et al., 2005; Liang et al., 2013; Zhu et al., 2013) can provide

temporally varying parametric input to LSMs (Boussetta et al., 2015). In addition, they can also be assimilated for state updating

in LSMs with dynamic vegetation simulation (Sabater et al., 2008; Barbu et al., 2011, 2014; Albergel et al., 2017; Kumar et al.,50

2019). Earlier studies indicated that replacing climatological vegetation by interannually varying satellite-derived indices can

improve
:::::::
modeled

::::::
energy

::::::
fluxes

::
as

::::
well

::
as

:::::::
surface

::::::::::
temperature

::::
and

:::::::
moisture

::
in
:

both offline LSM simulations (Miller et al.,

2006; Case et al., 2013; Yin et al., 2016) and atmosphere-coupled LSMs (Crawford et al., 2001; James et al., 2009; Boussetta

et al., 2013; Ge et al., 2014; Kumar et al., 2014).

In line with previous studies, our studyassumes that interannually varying satellite-derived vegetation indices can be used55

to improve the vegetation representation in LSMs. However, updating these vegetation indices alone is not sufficient
:::
The

:::::
largest

::::::::::::
improvements

:::
are

::::::::
obtained

::::::
during

:::::::
extreme

:::::::::::::
meteorological

::::::::
anomalies

::::::::::::::::
(Case et al., 2013).

::
In

::::
this

:::::
study,

::
it
::
is

::::::::
expected

:::
that

:::::::
besides

::::::::::::
meteorological

::::::::::
anomalies,

::::
also

:::::::::
large-scale

:::::
land

:::::
cover

::::::::::
conversions,

:::::
such

::
as

::::::::::::
deforestation,

::::
alter

::::
the

:::::::::
vegetation
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:::::::
strongly

::::
from

::
its

::::::::::::
climatological

:::::::::::::
representation.

::::::::
Therefore,

::
it
::
is

:::::
tested

::
if

:::
the

:::
use

::
of

:::::::::::::
satellite-derived

:::::::::
vegetation

::::::
indices

::
in

::::::
LSMs

:
is
::::
also

::::::
gainful

:
in regions characterized by land cover changes. Besides60

::::::
Besides

::::::::::
temporally

:::::::
varying vegetation indices, an accurate

:::
also

::
a
::::::::
temporal

:::::::
varying description of land cover or plant

functional types is required in LSMs (Kumar et al., 2006; Peters-Lidard et al., 2007). Plant functional types
:
is
::::::::
required

::::
over

::::::
regions

::::
with

:::::
major

::::
land

::::
cover

:::::::
change.

::
In

::::::
LSMs,

::::
land

::::
cover

::
is

::::::::::
represented

::
by

:::
the

:::
use

::
of

::::
plant

:::::::::
functional

::::
types

::::::::::::::::::::::::::::::::::::::
(Kumar et al., 2006; Peters-Lidard et al., 2007)

:
.
:::::
These are groups of plant species that share similar structural, phenological, and physiological traits (Bonan et al., 2002a).

These features are integrated into several model-specific surface parameters for each land cover type, summarized in lookup65

tables (Dickinson, 1995). In regions characterized by significant land cover changes, the inclusion of temporally evolving

:::
The

:::::::::
sensitivity

::
of

::::::
LSMs

::
to

:
plant functional types has improved the representation of the land surface

:
or

:::::
land

:::::
cover

::::::
related

:::::::::
parameters

:::
has

:::::
been

:::::::::
illustrated in both offline (Chen et al., 2014, 2018)

:::::::::::::::
(Chen et al., 2014) and atmosphere-coupled LSMs

(Pitman et al., 2009; Grossman-Clarke et al., 2010; Cao et al., 2015; Ruiz-Vasquez et al., 2020). Our
::::
Most

::
of

:::::
these

::::::
studies

:::::
solely

::::::
focused

:::
on

:::::::
changes

::
in

::::::::::::
model-specific

::::::
surface

::::::::::
parameters

::::::
without

::::::
taking

:::
into

:::::::
account

:::::::
changes

::
in

::::
LAI

::
or

:::::
GVF.

::
In

:::::::
contrast,

::::
this70

study aims at implementing large-scale vegetation changes , such as e.g. deforestation, by feeding LSMs
::::
land

:::::
cover

:::::::
changes

::
in

:::::
LSMs

::
by

:::::::
feeding

::::
them

:
with both temporally varying vegetation indices and land cover parameters.

Soil properties also form a suite of crucial input parameters in LSMs (Dai et al., 2019). Most LSMs derive soil hydraulic

properties (SHPs) from lookup tables or pedotransfer functions, using soil texture information.
::::::::
Different

:::::
LSMs

::::
have

::::::::
different

:::
soil

:::::::::::::::
parameterizations

:::
and

:::
use

:::::::::::::
model-specific,

::::
often

::::::::::
historically

:::::
tuned,

::::::
SHPs. Dai et al. (2019) stated that popular soil datasets75

currently used in LSMs are often outdated or have limited accuracy. Furthermore, the derivation of SHPs from soil texture is

highly uncertain (Wösten et al., 2001). At the global scale, there are only a few generally accepted global soil maps, such as the

Food and Agriculture Organization (FAO) Soil Map of the World (FAO, 1971), the Harmonized World Soil Database (HWSD)

product (FAO and ISRIC, 2012) and SoilGrids (Hengl et al., 2017).
::
As

::::::
shown

:::
by

:::::::::::::::::::
De Lannoy et al. (2014)

:
,
:::
the

:::::::::::::
implementation

::
of

::::
more

::::::::
accurate

:::
soil

::::::
texture

::::
and

::::::
related

:::::
SHPs,

:::
can

::::
lead

::
to
:::::::

reduced
::::
bias

::::
and

::::::::::::
error-estimates

::
of

::::
soil

:::::::
moisture

:::::
when

:::::::::
compared80

::
to

::
in

:::
situ

:::::::
surface

:::
soil

::::::::
moisture

:::
and

:::::
even

::::::
impact

::::::::
simulated

::::::
runoff

:::
and

::::::::::
evaporation

:::::::::
estimates.

:
During the last decade, several

operational institutes have improved their soil parameters to enhance global land surface simulations (Balsamo et al., 2009;

De Lannoy et al., 2014; Chadburn et al., 2015).

It is our hypothesis that by supplying LSMs with the best available soil parameters, together with time-varying vegetation,

and land cover, the most accurate spatial and temporal representation of the regional water distribution can be obtained,85

especially over regions characterized by land cover changes. To test this hypothesis, the performance of three LSMs is

compared, using either their default setup or using updated soilparameters, interannually varying satellite-derived vegetation

indices and yearly updated land cover
:
In

::::
this

:::::
study,

::::
soil,

:::::::::
vegetation

::::
and

::::
land

:::::
cover

::::::::::
parameters

:::
are

:::::::
updated

::
in

:::::
three

:::::
LSMs.

The study domain is the South-American Dry Chaco, a well-suited area to test our hypothesis. The region covers parts of

Argentina, Bolivia, and Paraguay (Vallejos et al., 2015) and is characterized by deforestation since the 1980s, now being one90

of the largest deforestation hotspots in the world (Hansen et al., 2013). These large-scale land cover conversions impact the

local hydrology of the region. In natural circumstances, deep percolation of water towards groundwater is low or even absent

due to intensive evapotranspiration of the original dry forest vegetation (Giménez et al., 2016; Jobbágy et al., 2020). After
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deforestation, Giménez et al. (2016); Magliano et al. (2017); Marchesini et al. (2017) and Nosetto et al. (2012) all observed

increases in soil moisture and deep drainage, resulting in a rise of the groundwater table. If this trend of a rising water table95

continues, this may result in salt accumulation close to the soil surface and eventually result in reduced plant growth and soil

degradation (Giménez et al., 2016).

The specific goals
:::::
Given

:::
the

:::
Dry

:::::::
Chaco’s

:::::
recent

::::
and

:::::::::
large-scale

:::::::::::
deforestation

::::::
history,

::
it

:
is
::
a
::::::
unique

::::
area

::
to

:::
test

:::
the

::::::
impact

::
of

:::::::::
temporally

:::::::
evolving

:::::::::
vegetation

:::
and

::::
land

:::::
cover

::::::::::
parameters.

::
It
::
is

::::::::
expected

:::
that

:::
by

::::::
feeding

::::::
LSMs

::::
with

:::::::::::
time-varying

:::::::::
vegetation

:::
and

::::
land

:::::
cover,

::::::::
together

::::
with

::
an

:::::::
updated

:::
set

::
of

::::
soil

::::::::::
parameters,

:::
the

::::
most

:::::::
accurate

::::::
spatial

::::
and

:::::::
temporal

::::::::::::
representation

:::
of

:::
the100

::::::
Chaco’s

:::::
water

::::::::::
distribution

:::::
could

:::
be

::::::::
obtained.

:::::::::::
Additionally,

:
it
::
is
:::::::::::
hypothesized

::::
that

:::
the

:::
use

::
of

::::::
similar

::::
soil,

:::::::::
vegetation

::::
and

::::
land

::::
cover

::::::::::
parameters

::
in

::::::
various

::::::
LSMs,

:::::
would

:::::
result

::
in

::::::
similar

:::::::
accurate

::::::::
estimates

::
of

:::
the

:::::::::
long-term

::::::::
simulated

:::::
water

:::::::
budgets.

::::::
Lastly,

:
it
::
is
:::::::::::
hypothesized

::::
that

::::
soil

::::
and

:::::::::
vegetation

::::::::
parameter

:::::::
updates

::::::
would

:::::::::
contribute

:::::::::
differently

:::::::
towards

:::
the

::::::
model

:::::::::::
performance

:::::::::::
improvement.

:

:::
The

:::::::
general

::::::::
objectives

:
of this study are: (i) to evaluate the simulated water budget components over the Dry Chaco using105

three different LSMs within the NASA Land Information System (LIS), (ii) to quantify how the simulated water budget

components respond, when more accurate soil texture and related SHPs are implemented, or when the static climatological

vegetation (LAI and GVF) indices and land cover map are replaced by interannually varying satellite-based indices and yearly

updated land cover maps, and (iii) to identify the remaining deviations in the modeled hydrology compared to different satellite-

based and in situ observations of water budget components.
::::::
Besides

:::::
these

::::::
general

::::::::::
objectives,

:::
the

::::::::
simulated

::::::
water

::::::
budget110

::::::::::
components

:::
are

::::::
further

:::::::
framed

:::::
within

::::
the

:::::::::::
hydrological

::::::
context

:::
of

:::
the

::::
Dry

::::::
Chaco,

:::
i.e.

::
it
::

is
:::::::

verified
::
if
:::
the

::::::::
different

::::::
LSMs

:::::::
simulate

:::
the

::::::::
increased

::::
deep

::::::::::
percolation

:::
and

::::::
higher

:::
soil

::::::::
moisture

:::::
values

:::::
after

:::::::::::
deforestation,

::::::
similar

::
to
:::
the

::::::::::
field-based

:::::::
findings

::
of

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Nosetto et al. (2012); Giménez et al. (2016); Magliano et al. (2017)

::
and

::::::::::::::::::::
Marchesini et al. (2017)

:
.

:::
The

::::::
impact

::
of

:::
the

::::::
revised

:::
set

::
of

::::
soil

:::::::::
parameters

:::
and

:::::::
updated

:::::::::
vegetation

:::
and

::::
land

:::::
cover

::::::::
treatment

::
is
::::::::
analyzed

::::::::::::
incrementally.

::
In

:
a
::::
first

:::::
phase,

:::::::
models

::::
were

:::
run

:::::
with

::::
their

::::::
default

::::::::::::
model-specific

::::
soil

::::::::::
parameters,

::::::::::::
climatological

::::::::
vegetation

:::::
(LAI

:::
and

::::::
GVF)115

:::
and

:::::
static

::::
land

::::::
cover.

:::::
Next,

:::
the

:::::::
models

::::
were

::::::::
supplied

::::
with

:::::
more

:::::::
accurate

::::
soil

::::::
texture

::::
and

::::::
related

:::::
SHPs

::::
and

:::::
their

::::::
impact

::
on

:::
the

:::::::::
simulated

:::::
water

:::::::
budgets

::::
was

:::::::::
quantified.

::
In

::
a
::::
third

::::::
phase,

:::
the

:::::::
ongoing

:::::
land

:::::
cover

:::::::
changes

:::::
were

:::::::::::
implemented

:::::
using

:::::::::::
interannually

::::::
varying

::::::::::::
satellite-based

::::::
indices

:::
and

::::::
yearly

:::::::
updated

::::
land

::::
cover

:::::
maps

:::
and

::
it
::::
was

:::::::
analyzed

::::
how

:::
the

:::::
major

::::
land

:::::
cover

::::::
changes

:::::
alter

::
the

:::::::::::
hydrological

:::::::
balance.

::::::
Lastly,

:::
the

::::::
impact

::
of

:::
the

::::::
various

::::::
model

:::::::::
structures,

:::
soil

::::::
texture

::::
and

:::::::
dynamic

:::::::::
vegetation

::::
input

::::
was

:::::::
assessed

:::::
using

::
the

:::::::
concept

::
of

:::::::::
‘efficiency

::::::
space’

:::
and

:::
the

::::::::::
performance

::
of

::::
each

:::
set

::
of

::::::::::
experiments

::::
was

::::::::
evaluated

::::::
against120

::::::::::
independent

::::::::::::
satellite-based

::::::::
estimates

::
of

::::::::::::::::
evapotranspiration,

::::::::
brightness

::::::::::
temperature

::::
and

::
in

:::
situ

::::
soil

::::::::
moisture.

2 Study area, models and datasets

2.1 Study area

The Dry Chaco is a relatively flat plain covering parts of northwestern Argentina, western Paraguay and southeastern Bolivia

and has an area of approximately 787,000 km2. The ecoregion has a semi-arid climate with a north-south gradient in the mean125

annual temperature (from 24°C to 19°C) and annual rainfall (from 898 mm/year to 712 mm/year) (Marchesini et al., 2020).
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Minetti et al. (1999) reports precipitation values up to 1000 mm/year in the eastern and western parts of the region and 400

mm/year in the central Dry Chaco. Soils in the Dry Chaco are the result of alternating aeolian and alluvial deposits whereby

loess is prevailing. Field dunes and paleochannels with coarse sediments are common in the western Dry Chaco (Marchesini

et al., 2017). The Dry Chaco hosts the largest dry forest in the world and historically, land use in the region was limited to130

extensive cattle ranching and semi-industrial or manual logging for timber and charcoal (Clark et al., 2010). Since the 1980s,

the region is characterized by large-scale deforestation for soy-bean production and intensive cattle ranching (Vallejos et al.,

2015). The region had the world’s highest rate of subtropical forest loss between 2000 and 2012 and already 20% of the original

dry forest in the region has been lost (Hansen et al., 2013; Vallejos et al., 2015), with a transformation of 158,000 km2 between

1976 and 2012. Marchesini et al. (2017) mentioned agricultural and technological evolution together with growing international135

demand for grain as some of the causes of the agricultural expansion. In addition, gradual changes in forest structure, biomass

and functioning are observed due to forest logging and forest grazing.

Figure 1 shows the location of the Dry Chaco, together with the spatial and temporal extent of land cover changes for the

period 1992-2015 derived from the European Space Agency-Climate Change Initiative (ESA-CCI) land cover product upscaled

to a 0.125◦ resolution (see section 2.3.1). The derived spatio-temporal pattern of deforestation agrees well with the 30 to 60 m140

resolution deforestation product of Vallejos et al. (2015) (not shown). The deforested area of the Dry Chaco in the overlapping

period (1992-2013) of both products is 23% for the 0.125◦ ESA CCI data and only 15% for the finer-scaled dataset of Vallejos

et al. (2015). The main reason for this discrepancy is the different spatial resolution of both products.

2.2 Models

Three LSMs within the NASA LIS (Kumar et al., 2008) were selected to simulate land surface states and fluxes over the Dry145

Chaco: the Community Land Model version 2 (CLM2.0) (Bonan et al., 2002b; Oleson et al., 2004), Catchment LSM-Fortuna

2.5 (CLSM-F2.5) (Koster et al., 2000) and Noah LSM version 3.6 (Ek et al., 2003), hereafter simply referred to as CLM,

CLSM and NOAH, respectively. More recent versions of these models are available and might provide better simulations

over the Dry Chaco, but are not yet implemented in LIS. This study relied on LIS to facilitate a consistent parameter revision

across multiple LSMs and one of the main goals was to see the impact of various LSM structures, regardless of their version. To150

demonstrate the impact of the updated soil treatment and dynamically evolving vegetation and land cover, a baseline simulation

for each LSM was conducted and followed by various revised experimental runs. For all simulations, the spatial resolution was

0.125◦ and the output was created daily (model integration timestep of 15 min). The LSMs were spun up for 10 years from

1 January 1982 through 31 December 1991 using the land cover of 1992. The subsequent simulations from 1 January 1992

through 31 December 2015 were used for further analysis. The meteorological forcing data (precipitation, temperature, specific155

humidity, radiation, wind and surface pressure) were extracted from the Modern-Era Retrospective analysis for Research and

Applications (MERRA-2) product (Gelaro et al., 2017) including gauge-based precipitation corrections (Reichle et al., 2017).

By default, the LIS LSMs use climatological LAI data based on a 4-year average derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) Collection 4 LAI product (Kaufmann et al., 2000), and climatological global GVF data

(Gutman and Ignatov, 1998) derived from 5 years of normalized difference vegetation index (NDVI) data from the Advanced160
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Very-High-Resolution Radiometer (AVHRR) (Miller et al., 2006). The default land cover map is the University of Maryland

(UMD) global land cover product (Hansen et al., 2000) based on AVHRR data from 1 April 1992 through 31 March 1993.

The default soil properties in LIS are derived from the FAO Soil Map of the World (FAO, 1971). In this study, vegetation, land

cover and soil input data were revised using the Global Land Surface Satellite (GLASS) LAI (Liang et al., 2013; Xiao et al.,

2016), the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI (Tucker et al., 2005; Pinzon and Tucker, 2014),165

the ESA-CCI land cover product (Kirches et al., 2014; ESA, 2017) and soil properties derived from the HWSD v1.2 (FAO and

ISRIC, 2012; De Lannoy et al., 2014).

2.3 GLASS LAI
:::::::
Revised

:::::
input

::::
data

2.3.1
:::::::
GLASS

::::
LAI

The GLASS LAI product is a global spatio-temporally complete dataset, based on MODIS and AVHRR reflectance time series170

data (Liang et al., 2013). This product is available for the period 1981-2015, with a temporal resolution of eight days and a

spatial resolution of 0.05◦ (Liang et al., 2013). Cloud-contaminated data are filled in using an optimum interpolation algorithm

(Xiao et al., 2016). According to Liang et al. (2013) and Xiao et al. (2016), the GLASS LAI features more realistic and

smoother seasonal variations than the MODIS LAI product (MOD15) (Knyazikhin et al., 1998) and the first version of the

Geoland2 (GEOV1) LAI product (Baret et al., 2013). For the baseline simulations, a climatological LAI dataset was created175

using 24 years of GLASS data (1992-2015) to replace the default 4-year AVHRR climatology. This allowed to solely display

the effect of interannual and short-term vegetation variations in the revised experiments with time-varying GLASS data and

land cover changes. The LAI observations were upscaled to the 0.125◦ resolution by spatial averaging.

2.4 GIMMS NDVI

2.3.1
:::::::
GIMMS

::::::
NDVI180

The GIMMS NDVI product was assembled from AVHRR NDVI data (Tucker et al., 2005). The GIMMS dataset covers the

period 1982-2015 and has a 15-day temporal resolution. The spatial resolution is 0.0833◦. The maps are 15-day maximum

value composites and cloud-contaminated pixels are replaced by NDVI-values derived from either spline interpolation or

average season profiles (Pinzon and Tucker, 2014). In this study, the GIMMS GVF was derived from its NDVI and used as

input for the LSMs. According to Gutman and Ignatov (1998), the GV Fi,j (-) is given by the following equation:185

GV Fi,j =
NDV Ii,j −NDV Imin

NDV Imax −NDV Imin
(1)

where NDV Ii,j is the NDVI value observed at time i and pixel j and NDV Imin and NDV Imax are NDVI values over

barren vegetation classes and fully covered vegetation classes, respectively. For simplicity, we chose to use the values proposed

by Gutman and Ignatov (1998), i.e. 0.04 for NDV Imin and 0.52 for NDV Imax, and the GVF is restricted to the 0-1 interval.

Multiple other approaches exist to derive GVF from NDVI, each with their own advantages and limitations (Jiang et al., 2010).190
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For the baseline simulations, a climatological GVF dataset was created using 24 years of GIMMS GVF data (1992-2015). For

the revised experiments with inclusion of land cover changes, the time-varying GIMMS data were used. To match the model’s

0.125◦ resolution, NDVI values were upscaled by spatial averaging.

2.4 ESA-CCI land cover

2.3.1
::::::::
ESA-CCI

:::::
land

:::::
cover195

The ESA-CCI land cover product offers yearly varying information on 37 land cover classes from 1992 through 2015 at a spatial

resolution of 300 m (Kirches et al., 2014; ESA, 2017). This long-term land cover time series was achieved by combining surface

reflectance data of different observation systems (Medium Resolution Imaging Spectrometer (MERIS), AVHRR, , Satellite

Pour l’Observation de la Terre (SPOT) Vegetation and PROBA-V)(Bontemps et al., 2012; Kirches et al., 2014). In this study,

the ESA-CCI land cover maps were reclassified into 13 UMD classes (see Appendix 1) and upscaled to a 0.125◦ resolution200

assigning the most dominant land cover to each pixel. Figure 1 shows how deforestation in the Dry Chaco has progressed

both in time and space, based on this ESA-CCI land cover information. A static water mask file was created based on pixels

that were classified as water at least once during the period 1992-2015. For CLSM, the UMD land cover classes were further

combined into model specific classes.

2.4 HWSD soil texture and SHPs205

2.3.1
::::::
HWSD

::::
soil

::::::
texture

::::
and

:::::
SHPs

The global 1 km soil texture data were taken from the Soil and Terrain database for Latin America and the Caribbean as part

of the HWSD v1.21 and were translated to 0.125◦ dominant soil texture. Similar as in De Lannoy et al. (2014), the soil texture

and organic matter data was used to estimate SHPs using the pedotransfer functions of Wösten et al. (1999). The derived

SHPs include the soil porosity, bulk density, Clapp-Hornberger parameter B, saturated hydraulic conductivity, saturated matric210

potential, soil wilting point and field capacity (see section 3.2.1). These HWSD-based soil parameters are also used in the

operational Soil Moisture Active Passive (SMAP) Level 4 soil moisture product (Reichle et al., 2019).

2.4 Evaluation data

Precipitation input, and surface soil moisture and evapotranspiration output were evaluated against in situ measurements and

satellite-based estimates. Furthermore, an integrated evaluation of surface soil moisture, surface temperature and LAI was215

performed through the comparison of diagnosed L-band brightness temperature (Tb) simulations against satellite-observed Tb

obtained from Soil Moisture and Ocean Salinity (SMOS).
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2.4.1 Precipitation

The quality of the MERRA-2 precipitation over the Argentinean Chaco was evaluated against in situ data obtained from the

Instituto Nacional de Tecnología Agropecuaria (INTA, 2020). Two sets of daily precipitation data were downloaded: data from220

meteorological stations covering the period 1992-2015 (10 stations) and data covering the period 2010-2015 (8 stations). The

exact location of these stations are shown in Figure 1. As this study mainly focused on long-term simulations, the precipitation

evaluation was conducted using monthly-averaged data.

2.4.2 Monte Buey soil moisture

Pixel-scale in situ surface soil moisture was obtained from 17 nodes of the Monte Buey soil moisture network. The network is225

located in fields surrounding the town of Monte Buey, Cordoba, Argentina, just outside the Dry Chaco (Figure 1), and covers

three 0.125◦ model pixels. At each node, the surface soil moisture is measured using a Hydra Probe II buried at a depth of

5 cm. The network adopts the highest quality standards (Thibeault et al., 2015) and serves as a calibration and validation site

for various satellite missions, such as e.g. the SAtélite de Observación COn Microondas and SMAP. To allow for comparison

with the daily modeled surface soil moisture, averaged over three 0.125◦ model pixels, the hourly in situ measurements were230

averaged to daily values across the 17 nodes. The period of validation was from 1 January 2013 through 31 December 2015.

2.4.3 Evapotranspiration

The modeled evapotranspiration components were evaluated against Global Land Evaporation Amsterdam Model (GLEAM)

data. The GLEAM model consists of a set of algorithms that are driven by satellite-based observations and globally estimate

all the daily evapotranspiration components at 0.25◦ spatial resolution (Miralles et al., 2011; Martens et al., 2017). Central in235

the GLEAM model is the use of the modified Priestley and Taylor (1972) equation. Daily LIS simulations of latent heat flux

were upscaled to 0.25◦ to allow for comparison to GLEAM data for the entire simulation period, i.e. 1992-2015.

2.4.4 L-band microwave brightness temperature

The satellite-observed L-band Tb data was extracted from the SMOS SCLF1C product, version 620, projected onto the 36-km

Equal-Area Scalable Earth Grid, version 2 (EASEv2), angular fitted and quality controlled as in De Lannoy et al. (2015), e.g.240

excluding areas close to open water, urban areas, with high radiofrequency interference, or with a poor angular fit. Both the

horizontally (H) and vertically (V) polarized data at a 40◦ incidence angle were used for evaluation of the daily simulations (see

section 3.5) from 1 January 2011 through 31 December 2015, using both ascending (6 am) and descending (6 pm) half-orbits.

3 Methodology

Table 1 summarizes the different experiments that were performed for each of the three selected LSMs. The experiments245

include a baseline (BL) simulation and two revised simulations, one with updated soil parameters (REVS) and one with both

8



updated soil, vegetation and land cover parameters (REVSV ), and two sensitivity simulations (SENSV , SENSLC), which

are explained in section 3.2.3.

3.1 Baseline simulations

The set of baseline (BL in Table 1) simulations used the default FAO surface soil texture data and the related default model250

specific SHPs, assuming a vertically homogeneous soil profile for CLM and NOAH. By design, CLSM uses the 0-30 cm soil

texture to compute parameters related to surface water transport, whereas the 0-100 cm soil texture is used for computation of

all other parameters (Ducharne et al., 2000; De Lannoy et al., 2014). The vegetation input for the BL simulations consisted

of monthly climatological vegetation datasets newly created based on GLASS LAI and GIMMS GVF, together with the ESA-

CCI 1992 land cover map. This specific setup with climatological vegetation and static land cover does not account for major255

interannual changes in vegetation, such as e.g. due to deforestation. Note that CLM only requires LAI data, and GVF is not an

input parameter.

3.2 Simulations with updated parameters

3.2.1 Revised soil parameters

In a first set of revised experiments, we replaced the model-specific SHPs (derived from FAO surface texture) for each LSM260

by the ‘topsoil’ SHPs associated with a vertically homogeneous 0-100 cm HWSD soil texture and organic matter similar as

in De Lannoy et al. (2014). Corresponding to the default structure of CLSM, only the 0-30 cm HWSD soil texture is used

to obtain model-specific parameters for the surface soil water transport. In these experiments, only the soil parameters were

revised (REVS in Table 1), whereas the climatological vegetation and land cover information was the same as in the BL

simulations. Our hypothesis was that by feeding the different LSMs with similar SHPs, differences between model output265

could be reduced.

It is important to note that the different LSMs do not use the same subsets of SHPs. By default, CLM uses pedotransfer

functions (Cosby et al., 1984) to relate sand and clay fractions to SHPs. The used SHPs in CLM are the saturated conductivity

(Ksat), porosity (θsat), the Clapp-Hornberger parameter B, and the saturated matric potential (ψsat) (Han et al., 2014). The

soil profile is divided into 10 layers and Ksat decreases exponentially with depth throughout those layers.270

CLSM’s soil parameterization differs fundamentally from the other two LSMs. It uses several model parameters and moisture

deficit model prognostic variables to dynamically partition the computational pixel into 3 distinctly different moisture regimes

(saturated, transpiring and wilting regimes) to account for spatial variability of soil moisture within that pixel. CLSM’s soil

parameterization uses the spatial distribution of topographic indices and SHPs to derive model parameters (Ducharne et al.,

2000). For baseflow generation only, CLSM assumes an exponential decay of Ksat with depth, with the decay factor ν=2.17275

in the BL simulations and ν=1 in the REVS simulations. Whereas for the vertical moisture transport, CLSM assumes Ksat to

be vertically homogenous. Other important SHPs in CLSM are ψsat, the parameter B and soil wetness at wilting point θwilt.
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The soil parameters in NOAH are discussed by Kishné et al. (2017) and the default SHPs are calculated from texture-based

lookup tables (Cosby et al., 1984). The SHPs include the parameter B, θsat, ψsat, and Ksat. The soil profile is divided into 4

layers but with a constant Ksat value over depth (Ek et al., 2003). Other parameters include the soil water content threshold for280

ceasing evaporation from the top soil layer (DRYSMC), the saturated hydraulic diffusivity (SATDW), the soil water content at

field capacity (REFSMC), soil wetness at wilting point θwilt, parameter for soil thermal diffusivity (F11) and quartz content

(QTZ). Note that DRYSMC, SATDW, F11 and QTZ are not included in the SHPs of De Lannoy et al. (2014), and their values

for the revised SHPs were derived from lookup tables based on the HWSD soil texture data.

The spatial boxplots in Figures 2a-c show three SHPs used in the BL simulations of each LSM and their updated values285

used for the REVS and REVSV simulations over the Dry Chaco. The mean values for the updated B parameter, θsat and ψsat

are smaller than for BL, but have larger spatial variances. The slightly higher mean and standard deviation in the associated

HWSD 0-100 cm sand fraction map (REVS : 43±25%, Figure 2e), compared to that of the FAO surface sand fraction map

(BL: 41±15%, Figure 2d), explain the change of these updated parameter values.

3.2.2 Revised vegetation and land cover parameters290

To analyze the response of the Chaco’s hydrology to deforestation or vegetation changes in general, time-varying vegetation

observations from GLASS and GIMMS were incorporated into the LSMs together with yearly updated ESA-CCI land cover

maps in a second set of revised experiments (REVSV in Table 1). This specific setup includes the effect of vegetation changes

(such as deforestation) compared to the use of climatological vegetation parameters and static land cover in theBL simulations.

As described in sections 2.3.1 and 2.3.1, the GLASS LAI and GIMMS NDVI were available every 8 and 15 days, respectively.295

However, the data were linearly interpolated to obtain daily parameter updates in LIS. The ESA-CCI land cover maps were

updated each year on 1 January. LSMs only use land cover information to define model-specific parameters associated to each

land cover type, i.e. ESA-CCI land cover is used as predictor of parameters such as rooting depth, stomatal conductance and

surface roughness. The exact values and implementation of each parameter is model-dependent.

Note that albedo calculations in each model were kept unchanged, as the focus of this study is primarily on the water balance.300

In CLM, the albedo for vegetated areas is calculated based on soil properties, LAI and plant functional types (Oleson et al.,

2003). CLSM uses a surface albedo parameterization scheme (based on the Simple Biosphere Model, (Sellers et al., 1986))

that incorporates LAI, GVF and sun incidence angle to calculate the albedo and is rescaled to fit the annual cycle of MODIS-

observed albedo. NOAH uses an albedo climatology based on 5 years (1985-1989) of visible and near-infrared radiation from

AVHRR (Csiszar and Gutman, 1999). To see how deforestation influences the water budget component, the water budget305

analysis of the REVSV output mainly focused on the subset of 197 pixels that were deforested between 2002 and 2006 (based

on the ESA-CCI land cover).

3.2.3 Sensitivity experiments

Our results will indicate (see section 4.1.3) that the various LSMs react differently to the simultaneously updated interannually

varying vegetation and land cover parameters. To disentangle the impact of vegetation and land cover parameters separately310
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for each LSM, two sets of synthetic sensitivity experiments were conducted. A first set of sensitivity experiments (SENSV

in Table 1) included 5 experiments (‘exp1’ through ‘exp5’) in which monthly spatially distributed climatological GLASS LAI

values of the BL simulations were systematically increased by one and GVF values were raised proportionately. To estimate

the corresponding GVF values, an empirical exponential relationship between LAI and GVF (GV F = a+ (b∗ exp(c∗LAI)))

was derived for each individual pixel based on daily LAI and GVF values from 1992 to 2000. LAI values much larger than315

about six do not occur in reality, nevertheless they are kept in this sensitivity analysis to understand the LSM response in a

synthetic setting. In CLM only the LAI was altered because CLM does not use GVF as an input, whereas both LAI and GVF

were altered in CLSM and NOAH. Each experiment was run for the years 1992-2015 with a fixed ESA-CCI land cover map

of 1992.

To test the sensitivity to land cover (SENSLC in Table 1), two simulations were conducted per LSM. In a first simulation,320

the entire Dry Chaco was assumed to be covered by deciduous broadleaf forest, whereas in the second scenario cropland was

assumed. These vegetation classes are associated with the major land cover conversion in the Dry Chaco. The climatological

GLASS LAI and GIMMS GVF datasets were used in SENSLC simulations.

3.3 Model evaluation in terms of water budget components

To assess the relative impact of different LSM structures, vegetation and land cover parameters, various water budget compo-325

nents were compared in each simulation:

P = ET +Q+ ∆S (2)

where P is the precipitation [mm],ET is the total evapotranspiration [mm],Q is the total runoff [mm], and ∆S is the change

in soil water storage [mm] for a given time period. The total ET and Q in the water budget equation (2) can be written as the

sum of their different components:330

ET = EV +EB +EI (3)

Q = QS +QSB (4)

where EV is the vegetation transpiration [mm], EB is the bare soil evaporation [mm], EI is the evaporation from canopy

interception [mm], QS is the surface runoff [mm], and QSB is the subsurface runoff [mm].

3.4 Model evaluation with efficiency curves335

The relative differences in the various LSM behaviors were further analyzed using efficiency curves, without associating any

performance assessment. Q and ET are strongly regulated by soil moisture. However, soil moisture is also a highly model-

dependent quantity (Koster et al., 2009), complicating the evaluation of the modeled Q and ET . To avoid this issue, Koster

et al. (2012) and Koster (2015) proposed to evaluate hydrological behavior in terms of ‘efficiency space’. The main reasoning

behind this approach is that higher soil moisture content generally leads to both increased ET for a given amount of net340

incoming radiation (ET efficiency) and increased Q for a given amount of P (Q efficiency). The ET efficiency [-] is the ratio
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of the latent heat flux to the net radiation:

λET/Rnet = β(mc1m) (5)

where λ [J kg−1] is the latent heat of vaporization, λET [J m−2] is the latent heat flux, Rnet [J m−2] is net incoming

radiation and β(.) [-] is a function of moisture content, here assumed the 1 m soil moisture content mc1m. The Q efficiency [-]345

is the ratio of the total Q production to the total P :

Q/P = F (mc1m) (6)

where Q is total runoff, P is the precipitation and F (.) [-] again is a function of mc1m. By plotting the Q efficiency against

ET efficiency, and identifying their relationship, a unique signature of the hydrological behavior (without model-dependent

soil moisture) of a LSM can be obtained. Ideally, this would allow to shift a LSM signature towards an in situ observed350

land surface signature. Due to lack of suitable and publicly available Q measurements for the Dry Chaco, this study uses

the efficiency space to relatively compare the hydrological behavior of different LSMs with various parameter settings (BL,

REVS , REVSV ).

For each pixel, water budget components (λET , Rnet, Q, mc1m and P ) were averaged over each month for the period

1992-2015. Different locations had different minimum mc1m values, induced by differences in soil texture. Prior to plotting,355

themc1m values for each pixel were normalized to reduce spatial differences inmc1m and to dominantly focus on the temporal

LSM signature. Both the Q and ET efficiency were plotted in function of the normalized mc1m for each LSM to visualize the

model-specific soil moisture dependencies. For each pixel, a curve drawn through the points was constructed by computing

the median of the ET and Q efficiency over narrow bins of normalized mc1m. The combination of all fitted curves for all

pixels was visualized using a scatter density cloud. The resulting ‘efficiency space’ plots (showing the obtained ET efficiency360

in function of Q efficiency) show how evaporation and runoff efficiencies vary with each other, as the soil gets drier or wetter.

:::
The

::::::::
efficiency

:::::
plots

:::
are

::::
used

::
to

:::
see

::
if
:::
the

:::::
three

:::::
LSMs

:::::::
provide

:
a
:::::::::
consensus

::
on

:::
the

:::::::::
simulated

::::::::::
hydrological

::::::::
behavior

:::
and

:::
on

:::
the

:::::
impact

:::
of

:::
the

::::::
updated

::::
soil,

:::::::::
vegetation

:::
and

::::
land

:::::
cover

:::::::::
treatment.

3.5 Model evaluation with independent data

For each experiment, the quality of model input P , and the model performance in terms of output surface soil moisture content365

(sfmc) and ET were evaluated against independent data (section 2.4), for simplicity referred to as ’observations’, using four

skill metrics:

– Bias: long-term mean difference between simulations and observations (i.e., model minus observation),

– ubRMSD: unbiased root-mean-square difference, calculated by first removing the bias from both the simulated and

observed time series (Entekhabi et al., 2010),370

– R: temporal Pearson correlation coefficient between simulations and observations,
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– aR: temporal anomaly Pearson correlation coefficient between simulations and observations, calculated after removing

the mean climatology from each time series. The climatology is computed as the multi-year average of 30-day smoothed

time series of daily values. This removed the trivial agreement in seasonality and allowed to the focus on interannual and

short-term dynamics.375

For an integrated evaluation of the model sfmc, surface temperature and LAI of the various experiments, a zero-order tau-

omega microwave Radiative Transfer Model (RTM) was used to convert these modeled variables into L-band Tb [K] estimates.

The modelled Tb were compared to SMOS Tb observations, similar to the approach presented by Albergel et al. (2012). For a

detailed description of the tau-omega RTM we refer to De Lannoy et al. (2013). Feldman et al. (2018) showed that a zero-order

tau-omega model would suffice for the dry forests of the Dry Chaco. Instantaneous sfmc, surface temperature and LAI at 6 am380

and 6 pm were used as input in the RTM and simulated Tb were evaluated against 6 am and 6 pm SMOS-observed Tb (both at

the top of vegetation). The Tb simulations were computed at the 0.125◦ model resolution and then spatially averaged to the 36-

km EASEv2-grid for comparison to SMOS-observed Tb for the period 2011-2015. Short-term variability in both simulations

and observations was reduced using a 1-month averaging window. This allowed to focus on the effect of the implemented

vegetation changes, which occur on a longer seasonal timescale.385

The RTM required specific input parameters related to soil properties (Wang and Schmugge, 1980) and vegetation classes.

The related soil parameters differ thus for the BL and REVS simulations, and the parameters related to land cover class also

vary in time for theREVSV simulations due to yearly updated land cover. The literature offers various lookup tables to estimate

the RTM parameters related to vegetation classes (soil roughness, scattering albedo, vegetation structure parameters). Here,

we used the lookup tables of the SMAP soil moisture retrieval (O’Neill et al., 2015; Quets et al., 2019). Another choice would390

affect the overall Tb bias for all experiments, but would minimally affect the relative comparison of the various experiments

with revised soil and vegetation parameters.

4 Results

4.1 Model evaluation in terms of water budget components

4.1.1 Baseline simulations395

The annual and seasonal distribution of the different water budget components for each BL model simulation is summarized

in Table 2. The values are calculated for a 24-year period (1992-2015) and averaged over all pixels within the Dry Chaco,

excluding open water pixels. The Dry Chaco receives an average yearly P of 809 mm with most P (643 mm) during the wet

season (October-March), in line with the findings of Marchesini et al. (2020) and Minetti et al. (1999). All LSMs confirm a

water storage (∆S) deficit for the dry season (April-September), which is compensated during the wetter months with a water400

surplus. Figure 3a shows the corresponding yearly averaged water budget components relative to the total P whereby the total

ET is subdivided in its three components (see section 3.3). The variation in the total amount of ET and its components shows

that there is large variability between the models, even though all of them use the same forcing data, land cover, vegetation,
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soil texture (not SHP) and topography input. In addition, there are significant disagreements in theET partitioning. The largest

ET component is different in each LSM, i.e. EI is largest for CLM, EB for CLSM and EV for NOAH. The high fraction of405

EI for CLM is physically unrealistic (see section 5). CLM and NOAH both have a QSB component, whereas CLSM does not.

The latter has a very large fraction of QS .

4.1.2 Revised soil parameters

The impact of the revised soil parameters (REVS) on the yearly mean relative water budget components is shown in Figure 3b,

again for the period 1992-2015. Most striking is that, despite the similarity in SHPs, the various models still produce a very410

different partitioning of the water budget components. For CLM, the revised SHPs cause a yearly reduction in QS by 4%

which is compensated by an increase in EV and QSB . For CLSM, the mean water budget components hardly changes. For

NOAH, there is a small increase in QSB and decrease in ET , mainly due to a large decrease in EB (-9%) of which 6%

is compensated by extra EV . For each model, the differences in the water budget components between the BL and REVS

simulations, averaged over the entire Dry Chaco, are relatively small. However, within the study domain, there is a large local415

spatial variability in the changes of the various water budget components (not shown).

Figure 4 summarizes the impact of the updated SHPs on the soil moisture content in the first meter of the soil (mc1m).

The boxplots of time-averaged (1992-2015) mc1m over the Dry Chaco (Figure 4a) show that the REVS simulations are drier

than for BL: the mc1m decreases from 0.16 to 0.11 m3/m3 for CLM, from 0.22 to 0.13 m3/m3 for CLSM and from 0.19 to

0.17 m3/m3 for NOAH. These lower mean soil moisture values can be related to the larger fraction of sandy soils (Figures 2d420

and e) and the associated reduced water retention (SHPs) in the REVS simulations. However, again, at the local scale, some

areas become wetter and others drier. Despite the relatively large difference in long-term mean soil moisture between BL and

REVS , the differences in ET and QS fluxes are small: the meteorological forcings are the primary drivers of these fluxes,

whereas the SHPs only have a secondary impact. Figures 4c and 4d show how the texture pattern dominates the long-term

averaged mc1m for the period 1992-2015 for the NOAH BL and REVS simulations (similar for CLM and CLSM). Figure 4b425

illustrates that the updated SHPs change the temporal standard deviation of mc1m, which significantly decreased for NOAH.

4.1.3 Revised vegetation and land cover parameters

The impact of deforestation over the Dry Chaco was assessed via a relative comparison of the water budget components of

the REVS and REVSV simulations for each LSM, using a subset of 197 pixels that were deforested between 2002 and 2006.

Keep in mind that the REVS uses climatological vegetation indices and a static land cover map, which do not account for430

interannual vegetation changes. The REVSV simulations include the effects of vegetation changes by the implementation

of satellite derived dynamic vegetation indices as well as yearly updated land cover parameters. The differences between the

REVS andREVSV simulations thus solely stem from interannual vegetation variations and land cover changes. By design, the

former would only introduce minimal long-term differences over the entire simulation period. Therefore, the output differences

were only analyzed after deforestation, i.e. for the period 2007-2015. Figure 5 compares the water budget components for the435

REVS and REVSV simulations after deforestation, i.e. for the period 2007-2015. For CLM, we observed a relative decrease
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in EV (-6%), that is compensated by an increase in EB and EI maintaining a constant amount of ET . For CLSM, there is a

5% decrease in total ET (with a similar relative distribution of the ET components), which is compensated by a QS increase

of 5%. For NOAH, deforestation also resulted in smaller ET (-3%), which is compensated by an increase in QSB . Regarding

the relative ET distribution of NOAH, there is an increase in EB of 4% and a decrease in the EV with 6%.440

The impact of vegetation changes on the temporal evolution of LAI and moisture content in the first two meters of the soil

(mc2m) is illustrated in Figure 6 for a representative pixel (28.0625◦ S, 63.6875◦ W). Figure 6a shows the climatological

REVS LAI and the interannually varying REVSV LAI, together with P for a pixel that was deforested in 2004 (based on

ESA-CCI land cover). The LAI values are generally low both before and after deforestation. Years where the REVSV LAI is

larger than its climatology, mainly correspond to wetter years. Deforestation does not cause a sudden drop in LAI, probably445

because the LAI for fully developed crops is not very different from that of dry forests, or the smaller-scale deforestation signal

may be suppressed in the upscaled 0.125◦ LAI values. However, the REVSV LAI is significantly smaller than its climatology

in drier years after 2004, which may be indicative of less crop cover and earlier deforestation. In short, the coarse resolution

LAI does not necessarily reflect land cover changes and is strongly influenced by P .

The combined impact of time-varying LAI and land cover on mc2m is shown in Figures 6b-d for the REVS and REVSV450

simulations of each LSM. From the deforestation in 2004 onwards, the mc2m of the REVSV simulations increases for each

model, but at a different rate. The main driver for the increase in mc2m is the change in land cover. The updated parameters

related to a land cover change push the model out of its equilibrium and water is gradually redistributed to achieve a new

balance with a higher soil moisture content. Considering all pixels deforested between 2002-2006, mc2m increases on average

by 0.0035 m3/m3 (maximum change of 0.016 m3/m3) for CLM, by 0.03 m3/m3 (maximum change of 0.08 m3/m3) for CLSM455

and by 0.07 m3/m3 (maximum change of 0.1 m3/m3) for NOAH. The reason for the different behavior of each LSM will be

explained in the following paragraph.

4.1.4 Sensitivity experiments

Sensitivity experiments with synthetic vegetation and land cover parameter were conducted to get more insight into the distinct

behavior of soil moisture for the different LSMs in response to dynamic vegetation and land cover input. Figures 7a-c illustrate460

how domain-averaged water budget components change when the LAI is systematically increased by 1 to 5 units (‘exp1’

through ‘exp5’) as explained in section 3.2.3. To mimic the effect of deforestation, assumed to result in smaller LAI values,

one should read the figure from exp5 (high LAI) to exp1 (low LAI). For CLM, a reduction in LAI introduces a reduction in EI ,

an increase in EB and a slight decrease in EV . For CLSM, a reduction in LAI and GVF yields a strong decrease in EI , fully

compensated by an increase in EB whereas EV is barely affected. Concerning NOAH, smaller LAI and GVF values result in465

a significant decrease in EV . When the LAI and/or GVF are reduced, the QSB increases in both CLM and NOAH.

Figures 7d-f illustrate how the various LSM soil moisture profiles respond to changing LAI (and corresponding GVF for

CLSM and NOAH). A decrease in LAI barely affects soil moisture in CLSM, whereas it increases soil moisture for CLM

(moderately) and NOAH (strongly), in line with the respective LSM’s degree of decrease in EV (water extraction from the

soil). The increase in soil moisture climatology for an imposed decrease in LAI (while assuming a persistent vegetation type)470
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is partly an artifact resulting from a one-way dependency of soil moisture to vegetation in the absence of a dynamic vegetation

growth module. In nature, LAI and soil moisture evolve together.

Figures 7g-i show soil moisture profiles for the sensitivity experiment in which the land cover was either uniformly cropland

or forest. For CLM, there is almost no difference in soil moisture between both. CLSM has a slightly wetter soil moisture

profile for cropland than for forest. For NOAH, the soil moisture content is higher under cropland than forest in the deeper475

layers. The distinct model response to land cover changes is related to the fact that each model uses a model-specific set of land

cover parameters, each with different values and behavior. These parameters impact the total EV (not shown) and the related

water extraction from the soil. For example, the rooting depth (the depth to which roots of plants can extract water from the

soil profile) is defined differently in each LSM. In NOAH, the forest land cover class has a rooting depth of 2 m, i.e. roots

take up water over the whole profile. Roots of crop are parameterized to 1 m and are not able to extract water from the deepest480

soil layers, resulting in wetter soils at the bottom of the soil profile (Figure 7i). CLM makes use of a root fraction distribution

whereby root fraction is a function of depth and land cover type as described in Zeng (2001). CLSM uses a rooting depth of 1

m, regardless of the land cover.

The sensitivity experiments were designed to explain the distinct behavior of soil moisture in response to changing land cover

or vegetation parameters separately, and do not provide insights in possible interactions between both. The relative change in485

the water budget components of REVSV against REVS , as shown in Figure 5, originate from changes in LAI and GVF, land

cover, and their interactions. This explains, for example, the increase in model QS and decrease in total ET after deforestation

for CLSM. This cannot be explained by the CLSM results of the SENSV (Figure 7b) or SENSLC experiments alone.

4.2 Model evaluation with efficiency curves

4.2.1 Baseline simulations490

To compare the BL hydrological behavior of the three different LSMs, Figure 8 presents the Q and ET efficiency in function

of mc1m along with the ‘efficiency space’. For each pixel within the Dry Chaco, these quantities are computed for each month

across the 24-year time period, and a curve is fitted using a simple binning procedure. Figure 8 summarizes the hydrological

signature of the Chaco by showing the density scatter cloud of all fitted curves.

Figures 8a, d and g show a very different Q efficiency in function of mc1m for the three LSMs. For CLSM, a majority of495

the curves reaches Q efficiencies values up to 0.4, whereas the median values are around 0.2 for CLM and even below 0.1 for

NOAH. This different behavior was also observed in the annual water budget analysis (see Table 2). Note that for CLM and

NOAH, some high Q efficiencies are found at relatively low mc1m values (black circle). This is caused by high QSB rates,

which allow precipitation from the wet season to run off during the dry season months even if P in the latter period is small.

For all LSMs, the ET efficiency (Figures 8b, e, h) is larger than the Q efficiency and the relationship of the ET efficiency500

with mc1m is more similar across the three LSMs than that of the Q efficiency. The distinct BL signature of the three LSMs

in efficiency space is summarized in Figures 8c, f, i and mainly explained by differences in Q.
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4.2.2 Revised simulations

Figure 9 shows the impact of the REVS and REVSV experiments in efficiency space. The impact of the updated SHPs is

summarized by a small shift between the mean values of theBL andREVS in efficiency space, with a decrease inQ efficiency505

for CLM, and increase for CLSM and NOAH.

Figure 9 also shows the REVS and REVSV scatter density clouds (and mean value) in efficiency space for the 197 pixels

deforested between 2002 and 2006 for the period 2007-2015. The inclusion of vegetation changes (REVSV ) causes a shift

towards larger Q efficiencies for CLSM (increased QS) and NOAH (increased QSB). The opposite is found for CLM. When

analyzing the effect of deforestation on ET efficiency, it is important to keep in mind that these efficiencies are calculated as510

the ratio of the latent heat flux to the net incoming radiation (available energy). By definition, the net radiation is also impacted

by vegetation changes. Therefore, one cannot directly relate changes in ET efficiency to changes in total ET . For CLM, the

REVSV density cloud tends to larger ET efficiencies, indicating that croplands need less energy than forests for the same

amount of ET . For CLSM and NOAH, the scatter cloud shows a slight shift to the right: croplands use a slightly larger portion

of the available energy than forest for ET .515

4.3 Model evaluation with independent data

4.3.1 Precipitation

:::::::
Because

:::
the

::::::
quality

::
of

:::::
input

::
P

::::
will

::::::
greatly

::::::::
influence

:::
the

:::::::
quality

::
of

::::
ET ,

:::::
sfmc

:::
and

:::
Tb

:::::::::::
simulations,

::::::::::
independent

::
of

:::
the

:::::
used

:::::
LSM,

:::
the

::::::
quality

::
of

:::
the

::::::::::
MERRA-2

::
P

:::::::
product

::::
was

:::
first

:::::::::
evaluated

::::::
against

::
in

::::
situ

::
P

::::
data.

:
Table 3 summarizes how well the

monthly averaged MERRA-2 P corresponds with in situ observations for two types of stations. For the 10 stations that cover520

the 1992-2015 period, the mean correlation coefficient is 0.83 (± 0.07), the mean monthly bias is 5 (± 11) mm/month and

the mean ubRMSD equals 38 (± 17) mm/month. For the 2010-2015 stations (n=8), the overall skill metrics are lower: a mean

correlation of 0.74 (± 0.11) a mean bias of 18 (± 13) mm/month and a mean ubRMSD of 42 (± 14) mm/month, respectively.

The positive bias indicates that MERRA-2 P is overestimated.

4.3.2 Monte Buey soil moisture525

Figure 10 shows daily modeled sfmc time series for CLM, CLSM and NOAH, together with in situ Monte Buey sfmc (5 cm)

observations (both averaged over the three pixels) for the period 2013-2015. For CLSM and NOAH, the sfmc depth is 2 and

10 cm, respectively. For CLM, the soil moisture content in the 4 upper soil layers was averaged to obtain a 5-cm sfmc value.

The largest R and aR values between observed and modeled sfmc are obtained with CLM and NOAH (R and aR values

between 0.72 and 0.81 for BL). By updating the soil parameters (REVS), some R and aR values increase, but other decrease.530

However, the bias is decreased for all models. For NOAH, the updated soil parameters result in substantially wetter sfmc during

the dry season. Note that these results are only valid for the three model pixels covering the Monte Buey site, and cannot be

extended to the entire Dry Chaco.
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4.3.3 Evapotranspiration

The skill of daily simulated total ET relative to that of GLEAM-based ET estimates is shown in Figures 11a-d for the period535

1992-2015 over the entire Dry Chaco. In general, NOAH has the largest R and aR, and the smallest ubRMSD. When averaged

across the entire region and time period, the impact of the updated soil, vegetation and land cover parameters on the total ET

is negligible and even deteriorates the overall CLSM performance relative to GLEAM.

The relative distribution of the differentET components is very different for GLEAM than for the selected LSMs. Figure 11e

shows that all models (REVS) are possibly underestimating the EV . For GLEAM, 89% of the total ET is EV , whereas this is540

only 47% for NOAH, 31% for CLSM and 18% for CLM. EI is the second largest component in GLEAM (7%). CLM (48%)

and NOAH (27%) are likely overestimating the EI , whereas CLSM overestimates the EB .

4.3.4 L-band microwave brightness temperature

Time series of the simulated 40◦ Tb at horizontal polarization (TbH ) with NOAH BL, REVS and REVSV input, and SMOS

TbH are shown in Figure 12a. The inputs used in the RTM for the simulated Tb include simulated surface soil moisture (using545

FAO texture and related SHPs in the BL simulations, HWSD based texture and SHPs in the REVS and REVSV simulations),

temperature, LAI (climatological in BL and REVS , interannually varying in REVSV ), land cover (static in BL and REVS ,

yearly updated in REVSV ) and the associated literature-based look-up RTM parameters. These time series are for the 36-km

EASEv2 pixel that includes the deforested 0.125◦ pixel shown in Figure 6. The corresponding sfmc and LAI are shown in

Figures 12b and 12c. Time series of NOAH Tb at vertical polarization (TbV ) and the simulations for CLM and CLSM showed550

similar behavior and are not shown. Figure 12 highlights how the REVSV LAI deviates from the long-term climatology

(REVS) during the SMOS observation period. Not shown here is that the LAI also deviates from the climatology earlier in

time, i.e. on average the interannual variations cancel each other out by design, as in Figure 6.

The updated soil parameters (REVS) affect the sfmc and RTM parameters, causing a different behavior in simulated TbH .

The reduced LAI and changes in land cover (REVSV ) result in wetter sfmc but the sfmc increase is not as pronounced as for555

the mc2m in Figure 6d. This wetter sfmc and reduced LAI propagate through the RTM and result in colder simulated TbH .

Figures 13a-d summarize the Tb skill metrics for the different experiments, only for the subset of pixels that were deforested

between 2002 and 2006. The metrics for both polarizations (TbH and TbV ) were averaged before creating the spatial boxplots.

In general, the Tb bias for each model is negative, indicating that the simulated Tb is colder than the SMOS Tb. NOAH has the

largest absolute bias and the updated soil treatment reduces the Tb bias of each model. CLSM has the best R and aR values,560

but the updated soil parameters reduce its performance in terms of R, aR and ubRMSD values. This is in line with the reduced

performance of CLSM relative to the GLEAM ET . For NOAH, the updated soil treatment increases the R and aR values, and

reduces the ubRMSD. The additional impact of the updated vegetation and land cover treatment is small.

To visualize the local effects of the vegetation changes, spatial maps of the differences in temporal R values (∆R) between

the REVSV and REVS , are shown for each model in Figures 13e-g. The modeled Tb, and the spatial pattern of ∆R, over565

the Dry Chaco are mainly driven by changes in sfmc, and these are driven by vegetation and land cover changes. The ∆R
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values are relatively small for CLM because the model sfmc is only slightly sensitive to changes in vegetation and land cover

parameters. For CLSM, the REVSV simulations yield larger R values over certain areas compared to the REVS simulations

because temporal changes in modeled sfmc mainly result from changes in land cover parameters. Consequently, the ∆R

pattern is similar to the deforestation pattern (see Figure 1). In NOAH, the sfmc is sensitive to land cover and LAI changes, and570

therefore, the ∆R pattern depends on both land cover and LAI changes. For NOAH, the ∆R values do not increase everywhere.

At some pixels with reduced REVSV performance, we noticed unexpected trends in the LAI time series (not shown), i.e. LAI

would not show the expected decrease during the dry season. This possibly deteriorated the Tb simulations. In short, the extent

of the simulated Tb response to vegetation and land cover changes is model specific and is mainly driven by the sensitivity of

the model’s sfmc to vegetation and land cover parameters.575

5 Discussion

5.1 LSM comparison

The relative evaluation of LIS CLM, CLSM and NOAH in terms of their water budget components (Table 2 and Figure 3) and

efficiency space (Figure 8) highlights that each LSM has a distinct hydrological signature. CLSM has more QS than NOAH

and CLM, but CLSM has no QSB component, unlike NOAH and CLM. It is striking how the various LSMs partition the total580

ET very differently into its three components, as was reported before by Wang and Dickinson (2012); Kumar et al. (2018);

Rigden et al. (2018); Zhang et al. (2020). For example, we found that CLM strongly overestimates the EI and EB compared to

GLEAM over the Dry Chaco (Figure 11e). Lawrence et al. (2007) came to similar findings and indicated that by reducing the

tuning parameter αl from 1 to 0.25 in the canopy interception equation, the amount of EI could be reduced to more realistic

values at the global scale. They also indicated that the relative contribution of EV and EB in vegetated regions could be585

improved by altering two parameters (Cs,dense and α) in the equation to calculate the turbulent transfer coefficient between the

soil and canopy air. For CLSM, the portion of EI over the Dry Chaco is similar to that of the GLEAM product. Reichle et al.

(2011) described how the amount of interception evaporation is influenced by the rainfall interception parameters FWETL and

FWETC, and that realistic interception rates are found when both parameters equal 0.02 (applied in our simulations). These

parameters describe the fractional areas of canopy leaves (interception reservoir) on which large-scale and convective rainfall590

are applied. The bias between modeled ET and GLEAM is high for NOAH, indicating an overestimation of the total ET . Wei

et al. (2013) observed that NOAH yields substantial biases in latent heat flux, total Q and land surface skin temperature when

compared to independent data over the United States. They showed that adapting model parameterizations, such as including

a seasonal factor for the root distribution and selecting optimal model parameters related to the canopy resistance calculations

(an important factor for EV simulation), could reduce these biases.595

Our results show that constraining the LSMs with the same, optimal soil, vegetation and land cover parameter input (REVS

and REVSV ) does not result in more similar water budget partitioning, because the results are dominated by internal model-

specific equations and parameters. The latter have historically been tuned globally with particular input datasets and may

compensate for errors in those datasets, so that ‘better’ input does not necessarily lead to ‘better’ output. In addition, some
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LSMs are inherently more or less sensitive to time-varying parameters and therefore climatological vegetation input may600

suffice if the LSM is simply not very sensitive to vegetation changes (Jarlan et al., 2008), or if the vegetation changes are not

extensive. LSMs could benefit from further development to obtain a more realistic hydrologic response to vegetation changes

and to better include dynamic vegetation phenology. This should lead to more realistic simulations of the interaction between

the carbon and water cycles.

Lack of sufficient in situQ andET measurements over the Dry Chaco, prevents to identify which LSM setup best approaches605

the long-term observed water budget and its components. However, our study highlights the large estimation uncertainty due

to model structures and the secondary impact of (soil and vegetation) input parameter uncertainties. It is important to mention

again that LSMs are continuously upgrading and that our study provides a relative comparison of older LSMs versions within

LIS.

5.2 Effects of soil and vegetation parameters on soil moisture610

Despite soil moisture being a highly model-dependent variable, it is important that soil moisture simulations closely mimic

natural patterns to allow their use as underlying information in applications such as soil salinity monitoring over the Dry Chaco.

Providing LSMs with the best available soil and vegetation parameters is one step towards this goal. The soil parameters

strongly determine the spatial (horizontal and vertical) pattern of soil moisture (Figure 4), and only have a secondary impact

on its temporal variability, which is mainly driven by meteorology. This was also reported by Morgan et al. (2017); Kishné615

et al. (2017); Zhao et al. (2018). The long-term soil moisture response to revised vegetation and land cover parameters differs

among the three LSMs for two reasons:

– Soil moisture sensitivity to LAI and GVF indices (SENSV ): a decrease in LAI and GVF barely affects soil moisture in

CLSM, whereas it increases soil moisture for CLM (moderately) and NOAH (strongly). This is in line with the respective

LSM’s degree of EV extracting more or less water from the soil.620

– Soil moisture sensitivity to land cover parameters (SENSLC): a land cover change from forest to cropland barely affects

CLM soil moisture, slightly increases soil moisture in CLSM, and mainly increases deep soil moisture in NOAH. This is

related to the distinct root distribution and root water uptake (controlled by the stomatal conductance and rooting depth)

in the various LSMs, impacting the EV and related water extraction from the soil.

The REVSV simulations showed that all three LSMs simulate wetter soils after deforestation in the Dry Chaco. In addition,625

larger values of total Q are found for two LSMs, which might implicitly be indicative of groundwater recharge (groundwater

is only simulated in CLSM). This is in agreement with studies that have been carried out on a local scale by Giménez et al.

(2016), Marchesini et al. (2017), Magliano et al. (2017) and Nosetto et al. (2012). They all reported wetter soils on agriculture

land compared to forest across different regions of the Chaco. However, it must be mentioned that deforestation itself does

not necessary lead to wetter soils. The impact of deforestation on soil moisture is a combination of an increased rate of EB630

(drier soils) and a decreased rate of EV (wetter soils). The net effect depends on the local climate and the length of the wet

or dry periods (Chen et al., 2009). The impact may also vary across the vertical soil profile depending on the change in root
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distribution and soil characteristics after deforestation (de Queiroz et al., 2020). Amdan et al. (2013) stated that the agriculture

system applied in north-west Argentina also influences the soil moisture status. The prevalent agriculture system in the Dry

Chaco is mostly based on no-tillage management followed by fallow seasons. The crop residue that remains on the field635

decreases EB and therefore increases available soil water content (Villegas et al., 2010). During the fallow season, there is no

consumption of soil water over agriculture areas, increasing deep percolation of water towards the ground water table. These

changes in soil characteristics, soil management and natural mulching are not included in LSM simulations.

5.3 Model evaluation using independent data

The reasonable agreement between MERRA-2 and the long-term in situ P data supports an analysis of the water budget640

components in absolute values (as in Table 2), but with caution: the more recent P stations suggest larger biases and may

possibly not have been included in the gauge-based P corrections of MERRA-2. Due to its coarse resolution, MERRA-2 does

not take into account microclimatic effects over the mosaic landscape associated with deforestation.

Relative to independent data, there is no LSM setup that yields significantly better output for the entire Dry Chaco in terms

of time series metrics. CLM sfmc yields the largest R and aR values when compared to the in situ Monte Buey sfmc. NOAH645

outperforms both CLM and CLSM in terms of ET (when compared to GLEAM ET ), whereas CLSM yields the best Tb

results (when compared to SMOS Tb). Updating the model soil parameters with more recent (assumed to be more accurate)

information reduces the sfmc bias relative to in situ observations for the 3 Monte Buey pixels, as well as the Tb bias relative

to region-wide SMOS observations for all models. On the other hand, the update reduces the R values between CLSM and

GLEAM ET and between CLSM and SMOS Tb.650

The spatially complete time-series evaluation with long-term SMOS Tb observations is unique to assess model performance

over areas with limited long-term in situ data. A similar approach was conducted by (Albergel et al., 2012) over the United

States. The high R values between the SMOS Tb observations and RTM simulations indicate that LSMs simulate realistic tem-

poral variations and that their use over the Dry Chaco is justified (despite the lower agreement between MERRA-2 and recent in

situ P ). After implementation of time-varying vegetation and land cover changes, we found no significant or unanimous model655

improvement when compared to independent data. This is most likely due to the coarse spatial resolution of the satellite-based

evaluation, which suppresses the signal of the rather small-scale mosaic deforestation activities over the Chaco, and to the fact

that model simulations do not necessarily perform better when given supposedly better input parameters. Furthermore, removal

of subtropical dry forest is likely to only have a little impact on L-band Tb, whereas the removal of dense tropical rainforest

would probably have a much stronger impact on both Tb simulations and observations. However, Figure 13 indicates that time-660

varying vegetation and land cover parameters did introduce slightly better agreements between simulated and SMOS-observed

Tb for some deforested areas. Local calibration of different RTM parameters, could possibly further improve the agreements

between modeled and observed Tb.

An evaluation with finer-scale sfmc retrievals e.g. obtained from Sentinel-1 or after downscaling passive microwave products,

is not included in this study because by design, sfmc retrievals do not necessarily account well for deforestation, are prone to665
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vegetation bias in general (Zwieback et al., 2018), and would thus not serve well as reference data. A finer-scale evaluation in

terms of land surface temperature would add value, but an analysis of the energy budget was beyond the scope of this study.

5.4 Shortcomings and scope for further research

Our simulations of the Dry Chaco’s hydrology with revised soil, vegetation and land cover parameters have some shortcomings

and caveats that could partly be overcome in future research. First, feeding the models with similar, e.g. satellite-based, albedo670

input could further lead to a homogenization in model output as this is a key parameter in the calculation of land surface

energy budget (Alton, 2009; Yin et al., 2016; Houspanossian et al., 2017). Second, we showed that the spatial pattern of

simulated soil moisture is closely related to the spatial pattern of the soil texture data. Regional simulations could thus benefit

from regional soil maps, where available. In addition, land cover changes can affect soil properties (Wiekenkamp et al., 2020),

which means that the adjustment of SHPs in response to vegetation changes (such as deforestation) could further improve LSM675

simulations. Third, the relatively coarse spatial resolution of our simulations (0.125◦) required an upscaling of the LAI, GVF

and land cover input data, and the satellite-based evaluation even required an aggregation to 36 km. This caused a suppression

of the deforestation signature in our simulations. Fourth, our LSM simulations did not include any dynamic vegetation growth

module, which would couple soil moisture and vegetation two-ways, instead of only one-way. More generally, LSMs can

benefit from further developments to better represent soil-water-vegetation processes, because the three tested LSMs now680

show a questionable range in their partitioning of the water budget components and in their response to parameter changes.

Some of the above caveats will be addressed in future research towards using LSM output as underlying information for the

assessment of dryland salinity over the Dry Chaco

6 Conclusions

In this study, we explored how the Dry Chaco region and its ongoing land cover changes could be best represented in LSMs.685

The
::::::
updated

:::
the

:
soil- and vegetation-related parameters of three LSMs (CLM2.0, CLSM-F2.5 and Noah3.6)

:
, grouped within

NASA’s LIS, were updated using
:
to
::::::

obtain
:::
the

::::
best

::::::::
modeled

::::::::::::
representation

::
of

:::
the

:::::::::
hydrology

::::
over

:::
the

::::::::::::::
South-American

::::
Dry

::::::
Chaco.

:::
We

::::
used

:
HWSD v1.21 soil texture and time-varying satellite-based GLASS and GIMMS vegetation indices, along

with yearly updated ESA-CCI land cover information. The impact of the various model structures, soil texture and dynamic

vegetation input was assessed in terms of water budget partitioning and efficiency space. The model input and output were690

further evaluated against independent data of in situ P and sfmc, and spatially covering GLEAM ET and SMOS Tb. The latter

offers the unique possibility for an integral evaluation of simulated soil moisture, soil temperature and LAI, after forwarding

these variables through a zero-order RTM.

Our results indicate that:

– the three LSMs yield a different partitioning of the water budget, with 74% to 95% of the total annual P over the Dry695

Chaco contributing to ET ;
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– the soil texture pattern is the main driver of the spatial pattern of soil moisture;

– introducing similar soil, vegetation and land cover parameters in the various LSMs does not result in a homogenization

of the long-term water budget components, i.e. the various LSM structures primarily determine the water distribution

whereas soil, vegetation and land cover parameters only have a secondary impact;700

:::
The

:::::::
updated

:::::::::
vegetation

:::
and

::::
land

:::::
cover

:::::::::
treatment

::::::
allowed

:::
to

::::::
explore

::
to

::::::
which

:::::
extent

:::::::::
large-scale

:::::
land

::::
cover

::::::::
changes

::
in

:::
the

:::
Dry

::::::
Chaco

:::::
affect

:::
the

:::::::
different

:::::
water

::::::
budget

::::::::::
components.

::
It
::::
was

:::::
found

::::
that:

:

–
::::::::::
deforestation

::::::::
increases

::::
soil

:::::::
moisture

:::
for

::
all

::::::
LSMs,

:::
but

:::
the

::::::
degree

::
of

:::::::
increase

::
is
:::::::::
depending

:::
on

::
the

::::::
model

::::::::
structure;

:

–
:
a
::::::
change

:::
in

::::
land

:::::
cover

::::::
results

::
in

::
a
::::
shift

::
of

::::
the

:::::
model

:::::::::::
climatology

:::
and

::
a
::::::::::::::
(non-stationary)

:::::::::::
redistribution

::
of

::::
the

:::::
water

::::::
budget,

:::::
which

::
is

:::::::
different

:::
for

::::
each

::::::
LSM;705

– the implemented satellite-based vegetation indices do not fully depict deforestation, because the 0.125◦ spatial resolution

partially suppresses the deforestation signal, and the replacing agricultural crop may have similar LAI and GVF values

as the initial dry forest;

– a change in land cover results in a a shift of the model climatology and a (non-stationary) redistribution of the water

budget, which is different for each LSM;710

– deforestation increases soil moisturefor all LSMs, but the degree of increase is depending on the model structure;

– relative

:::
The

::::::
model

:::::
input

:::
and

::::::
output

:::::
were

::::::
further

::::::::
evaluated

::::::
against

:::::::::::
independent

::::
data

::
of

::
in
::::

situ
::
P

::::
and

:::::
sfmc,

::::
and

:::::::
spatially

::::::::
covering

:::::::
GLEAM

::::
ET

:::
and

::::::
SMOS

:::
Tb.

::::
The

:::::
latter

:::::
offers

:::
the

::::::
unique

:::::::::
possibility

::
for

:::
an

:::::::
integral

::::::::
evaluation

:::
of

::::::::
simulated

:::
soil

::::::::
moisture,

::::
soil

::::::::::
temperature

:::
and

::::
LAI,

::::
after

:::::::::
forwarding

:::::
these

:::::::
variables

:::::::
through

:
a
:::::::::
zero-order

:::::
RTM.

:::::::
Relative to independent data, no specific LSM715

structure, soil or vegetation input is significantly better than another in terms of time series metrics. Updated soil parameters

reduce Tb bias relative to region-wide SMOS observations for all models, improve the R and ubRMSD values for CLSM and

NOAH, but reduce the R values between CLSM and GLEAM ET and CLSM and SMOS Tb. Interannually varying vegetation

and land cover input generally has a marginal impact.

Our methodology is a first step towards a better representation of the Dry Chaco ecosystem using dynamic LSM simulations.720

The assimilation of multi-source remote sensing data for state (e.g. soil moisture and temperature) and parameter (e.g. albedo)

updating may help to further constrain the models and correct for unmodelled processes, such as land cover changes. However,

the impact of such updates will depend on the used LSM, and on the optimization of data assimilation systems in the presence

of non-stationary processes that are associated with land cover changes (such as deforestation). Vegetation data assimilation

can only have the desired impact, if the sensitivity of simulated hydrological fluxes to vegetation changes is realistic and this725

may need further research, especially at the global scale. To better represent small-scale land cover conversions and their impact

on the water distribution for research on dryland salinity or ecology, simulations should also be conducted at a finer spatial

resolution.
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Figure 1. Geographic location of the Dry Chaco ecoregion together with the spatio-temporal pattern of land cover (LC) changes obtained

from the ESA-CCI land cover product (upscaled to 0.125◦ resolution) together with the location of the Monte Buey soil moisture site and in

situ meteorological stations used for validation of soil moisture and precipitation, respectively.
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Figure 2. Spatial boxplots of soil parameters: (a) B parameter, (b) porosity θsat and (c) saturated matric potential ψsat used in BL and

REVS simulations. Sand fraction maps associated with (d) BL (FAO surface texture), and (e) REVS and REVSV (HWSDv1.21 0-100 cm

texture).
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Figure 3. Long-term (1992-2015) annual water budget components averaged over the Dry Chaco, relative to the total precipitation for (a)

BL and (b)REVS experiments (QSB : Subsurface runoff,QS : Surface runoff,EV : Vegetation transpiration,EB : Bare soil evaporation,EI :

Interception evaporation).
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Figure 4. Boxplots of long-term (1992-2015) (a) average (avg) and (b) standard deviation (std) of BL and REVS moisture content in the

upper 1 m (mc1m) for CLM, CLSM and NOAH. Maps of long-term (1992-2015) average NOAH mc1m, obtained with (c) BL and (d)

REVS parameters.
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Figure 5. Annual water budget components for the period 2007-2015 relative to the total precipitation for the 197 pixels deforested between

2002 and 2006 for REVS and REVSV simulations (QSB : Subsurface runoff, QS : Surface runoff, EV : Vegetation transpiration, EB : Bare

soil evaporation, EI : Interception evaporation).
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Figure 6. Time series of REVS and REVSV land surface variables for a pixel deforested in 2004 (28.0625◦ S, 63.6875◦ W): (a) LAI and

precipitation, (b-c-d) 2 m moisture content (mc2m) for CLM, CLSM and NOAH, respectively.
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Figure 7. (a-b-c) Long-term (1992-2015) water budget components averaged over the Dry Chaco for SENSV experiments, for CLM, CLSM

and NOAH, respectively. Exp1 to exp5 refer to simulations whereby the monthly climatological LAI maps were increased with respectively

1 to 5 units (QSB : Subsurface runoff, QS : Surface runoff, EV : Vegetation transpiration, EB : Bare soil evaporation, EI : Interception evapo-

ration). (d-e-f) Associated impact on the soil moisture profile (spatially averaged profile) for CLM, CLSM and NOAH, respectively. (g-h-i)

Impact of changing land cover parameters (SENSLC ) from deciduous forest to cropland on the soil moisture profile for CLM, CLSM and

NOAH, respectively.
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Figure 8. Scatter density clouds representing the fitted curves in efficiency space of all pixels inside the Dry Chaco for the BL experiment

for the period 1992-2015 for (a-b-c) CLM, (d-e-f) CLSM and (g-h-i) NOAH, respectively. (Left) Q efficiency, (middle) ET efficiency and

(right) ET vs Q efficiency.
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Figure 9. Scatter clouds in efficiency space for the REVS (red) and REVSV (blue) experiment for a subset of 197 pixels (corresponding

with deforested pixels between 2002-2006) for the period 2007-2015, together with the mean value for (a-b-c) CLM, CLSM and NOAH,

respectively. The gray and orange dots represent the shift in mean efficiency between the BL and REVS simulations, based on all pixels

inside the Dry Chaco, i.e. the mean BL values correspond to those in Figure 8 (c-f-i).
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Figure 10. Simulated (BL and REVS) and in situ observed surface soil moisture (sfmc) time series at Monte Buey, Argentina (32.91◦ S,

62.44◦ W), for the period January 2013-December 2015, for (a-b-c) CLM, CLSM and NOAH, respectively.
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Figure 11. (a-d) Skill metrics for total ET from CLM, CLSM, NOAH (BL, REVSV and REVSV ) relative to GLEAM, calculated for the

period 1992-2015 over all pixels inside the Dry Chaco. (e) Long-term (1992-2015) relative ET components (EV : Vegetation transpiration,

EB : Bare soil evaporation, EI : Interception evaporation) spatially averaged over the Dry Chaco for REVS CLM, CLSM, NOAH and

GLEAM.
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Figure 12. Time series of simulated (gray) BL, (red) REVS , (blue) REVSV NOAH-based (a) TbH , (b) sfmc and (c) LAI input at the same

location as in Figure 6, but upscaled to the 36-km EASEv2-grid resolution. Also shown are (black dots) SMOS observed TbH in subplot (a).
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Figure 13. (a-d) Skill metrics for CLM, CLSM, NOAH (BL, REVSV and REVSV ) Tb relative to SMOS Tb, calculated for the period

2011-2015 over pixels deforested between 2002 and 2006. (e-f-g) difference between the R metric for REVSV and REVS for CLM, CLSM

and NOAH, respectively.
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Tables

Table 1. Overview of experiments.

Name Soil data Vegetation Land Cover

BL FAO climatology ESA-CCI 1992

REVS HWSD climatology ESA-CCI 1992

REVSV HWSD time-varying ESA-CCI yearly updated

SENSV HWSD increasing climatology ESA-CCI 1992

SENSLC HWSD climatology forest or agriculture

Table 2. Long-term (1992-2015) distribution of the BL water budget components [mm] for CLM, CLSM and NOAH over the Dry Chaco,

year-round (Annual), for the months April-September (Dry season) and the months October-March (Wet season), respectively.

CLM CLSM NOAH

Annual Dry Wet Annual Dry Wet Annual Dry Wet

P 809 166 643 809 166 643 809 166 643

ET 698 162 536 599 172 427 773 221 552

QS 91 16 75 210 35 175 18 3 15

QSB 20 6 14 0 0 0 18 8 10

∆S 0 -18 18 0 -41 41 0 -66 66

Table 3. Skill metrics for monthly MERRA-2 relative to in situ precipitation: spatial average ± spatial standard deviation.

Bias [mm/month] ubRMSD [mm/month] R [-]

Stations1992-2015 (n=10) 5 ± 11 38 ± 17 0.83 ± 0.07

Stations2010-2015 (n=8) 18 ± 13 42 ± 14 0.74 ± 0.11
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Table A1. Conversion from the ESA-CCI to the UMD land cover classification

ESA CCI UMD

No data No data

Cropland, rainfed Cropland

Cropland, herbaceous cover Cropland

Cropland, tree or shrub cover Cropland

Cropland, irrigated or post-flooding Cropland

Mosaic cropland (>50%) natural vegetation (tree, shrub, herbaceous cover) (<50%) Cropland

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%), cropland (<50%) Open shrubland

Tree cover, broadleaved, evergreen, closed to open (>15%) Evergreen broadleaf forest

Tree cover, broadleaved, deciduous, closed to open (>15%) Deciduous broadleaf forest

Tree cover, broadleaved, deciduous, closed (>40%) Deciduous broadleaf forest

Tree cover, broadleaved, deciduous, open (15-40%) Deciduous broadleaf forest

Tree cover, needleleaved, evergreen, closed to open (>15%) Evergreen needleleaf forest

Tree cover, needleleaved, evergreen, closed (>40%) Evergreen needleleaf forest

Tree cover, needleleaved, evergreen, open (15-40%)) Evergreen needleleaf forest

Tree cover, needleleaved, deciduous, closed to open (>15%) Deciduous needleleaf forest

Tree cover, needleleaved, deciduous, closed (>40%) Deciduous needleleaf forest

Tree cover, needleleaved, deciduous, open (15-40%) Deciduous needleleaf forest

Tree cover, mixed leaf type (broadleaved and needleleaved) Mixed cover

Mosaic tree and shrub (>50%), herbaceous cover (<50%) Woodland

Mosaic herbaceous cover (>50%), tree and shrub (<50%) Woodland

Shrubland Closed shrubland

Evergreen shrubland Closed shrubland

Deciduous shrubland Closed shrubland

Grassland Grassland

Lichens and mosses Grassland

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Open shrubland

Sparse shrub (<15%) Open shrubland

Sparse herbaceous cover (<15%) Open shrubland

Tree cover, flooded, fresh or brakish water Open shrubland

Tree cover, flooded, saline water Open shrubland

Shrub or herbaceous cover, flooded, fresh/saline/brakish water Open shrubland

Urban areas Urban

Bare areas Bare ground

Consolidated bare areas Bare ground

Unconsolidated bare areas Bare ground

Water bodies Water
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