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Abstract. A simple and effective two-step data assimilation framework was developed to improve soil moisture representation 

in an operational large-scale water balance model. The first step is the sequential state updating process that exploits temporal 

covariance statistics between modelled and satellite-derived soil moisture to produce analysed estimates. The second step is to 

use analysed surface moisture estimates to impart mass conservation constraints (mass redistribution) on related states and 10 

fluxes of the model in a post-analysis adjustment after the state updating at each time step. In this study, we apply the data 

assimilation framework to the Australian Water Resources Assessment Landscape model (AWRA-L) and evaluate its impact 

on the model's accuracy against in-situ observations across water balance components. We show that the correlation between 

simulated surface soil moisture and in-situ observation increases from 0.54 (open-loop) to 0.77 (data assimilation). 

Furthermore, indirect verification of root-zone soil moisture using remotely sensed vegetation time series across cropland areas  15 

results in significant improvements of 0.11 correlation units.  The improvements gained from data assimilation can persist for 

more than one week in surface soil moisture estimates and one month in root-zone soil moisture estimates, thus demonstrating 

the efficacy of this data assimilation framework. 

1 Introduction 

Accurate estimation of soil moisture is fundamental to monitoring and forecasting water availability and land surface 20 

conditions under extreme events such as droughts, heatwaves and floods (Ines et al., 2013;Sheffield and Wood, 2007;Tian et 

al., 2019b). The spatial pattern of soil moisture can vary significantly due to the heterogeneous spatial distribution of rainfall 

and variability in soil properties, land cover type and topography. Due to this large spatial variability, the utility of ground-

based, point-scale measurements is limited in estimating soil water availability at continental scale. Soil moisture estimates 

from land surface models are adversely affected by the uncertainties of atmospheric forcing, model dynamics and model 25 

parameterization. Remotely sensed data can provide spatially and temporally varying constraints on the modelling of 

biophysical landscape variables that are often superior to that achieved by a single static set of model parameters. Data 
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assimilation merges models and observations in a way that take advantage of their respective strength (e.g. uncertainty, 

coverage), resulting in improved accuracy, coverage, and ultimately forecasting capability. 

The assimilation of satellite soil moisture (SSM) into land surface and hydrology models has been repeatedly demonstrated to 30 

improve model representation of soil water dynamics (De Lannoy and Reichle, 2016;Draper et al., 2012;Kumar et al., 2009;Li 

et al., 2012;Pipunic et al., 2008;Reichle and Koster, 2005;Renzullo et al., 2014;Tian et al., 2019a;Tian et al., 2017;Crow and 

Yilmaz, 2014;Su et al., 2014b). Methods of assimilation are many and varied, however commonalities exist between them. 

These commonalities are such, that for any time step, the time integrated first guess (the forecast) of soil moisture states are 

adjusted by an amount determined by the difference between observed and modelled soil moisture (the innovation), which is 35 

weighted by the respective error variances of modelled and observed quantities (the gain), to generate revised soil moisture 

states (the analysis). At the end of this process, the revised model soil moisture states are out of balance with the other stores 

and fluxes, until the model integrates forward to the next time step, whereupon water balance discontinuity is progressively 

removed through model physics. Soil moisture is the linchpin between atmospheric fluxes, surface- and ground-water 

hydrology, thus it is important that any changes in modelled state variables are not detrimental to other components of the 40 

water balance. As the assimilation of remotely sensed soil moisture or total water storage data may lead to undesired impacts 

on groundwater or evapotranspiration simulations due to the mass imbalance or random error covariances (Girotto et al., 

2017;Tangdamrongsub et al., 2020;Tian et al., 2017). However, studies considering mass conservation in data assimilation 

often requires extra data sources such as evapotranspiration and runoff as constraints or only redistributing water into states 

without considering the fluxes (Li et al., 2012;Pan and Wood, 2006).  45 

From an operational water balance perspective, is it important that the method of data assimilation be: i) computationally 

efficient for routine, automated simulation over the whole model domain; ii) robust to data gaps; and iii) make lasting positive 

improvements to future predictions of soil water stores and fluxes. An additional constraint is that if a DA method is applied 

to an existing operational system, then it ought to require minimal modification to the system framework, and be as least 

disruptive as possible to the model performance. Currently, there are few operational continental water balance modelling 50 

systems that provide near-real time soil moisture estimates that have been constrained through the assimilation of satellite 

observations, and mainly at a relatively coarse resolution. Some recent examples include surface soil wetness observations 

from Advanced Scatterometer (ASCAT) active radar system, on the meteorological operational satellite (MetOp), being 

assimilated into Unified Model (Davies et al., 2005) through nudging to provide soil moisture analysis at 40 km globally 

(Dharssi et al., 2011). Additionally, ASCAT data are used in the ECMWF (European Centre for Medium-Range Weather 55 

Forecasts) Land Data Assimilation System through a simplified Extended Kalman Filter approach (de Rosnay et al., 2013) to 

provide near-real time surface soil moisture and root-zone soil moisture at 25-km resolution globally. SMOS (Soil Moisture 

and Ocean Salinity) brightness temperatures have been assimilated in ECMWF’s global NWP (Numerical Weather Prediction) 

system through the Surface Data Assimilation System, based on the Extended Kalman filter, to produce soil moisture reanalysis 
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at 40-km resolution (Muñoz-Sabater, 2015). Level-2 Radiometer soil moisture retrievals from SMAP mission (Entekhabi et 60 

al., 2010) has been assimilated into the real-time instance of the NASA Land Information System (LIS) over the Conterminous 

United States (CONUS) to produce hourly outputs at 0.03° resolution using ensemble Kalman filter (Blankenship et al., 2018). 

However, unlike the aforementioned systems where data assimilation is inherent in the system design, many operational water 

balance models, or catchment hydrology models, are calibrated to observations a priori and data assimilation included as an 

afterthought, thereby limiting the complexity of the data assimilation scheme for operational use.  65 

In this study, we develop a simple, computationally efficient, and effective data assimilation framework with mass 

conservation for incorporating satellite soil moisture products into an existing operational national water balance model. We 

demonstrate the application of the method to the Australian Water Resources Assessment Landscape model (AWRA-L), which 

provides daily water balance estimates at ~5-km resolution across Australia, with the assimilation of satellite soil moisture 

from both SMOS and SMAP. The proposed data assimilation framework is a two-step process that requires minimal 70 

modification of the existing operational system. The first step is the sequential state updating, with weightings between models 

and observations derived from the Triple Collocation (TC) approach (Chen et al., 2018;Crow and Van den Berg, 2010;Crow 

and Ryu, 2009;Crow and Yilmaz, 2014;Su et al., 2014a;Yilmaz and Crow, 2014). The second step is to impart mass 

conservation constraints on related states and fluxes such as root-zone soil water storage, evapotranspiration and streamflow, 

thus improving the accuracy of the water balance post assimilation. Accurate initial water balance conditions are of critical 75 

importance in the forecasting of water availability and land surface water dynamics. However, few studies quantify how long 

the impacts of data assimilation persist in the model system’s memory. To explore the impacts of data assimilation on model 

predictions, we quantified the persistence of the correction to key model components with respect to open-loop simulations, 

to illustrate the potential gains from data assimilation in improving water balance forecasts.  

2 Materials  80 

2.1 Australian Water Resources Assessment Modelling system  

The Australian Water Resources Assessment Landscape (AWRA-L) model (Van Dijk, 2010) underpins the annual national 

water resource assessments and water use accounts for Australia (Frost et al., 2018). The operational implementation of the 

AWRA-L by the Australian Bureau of Meteorology provides daily 0.05-degree (approximately 5 km) national gridded water 

balance estimates. The outputs from the operational AWRA-L has been widely used in various agricultural applications and 85 

natural resources risk assessment and planning, including commodity forecasting, irrigation scheduling, flood and drought risk 

analysis, as well as flood forecasting. The version of the AWRA-L model used in the study was obtained from the Community 

Modelling system (AWRA-CMS) and is freely available from https://github.com/awracms/awra_cms.   

AWRA-L is a one-dimensional grid-based model that simulates water balance for each grid cell across the modelling domain 

by distributing rainfall influx into plant-accessible water, soil moisture and groundwater stores, and computing outflux such 90 
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as evapotranspiration, runoff and deep drainage. The soil water column is partitioned into three layers (surface: 0–10 cm, 

shallow: 10–100 cm, and deep: 1–6 m) and simulated separately for deep- and shallow-rooted vegetation. The water storage 

for the surface-layer soil is termed 𝑆!, while 𝑆" is used for the shallow-layer and 𝑆# for the deeper-layer. In addition to the 

modelling of soil columns, the model includes a surface water and a groundwater storage that are simulated at each grid cell 

and conceptualized as a small unimpaired catchment. In this study, we used forcing inputs from the AWAP (Australian Water 95 

Availability Project) gridded climate data including daily precipitation, air temperature and solar exposure (Jones et al., 2009), 

and interpolated site-based wind speed (McVicar et al., 2008). It is acknowledged that the accuracy of the model estimates is 

limited in regions with insufficient coverage in the ground-based observation network (e.g. rain gauges) which is the raw 

source of AWAP gridded data used to force the model. This is limited to very remote and mostly uninhabited arid regions in 

Australia.  100 

2.2 Satellite soil moisture (SSM) 

To maximize daily spatial coverage, we used two satellite soil moisture products derived from passive L-band systems: the 

Soil Moisture Active-Passive (SMAP) product from NASA (Entekhabi et al., 2010); and the product from the European Space 

Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001). The SMAP product is the level-2 

enhanced radiometer half-orbit 9-km EASE-grid soil moisture (Chan et al., 2018). The SMOS product is the level-2 soil 105 

moisture product on ~ 25-km grid (Rahmoune et al., 2013). Both SMAP and SMOS produce volumetric soil moisture estimates 

(units m3/m3) of approximately the upper 5 cm of soil. Available swath data for each product covering Australia were sourced 

and collated for each 24-hour period approximating the AWRA-CMS operational time steps and interpolated to a regular 0.05-

degree grid across the modelling domain from 2015 to 2019. The volumetric soil moisture retrievals from both SMAP and 

SMOS were converted into water storage units (mm) to be consistent in units and soil depths with model estimates, using mean 110 

and variance matching to remove the systematic bias. Figure1 shows an example of daily composites of SMAP (Fig1.a) and 

SMOS (Fig1.b) soil moisture retrievals in model units compared to AWRA-L estimates of 𝑆$ (Fig1.c). For regions with sparse 

rain-gauge coverage such as central Western Australia (Fig1.c), AWRA-L modeled 𝑆$ persists as zeros or very low values for 

the experiment period, reflecting a deficiency in the gauge-based analysis of daily rainfall used to drive model simulations. 

The result of mean and variance matching in these gauge-sparse areas will flatten the dynamics of SSM time series to zero. To 115 

resolve this problem, and fully leverage the information available in the SSM products in order to fill the gaps in modelled 

outputs for gauge-sparse regions of the continent, we derived a set of coefficients for the rescaling by sampling modelled and 

SSM data from cells surrounding the gaps. This ensures the assimilation can effectively impart a more realistic spatial pattern 

of soil moisture over the sparsely gauged regions. 

 120 
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2.3 Validation data 

2.3.1 In-situ measurements 

Evaluation of the modelled soil water storages was made against measurements from three soil moisture monitoring networks 

in Australia from 2016 to 2018, namely OzNet (Smith et al., 2012), CosmOz (Hawdon et al., 2014) and OzFlux (Fig.1d). 125 

AWRA-L model estimates of water storage in surface soil layer were compared against in situ measurements from the top 10 

cm of soil across all three networks. The depths of in situ measurements of root-zone moisture varied across networks from 0-

30 cm to 0-1 m. As such, AWRA-L soil water storages over the root-zone were constructed by combining surface- and shallow-

layer soil water storage in the appropriate proportions to be consistent with in situ measurement depth. OzFlux sites are also 

used for the evaluation of AWRA-L evapotranspiration estimates, which were calculated from accumulated latent heat flux 130 

measurements at each location. In total, there are 45 sites for soil moisture validation and 14 sites for evapotranspiration 

validation. Streamflow observations for 110 catchments across Australia have been used in the validation based on the quality 

and data availability (Fig. 1d).   

2.3.2 Vegetation index 

In water-limited regions like Australia, shallow-rooted vegetation normally responds quickly to soil water availability, 135 

typically within a month. Consistency between root-zone soil water storage and vegetation greenness may be considered as an 

indirect independent verification of the simulation of root-zone soil water dynamics (Tian et al., 2019a;Tian et al., 2019b). The 

0.05-degree monthly Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer 

(MODIS, MYD13C2 v6) were used to evaluate estimates of monthly root-zone soil water storage (the sum of water storage in 

surface-layer (𝑆!) and shallow-layer (𝑆")  within the AWRA-L soil column) over cropland regions of the continent. The 250-140 

m land cover classification map from Geoscience Australia (Lymburner, 2015) was resampled to 0.05 degree over the model 

domain and used in the identification of cropland areas. 

3 Method 

3.1 Triple collocation-based error characteristics 

Triple collocation (TC) was developed as a method of quantifying error characteristics in geophysical variables when the 145 

true error structure is elusive. It was first applied to near-surface wind data (Stoffelen, 1998) and later extensively applied to 

soil moisture (Chen et al., 2018;Crow and Yilmaz, 2014;Dorigo et al., 2017;McColl et al., 2014;Scipal et al., 2008;Su et al., 

2014b;Yilmaz and Crow, 2014;Zwieback et al., 2013) and rainfall (Alemohammad et al., 2015;Massari et al., 2017). The 

assumption of this approach is that three independent data sets of the same geophysical variable can be used to infer the error 

variances in each. Here we use TC as a way of inferring error variances from our three independent estimates of surface soil 150 

moisture, AWRA-L 𝑆!, SMAP, and SMOS from 2015 to 2019. Those three collocated measurements were assumed to be 
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linearly related to the true value with additive random errors. To ensure the errors from the three independent sources were 

unbiased relative to each other, SMAP and SMOS soil moisture retrievals were rescaled to the reference model estimates 

(AWRA-L 𝑆!) using temporal mean and variance matching. McColl et al. (2014) shows that the error variances of each data 

set can be calculated from the temporal variance and covariance between data sets respectively as: 155 

𝝈%& = $𝑸%,% −
𝑸!,#𝑸!,$
𝑸#,$

',			 	𝝈)& = $𝑸),) −
𝑸!,#𝑸#,$
𝑸!,$

'      and   		𝝈*& = $𝑸*,* −
𝑸$,#𝑸!,$
𝑸!,#

'                                                                (1)                                        

where x, y and z denote AWRA-L, SMAP and SMOS soil moisture estimates respectively and Q denotes temporal variance 

and covariance between the data sets. These estimates of error variance are used in the determination of the weighting of each 

data source in the data assimilation (Section 3.2).  

3.2 Sequential state updating 160 

The data assimilation method used here is a time sequential updating of model state(s) given observations of relevant model 

variables (Reichle, 2008). There are two key modelling components in data assimilation: the dynamics operator, which 

describes the time integration of the system states and fluxes, which in this study is the AWRA-CMS; and the observation 

operator, which provides the mathematical mapping from state to observation space. The role of the observation operator is to 

perform a mapping between observation and state space, as often observations are not directly comparable to model states.  165 

The common state updating equation for sequential data assimilation is written as: 

𝒙+, = 𝒙+
- +𝑲+[𝒚+ −𝑯4𝒙+

-5]                                                                                                                                                      (2) 

which says that the best estimate of model state, known as analysis (𝒙+,), is equal to the first guess or forecast (𝒙+
-) plus a 

weighted difference between observations, 𝒚+, and the model equivalent to the observation, 𝑯4𝒙+
-5, for that time step. In this 

study, the AWRA-L model soil water storage in S0 for shallow-rooted vegetation and deep-rooted vegetation at surface layer 170 

are updated directly through the sequential data assimilation. Satellite surface soil moisture (SSM) products from both SMOS 

and SMAP are used as the observations to update the model simulation. The observation operator 𝑯 here is the aggregation of 

soil water storage in S0 for shallow-rooted vegetation and deep-rooted vegetation, denoting the soil water content for each grid 

cell. The multiplier, 𝑲+, is known as the gain factor which contains uncertainty expressed as error variance for both model 

estimates (𝜎.&) and observations (𝜎/&). For a unity observation operator and assuming independence between model estimates 175 

and observations, the gain factor typically assumes the form: 

𝑲 =	 𝝈%
&

𝝈%
&1𝝈'

& .                                                                                                                                                                                 (3) 
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The gain factor, 𝑲, contains information on the error variances of the model and observations. Observation error variance is 

often estimated through field campaigns (Draper et al., 2009;Panciera et al., 2013), but these rarely represent the spatial and 

temporal variability of errors in gridded satellite products. Alternatively, data providers often specify error estimates, but their 180 

magnitude can be overly optimistic. Here, we applied the triple collocation approach (Section 3.1) to characterise the errors in 

model estimates and satellite observations (Crow and Van den Berg, 2010). Therefore, the gain factor 𝑲 is temporally constant 

but spatially varying. The analysis receives higher contribution from observation with smaller error variance (Eq. 2). 

3.2 Analysis increment redistribution (AIR) 

The assimilation of satellite soil moisture temporarily violates mass conservation in the model through the analysis update. 185 

The difference between the analysis, 𝒙23, and the forecast, 𝒙24, (known as the analysis increment) represents an amount of 

water that has been added or subtracted from the system that was not present at the start of model integration for the given 

time step. In this study, we use the concept of tangent linear modelling	(Errico, 1997;Giering, 2000) to redistribute the 

analysis increment of surface soil water storage, 𝑆!, to all the relevant model states and fluxes as a way of maintaining mass 

(i.e. water) balance within each model time step. This adjustment is applied after the sequential state updating as the second-190 

step in the assimilation framework, which we refer to as analysis increment redistribution (AIR).  

The adjoint and tangent linear models were originally used in variational data assimilation (Bouttier and Courtier, 2002) and 

have been used to estimate the sensitivity of model outputs with respect to input (Errico, 1997).We assume the input 

perturbation here is the analysis increment after the data assimilation (i.e. 𝒙23-𝒙24 from Eq. 2), then the change in other model 

outputs due to the change in inputs can be determined through tangent linear modelling. Assuming model variable b is 195 

related to the state variable x, the relationship between them can be simply described as: 

𝒃 = 𝑴(𝒙),                                                                                                                                                                                  (4) 

where M denotes the model operator. The change in output variable ∆𝒃 at time step t due to the input change ∆𝒙 can be 

determined by  

∆𝒃+ =
5𝑴
5𝒙𝒕
∆𝒙+.                                                                                                                                                                           (5)   200 

In this study, we applied the tangent linear modelling approach to correct the model forecast of soil water storage for 

shallow-layer (𝑆") , and deep-layer soil water storage (𝑆#), evapotranspiration (𝐸+$+) , and total streamflow (𝑄+$+) after the 

state updating of surface soil moisture (𝑆!) at each time step. Note that this process ensures that the correction is affecting all 

model states in proportion to their sensitivity against changes in the 𝑆!.  

 205 
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4. Results 

4.1 Impact on surface soil water storage estimates 

Error variances were derived using TC for AWRA-L model estimates and the SSM products, and showed that for the 

majority of the grid cells over the continent SMAP soil moisture had smaller error variance than SMOS and the model 

estimates. This is consistent with other studies that have shown SMAP provides the best-performing satellite soil moisture 210 

product over the majority of applicable global land pixels (Chen et al., 2018). Figure 2 shows the relative weightings 

(derived from the TC error variances) of model estimates, SMOS and SMAP soil moisture in the data assimilation. The 

analysed surface soil water storage estimates (𝑆!) receive a greater contribution from SSM products, in particular SMAP 

observations, compared to model simulations (Fig. 2). Figure 3 gives an example of the temporal change in modelled 𝑆! 

estimates before and after the assimilation for 2017. The temporal dynamics of 𝑆! estimates after the assimilation has been 215 

highly adjusted towards SSM retrievals.  

AWRA-L model simulations are driven by gauge-based rainfall analyses. As such the model has difficulty in adequately 

simulating soil moisture patterns over regions lacking in rain gauge coverage, such as Western Australia and central 

Australia (Fig. 1c). Water storage simulations over these regions default to zero, thus very little or no weight was given to 

the AWRA-L estimates in these regions (Fig. 2a). Figure 4 shows different spatial patterns of daily average 𝑆! estimates for 220 

December 2019 from model open-loop (OL) without data assimilation and with data assimilation through TC-derived 

weighting (DA-TC). Data assimilation has the effect of adding moisture to AWRA-L 𝑆! simulations over most of gauge-

sparse areas as shown in Figure 4c. Analysed AWRA-L simulations of 𝑆! are dominated by the satellite SSM data as a result 

of TC weighting in the region which largely eliminates the erroneous artefacts associated with deficient rainfall data forcing. 

Reduced water storage in the surface layer of the soil column was found over southeast of Australia, particularly within the 225 

Murray-Darling Basin. This suggests that AWRA-L OL simulations underestimated the severity of the drought experienced 

in the region in December 2019. The analysis increments of AWRA-L 𝑆! (𝒙𝒂 − 𝒙𝒇) were compared with the difference 

between in-situ rainfall observations from OzFlux network, 𝑃:*;<=% and AWAP rainfall forcing, 𝑃>?>@,(Fig. 5). The 

increasing 𝑆! simulations align with missing or underestimated rainfall events in the AWAP rainfall forcing 

(𝑃:*;<=% − 𝑃>?>@ > 0) and vice versa (Fig. 5). This supports the hypothesis that data assimilation correctly distributes 230 

water into the system and mitigates the impact of uncertainty in rainfall forcing.  

4.2 Impact on root-zone soil water storage and fluxes estimates 

If the analysis increment redistribution (AIR) is not applied, the soil water storage in the surface layer (𝑆!) is the only state 

variable directly updated with SSM (DA-TC). Other variables such as root-zone soil water storage, evapotranspiration and 

streamflow are adjusted with model integration to the next time step using the analysed 𝑆! as the surface layer initial condition. 235 

Therefore, the observed changes in those variables following DA-TC (Fig.6, centre column) are relatively small when 
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compared to model open-loop estimates (Fig.6, left column). For example, the OL soil water storage of shallow-layer (𝑆") 

estimates in those gauge-sparse regions of Australia remain zero or very low due to the AWAP rainfall forcing. The predictions 

of 𝑆" receive relatively small contribution from the analysed 𝑆! since the analysis increment of 𝑆! is small compared to the 

field compacity of 𝑆".  240 

One known issue of sequential state updating is the temporary break of water balance at each time step until the next model 

integration. The proposed AIR approach (Section 3.2) adjusts variables coupled with surface soil moisture after the state 

updating at each time step. Significant difference in the spatial patterns of 𝑆" , 𝐸+$+ and 𝑄+$+ after the mass redistribution (DA-

TCAIR) can be seen in Fig. 6 (right column) compared to model open-loop or forecasts after only 𝑆! updating. The changes 

in estimates of 𝑆" and 𝐸+$+ over coastal regions are relatively small due to more accurate rainfall forcing data with the dense 245 

network of rain-gauges. Finally, the 𝑄+$+ estimates after AIR are lower than the DA-TC and OL. This reduction in streamflow 

over south-eastern Australia and northern Australia is consistent with the reduced surface soil moisture in those regions (Fig.4c).  

4.3 Quantitative evaluation  

Estimates of surface soil moisture, root-zone soil moisture, evapotranspiration and streamflow after data assimilation (DA-

TC) and data assimilation with mass redistribution (DA-TCAIR) were compared with time series of in-situ observations. We 250 

compared the model outputs after DA-TC and DA-TCAIR separately to investigate the benefits of maintaining mass balance 

in data assimilation. Pearson’s correlation coefficients were computed from time series of model estimates and observations 

between January 2016 to December 2018 for each site.  The distribution of correlation coefficients for OL, DA-TC and DA-

TCAIR are displayed as boxplots in Figure 7. Consistent, significant improvement in modelled surface layer soil water storage 

estimates (S!) were observed across all sites (Fig. 7a) with the single exception of an OzFlux site located in a tropical rainforest, 255 

where microwave SSM retrievals are known to be typically poor (Njoku and Entekhabi, 1996). TC-based assimilation (DA-

TC) increases the correlation between in-situ surface SM measurements from 0.47 to 0.72 on average for CosmOz sites, 0.54 

to 0.69 for OzFlux sites, and 0.56 to 0.77 for OzNet sites compared to OL. This is a significant improvement in AWRA-L 

simulations of surface soil moisture dynamics with an increase in correlation of 0.23 on average across all in-situ sites. 

Overall subtle improvements were observed across the AWRA-L estimates of root-zone soil water storage, evapotranspiration 260 

and streamflow after the assimilation (DA-TC) (Fig. 7b, c, d). The level of improvement is not surprising since those variables 

were not directly updated through DA-TC and are only influenced through the integration of the model to the next time step. 

Degradation were found in root-zone soil moisture estimation for a few OzFlux and OzNet monitoring sites. This is likely due 

to the break of water balance in the assimilation, since the estimates followed by the second step of AIR (DA-TCAIR) slightly 

increases the correlation with in-situ observations compared to model open-loop and the estimates after assimilation without 265 

mass redistribution (DA-TC). Moreover, the model estimates of root-zone soil moisture from model OL are in good agreement 

with in-situ observations as is with average correlation above 0.8 (Fig. 7b), which leaves little room for improvements. 
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Although the corrections of other water balance estimates from the analysis increments redistribution are relatively small 

compared to direct state updating, they are improvements nevertheless. Slight improvements were similarly found in 

streamflow estimates after the AIR (Fig. 7d). Figure 8 shows an example of the OL estimates of streamflow, the analysed 270 

streamflow after the application of AIR, and the streamflow observations, 𝑄+$+	$B". Also displayed is the streamflow analysis 

increments, i.e. 𝑄+$+, − 𝑄+$+
-  for each time step. The negative streamflow analysis increment indicates that water is removed 

from the surface water store after AIR, which is consistent with the overall general overestimate in streamflow from OL, in 

this example (Fig. 8). The reduced streamflow is a direct result of the changes in surface soil moisture condition after the 

assimilation of SSM. This highlights the importance of accurate antecedent soil moisture conditions in the simulation of runoff 275 

response as well as maintaining the water balance. 

The large spatial disparity between ground measurement and modelling scales are a substantial limitation for wide-area 

evaluation of root-zone soil moisture estimates. An indirect verification of AWRA-L simulations of root-zone soil moisture 

was based on comparisons against satellite-derived NDVI. This provided an independent, albeit indirect, way of evaluating 

the impact of data assimilation over larger areas. We calculated the correlation between time series of monthly average AWRA-280 

L root-zone soil moisture from OL, DA-TC and DA-TCAIR simulations against NDVI for cropland across Australia over the 

period 2015 to 2018. Crop land cover type was selected as we assume the rooting depths are predominantly within with the 

combined soil depths (0-1m) of the surface- and shallow-layer soil water storages in AWRA. Figure 9 shows the relative 

change in correlation between root-zone simulations from DA-TC and those from DA-TCAIR data against NDVI data for 

cropland areas of Australia. The figure shows that for the vast majority of model grid cells, the data assimilation without mass 285 

redistribution shows no improvement or degradation in correlations with NDVI comparing to model open-loop (OL) (Fig. 9a). 

DA-TCAIR shows significant increase in correlation with NDVI compared to both model open-loop (Fig. 9b) and DA-TC 

(Fig. 9c), with an average increase in correlation with NDVI from 0.55 to 0.66 for cropland compared to OL.This demonstrates 

that enforcing mass balances as part of the SSM data assimilation each time step is essential to improving the simulation of 

root-zone soil water balance. The improved consistency with NDVI also illuminates the potential of improving agricultural 290 

planning with more accurate information of root-zone soil water availability.    

4.4 Impact on water balance forecasting 

To quantify how long improvements in model state last in AWRA-L simulations, we used OL and DA-TCAIR estimates 

between 1 March 2018 and 28 February 2019. The model states for each day over this one-year period served as initial 

conditions for 100-day AWRA-L simulations from which we calculated the number of days it took for the simulation from the 295 

analysed DA-TCAIR states to converge to within +/- 5% of those from OL. Results showed that data assimilation can impact 

model states and fluxes for weeks and sometimes up to 2-3 months (Fig. 10). The impacts of data assimilation can persist in 

simulated 𝑆! for as long as a week over coastal regions, and longer in central Western Australia and Northern Australia with 

up to a month persistence in winter and spring (Fig. 10a). There is less impact on 𝑆! simulations during wet season (Summer-
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Autumn) in Northern Australia since the 𝑆! can saturate rapidly due to the heavy rainfall. Overall, the longest persistence is 300 

found in winter with a continental average of 13 days; the shortest is 6 days on average in autumn and summer. The memory 

of initial conditions in simulations of 𝑆" can persist even longer due to the slower response to rainfall variability and higher 

field capacity (Fig. 10b). Summer persistence for 𝑆" is the least with a continental average of 30 days; in winter this increased 

to 45 days. 

On average, the impact of antecedent soil moisture conditions on evapotranspiration simulations can persist for 1 week over 305 

coastal areas, but up to months in central Western Australia (Fig. 10c). The continental average varies from 13 to 20 days for 

each season. The areas with the longest persistence are those areas with artefacts of zero rainfall in the forcing. This 

demonstrates that improvements in AWRA-L estimates after SSM assimilation over regions with sparse rain-gauge coverage 

can persist in the system for more than 2 months. The impact on runoff varies from 1 week to 3 months over the continent 

(Fig. 10d). The majority of areas impacted for more than 2 months are in locations of low rainfall and runoff. However, in 310 

areas of heavy runoff, e.g. north-eastern Australia, there is between 1-2 week of persistence.    

5. Discussion 

In this study, we assimilated SMAP and SMOS data into an operational AWRA-L water balance modelling system through a 

simple sequential state updating approach, with weightings derived using triple collocation approach (DA-TC), followed by a 

post-adjustment for mass redistribution (DA-TCAIR). Previous data assimilation studies using the AWRA-L model opted for 315 

ensemble-based methods (Renzullo et al., 2014;Shokri et al., 2019;Tian et al., 2019a;Tian et al., 2017;Tian et al., 2019b). 

Ensemble based methods rely on a priori knowledge of uncertainty in forcing data and  model error variances to derive spatially 

and temporally varying gain matrices at each time step. However ensembles often require post hoc correction such as state 

inflation (Anderson et al., 2009) to achieve optimal performance, and many members (> 10) comprised of  multiple model 

runs to infer statistically meaningful error variances, which can be computationally costly. In contrast, the proposed DA-TC/-320 

TCAIR framework is simple, effective and computationally efficient and requires minimal modification in the current 

operational system. The gain factor in the proposed assimilation framework is temporally constant but spatially varying. It is 

derived from the temporal covariances between modelled and satellite-derived soil moisture for each grid cell across the 

domain through the widely used triple collocation (TC) method (Chen et al., 2018;Crow and Van den Berg, 2010;Crow and 

Yilmaz, 2014;Su et al., 2014a;Yilmaz and Crow, 2014). The significant improvements in AWRA-L model surface soil 325 

moisture estimation demonstrates the efficiency of the proposed assimilation approach (Fig. 7a). Temporally varying gain 

factor is considered for future improvement to the approach once a longer time series of SMAP data is available.   

Pan and Wood (2006) used mass redistribution in a two-step constrained Kalman filter that required error covariances derived 

from evapotranspiration and runoff observations. However, these observations are often not available for continental scale of 

studies. Li et al. (2012) redistribute the mass imbalance within soil layers during the assimilation but without the updates of 330 
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fluxes. Our proposed method based on tangent linear modelling redistributes the mass change across all the states and fluxes 

related to surface soil moisture states without the need for extra observations. The analysis increment redistribution (AIR) 

method conserves the mass balance thereby improving water balance estimates (Fig. 7), in particular it can improve the root-

zone soil moisture estimates over croplands (Fig. 9). Although the improvements are limited, the streamflow estimates from 

the AIR are predominantly a better match to observations (Fig. 8). Model physics limits the strength of coupling between an 335 

analysed state and resulting fluxes (Kumar et al., 2009;Walker et al., 2001). Thus a small level of improvement in performance 

in AWRA-L streamflow in response to soil moisture state updating is not unexpected due to a weak coupling between the 

states and fluxes.  

Many studies have demonstrated the assimilation of satellite soil moisture can improve discharge simulations and correct for 

errors in pre-storm soil moisture conditions (Crow and Ryu, 2009;Pauwels et al., 2001;Scipal et al., 2008). Wanders et al. 340 

(2014) found that the assimilation of remotely sensed soil moisture in combination with discharge observation can improve 

the quality of the operational flood alerts, both in terms of timing and in the exact height of the flood peak. Getirana et al. 

(2020a) and Getirana et al. (2020b) found that using initial conditions derived from the assimilation of GRACE (Gravity 

Recovery and Climate Experiment) total water storage observations can improve the seasonal streamflow and groundwater 

forecast due to the long memory of groundwater and soil moisture. However, few studies quantify how long the impacts of 345 

data assimilation can persist in the model system’s memory for different states. We found that the impact of different initial 

conditions of root-zone soil water storage has a long memory in the system, exceeding 2 months (Fig.10b). The impacts on 

the simulations of surface soil moisture, evapotranspiration and streamflow can persist 1-2 weeks. This highlights the potential 

gains from data assimilation for agricultural planning and flood forecasting, as a result of improved short-term water balance 

forecasts.  350 

6. Conclusion 

In this study, we proposed a simple and robust framework for assimilating SMAP and SMOS soil moisture products into the 

operational Australian Water Resources Assessment modelling system. The method involves the sequential (daily) updating 

of the model's surface soil water storage with satellite soil moisture observations using weights determined through triple 

collocation (DA-TC). Furthermore, we proposed an additional component to the data assimilation whereby the analysis 355 

increment of the upper layer soil water storage is propagated into relevant model states and fluxes as a way of maintaining 

mass balance (DA-TCAIR). Evaluation against in-situ measurements showed that simulations of surface soil moisture 

dynamics is improved significantly after TC data assimilation with an average increase of 0.23 correlation units compared with 

open-loop simulations. An evaluation of the root-zone soil moisture, evapotranspiration and streamflow estimates showed that 

the TC-AIR appeared to provide marginal, yet positive, improvement over the TC data assimilation method alone. However, 360 

in an indirect verification of modelled root-zone soil moisture against satellite-derived NDVI, DA-TCAIR was seen to provide 

significant improvement over the TC method alone. This demonstrates that by enforcing mass balances as part of the SSM 
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data assimilation each time step, AWRA-L can better represent soil water dynamics such that it has greater consistency with 

observed vegetation response. 

 365 

The assimilation of satellite soil moisture estimates together with the mass redistribution reduces the uncertainties in model 

estimates resulting mainly from uncertain forcing and model physics, and provides temporally and spatially varying constraints 

on model water balance estimates. For example, the assimilation resolves the gaps in rainfall forcing over Western Australia 

and central Australia. We demonstrate that the impacts of data assimilation can persist in the model system for more than a 

week for surface soil water storage and more than a month for root-zone soil water storage. This highlights the importance of 370 

accurate initial hydrological states for improving forecast skill over longer lead times. Hence, an operational water balance 

modelling system, with satellite data assimilation, has strong potential to add value for assessing and predicting water 

availability for a range of decision makers across industries and sectors. 

 

 375 
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Figure 1: Satellite soil moisture retrievals in model unit (mm) for (a) SMAP and (b) SMOS compared to (c) AWRA-L estimates of 

surface soil water storage for 1 Jan 2019. (d) Locations of in-situ soil moisture monitoring networks (CosmOz, OzNet and OzFlux), 

catchments for streamflow validation and grid cells classified as cropland. The rectangular inset map provides a zoomed view into 540 
the OzNet network region in south eastern Australia.  
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Figure 2: Gain weights for sequential data assimilation derived from Triple Collocation (TC) showing the relative contribution of 

the respective estimate in (a) AWRA-simulated surface soil water storage 𝑺𝟎, (b) SMOS soil moisture, and (c) SMAP soil moisture. 545 
 

 
Figure 3: Time series of AWRA-L surface soil water storage estimates from open-loop (OL) compared to estimates after data 

assimilation (DA-TC) of SMAP and SMOS soil moisture retrievals at CosmOz monitoring site: Bennets (35.826°E, 143.004°S). 
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Figure 4: Comparison of daily average surface soil water storage estimates (𝑺𝟎) for December 2019 from (a) model open-loop (OL), 

(b) data assimilation with Triple Collocation (DA-TC) and (c) difference between estimates DA-TC and OL.   
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 555 
Figure 5: Analysis increments of AWRA-L surface soil water storage (𝒙𝑺𝟎𝒂 -𝒙𝑺𝟎

𝒇 ) in comparison with difference between in-situ rainfall 

observations and rainfall forcing from AWAP used in AWRA-L modelling (𝑷𝑶𝒛𝑭𝒍𝒖𝒙 −𝑷𝑨𝑾𝑨𝑷 ) for (a) Yanco site (34.989°E, 

146.291°S) and (b) Wombat Forest (37.422°E, 144.094°S).  
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Figure 6: Averaged estimates of (a) shallow layer (10-100cm) soil water storage (𝑺𝒔), (b) evapotranspiration (𝑬𝒕𝒐𝒕), and (c) total 560 
streamflow (𝑸𝒕𝒐𝒕 ) for December 2019 from model open-loop, data assimilation (DA-TC), and after the analysis increments 

redistribution (DA-TCAIR). 
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 565 
Figure 7: Distribution of correlation statistics of AWRA-L water balance estimates against in-situ measurements of (a) surface soil 

moisture, (b) root-zone soil moisture, (c) evapotranspiration and (d) streamflow. 
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Figure 8: Changes in streamflow 𝑸𝒕𝒐𝒕 estimates after the analysis increments redistribution (DA-TCAIR) for a catchment in south-580 
eastern Australia (centre coordinates: 36.63°E, 147.43°S) compared to in-situ streamflow observations (𝑸𝒕𝒐𝒕 obs) and model open-

loop.  

 

 
Figure 9: Comparison of correlations between vegetation greenness (NDVI) with AWRA-L modelled root-zone soil moisture over 585 
cropland from model open-loop (𝒓𝒐), data assimilation (DA-TC, 𝒓𝒂) and after analysis increments redistribution (DA-TCAIR, 𝒓𝒂𝒊𝒓). 

Dots above the zero line indicates improved correlation comparing to the reference with greater number of grid cells in red.    
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Figure 10: Quantified impacts of data assimilation on forecasting AWRA-L state variables using the initial condition from DA-590 
TCAIR: average time period that the impact of data assimilation can persist in autumn (2018.03-2018.05), Winter (2018.06-2018.08), 
Spring (2018.09-2018.11) and Summer (2018.12-2019.02) on (a) upper-layer soil water storage 𝑺𝟎, (b) lower-layer soil water storage 
𝑺𝒔, (c) total evapotranspiration 𝑬𝒕𝒐𝒕	and (d) total runoff 𝑸𝒕𝒐𝒕. 
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