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Abstract. A simple and effective two-step data assimilation framework was developed to improve soil moisture representation 7 

in an operational large-scale water balance model. The first step is a Kalman filter type sequential state updating process that 8 

exploits temporal covariance statistics between modelled and satellite-derived soil moisture to produce analysed estimates. 9 

The second step is to use analysed surface moisture estimates to impart mass conservation constraints (mass redistribution) on 10 

related states and fluxes of the model using tangent linear modelling theory in a post-analysis adjustment after the state updating 11 

at each time step. In this study, we assimilate satellite soil moisture retrievals from both SMAP and SMOS missions 12 

simultaneously into the Australian Water Resources Assessment Landscape model (AWRA-L) using the proposed framework 13 

and evaluate its impact on the model’s accuracy against in-situ observations across water balance components. We show that 14 

the correlation between simulated surface soil moisture and in-situ observation increases from 0.54 (open-loop) to 0.77 (data 15 

assimilation). Furthermore, indirect verification of root-zone soil moisture using remotely sensed Enhanced Vegetation Index 16 

(EVI) time series across cropland areas results in significant improvements from 0.52 to 0.64 in correlation. The improvements 17 

gained from data assimilation can persist for more than one week in surface soil moisture estimates and one month in root-18 

zone soil moisture estimates, thus demonstrating the efficacy of this data assimilation framework. 19 

1 Introduction 20 

Accurate estimation of soil moisture is fundamental to monitoring and forecasting water availability and land surface 21 

conditions under extreme events such as droughts, heatwaves and floods (Ines et al., 2013;Sheffield and Wood, 2007;Tian et 22 

al., 2019b). The spatial pattern of soil moisture can vary significantly due to the heterogeneous spatial distribution of rainfall 23 

and variability in soil properties, land cover type and topography. Due to this large spatial variability, the utility of ground-24 

based, point-scale measurements is limited in estimating soil water availability at continental scale. Soil moisture estimates 25 

from land surface models are adversely affected by the uncertainties of atmospheric forcing, model dynamics and model 26 

parameterization. Remotely sensed data can provide spatially and temporally varying constraints on the modelling of 27 

biophysical landscape variables that are often superior to that achieved by a single static set of model parameters. Data 28 
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assimilation merges models and observations in a way that take advantage of their respective strength (e.g. uncertainty, 29 

coverage), resulting in improved accuracy, coverage, and ultimately forecasting capability. 30 

The assimilation of satellite soil moisture (SSM) into land surface and hydrology models has been repeatedly demonstrated to 31 

improve model representation of soil water dynamics, evapotranspiration and streamflow (De Lannoy and Reichle, 32 

2016;Draper et al., 2012;Kumar et al., 2009;Li et al., 2012;Pipunic et al., 2008;Reichle and Koster, 2005;Renzullo et al., 33 

2014;Tian et al., 2019a;Tian et al., 2017;Crow and Yilmaz, 2014;Alvarez-Garreton et al., 2015;Crow and Ryu, 2009;Baldwin 34 

et al., 2017;Patil and Ramsankaran, 2017;Wanders et al., 2014b;Peters‐Lidard et al., 2011;Su et al., 2014). Accurate knowledge 35 

of initial soil moisture states gained from data assimilation contributes significantly to the skill of flood forecasting, drought 36 

monitoring and weather forecasts (Bolten et al., 2009;Carrera et al., 2019;Wanders et al., 2014b;Yan et al., 2018;Alvarez-37 

Garreton et al., 2015). Wanders et al. (2014a) found that the assimilation of remotely sensed soil moisture in combination with 38 

discharge observation can improve the quality of the operational flood alerts, both in terms of timing and in the exact height 39 

of the flood peak.  40 

Methods of assimilation are many and varied, however commonalities exist between them. These commonalities are such, that 41 

for any time step, the time integrated first guess (the forecast) of soil moisture states are adjusted by an amount determined by 42 

the difference between observed and modelled soil moisture (the innovation), which is weighted by the respective error 43 

variances of modelled and observed quantities (the gain), to generate revised soil moisture states (the analysis). At the end of 44 

this process, the revised model soil moisture states are out of balance with the other stores and fluxes, until the model integrates 45 

forward to the next time step, whereupon water balance discontinuity is progressively removed through model physics. Soil 46 

moisture is the linchpin between atmospheric fluxes, surface- and ground-water hydrology, thus it is important that any changes 47 

in modelled state variables are not detrimental to other components of the water balance. However, the assimilation of remotely 48 

sensed soil moisture or total water storage data may lead to undesired impacts on groundwater or evapotranspiration 49 

simulations due to the mass imbalance or random error covariances (Girotto et al., 2017;Tangdamrongsub et al., 2020;Tian et 50 

al., 2017). Studies considering mass conservation in data assimilation often require extra data sources such as 51 

evapotranspiration and runoff as constraints or without considering the fluxes (Li et al., 2012;Pan and Wood, 2006).  52 

From an operational water balance perspective, is it important that the method of data assimilation be: i) computationally 53 

efficient for routine, automated simulation over the whole model domain; ii) robust to data gaps; and iii) make lasting positive 54 

improvements to future predictions of soil water stores and fluxes. An additional constraint is that if a data assimilation method 55 

is applied to an existing operational system, then it ought to require minimal modification to the system framework, and be as 56 

least disruptive as possible to the model performance. Currently, there are few operational continental water balance modelling 57 

systems that provide near-real time soil moisture estimates that have been constrained through the assimilation of satellite 58 

observations, and mainly at a relatively coarse resolution. Some recent examples include surface soil wetness observations 59 

from Advanced Scatterometer (ASCAT) active radar system, on the meteorological operational satellite (MetOp), being 60 
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assimilated into Unified Model (Davies et al., 2005) through nudging to provide soil moisture analysis at 40 km globally 61 

(Dharssi et al., 2011). Additionally, ASCAT data are used in the ECMWF (European Centre for Medium-Range Weather 62 

Forecasts) Land Data Assimilation System through a simplified Extended Kalman Filter approach (De Rosnay et al., 2013) to 63 

provide near-real time surface soil moisture and root-zone soil moisture at 25-km resolution globally. SMOS (Soil Moisture 64 

and Ocean Salinity) brightness temperatures have been assimilated in ECMWF’s global NWP (Numerical Weather Prediction) 65 

system through the Surface Data Assimilation System, based on the Extended Kalman filter, to produce soil moisture reanalysis 66 

at 40-km resolution (Muñoz-Sabater, 2015). Level-2 Radiometer soil moisture retrievals from SMAP mission (Entekhabi et 67 

al., 2010) have been assimilated into the real-time instance of the NASA Land Information System (LIS) over the 68 

Conterminous United States (CONUS) to produce hourly outputs at 0.03° resolution using ensemble Kalman filter 69 

(Blankenship et al., 2018). However, unlike the aforementioned systems where data assimilation is inherent in the system 70 

design, many operational water balance models, or catchment hydrology models, are calibrated to observations a priori. 71 

Including data assimilation as an afterthought restrains the flexibility of the system, thereby limiting the complexity of the data 72 

assimilation scheme for operational use.  73 

In this study, we develop a simple, computationally efficient, and effective data assimilation framework with mass 74 

conservation for incorporating satellite soil moisture products into an existing operational national water balance model. We 75 

demonstrate the application of the method to the Australian Water Resources Assessment Landscape model (AWRA-L), which 76 

provides daily water balance estimates at ~5-km resolution across Australia, with the assimilation of satellite soil moisture 77 

from both SMOS and SMAP. The proposed data assimilation framework is a two-step process that requires minimal 78 

modification of the existing operational system. The first step is the sequential state updating, with weightings between models 79 

and observations derived from the Triple Collocation (TC) approach (Chen et al., 2018;Crow and Van den Berg, 2010;Crow 80 

and Ryu, 2009;Crow and Yilmaz, 2014;Yilmaz and Crow, 2014;Su et al., 2014). The second step is to impart mass conservation 81 

constraints on related states and fluxes such as root-zone soil water storage, evapotranspiration and streamflow, thus improving 82 

the accuracy of the water balance post assimilation. Accurate initial water balance conditions are of critical importance in the 83 

forecasting of water availability and land surface water dynamics. However, few studies quantify how long the impacts of data 84 

assimilation persist in the model system’s memory. To explore the impacts of data assimilation on model predictions, we 85 

quantified the persistence of the correction to key model components with respect to open-loop simulations, to illustrate the 86 

potential gains from data assimilation in improving water balance forecasts.  87 

2 Materials  88 

2.1 Australian Water Resources Assessment Modelling system  89 

The Australian Water Resources Assessment Landscape (AWRA-L) model (Van Dijk, 2010) underpins the annual national 90 

water resource assessments and water use accounts for Australia (Frost et al., 2018;Vogel et al., 2021). The operational 91 

implementation of the AWRA-L by the Australian Bureau of Meteorology provides daily 0.05-degree (approximately 5 km) 92 
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national gridded water balance estimates. The outputs from the operational AWRA-L has been widely used in various 93 

agricultural applications and natural resources risk assessment and planning, including commodity forecasting, irrigation 94 

scheduling, flood and drought risk analysis, as well as flood forecasting (Frost et al., 2018;Hafeez et al., 2015;Nguyen et al., 95 

2019;Van Dijk et al., 2013;Van Dijk and Renzullo, 2011). The version of the AWRA-L model used in the study was obtained 96 

from the Community Modelling system (AWRA-CMS) and is freely available from https://github.com/awracms/awra_cms.   97 

AWRA-L is a one-dimensional grid-based model that simulates water balance for each grid cell across the modelling domain 98 

by distributing rainfall influx into plant-accessible water, soil moisture and groundwater stores, and computing outflux such 99 

as evapotranspiration, runoff and deep drainage. The soil water column is partitioned into three layers (surface: 0–10 cm, 100 

shallow: 10–100 cm, and deep: 1–6 m) and simulated separately for two hydrological response unit, i.e. deep-rooted (trees) 101 

and shallow-rooted (grass) vegetation. The water storage for the surface-layer soil is termed 𝑺𝟎, while 𝑺𝒔 is used for the 102 

shallow-layer and 𝑺𝒅 for the deeper-layer. In addition to the modelling of soil columns, the model includes a surface water and 103 

a groundwater storage that are simulated at each grid cell and conceptualized as a small unimpaired catchment. In this study, 104 

we used forcing inputs from the AWAP (Australian Water Availability Project) gridded climate data including daily 105 

precipitation, air temperature and solar exposure (Jones et al., 2009), and interpolated site-based wind speed (McVicar et al., 106 

2008). It is acknowledged that the accuracy of the model estimates is limited in regions with insufficient coverage in the 107 

ground-based observation network (e.g. rain gauges) which is the raw source of AWAP gridded data used to force the model. 108 

This is limited to very remote and mostly uninhabited arid regions in Australia.  109 

2.2 Satellite soil moisture (SSM) 110 

To maximize daily spatial coverage, we used two satellite soil moisture products derived from passive L-band systems: the 111 

Soil Moisture Active-Passive (SMAP) product from NASA (Entekhabi et al., 2010); and the product from the European Space 112 

Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001). The SMAP product is the level-2 113 

enhanced radiometer half-orbit 9-km EASE-grid soil moisture (Chan et al., 2018). The SMOS product is the level-2 soil 114 

moisture product on ~ 25-km grid (Rahmoune et al., 2013). Both SMAP and SMOS produce volumetric soil moisture estimates 115 

(units m3/m3) of approximately the upper 5 cm of soil. Available swath data for each product covering Australia were collated 116 

for each 24-hour period approximating the AWRA-CMS operational time steps and resampled to a regular 0.05-degree grid 117 

across the modelling domain using bilinear interpolation from 2015 to 2019. The volumetric soil moisture retrievals from both 118 

SMAP and SMOS were converted into water storage units (mm) to be consistent in units and soil depths with model estimates, 119 

using mean and variance matching to remove the systematic bias. Figure 1 shows an example of daily composites of SMAP 120 

(Fig1.a) and SMOS (Fig1.b) soil moisture retrievals in model units compared to AWRA-L estimates of 𝑆$ (Fig1.c). For regions 121 

with sparse rain-gauge coverage such as central Western Australia (Fig1.c), AWRA-L modeled 𝑆$ persists as zeros or very 122 

low values for the experiment period, reflecting a deficiency in the gauge-based analysis of daily rainfall used to drive model 123 

simulations. The result of mean and variance matching in these gauge-sparse areas will flatten the variability of SSM time 124 
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series to zero when using values of the modelled S0 for these areas directly. To resolve this problem, and fully leverage the 125 

information available in the SSM products to fill the gaps in modelled outputs across the continent, we derived a set of 126 

coefficients for the mean and variance matching over the gauge sparse regions by sampling modelled and SSM data from cells 127 

surrounding the gaps. Specifically, we fitted a linear model between the maximum SSM values through time and the 128 

coefficients for mean and variance matching for each cell in neighboring region. We applied the derived linear relationship to 129 

estimate the correspond ‘slope’ and ‘intercept’ from the maximum SSM values in the rainfall gaps. This provided a 130 

transformation of the SSM into water storage unit (mm) and ensures the assimilation can effectively influence the spatial 131 

pattern of soil moisture over the sparsely gauged regions.  132 

2.3 Validation data 133 

2.3.1 In-situ measurements 134 

Evaluation of the modelled soil water storages was made against measurements from three soil moisture monitoring networks 135 

in Australia from 2016 to 2018, namely OzNet (Smith et al., 2012), CosmOz (Hawdon et al., 2014) and OzFlux (Fig.1d). 136 

AWRA-L model estimates of water storage in surface soil layer were compared against in situ measurements from the top 10 137 

cm of soil across all three networks. The depths of in situ measurements of root-zone moisture varied across networks from 0-138 

30 cm to 0-1 m. As such, AWRA-L soil water storages over the root-zone were constructed by combining surface- and shallow-139 

layer soil water storage in the appropriate proportions to be consistent with in situ measurement depth. OzFlux sites are also 140 

used for the evaluation of AWRA-L evapotranspiration estimates, which were calculated from accumulated latent heat flux 141 

measurements at each location. In total, there are 45 sites for soil moisture validation and 14 sites for evapotranspiration 142 

validation. Streamflow observations for 110 catchments across Australia have been used in the validation based on the quality 143 

and data availability (Fig. 1d).   144 

2.3.2 Vegetation index 145 

In water-limited regions like Australia, shallow-rooted vegetation normally responds quickly to soil water availability, 146 

typically within a month. Consistency between root-zone soil water storage and vegetation greenness may be considered as an 147 

indirect independent verification of the simulation of root-zone soil water dynamics (Tian et al., 2019a;Tian et al., 2019b). The 148 

0.05-degree monthly Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS, 149 

MYD13C2 v6) was used to evaluate estimates of monthly root-zone soil water storage (the sum of water storage in surface-150 

layer (𝑆%) and shallow-layer (𝑆&)  within the AWRA-L soil column) over cropland regions of the continent. The EVI is used 151 

here to characterize vegetation dynamics since it is less sensitive to atmospheric effects and canopy background noise, and has 152 

a greater dynamic range (i.e., less likely to saturate) in areas of dense vegetation compared to the Normalized Difference 153 

Vegetation Index (NDVI). The choice of root-zone soil water storage at the 0-1 m depth is due to the average rooting depths 154 

varying from 30 - 80 cm over the cropland areas in Australia (Donohue et al., 2012;Figueroa-Bustos et al., 2018;Incerti and 155 
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O'Leary, 1990). The 250-m land cover classification map from Geoscience Australia (Lymburner, 2015) was resampled to 156 

0.05 degree over the model domain and used in the identification of cropland areas. 157 

3 Method 158 

3.1 Triple collocation-based error characteristics 159 

Triple collocation (TC) was developed as a method of quantifying error characteristics in geophysical variables when the 160 

true error structure is elusive. It was first applied to near-surface wind data (Stoffelen, 1998) and later extensively applied to 161 

soil moisture (Chen et al., 2018;Crow and Yilmaz, 2014;Dorigo et al., 2017;McColl et al., 2014;Scipal et al., 2008;Yilmaz 162 

and Crow, 2014;Zwieback et al., 2013;Crow and Van den Berg, 2010;Su et al., 2014)  and rainfall (Alemohammad et al., 163 

2015;Massari et al., 2017). The assumption of this approach is that three independent data sets of the same geophysical 164 

variable can be used to infer the error variances in each. Here we use TC as a way of inferring error variances from our three 165 

independent estimates of surface soil moisture, AWRA-L 𝑆%, SMAP, and SMOS from 2015 to 2019. Those three collocated 166 

measurements were assumed to be linearly related to the true value with additive random errors. To ensure the errors from 167 

the three independent sources were unbiased relative to each other, SMAP and SMOS soil moisture retrievals were rescaled 168 

to the reference model estimates (AWRA-L 𝑆%) using temporal mean and variance matching. McColl et al. (2014) shows that 169 

the error variances (𝜎') of each data set can be calculated from the temporal variance and covariance between data sets 170 

respectively as: 171 

𝜎(' = &𝑄(,( −
*!,#*!,$
*#,$

),			 	𝜎+' = &𝑄+,+ −
*!,#*#,$
*!,$

)      and   		𝜎,' = &𝑄,,, −
*$,#*!,$
*!,#

)                                                                (1)                                        172 

where 𝑥, 𝑦 and 𝑧 denote AWRA-L, SMAP and SMOS soil moisture estimates respectively and Q denotes temporal variance 173 

and covariance between the data sets. These estimates of error variance are used in the determination of the weighting of each 174 

data source in the data assimilation (Section 3.2).  175 

3.2 Sequential state updating 176 

The data assimilation method used here is a time sequential updating of model state(s) given observations of relevant model 177 

variables (Reichle, 2008). There are two key modelling components in data assimilation: the dynamics operator, which 178 

describes the time integration of the system states and fluxes, which in this study is the AWRA-CMS; and the observation 179 

operator, which provides the mathematical mapping from state to observation space. The role of the observation operator is to 180 

perform a mapping between observation and state space, as often observations are not directly comparable to model states.  181 

The common state updating equation for sequential data assimilation is written as: 182 

𝑥-. = 𝑥-
/ +𝐾-[𝑦- −𝐻4𝑥-

/5]                                                                                                                                                      (2) 183 
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which says that the best estimate of model state, known as analysis (𝑥-.), is equal to the first guess or forecast (𝑥-
/) plus a 184 

weighted difference between observations, 𝑦-, and the model equivalent to the observation, 𝐻4𝑥-
/5, for that time step. In this 185 

study, the AWRA-L model soil water storage in 𝑆% for shallow-rooted vegetation and deep-rooted vegetation at surface layer 186 

are updated directly through the sequential data assimilation. Satellite surface soil moisture (SSM) products from both SMOS 187 

and SMAP are used as the observations to update the model simulation. The observation operator 𝐻 here is the aggregation of 188 

soil water storage estimates in the top-soil layer for two land cover types, i.e. shallow-rooted vegetation and deep-rooted 189 

vegetation. When both SMAP and SMOS observations are available, Equation 2 can be written as a weighted linear 190 

combination of model estimates (𝑥-
/) and satellite observations (𝑦-0123	: SMAP observations,	𝑦-0140: SMOS observations) as: 191 

 192 

𝑥-. = 𝐾(𝑥-
/ +𝐾+𝑦-0123 +𝐾,𝑦-0140  .                                                                                                                                       (3) 193 

 194 

The gain factor, K, contains the error variances (𝜎') for both model estimates and observations and can be written as:   195 

 196 
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 198 

where 𝑥, 𝑦, 𝑧 denotes AWRA-L estimates, SMAP and SMOS soil moisture retrievals respectively. If only one satellite 199 

observation is available for a time step, the gain factor is calculated using the error variance from the corresponding 200 

observation. If neither SMAP nor SMOS are available, the analysis remains the same as the model forecast. Observation error 201 

variance is often estimated through field campaigns (Draper et al., 2009;Panciera et al., 2013), but these rarely represent the 202 

spatial and temporal variability of errors in gridded satellite products. Alternatively, data providers often specify error 203 

estimates, but their magnitude can be overly optimistic. Here, we applied the triple collocation approach (Section 3.1) to 204 

characterise the temporal error variances of the model estimates and the two satellite observations for each grid cell across 205 

Australia. The analysis receives higher contribution from observation with smaller error variance (Eq. 2). Given the relatively 206 

short time series (small number) of observations, however, a single set of error variances is calculated for all time. This results 207 

in spatially varying but temporally static error variances (and thus gain weights) for each of the three sources (Fig. 2). We 208 

acknowledge the limitations of assuming a temporally constant error variances and future refinements to the assimilation 209 

method will consider introducing seasonally varying error variances.  210 

3.3 Analysis increment redistribution (AIR) 211 

The assimilation of satellite soil moisture temporarily violates mass conservation in the model through the analysis update. 212 

The difference between the analysis, 𝑥56, and the forecast, 𝑥57, (known as the analysis increment) represents an amount of 213 
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water that has been added or subtracted from the system that was not present at the start of model integration for the given 214 

time step. In this study, we use the concept of tangent linear modelling	(Errico, 1997;Giering, 2000) to redistribute the 215 

analysis increment of surface soil water storage, 𝑆%, to all the relevant model states and fluxes as a way of maintaining mass 216 

(i.e. water) balance within each model time step. This adjustment is applied after the sequential state updating as the second-217 

step in the assimilation framework, which we refer to as analysis increment redistribution (AIR).  218 

The adjoint and tangent linear models were originally used in variational data assimilation (Bouttier and Courtier, 2002) and 219 

have been used to estimate the sensitivity of model outputs with respect to input (Errico, 1997).We assume the input 220 

perturbation here is the analysis increment after the data assimilation (i.e. 𝑥56-𝑥57 from Eq. 2), then the change in other model 221 

outputs due to the change in inputs can be determined through tangent linear modelling. Assuming model variable b is 222 

related to the state variable x, the relationship between them can be simply described as: 223 

𝑏 = 𝑀(𝑥),                                                                                                                                                                                  (5) 224 

where M denotes the model operator. The change in output variable ∆𝑏 at time step t due to the input change ∆𝑥 can be 225 

determined by  226 

∆𝑏- =
81
8(%
∆𝑥-.                                                                                                                                                                            (6)   227 

In this study, we applied the tangent linear modelling approach to correct the model forecast of soil water storage for 228 

shallow-layer (𝑆&), and deep-layer soil water storage (𝑆9), evapotranspiration (𝐸-$-) , and total streamflow (𝑄-$-) after the 229 

state updating of surface soil moisture (𝑆%) at each time step. Note that this process ensures that the correction is affecting all 230 

model states in proportion to their sensitivity against changes in the 𝑆%. All the model equations regarding to the mass 231 

redistribution were derived using model equations (Frost et al., 2018;Van Dijk, 2010) and can be found in the Appendix A.  232 

4. Results 233 

4.1 Impact on surface soil water storage estimates 234 

Error variances were derived using TC for AWRA-L model estimates and the SSM products, and showed that SMAP soil 235 

moisture had smaller error variance than SMOS and the model estimates for the majority of the grid cells over the continent. 236 

This is consistent with other studies that have shown SMAP provides the best-performing satellite soil moisture product over 237 

the majority of applicable global land pixels (Chen et al., 2018). Figure 2 shows the relative weightings (derived from the TC 238 

error variances) of model estimates, SMOS and SMAP soil moisture in the data assimilation. The analysed surface soil water 239 

storage estimates (𝑆%) receive a greater contribution from SSM products, in particular SMAP observations, compared to 240 

model simulations (Fig. 2). Figure 3 gives an example of the temporal change in modelled 𝑆% estimates before and after the 241 
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assimilation for 2017. The temporal dynamics of 𝑆% estimates after the assimilation has been highly adjusted towards SSM 242 

retrievals and in consistency with in-situ measurements.  243 

AWRA-L model simulations are driven by gauge-based rainfall analyses. As such the model has difficulty in adequately 244 

simulating soil moisture patterns over regions lacking in rain gauge coverage, such as Western Australia and central 245 

Australia (Fig. 1c). Water storage simulations over these regions default to zero, thus very little or no weight was given to 246 

the AWRA-L estimates in these regions (Fig. 2a). Figure 4 shows different spatial patterns of daily average 𝑆% estimates for 247 

December 2019 from model open-loop (OL) without data assimilation and with data assimilation through TC-derived 248 

weighting (DA-TC). Data assimilation has the effect of adding moisture to AWRA-L 𝑆% simulations over most of gauge-249 

sparse areas as shown in Figure 4c. Analysed AWRA-L simulations of 𝑆% are dominated by the satellite SSM data as a result 250 

of TC weighting in the region which largely eliminates the erroneous artefacts associated with deficient rainfall data forcing. 251 

Reduced water storage in the surface layer of the soil column was found over southeast of Australia, particularly within the 252 

Murray-Darling Basin. This suggests that AWRA-L OL simulations underestimated the severity of the drought experienced 253 

in the region in December 2019. The analysis increments of AWRA-L 𝑆% (𝑥. − 𝑥/) were compared with the difference 254 

between in-situ rainfall observations from OzFlux network, 𝑃4,:;<( and AWAP rainfall forcing, 𝑃2=23,(Fig. 5). The 255 

increasing 𝑆% simulations align with missing or underestimated rainfall events in the AWAP rainfall forcing 256 

(𝑃4,:;<( − 𝑃2=23 > 0) and vice versa (Fig. 5). This supports the hypothesis that data assimilation correctly distributes 257 

water into the system and mitigates the impact of uncertainty in rainfall forcing.  258 

4.2 Impact on root-zone soil water storage and fluxes estimates 259 

If the analysis increment redistribution (AIR) is not applied, the soil water storage in the surface layer (𝑆%) is the only state 260 

variable directly updated with SSM (DA-TC). Other variables such as root-zone soil water storage, evapotranspiration and 261 

streamflow are adjusted with model integration to the next time step using the analysed 𝑆% as the surface layer initial condition. 262 

Therefore, the observed changes in those variables following DA-TC (Fig.6, centre column) are relatively small when 263 

compared to model open-loop estimates (Fig.6, left column). For example, the OL soil water storage of shallow-layer (𝑆&) 264 

estimates in those gauge-sparse regions of Australia remain zero or very low due to the AWAP rainfall forcing. The predictions 265 

of 𝑆& receive relatively small contribution from the analysed 𝑆% since the analysis increment of 𝑆% is small compared to the 266 

field compacity of 𝑆&.  267 

One known issue of sequential state updating is the temporary break of water balance at each time step until the next model 268 

integration. The proposed AIR approach (Section 3.2) adjusts variables coupled with surface soil moisture after the state 269 

updating at each time step. Significant difference in the spatial patterns of 𝑆& , 𝐸-$- and 𝑄-$- after the mass redistribution (DA-270 

TCAIR) can be seen in Fig. 6 (right column) compared to model open-loop or forecasts after only 𝑆% updating. The changes 271 

in estimates of 𝑆& and 𝐸-$- over coastal regions are relatively small due to more accurate rainfall forcing data with the dense 272 
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network of rain-gauges. Finally, the 𝑄-$- estimates after AIR are lower than the DA-TC and OL. This reduction in streamflow 273 

over south-eastern Australia and northern Australia is consistent with the reduced surface soil moisture in those regions (Fig.4c).  274 

4.3 Quantitative evaluation  275 

Estimates of surface soil moisture, root-zone soil moisture, evapotranspiration and streamflow after data assimilation (DA-276 

TC) and data assimilation with mass redistribution (DA-TCAIR) were compared with time series of in-situ observations. We 277 

compared the model outputs after DA-TC and DA-TCAIR separately to investigate the benefits of maintaining mass balance 278 

in data assimilation. Pearson’s correlation coefficients were computed from time series of model estimates and observations 279 

between January 2016 to December 2018 for each site.  The distribution of correlation coefficients for OL, DA-TC and DA-280 

TCAIR are displayed as boxplots in Figure 7. Consistent, significant improvement in modelled surface layer soil water storage 281 

estimates (S%) were observed across all sites (Fig. 7a) with the single exception of an OzFlux site located in a tropical rainforest, 282 

where microwave SSM retrievals are known to be typically poor (Njoku and Entekhabi, 1996). TC-based assimilation (DA-283 

TC) increases the correlation between in-situ surface SM measurements from 0.47 to 0.72 on average for CosmOz sites, 0.54 284 

to 0.69 for OzFlux sites, and 0.56 to 0.77 for OzNet sites compared to OL. This is a significant improvement in AWRA-L 285 

simulations of surface soil moisture dynamics with an increase in correlation of 0.23 on average across all in-situ sites. 286 

Overall subtle improvements were observed across the AWRA-L estimates of root-zone soil water storage, evapotranspiration 287 

and streamflow after the assimilation (DA-TC) (Fig. 7b, c, d). This level of improvement is not surprising since those variables 288 

were not directly updated through DA-TC and are only influenced through the integration of the model to the next time step. 289 

Degradation was found in root-zone soil moisture estimation for a few OzFlux and OzNet monitoring sites. This is likely due 290 

to the break of water balance in the assimilation, since the estimates followed by the second step of AIR (DA-TCAIR) slightly 291 

increases the correlation with in-situ observations compared to model open-loop and the estimates after assimilation without 292 

mass redistribution (DA-TC). Moreover, the model estimates of root-zone soil moisture from model OL are in good agreement 293 

with in-situ observations as is with average correlation above 0.8 (Fig. 7b), which leaves little room for improvements. 294 

Although the corrections of other water balance estimates from the analysis increments redistribution are relatively small 295 

compared to direct state updating, they are improvements nevertheless. Slight improvements were found similarly in 296 

streamflow estimates after the AIR (Fig. 7d). Figure 8 shows an example of the OL estimates of streamflow, the analysed 297 

streamflow after the application of AIR, and the streamflow observations, 𝑄-$-	$?&. Also displayed is the streamflow analysis 298 

increments, i.e. 𝑄-$-. − 𝑄-$-
/  for each time step. The negative streamflow analysis increment (Fig. 8) indicates that water is 299 

removed from the surface water store after the assimilation of SSM and application of AIR, which is appears to compensate 300 

for the overall overestimate of OL simulations, in this example. Although the change in streamflow due to the soil moisture 301 

data assimilation is small compared to the disparity between model and observed streamflow, the adjustment in the direction 302 

towards observations highlights the importance of accurate antecedent soil moisture conditions in the simulation of runoff 303 
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response. The joint assimilation of gauge-measured streamflow and satellite soil moisture retrievals into AWRA-L is expected 304 

to improve the streamflow simulation. 305 

A limited number of root-zone soil moisture monitoring sites as well as the large spatial disparity between the point-scale in-306 

situ measurements and modelling resolution (∼5 km grid cell) represent substantial limitations for wide-area evaluation of 307 

root-zone soil moisture estimates. An indirect verification of AWRA-L simulations of root-zone soil moisture was based on a 308 

comparison against satellite-derived EVI. This provided an independent, albeit indirect, way of evaluating the impact of data 309 

assimilation over larger areas. We calculated the correlation between time series of monthly average AWRA-L root-zone soil 310 

moisture estimates from OL, DA-TC and DA-TCAIR against EVI for cropland across Australia from 2015 to 2018. Cropland 311 

cover type was selected based on the rooting depths of the dominant grass species and wheat varieties in the area that have 312 

been shown to have rooting depths spanning at least half the combined soil depths (0-1m) of the surface- and shallow-layer 313 

soil water storage in AWRA-L. Figure 9a shows the relative change in correlation between root-zone soil water storage 314 

simulations from DA-TCAIR and those from model OL against EVI data for cropland areas of Australia. Significant 315 

improvements were found after the data assimilation and mass redistribution for the vast majority of model grid cells (Fig. 9a). 316 

The averaged correlation with EVI is 0.64 from DA-TCAIR compared to 0.52 for model open-loop. The root-zone soil water 317 

storage estimates after the mass redistribution are significantly improved over the cropland in Western Australia and southern 318 

Australia with more than 20% increase in correlation comparing to DA-TC without mass redistribution (Fig. 9b). This 319 

demonstrates that enforcing mass balances as part of the soil moisture data assimilation at each time step is essential to 320 

improving the simulation of root-zone soil water balance. Limited difference between DA-TC and DA-TCAIR were found 321 

over cropland regions over south-eastern Australia, likely due to the overall good performance of AWRA-L OL root-zone soil 322 

moisture estimates in those areas (Fig. 7b). The improved consistency with EVI after data assimilation highlights the potential 323 

of improving agricultural planning with more accurate information of root-zone soil water availability. 324 

4.4 Implications for water balance forecasting 325 

To quantify how long improvements in model state last in AWRA-L simulations, we used OL and DA-TCAIR estimates 326 

between 1 March 2018 and 28 February 2019. The model states for each day over this one-year period served as initial 327 

conditions for 100-day AWRA-L simulations from which we calculated the number of days it took for the simulation from the 328 

analysed DA-TCAIR states to converge to within +/- 5% of those from OL. Results showed that data assimilation can impact 329 

model states and fluxes for weeks and sometimes up to 2-3 months (Fig. 10). The impacts of data assimilation can persist in 330 

simulated 𝑆% for as long as a week over coastal regions, and longer in central Western Australia and Northern Australia with 331 

up to a month persistence in winter and spring (Fig. 10a). There is less impact on 𝑆% simulations during wet season (Summer-332 

Autumn) in Northern Australia since the 𝑆% can saturate rapidly due to the heavy rainfall. Overall, the longest persistence is 333 

found in winter with a continental average of 13 days; the shortest is 6 days on average in autumn and summer. The memory 334 

of initial conditions in simulations of 𝑆& can persist even longer due to the slower response to rainfall variability and higher 335 
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field capacity (Fig. 10b). Summer persistence for 𝑆& is the least with a continental average of 30 days; in winter this increased 336 

to 45 days. 337 

On average, the impact of antecedent soil moisture conditions on evapotranspiration simulations can persist for 1 week over 338 

coastal areas, but up to months in central Western Australia (Fig. 10c). The continental average varies from 13 to 20 days for 339 

each season. The areas with the longest persistence are those areas with artefacts of zero rainfall in the forcing. This 340 

demonstrates that improvements in AWRA-L estimates after SSM assimilation over regions with sparse rain-gauge coverage 341 

can persist in the system for more than 2 months. The impact on runoff varies from 1 week to 3 months over the continent 342 

(Fig. 10d). The majority of areas impacted for more than 2 months are in locations of low rainfall and runoff. However, in 343 

areas of heavy runoff, e.g. north-eastern Australia, there is between 1-2 week of persistence.    344 

5. Discussion 345 

In this study, we assimilated SMAP and SMOS data into an operational AWRA-L water balance modelling system through a 346 

simple sequential state updating approach, with weightings derived using triple collocation approach (DA-TC), followed by a 347 

post-adjustment for mass redistribution (DA-TCAIR). Previous data assimilation studies using the AWRA-L model opted for 348 

ensemble-based methods (Renzullo et al., 2014;Shokri et al., 2019;Tian et al., 2019a;Tian et al., 2017;Tian et al., 2019b). 349 

Ensemble based methods rely on a priori knowledge of uncertainty in forcing data and model error variances to derive spatially 350 

and temporally varying gain matrices at each time step. However ensembles often require post hoc correction such as state 351 

inflation (Anderson et al., 2009) to achieve optimal performance, and many members (> 10) comprised of  multiple model 352 

runs to infer statistically meaningful error variances, which can be computationally costly. In contrast, the proposed DA-TC/-353 

TCAIR framework is simple, effective and computationally efficient and requires minimal modification in the current 354 

operational system. The gain factor in the proposed assimilation framework is temporally constant but spatially varying. It is 355 

derived from the temporal covariances between modelled and satellite-derived soil moisture for each grid cell across the 356 

domain through the widely used triple collocation (TC) method (Chen et al., 2018;Crow and Van den Berg, 2010;Crow and 357 

Yilmaz, 2014;Yilmaz and Crow, 2014;Su et al., 2014). The significant improvements in AWRA-L model surface soil moisture 358 

estimation demonstrates the efficiency of the proposed assimilation approach (Fig. 7a). Temporally varying gain factor is 359 

considered for future improvement to the approach once a longer time series of SMAP data is available.   360 

Pan and Wood (2006) used mass redistribution in a two-step constrained Kalman filter that required error covariances derived 361 

from evapotranspiration and runoff observations. However, these observations are often not available for continental scale of 362 

studies. Li et al. (2012) redistribute the mass imbalance within soil layers during the assimilation but without the updates of 363 

fluxes. Our proposed method based on tangent linear modelling redistributes the mass change across all the states and fluxes 364 

related to surface soil moisture states without the need for extra observations. The analysis increment redistribution (AIR) 365 

method conserves the mass balance thereby improving water balance estimates (Fig. 7), in particular it can improve the root-366 
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zone soil moisture estimates over croplands (Fig. 9). Although the improvements are limited, the streamflow estimates from 367 

the AIR are predominantly a better match to observations (Fig. 8). Model physics limits the strength of coupling between an 368 

analysed state and resulting fluxes (Kumar et al., 2009;Walker et al., 2001). Thus, a small level of improvement in performance 369 

in AWRA-L streamflow in response to soil moisture state updating is not unexpected due to a weak coupling between the 370 

states and fluxes. Calibration of model parameters using satellite and in-situ observations may lead to further improvements. 371 

Many studies have demonstrated the assimilation of satellite soil moisture can improve model forecasts due to the correction 372 

for initial soil moisture conditions (Crow and Ryu, 2009;Pauwels et al., 2001;Scipal et al., 2008). Getirana et al. (2020a) and 373 

Getirana et al. (2020b) found that using initial conditions derived from the assimilation of GRACE (Gravity Recovery and 374 

Climate Experiment) total water storage observations can improve the seasonal streamflow and groundwater forecast due to 375 

the long memory of groundwater and soil moisture. However, few studies quantify how long the impacts of data assimilation 376 

can persist in the model system’s memory for different states. In this study, we found that the impact of different initial 377 

conditions of root-zone soil water storage has a long memory in the system, exceeding 2 months (Fig.10b). The constraints on 378 

the simulations of surface soil moisture, evapotranspiration and streamflow can persist 1-2 weeks due to the high temporal 379 

variability. This highlights the potential gains from data assimilation for agricultural planning and flood forecasting, as a result 380 

of improved short-term water balance forecasts.  381 

6. Conclusion 382 

In this study, we proposed a simple and robust framework for assimilating SMAP and SMOS soil moisture products into the 383 

operational Australian Water Resources Assessment modelling system. The method involves the sequential (daily) updating 384 

of the model's surface soil water storage with satellite soil moisture observations using weights determined through triple 385 

collocation (DA-TC). Furthermore, we proposed an additional component to the data assimilation whereby the analysis 386 

increment of the upper layer soil water storage is propagated into relevant model states and fluxes as a way of maintaining 387 

mass balance (DA-TCAIR). Evaluation against in-situ measurements showed that simulations of surface soil moisture 388 

dynamics is improved significantly after TC data assimilation with an average increase of 0.23 correlation units compared with 389 

open-loop simulations. An evaluation of the root-zone soil moisture, evapotranspiration and streamflow estimates showed that 390 

the TC-AIR appeared to provide marginal, yet positive, improvement over the TC data assimilation method alone. However, 391 

in an indirect verification of modelled root-zone soil moisture against satellite-derived EVI, DA-TCAIR was seen to provide 392 

significant improvement over the TC method alone. This demonstrates that by enforcing mass balances as part of the SSM 393 

data assimilation each time step, AWRA-L can better represent soil water dynamics such that it has greater consistency with 394 

observed vegetation response. 395 

 396 

The assimilation of satellite soil moisture estimates together with the mass redistribution reduces the uncertainties in model 397 

estimates resulting mainly from uncertain forcing and model physics, and provides temporally and spatially varying constraints 398 
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on model water balance estimates. For example, the assimilation resolves the gaps in rainfall forcing over Western Australia 399 

and central Australia. We demonstrate that the impacts of data assimilation can persist in the model system for more than a 400 

week for surface soil water storage and more than a month for root-zone soil water storage. This highlights the importance of 401 

accurate initial hydrological states for improving forecast skill over longer lead times. Hence, an operational water balance 402 

modelling system, with satellite data assimilation, has strong potential to add value for assessing and predicting water 403 

availability for a range of decision makers across industries and sectors. 404 

 405 

 406 

Appendix A 407 

For a complete understanding and description of the AWRA-L model equations, please refer to Frost et al. (2018). Here we 408 

only present those parts of the model equation related to 𝑆%.  409 

 410 

The analysis increments after the data assimilation can be calculated as: 411 

∆𝑆% = 𝑆%. − 𝑆%
/,  412 

where 𝑆%. denotes the analysed upper-layer soil water storage and 𝑆%
/denotes the forecast, or initial estimate. The change in 𝑆% 413 

affects the drainage to the lower-layer soil water storage (𝐷%) and interflow draining laterally from the upper-layer (𝑄@%). The 414 

corresponding change in drainage to lower-layer soil water storage from the increment ∆𝑆% is calculated as: 415 

∆𝐷% = (1 − 𝛽%)𝑘%&.-[F
0&
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where the 𝑘%B65 and 𝑆0𝑚𝑎𝑥 are model parameters representing the saturated hydraulic conductivity and maximum storage of 418 

the upper soil layer, respectively. The proportion of overall top layer drainage that is lateral drainage (𝛽%) given as:  419 

𝛽% = tanh	(𝑘C𝛽
0&
'

0%A.(
)tanh	(𝑘D(

E&)'%
E))'%

− 1) 0&
'

0%A.(
), 420 

where 𝛽  and 𝑘C are the slope radians and scaling factor, and 𝑘D is a scaling factor for the ratio of saturated hydraulic 421 

conductivity. The revised lower-layer soil water storage 𝑆&. is then determined as: 422 

𝑆&. = 𝑆&
/ + ∆𝐷%. 423 

The change in 𝑆& will lead to the change in the shallow soil water storage (𝐷&) and lateral interflow (𝑄@&). The soil water storage 424 

at lower layer is thus updated as: 425 

𝑆9. = 𝑆&. + ∆𝐷&. 426 

Similarly, the groundwater storage 𝑆F will be adjusted with the increment of deep soil layer drainage.  427 

The total runoff (𝑄-$-. ) should be updated as: 428 

𝑄-$-. = (1 − 𝑒GE*)(𝑆H
/ + 𝑄-$-

/ + ∆𝑄@& + ∆𝑄@%),  429 
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where 𝑘H is a routing delay factor.  430 

The surface water storage 𝑆H should be updated accordingly as: 431 

𝑆H. = 𝑆H
/ + ∆𝑄@& + ∆𝑄@% − ∆𝑄-$-. 432 

The total evapotranspiration change (∆𝐸-$-) caused by the changes in 𝑆% and 𝑆& can be updated as follow: 433 

∆𝐸-$- = 	𝛿𝐸& ∗ ∆𝑆% + 𝛿𝐸- ∗ ∆𝑆&,  434 

where the 𝐸& is the evaporation flux from the surface soil store (𝑆%) and 𝐸- is the total actual plant transpiration. The term 𝛿𝐸& 435 

is given as 436 

𝛿𝐸& = (1 − 𝑓&.-)𝐸-_HJA𝛿𝑓&$K;J,  437 

where 𝑓&$K;J is relative soil evaporation and 𝑓&.- is the fraction of the grid cell that is saturated, and 438 

𝐸-_HJA = 𝐸% − (𝐸- − 𝛿𝐸-) , 439 

The term 𝛿𝐸- is from the changes in root-water uptake from shallow and deep soil layers as 440 

𝛿𝐸- = 𝛿𝑈& + 𝛿𝑈9,  441 

with 442 

𝛿𝑈& = 𝛿𝑈&A.(
max	(𝑎𝑏𝑠(𝛿𝑈&A.( , 𝛿𝑈9A.())

𝛿𝑈&A.( + 𝛿𝑈9A.(
 443 
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max	(𝑎𝑏𝑠(𝛿𝑈&A.( , 𝛿𝑈9A.())

𝛿𝑈&A.( + 𝛿𝑈9A.(
 444 

𝛿𝑈&A.( =
L)&
M)+,-

𝛿𝑤&, 𝛿𝑈9A.( =
L.&
M.+,-

𝛿𝑤9, where 𝑈&A.( and 𝑈9A.( are the maximum root water uptake from the shallow soil 445 

store and from deep soil store. 𝑤&;KA and 𝑤9;KAis the water-limiting relative water content from the shallow and deep soil 446 

layer. 447 

Finally,  448 

𝛿𝑓&$K;J =	
/)/,+-'!
M&+,-

𝛿𝑤%,	where  𝑓&$K;A.( is the scaling factor corresponding to unlimited soil water supply, with 449 

𝛿𝑤% =	
N

0&-'!
, 𝛿𝑤& =	

N
0)-'!

,	and 𝛿𝑤9 =
N

0.-'!
, 450 

where the 𝑤, is the relative soil wetness of layer z, i.e.  either 0, s or d. 451 

 452 

Data Availability 453 

The AWRA-CMS code is accessible from github (https://github.com/awracms/awra_cms). SMAP product used here is the 454 

level-2 enhanced radiometer half-orbit 9-km EASE-grid soil moisture from the US National Snow and Ice Data Center 455 

(https://nsidc.org). SMOS level-2 soil moisture product is available from ESA’s SMOS online dissemination service 456 

(https://smos-diss.eo.esa.int/oads/access/). The MYD13C2 EVI data is accessible through Land Processes Distributed Active 457 
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 650 

Figure 1: Satellite soil moisture retrievals in model unit (mm) for (a) SMAP and (b) SMOS compared to (c) AWRA-L estimates of 651 
surface soil water storage for 1 Jan 2019. (d) Locations of in-situ soil moisture monitoring networks (CosmOz, OzNet and OzFlux), 652 
catchments for streamflow validation and grid cells classified as cropland. The rectangular inset map provides a zoomed view into 653 
the OzNet network region in south eastern Australia.  654 
  655 
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 656 
Figure 2: Gain weights for sequential data assimilation derived from Triple Collocation (TC) showing the relative contribution of 657 
the respective estimate in (a) AWRA-simulated surface soil water storage 𝑺𝟎, (b) SMOS soil moisture, and (c) SMAP soil moisture. 658 
 659 

 660 
Figure 3: Time series of AWRA-L surface soil water storage estimates from open-loop (OL) compared to estimates after data 661 
assimilation (DA-TC) of SMAP and SMOS soil moisture retrievals at CosmOz monitoring site: Bennets (35.826°E, 143.004°S). Note 662 
that the in-situ soil moisture values are in volumetric unit.  663 
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 664 
 665 
 666 
Figure 4: Comparison of average daily surface soil water storage estimates (𝑺𝟎) for December 2019 from (a) model open-loop (OL), 667 
(b) joint assimilation of SMAP and SMOS with Triple Collocation (DA-TC) and (c) average change between daily estimates from 668 
DA-TC and OL.   669 
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 670 
Figure 5: Analysis increments of AWRA-L surface soil water storage (𝒙𝑺𝟎𝒂 -𝒙𝑺𝟎

𝒇 ) in comparison with difference between in-situ rainfall 671 

observations and rainfall forcing from AWAP used in AWRA-L modelling (𝑷𝑶𝒛𝑭𝒍𝒖𝒙 −𝑷𝑨𝑾𝑨𝑷 ) for (a) Yanco site (34.989°E, 672 

146.291°S) and (b) Wombat Forest (37.422°E, 144.094°S).  673 
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 674 
Figure 6: Averaged estimates of (a) shallow layer (10-100cm) soil water storage (𝑺𝒔), (b) evapotranspiration (𝑬𝒕𝒐𝒕), and (c) total 675 
streamflow (𝑸𝒕𝒐𝒕 ) for December 2019 from model open-loop, data assimilation (DA-TC), and after the analysis increments 676 
redistribution (DA-TCAIR). 677 
 678 
  679 
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 680 
Figure 7: Distribution of correlation statistics of AWRA-L water balance estimates against in-situ measurements of (a) surface soil 681 
moisture, (b) root-zone soil moisture, (c) evapotranspiration and (d) streamflow. 682 
 683 
 684 
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 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
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 694 
Figure 8: Changes in streamflow 𝑸𝒕𝒐𝒕 estimates after the analysis increments redistribution (DA-TCAIR) for a catchment in south-695 
eastern Australia (centre coordinates: 36.63°E, 147.43°S) compared to in-situ streamflow observations (𝑸𝒕𝒐𝒕 obs) and model open-696 
loop.  697 
 698 

 699 
Figure 9: Comparison of vegetation index, EVI, with modelled root-zone soil moisture over cropland: (a) changes in correlations 700 
after data assimilation (DA-TCAIR,	𝒓𝒂𝒊𝒓) compared to model OL (𝒓𝒐); (b) changes in correlations between DA-TCAIR and DA-TC. 701 

 702 
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 703 
Figure 10: Quantified impacts of data assimilation on forecasting AWRA-L state variables using the initial condition from DA-704 
TCAIR: average time period that the impact of data assimilation can persist in autumn (2018.03-2018.05), Winter (2018.06-2018.08), 705 
Spring (2018.09-2018.11) and Summer (2018.12-2019.02) on (a) upper-layer soil water storage 𝑺𝟎, (b) lower-layer soil water storage 706 
𝑺𝒔, (c) total evapotranspiration 𝑬𝒕𝒐𝒕	and (d) total runoff 𝑸𝒕𝒐𝒕. 707 


