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Abstract. A simple and effective two-step data assimilation framework was developed to improve soil moisture representation 7 

in an operational large-scale water balance model. The first step is a Kalman filter type sequential state updating process that 8 

exploits temporal covariance statistics between modelled and satellite-derived soil moisture to produce analysed estimates. 9 

The second step is to use analysed surface moisture estimates to impart mass conservation constraints (mass redistribution) on 10 

related states and fluxes of the model using tangent linear modelling theory in a post-analysis adjustment after the state updating 11 

at each time step. In this study, we assimilate satellite soil moisture retrievals from both SMAP and SMOS missions 12 

simultaneously into the Australian Water Resources Assessment Landscape model (AWRA-L) using the proposed framework 13 

and evaluate its impact on the model’s accuracy against in-situ observations across water balance components. We show that 14 

the correlation between simulated surface soil moisture and in-situ observation increases from 0.54 (open-loop) to 0.77 (data 15 

assimilation). Furthermore, indirect verification of root-zone soil moisture using remotely sensed Enhanced Vegetation Index 16 

(EVI) time series across cropland areas results in significant improvements from 0.52 to 0.64 in correlation. The improvements 17 

gained from data assimilation can persist for more than one week in surface soil moisture estimates and one month in root-18 

zone soil moisture estimates, thus demonstrating the efficacy of this data assimilation framework. 19 

1 Introduction 20 

Accurate estimation of soil moisture is fundamental to monitoring and forecasting water availability and land surface 21 

conditions under extreme events such as droughts, heatwaves and floods (Ines et al., 2013;Sheffield and Wood, 2007;Tian et 22 

al., 2019b). The spatial pattern of soil moisture can vary significantly due to the heterogeneous spatial distribution of rainfall 23 

and variability in soil properties, land cover type and topography. Due to this large spatial variability, the utility of ground-24 

based, point-scale measurements is limited in estimating soil water availability at continental scale. Soil moisture estimates 25 

from land surface models are adversely affected by the uncertainties of atmospheric forcing, model dynamics and model 26 

parameterization. Remotely sensed data can provide spatially and temporally varying constraints on the modelling of 27 

biophysical landscape variables that are often superior to that achieved by a single static set of model parameters. Data 28 
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assimilation merges models and observations in a way that take advantage of their respective strength (e.g. uncertainty, 29 

coverage), resulting in improved accuracy, coverage, and ultimately forecasting capability. 30 

The assimilation of satellite soil moisture (SSM) into land surface and hydrology models has been repeatedly demonstrated to 31 

improve model representation of soil water dynamics, evapotranspiration and streamflow (De Lannoy and Reichle, 32 

2016;Draper et al., 2012;Kumar et al., 2009;Li et al., 2012;Pipunic et al., 2008;Reichle and Koster, 2005;Renzullo et al., 33 

2014;Tian et al., 2019a;Tian et al., 2017;Crow and Yilmaz, 2014;Su et al., 2014a;Alvarez-Garreton et al., 2015;Crow and Ryu, 34 

2009;Baldwin et al., 2017;Patil and Ramsankaran, 2017;Wanders et al., 2014b;Peters‐Lidard et al., 2011). Accurate knowledge 35 

of initial soil moisture states gained from data assimilation contributes significantly to the skill of flood forecasting, drought 36 

monitoring and weather forecasts (Bolten et al., 2009;Carrera et al., 2019;Wanders et al., 2014b;Yan et al., 2018;Alvarez-37 

Garreton et al., 2015). Wanders et al. (2014a) found that the assimilation of remotely sensed soil moisture in combination with 38 

discharge observation can improve the quality of the operational flood alerts, both in terms of timing and in the exact height 39 

of the flood peak.  40 

Methods of assimilation are many and varied, however commonalities exist between them. These commonalities are such, that 41 

for any time step, the time integrated first guess (the forecast) of soil moisture states are adjusted by an amount determined by 42 

the difference between observed and modelled soil moisture (the innovation), which is weighted by the respective error 43 

variances of modelled and observed quantities (the gain), to generate revised soil moisture states (the analysis). At the end of 44 

this process, the revised model soil moisture states are out of balance with the other stores and fluxes, until the model integrates 45 

forward to the next time step, whereupon water balance discontinuity is progressively removed through model physics. Soil 46 

moisture is the linchpin between atmospheric fluxes, surface- and ground-water hydrology, thus it is important that any changes 47 

in modelled state variables are not detrimental to other components of the water balance. However, the assimilation of remotely 48 

sensed soil moisture or total water storage data may lead to undesired impacts on groundwater or evapotranspiration 49 

simulations due to the mass imbalance or random error covariances (Girotto et al., 2017;Tangdamrongsub et al., 2020;Tian et 50 

al., 2017). Studies considering mass conservation in data assimilation often require extra data sources such as 51 

evapotranspiration and runoff as constraints or without considering the fluxes (Li et al., 2012;Pan and Wood, 2006).  52 

From an operational water balance perspective, is it important that the method of data assimilation be: i) computationally 53 

efficient for routine, automated simulation over the whole model domain; ii) robust to data gaps; and iii) make lasting positive 54 

improvements to future predictions of soil water stores and fluxes. An additional constraint is that if a data assimilation method 55 

is applied to an existing operational system, then it ought to require minimal modification to the system framework, and be as 56 

least disruptive as possible to the model performance. Currently, there are few operational continental water balance modelling 57 

systems that provide near-real time soil moisture estimates that have been constrained through the assimilation of satellite 58 

observations, and mainly at a relatively coarse resolution. Some recent examples include surface soil wetness observations 59 

from Advanced Scatterometer (ASCAT) active radar system, on the meteorological operational satellite (MetOp), being 60 
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assimilated into Unified Model (Davies et al., 2005) through nudging to provide soil moisture analysis at 40 km globally 61 

(Dharssi et al., 2011). Additionally, ASCAT data are used in the ECMWF (European Centre for Medium-Range Weather 62 

Forecasts) Land Data Assimilation System through a simplified Extended Kalman Filter approach (de Rosnay et al., 2013) to 63 

provide near-real time surface soil moisture and root-zone soil moisture at 25-km resolution globally. SMOS (Soil Moisture 64 

and Ocean Salinity) brightness temperatures have been assimilated in ECMWF’s global NWP (Numerical Weather Prediction) 65 

system through the Surface Data Assimilation System, based on the Extended Kalman filter, to produce soil moisture reanalysis 66 

at 40-km resolution (Muñoz-Sabater, 2015). Level-2 Radiometer soil moisture retrievals from SMAP mission (Entekhabi et 67 

al., 2010) have been assimilated into the real-time instance of the NASA Land Information System (LIS) over the 68 

Conterminous United States (CONUS) to produce hourly outputs at 0.03° resolution using ensemble Kalman filter 69 

(Blankenship et al., 2018). However, unlike the aforementioned systems where data assimilation is inherent in the system 70 

design, many operational water balance models, or catchment hydrology models, are calibrated to observations a priori. 71 

Including data assimilation as an afterthought restrains the flexibility of the system, thereby limiting the complexity of the data 72 

assimilation scheme for operational use.  73 

In this study, we develop a simple, computationally efficient, and effective data assimilation framework with mass 74 

conservation for incorporating satellite soil moisture products into an existing operational national water balance model. We 75 

demonstrate the application of the method to the Australian Water Resources Assessment Landscape model (AWRA-L), which 76 

provides daily water balance estimates at ~5-km resolution across Australia, with the assimilation of satellite soil moisture 77 

from both SMOS and SMAP. The proposed data assimilation framework is a two-step process that requires minimal 78 

modification of the existing operational system. The first step is the sequential state updating, with weightings between models 79 

and observations derived from the Triple Collocation (TC) approach (Chen et al., 2018;Crow and Van den Berg, 2010;Crow 80 

and Ryu, 2009;Crow and Yilmaz, 2014;Su et al., 2014b;Yilmaz and Crow, 2014). The second step is to impart mass 81 

conservation constraints on related states and fluxes such as root-zone soil water storage, evapotranspiration and streamflow, 82 

thus improving the accuracy of the water balance post assimilation. Accurate initial water balance conditions are of critical 83 

importance in the forecasting of water availability and land surface water dynamics. However, few studies quantify how long 84 

the impacts of data assimilation persist in the model system’s memory. To explore the impacts of data assimilation on model 85 

predictions, we quantified the persistence of the correction to key model components with respect to open-loop simulations, 86 

to illustrate the potential gains from data assimilation in improving water balance forecasts.  87 

2 Materials  88 

2.1 Australian Water Resources Assessment Modelling system  89 

The Australian Water Resources Assessment Landscape (AWRA-L) model (Van Dijk, 2010) underpins the annual national 90 

water resource assessments and water use accounts for Australia (Frost et al., 2018). The operational implementation of the 91 

AWRA-L by the Australian Bureau of Meteorology provides daily 0.05-degree (approximately 5 km) national gridded water 92 
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balance estimates. The outputs from the operational AWRA-L has been widely used in various agricultural applications and 93 

natural resources risk assessment and planning, including commodity forecasting, irrigation scheduling, flood and drought risk 94 

analysis, as well as flood forecasting (Frost et al., 2018;Hafeez et al., 2015;Nguyen et al., 2019;Van Dijk et al., 2013;van Dijk 95 

and Renzullo, 2011). The version of the AWRA-L model used in the study was obtained from the Community Modelling 96 

system (AWRA-CMS) and is freely available from https://github.com/awracms/awra_cms.   97 

AWRA-L is a one-dimensional grid-based model that simulates water balance for each grid cell across the modelling domain 98 

by distributing rainfall influx into plant-accessible water, soil moisture and groundwater stores, and computing outflux such 99 

as evapotranspiration, runoff and deep drainage. The soil water column is partitioned into three layers (surface: 0–10 cm, 100 

shallow: 10–100 cm, and deep: 1–6 m) and simulated separately two hydrological response unit, i.e. deep-rooted (trees) and 101 

shallow-rooted (grass) vegetation. The water storage for the surface-layer soil is termed 𝑆", while 𝑆# is used for the shallow-102 

layer and 𝑆$ for the deeper-layer. In addition to the modelling of soil columns, the model includes a surface water and a 103 

groundwater storage that are simulated at each grid cell and conceptualized as a small unimpaired catchment. In this study, we 104 

used forcing inputs from the AWAP (Australian Water Availability Project) gridded climate data including daily precipitation, 105 

air temperature and solar exposure (Jones et al., 2009), and interpolated site-based wind speed (McVicar et al., 2008). It is 106 

acknowledged that the accuracy of the model estimates is limited in regions with insufficient coverage in the ground-based 107 

observation network (e.g. rain gauges) which is the raw source of AWAP gridded data used to force the model. This is limited 108 

to very remote and mostly uninhabited arid regions in Australia.  109 

2.2 Satellite soil moisture (SSM) 110 

To maximize daily spatial coverage, we used two satellite soil moisture products derived from passive L-band systems: the 111 

Soil Moisture Active-Passive (SMAP) product from NASA (Entekhabi et al., 2010); and the product from the European Space 112 

Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001). The SMAP product is the level-2 113 

enhanced radiometer half-orbit 9-km EASE-grid soil moisture (Chan et al., 2018). The SMOS product is the level-2 soil 114 

moisture product on ~ 25-km grid (Rahmoune et al., 2013). Both SMAP and SMOS produce volumetric soil moisture estimates 115 

(units m3/m3) of approximately the upper 5 cm of soil. Available swath data for each product covering Australia were collated 116 

for each 24-hour period approximating the AWRA-CMS operational time steps and resampled to a regular 0.05-degree grid 117 

across the modelling domain using linear interpolation from 2015 to 2019. The volumetric soil moisture retrievals from both 118 

SMAP and SMOS were converted into water storage units (mm) to be consistent in units and soil depths with model estimates, 119 

using mean and variance matching to remove the systematic bias. Figure 1 shows an example of daily composites of SMAP 120 

(Fig1.a) and SMOS (Fig1.b) soil moisture retrievals in model units compared to AWRA-L estimates of 𝑆% (Fig1.c). For regions 121 

with sparse rain-gauge coverage such as central Western Australia (Fig1.c), AWRA-L modeled 𝑆% persists as zeros or very 122 

low values for the experiment period, reflecting a deficiency in the gauge-based analysis of daily rainfall used to drive model 123 

simulations. The result of mean and variance matching in these gauge-sparse areas will flatten the variability of SSM time 124 
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series to zero when using values of the modelled S0 for these areas directly. To resolve this problem, and fully leverage the 125 

information available in the SSM products to fill the gaps in modelled outputs across the continent, we derived a set of 126 

coefficients for the mean and variance matching over the gauge sparse regions by sampling modelled and SSM data from cells 127 

surrounding the gaps. Specifically, we fitted a linear model between the maximum SSM values through time and the 128 

coefficients for mean and variance matching for each cell in neighboring region. We applied the derived linear relationship to 129 

estimate the correspond ‘slope’ and ‘intercept’ from the maximum SSM values in the rainfall gaps. This provided a 130 

transformation of the SSM into water storage unit (mm) and ensures the assimilation can effectively influence the spatial 131 

pattern of soil moisture over the sparsely gauged regions.  132 

2.3 Validation data 133 

2.3.1 In-situ measurements 134 

Evaluation of the modelled soil water storages was made against measurements from three soil moisture monitoring networks 135 

in Australia from 2016 to 2018, namely OzNet (Smith et al., 2012), CosmOz (Hawdon et al., 2014) and OzFlux (Fig.1d). 136 

AWRA-L model estimates of water storage in surface soil layer were compared against in situ measurements from the top 10 137 

cm of soil across all three networks. The depths of in situ measurements of root-zone moisture varied across networks from 0-138 

30 cm to 0-1 m. As such, AWRA-L soil water storages over the root-zone were constructed by combining surface- and shallow-139 

layer soil water storage in the appropriate proportions to be consistent with in situ measurement depth. OzFlux sites are also 140 

used for the evaluation of AWRA-L evapotranspiration estimates, which were calculated from accumulated latent heat flux 141 

measurements at each location. In total, there are 45 sites for soil moisture validation and 14 sites for evapotranspiration 142 

validation. Streamflow observations for 110 catchments across Australia have been used in the validation based on the quality 143 

and data availability (Fig. 1d).   144 

2.3.2 Vegetation index 145 

In water-limited regions like Australia, shallow-rooted vegetation normally responds quickly to soil water availability, 146 

typically within a month. Consistency between root-zone soil water storage and vegetation greenness may be considered as an 147 

indirect independent verification of the simulation of root-zone soil water dynamics (Tian et al., 2019a;Tian et al., 2019b). The 148 

0.05-degree monthly Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS, 149 

MYD13C2 v6) was used to evaluate estimates of monthly root-zone soil water storage (the sum of water storage in surface-150 

layer (𝑆") and shallow-layer (𝑆#)  within the AWRA-L soil column) over cropland regions of the continent. The EVI is used 151 

here to characterize vegetation dynamics since it is not as influences of atmospheric effects and canopy background noise, and 152 

has a greater dynamic range (i.e., less likely to saturate) in areas of dense vegetation compared to the Normalized Difference 153 

Vegetation Index (NDVI). The choice of root-zone soil water storage at the 0-1 m depth is due to the average rooting depths 154 

varying from 30 - 80 cm over the cropland areas in Australia (Donohue et al., 2012;Figueroa-Bustos et al., 2018;Incerti and 155 
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O'Leary, 1990). The 250-m land cover classification map from Geoscience Australia (Lymburner, 2015) was resampled to 156 

0.05 degree over the model domain and used in the identification of cropland areas. 157 

3 Method 158 

3.1 Triple collocation-based error characteristics 159 

Triple collocation (TC) was developed as a method of quantifying error characteristics in geophysical variables when the 160 

true error structure is elusive. It was first applied to near-surface wind data (Stoffelen, 1998) and later extensively applied to 161 

soil moisture (Chen et al., 2018;Crow and Yilmaz, 2014;Dorigo et al., 2017;McColl et al., 2014;Scipal et al., 2008;Su et al., 162 

2014a;Yilmaz and Crow, 2014;Zwieback et al., 2013;Crow and Van den Berg, 2010) and rainfall (Alemohammad et al., 163 

2015;Massari et al., 2017). The assumption of this approach is that three independent data sets of the same geophysical 164 

variable can be used to infer the error variances in each. Here we use TC as a way of inferring error variances from our three 165 

independent estimates of surface soil moisture, AWRA-L 𝑆", SMAP, and SMOS from 2015 to 2019. Those three collocated 166 

measurements were assumed to be linearly related to the true value with additive random errors. To ensure the errors from 167 

the three independent sources were unbiased relative to each other, SMAP and SMOS soil moisture retrievals were rescaled 168 

to the reference model estimates (AWRA-L 𝑆") using temporal mean and variance matching. McColl et al. (2014) shows that 169 

the error variances (𝜎') of each data set can be calculated from the temporal variance and covariance between data sets 170 

respectively as: 171 

𝜎)' = +𝑄),) −
/0,1/0,2
/1,2

3,			 	𝜎5' = +𝑄5,5 −
/0,1/1,2
/0,2

3      and   		𝜎6' = +𝑄6,6 −
/2,1/0,2
/0,1

3                                                                (1)                                        172 

where x, y and z denote AWRA-L, SMAP and SMOS soil moisture estimates respectively and Q denotes temporal variance 173 

and covariance between the data sets. These estimates of error variance are used in the determination of the weighting of each 174 

data source in the data assimilation (Section 3.2).  175 

3.2 Sequential state updating 176 

The data assimilation method used here is a time sequential updating of model state(s) given observations of relevant model 177 

variables (Reichle, 2008). There are two key modelling components in data assimilation: the dynamics operator, which 178 

describes the time integration of the system states and fluxes, which in this study is the AWRA-CMS; and the observation 179 

operator, which provides the mathematical mapping from state to observation space. The role of the observation operator is to 180 

perform a mapping between observation and state space, as often observations are not directly comparable to model states.  181 

The common state updating equation for sequential data assimilation is written as: 182 

𝑥<= = 𝑥<
> + 𝐾<[𝑦< − 𝐻D𝑥<

>E]                                                                                                                                                      (2) 183 
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which says that the best estimate of model state, known as analysis (𝑥<=), is equal to the first guess or forecast (𝑥<
>) plus a 184 

weighted difference between observations, 𝑦<, and the model equivalent to the observation, 𝐻D𝑥<
>E, for that time step. In this 185 

study, the AWRA-L model soil water storage in S0 for shallow-rooted vegetation and deep-rooted vegetation at surface layer 186 

are updated directly through the sequential data assimilation. Satellite surface soil moisture (SSM) products from both SMOS 187 

and SMAP are used as the observations to update the model simulation. The observation operator 𝐻 here is the aggregation of 188 

soil water storage estimates in the top-soil layer for two land cover types, i.e. shallow-rooted vegetation and deep-rooted 189 

vegetation. The multiplier, 𝐾, is known as the gain factor which contains uncertainty expressed as error variance (𝜎') for both 190 

model estimates and observations. For example, the gain factor for the AWRA-L estimates can be written as:  191 

𝐾) = 	
G
H0
I

G
H0I
J G
H1I
J G
H2I

,                                                                                                                                                                                 (3) 192 

where 𝑥, 𝑦, 𝑧 denotes AWRA-L estimates, SMAP and SMOS soil moisture retrievals. Observation error variance is often 193 

estimated through field campaigns (Draper et al., 2009;Panciera et al., 2013), but these rarely represent the spatial and temporal 194 

variability of errors in gridded satellite products. Alternatively, data providers often specify error estimates, but their magnitude 195 

can be overly optimistic. Here, we applied the triple collocation approach (Section 3.1) to characterise the temporal error 196 

variances of the model estimates and the two satellite observations for each grid cell across Australia. The analysis receives 197 

higher contribution from observation with smaller error variance (Eq. 2). Given the relatively short time series (small number) 198 

of observations, however, a single set of error variances is calculated for all time. This results in spatially varying but 199 

temporally static error variances (and thus gain weights) for each of the three sources (Fig. 2). We acknowledge the limitations 200 

of assuming a temporally constant error variances and future refinements to the assimilation method will consider introducing 201 

seasonally varying error variances.  202 

3.3 Analysis increment redistribution (AIR) 203 

The assimilation of satellite soil moisture temporarily violates mass conservation in the model through the analysis update. 204 

The difference between the analysis, 𝑥LM, and the forecast, 𝑥LN, (known as the analysis increment) represents an amount of 205 

water that has been added or subtracted from the system that was not present at the start of model integration for the given 206 

time step. In this study, we use the concept of tangent linear modelling	(Errico, 1997;Giering, 2000) to redistribute the 207 

analysis increment of surface soil water storage, 𝑆", to all the relevant model states and fluxes as a way of maintaining mass 208 

(i.e. water) balance within each model time step. This adjustment is applied after the sequential state updating as the second-209 

step in the assimilation framework, which we refer to as analysis increment redistribution (AIR).  210 

The adjoint and tangent linear models were originally used in variational data assimilation (Bouttier and Courtier, 2002) and 211 

have been used to estimate the sensitivity of model outputs with respect to input (Errico, 1997).We assume the input 212 
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perturbation here is the analysis increment after the data assimilation (i.e. 𝑥LM-𝑥LN from Eq. 2), then the change in other model 213 

outputs due to the change in inputs can be determined through tangent linear modelling. Assuming model variable b is 214 

related to the state variable x, the relationship between them can be simply described as: 215 

𝑏 = 𝑀(𝑥),                                                                                                                                                                                  (4) 216 

where M denotes the model operator. The change in output variable ∆𝑏 at time step t due to the input change ∆𝑥 can be 217 

determined by  218 

∆𝑏< =
ST
S)U
∆𝑥<.                                                                                                                                                                           (5)   219 

In this study, we applied the tangent linear modelling approach to correct the model forecast of soil water storage for 220 

shallow-layer (𝑆#) , and deep-layer soil water storage (𝑆$), evapotranspiration (𝐸<%<) , and total streamflow (𝑄<%<) after the 221 

state updating of surface soil moisture (𝑆") at each time step. Note that this process ensures that the correction is affecting all 222 

model states in proportion to their sensitivity against changes in the 𝑆". All the model equations regarding to the mass 223 

redistribution were derived using model equations (Frost et al., 2018;Van Dijk, 2010) and can be found in the Appendix A.  224 

4. Results 225 

4.1 Impact on surface soil water storage estimates 226 

Error variances were derived using TC for AWRA-L model estimates and the SSM products, and showed that for the 227 

majority of the grid cells over the continent SMAP soil moisture had smaller error variance than SMOS and the model 228 

estimates. This is consistent with other studies that have shown SMAP provides the best-performing satellite soil moisture 229 

product over the majority of applicable global land pixels (Chen et al., 2018). Figure 2 shows the relative weightings 230 

(derived from the TC error variances) of model estimates, SMOS and SMAP soil moisture in the data assimilation. The 231 

analysed surface soil water storage estimates (𝑆") receive a greater contribution from SSM products, in particular SMAP 232 

observations, compared to model simulations (Fig. 2). Figure 3 gives an example of the temporal change in modelled 𝑆" 233 

estimates before and after the assimilation for 2017. The temporal dynamics of 𝑆" estimates after the assimilation has been 234 

highly adjusted towards SSM retrievals and in consistency with in-situ measurements.  235 

AWRA-L model simulations are driven by gauge-based rainfall analyses. As such the model has difficulty in adequately 236 

simulating soil moisture patterns over regions lacking in rain gauge coverage, such as Western Australia and central 237 

Australia (Fig. 1c). Water storage simulations over these regions default to zero, thus very little or no weight was given to 238 

the AWRA-L estimates in these regions (Fig. 2a). Figure 4 shows different spatial patterns of daily average 𝑆" estimates for 239 

December 2019 from model open-loop (OL) without data assimilation and with data assimilation through TC-derived 240 

weighting (DA-TC). Data assimilation has the effect of adding moisture to AWRA-L 𝑆" simulations over most of gauge-241 
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sparse areas as shown in Figure 4c. Analysed AWRA-L simulations of 𝑆" are dominated by the satellite SSM data as a result 242 

of TC weighting in the region which largely eliminates the erroneous artefacts associated with deficient rainfall data forcing. 243 

Reduced water storage in the surface layer of the soil column was found over southeast of Australia, particularly within the 244 

Murray-Darling Basin. This suggests that AWRA-L OL simulations underestimated the severity of the drought experienced 245 

in the region in December 2019. The analysis increments of AWRA-L 𝑆" (𝑥= − 𝑥>) were compared with the difference 246 

between in-situ rainfall observations from OzFlux network, 𝑃X6YZ[) and AWAP rainfall forcing, 𝑃\]\^,(Fig. 5). The 247 

increasing 𝑆" simulations align with missing or underestimated rainfall events in the AWAP rainfall forcing 248 

(𝑃X6YZ[) − 𝑃\]\^ > 0) and vice versa (Fig. 5). This supports the hypothesis that data assimilation correctly distributes 249 

water into the system and mitigates the impact of uncertainty in rainfall forcing.  250 

4.2 Impact on root-zone soil water storage and fluxes estimates 251 

If the analysis increment redistribution (AIR) is not applied, the soil water storage in the surface layer (𝑆") is the only state 252 

variable directly updated with SSM (DA-TC). Other variables such as root-zone soil water storage, evapotranspiration and 253 

streamflow are adjusted with model integration to the next time step using the analysed 𝑆" as the surface layer initial condition. 254 

Therefore, the observed changes in those variables following DA-TC (Fig.6, centre column) are relatively small when 255 

compared to model open-loop estimates (Fig.6, left column). For example, the OL soil water storage of shallow-layer (𝑆#) 256 

estimates in those gauge-sparse regions of Australia remain zero or very low due to the AWAP rainfall forcing. The predictions 257 

of 𝑆# receive relatively small contribution from the analysed 𝑆" since the analysis increment of 𝑆" is small compared to the 258 

field compacity of 𝑆#.  259 

One known issue of sequential state updating is the temporary break of water balance at each time step until the next model 260 

integration. The proposed AIR approach (Section 3.2) adjusts variables coupled with surface soil moisture after the state 261 

updating at each time step. Significant difference in the spatial patterns of 𝑆# , 𝐸<%< and 𝑄<%< after the mass redistribution (DA-262 

TCAIR) can be seen in Fig. 6 (right column) compared to model open-loop or forecasts after only 𝑆" updating. The changes 263 

in estimates of 𝑆# and 𝐸<%< over coastal regions are relatively small due to more accurate rainfall forcing data with the dense 264 

network of rain-gauges. Finally, the 𝑄<%< estimates after AIR are lower than the DA-TC and OL. This reduction in streamflow 265 

over south-eastern Australia and northern Australia is consistent with the reduced surface soil moisture in those regions (Fig.4c).  266 

4.3 Quantitative evaluation  267 

Estimates of surface soil moisture, root-zone soil moisture, evapotranspiration and streamflow after data assimilation (DA-268 

TC) and data assimilation with mass redistribution (DA-TCAIR) were compared with time series of in-situ observations. We 269 

compared the model outputs after DA-TC and DA-TCAIR separately to investigate the benefits of maintaining mass balance 270 

in data assimilation. Pearson’s correlation coefficients were computed from time series of model estimates and observations 271 

between January 2016 to December 2018 for each site.  The distribution of correlation coefficients for OL, DA-TC and DA-272 
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TCAIR are displayed as boxplots in Figure 7. Consistent, significant improvement in modelled surface layer soil water storage 273 

estimates (S") were observed across all sites (Fig. 7a) with the single exception of an OzFlux site located in a tropical rainforest, 274 

where microwave SSM retrievals are known to be typically poor (Njoku and Entekhabi, 1996). TC-based assimilation (DA-275 

TC) increases the correlation between in-situ surface SM measurements from 0.47 to 0.72 on average for CosmOz sites, 0.54 276 

to 0.69 for OzFlux sites, and 0.56 to 0.77 for OzNet sites compared to OL. This is a significant improvement in AWRA-L 277 

simulations of surface soil moisture dynamics with an increase in correlation of 0.23 on average across all in-situ sites. 278 

Overall subtle improvements were observed across the AWRA-L estimates of root-zone soil water storage, evapotranspiration 279 

and streamflow after the assimilation (DA-TC) (Fig. 7b, c, d). The level of improvement is not surprising since those variables 280 

were not directly updated through DA-TC and are only influenced through the integration of the model to the next time step. 281 

Degradation was found in root-zone soil moisture estimation for a few OzFlux and OzNet monitoring sites. This is likely due 282 

to the break of water balance in the assimilation, since the estimates followed by the second step of AIR (DA-TCAIR) slightly 283 

increases the correlation with in-situ observations compared to model open-loop and the estimates after assimilation without 284 

mass redistribution (DA-TC). Moreover, the model estimates of root-zone soil moisture from model OL are in good agreement 285 

with in-situ observations as is with average correlation above 0.8 (Fig. 7b), which leaves little room for improvements. 286 

Although the corrections of other water balance estimates from the analysis increments redistribution are relatively small 287 

compared to direct state updating, they are improvements nevertheless. Slight improvements were similarly found in 288 

streamflow estimates after the AIR (Fig. 7d). Figure 8 shows an example of the OL estimates of streamflow, the analysed 289 

streamflow after the application of AIR, and the streamflow observations, 𝑄<%<	%b#. Also displayed is the streamflow analysis 290 

increments, i.e. 𝑄<%<= − 𝑄<%<
>  for each time step. The negative streamflow analysis increment (Fig. 8) indicates that water is 291 

removed from the surface water store after the assimilation of SSM and application of AIR, which is appears to compensate 292 

for the overall overestimate of OL simulations, in this example. Although the change in streamflow due to the soil moisture 293 

data assimilation is small compared to the disparity between model and observed streamflow, the adjustment in the direction 294 

towards observations highlights the importance of accurate antecedent soil moisture conditions in the simulation of runoff 295 

response. The joint assimilation of gauge-measured streamflow and satellite soil moisture retrievals into AWRA-L is expected 296 

to improve the streamflow simulation. 297 

A limited number of root-zone soil moisture monitoring sites as well as the large spatial disparity between the point-scale in-298 

situ measurements and modelling resolution (∼5 km grid cell) represent substantial limitations for wide-area evaluation of 299 

root-zone soil moisture estimates. An indirect verification of AWRA-L simulations of root-zone soil moisture was based on a 300 

comparison against satellite-derived EVI. This provided an independent, albeit indirect, way of evaluating the impact of data 301 

assimilation over larger areas. We calculated the correlation between time series of monthly average AWRA-L root-zone soil 302 

moisture estimates from OL, DA-TC and DA-TCAIR against EVI for cropland across Australia from 2015 to 2018. Cropland 303 
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cover type was selected based on the rooting depths of the dominant grass species and wheat varieties in the area that have 304 

been shown to have rooting depths spanning at least half the combined soil depths (0-1m) of the surface- and shallow-layer 305 

soil water storage in AWRA-L. Figure 9a shows the relative change in correlation between root-zone soil water storage 306 

simulations from DA-TCAIR and those from model OL against EVI data for cropland areas of Australia. Significant 307 

improvements were found after the data assimilation and mass redistribution for the vast majority of model grid cells (Fig. 9a). 308 

The averaged correlation with EVI is 0.64 from DA-TCAIR compared to 0.52 for model open-loop. The root-zone soil water 309 

storage estimates after the mass redistribution are significantly improved over the cropland in Western Australia and southern 310 

Australia with more than 20% increase in correlation comparing to DA-TC without mass redistribution (Fig. 9b). This 311 

demonstrates that enforcing mass balances as part of the soil moisture data assimilation at each time step is essential to 312 

improving the simulation of root-zone soil water balance. Limited difference between DA-TC and DA-TCAIR were found 313 

over cropland regions over south-eastern Australia, likely due to the overall good performance of AWRA-L OL root-zone soil 314 

moisture estimates in those areas (Fig. 7b). The improved consistency with EVI after data assimilation highlights the potential 315 

of improving agricultural planning with more accurate information of root-zone soil water availability. 316 

4.4 Implications for water balance forecasting 317 

To quantify how long improvements in model state last in AWRA-L simulations, we used OL and DA-TCAIR estimates 318 

between 1 March 2018 and 28 February 2019. The model states for each day over this one-year period served as initial 319 

conditions for 100-day AWRA-L simulations from which we calculated the number of days it took for the simulation from the 320 

analysed DA-TCAIR states to converge to within +/- 5% of those from OL. Results showed that data assimilation can impact 321 

model states and fluxes for weeks and sometimes up to 2-3 months (Fig. 10). The impacts of data assimilation can persist in 322 

simulated 𝑆" for as long as a week over coastal regions, and longer in central Western Australia and Northern Australia with 323 

up to a month persistence in winter and spring (Fig. 10a). There is less impact on 𝑆" simulations during wet season (Summer-324 

Autumn) in Northern Australia since the 𝑆" can saturate rapidly due to the heavy rainfall. Overall, the longest persistence is 325 

found in winter with a continental average of 13 days; the shortest is 6 days on average in autumn and summer. The memory 326 

of initial conditions in simulations of 𝑆# can persist even longer due to the slower response to rainfall variability and higher 327 

field capacity (Fig. 10b). Summer persistence for 𝑆# is the least with a continental average of 30 days; in winter this increased 328 

to 45 days. 329 

On average, the impact of antecedent soil moisture conditions on evapotranspiration simulations can persist for 1 week over 330 

coastal areas, but up to months in central Western Australia (Fig. 10c). The continental average varies from 13 to 20 days for 331 

each season. The areas with the longest persistence are those areas with artefacts of zero rainfall in the forcing. This 332 

demonstrates that improvements in AWRA-L estimates after SSM assimilation over regions with sparse rain-gauge coverage 333 

can persist in the system for more than 2 months. The impact on runoff varies from 1 week to 3 months over the continent 334 
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(Fig. 10d). The majority of areas impacted for more than 2 months are in locations of low rainfall and runoff. However, in 335 

areas of heavy runoff, e.g. north-eastern Australia, there is between 1-2 week of persistence.    336 

5. Discussion 337 

In this study, we assimilated SMAP and SMOS data into an operational AWRA-L water balance modelling system through a 338 

simple sequential state updating approach, with weightings derived using triple collocation approach (DA-TC), followed by a 339 

post-adjustment for mass redistribution (DA-TCAIR). Previous data assimilation studies using the AWRA-L model opted for 340 

ensemble-based methods (Renzullo et al., 2014;Shokri et al., 2019;Tian et al., 2019a;Tian et al., 2017;Tian et al., 2019b). 341 

Ensemble based methods rely on a priori knowledge of uncertainty in forcing data and model error variances to derive spatially 342 

and temporally varying gain matrices at each time step. However ensembles often require post hoc correction such as state 343 

inflation (Anderson et al., 2009) to achieve optimal performance, and many members (> 10) comprised of  multiple model 344 

runs to infer statistically meaningful error variances, which can be computationally costly. In contrast, the proposed DA-TC/-345 

TCAIR framework is simple, effective and computationally efficient and requires minimal modification in the current 346 

operational system. The gain factor in the proposed assimilation framework is temporally constant but spatially varying. It is 347 

derived from the temporal covariances between modelled and satellite-derived soil moisture for each grid cell across the 348 

domain through the widely used triple collocation (TC) method (Chen et al., 2018;Crow and Van den Berg, 2010;Crow and 349 

Yilmaz, 2014;Su et al., 2014b;Yilmaz and Crow, 2014). The significant improvements in AWRA-L model surface soil 350 

moisture estimation demonstrates the efficiency of the proposed assimilation approach (Fig. 7a). Temporally varying gain 351 

factor is considered for future improvement to the approach once a longer time series of SMAP data is available.   352 

Pan and Wood (2006) used mass redistribution in a two-step constrained Kalman filter that required error covariances derived 353 

from evapotranspiration and runoff observations. However, these observations are often not available for continental scale of 354 

studies. Li et al. (2012) redistribute the mass imbalance within soil layers during the assimilation but without the updates of 355 

fluxes. Our proposed method based on tangent linear modelling redistributes the mass change across all the states and fluxes 356 

related to surface soil moisture states without the need for extra observations. The analysis increment redistribution (AIR) 357 

method conserves the mass balance thereby improving water balance estimates (Fig. 7), in particular it can improve the root-358 

zone soil moisture estimates over croplands (Fig. 9). Although the improvements are limited, the streamflow estimates from 359 

the AIR are predominantly a better match to observations (Fig. 8). Model physics limits the strength of coupling between an 360 

analysed state and resulting fluxes (Kumar et al., 2009;Walker et al., 2001). Thus a small level of improvement in performance 361 

in AWRA-L streamflow in response to soil moisture state updating is not unexpected due to a weak coupling between the 362 

states and fluxes. Calibration of model parameters using satellite and in-situ observations may lead to further improvements. 363 

Many studies have demonstrated the assimilation of satellite soil moisture can improve model forecasts due to the correction 364 

for initial soil moisture conditions (Crow and Ryu, 2009;Pauwels et al., 2001;Scipal et al., 2008). Getirana et al. (2020a) and 365 
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Getirana et al. (2020b) found that using initial conditions derived from the assimilation of GRACE (Gravity Recovery and 366 

Climate Experiment) total water storage observations can improve the seasonal streamflow and groundwater forecast due to 367 

the long memory of groundwater and soil moisture. However, few studies quantify how long the impacts of data assimilation 368 

can persist in the model system’s memory for different states. In this study, we found that the impact of different initial 369 

conditions of root-zone soil water storage has a long memory in the system, exceeding 2 months (Fig.10b). The constraints on 370 

the simulations of surface soil moisture, evapotranspiration and streamflow can persist 1-2 weeks due to the high temporal 371 

variability. This highlights the potential gains from data assimilation for agricultural planning and flood forecasting, as a result 372 

of improved short-term water balance forecasts.  373 

6. Conclusion 374 

In this study, we proposed a simple and robust framework for assimilating SMAP and SMOS soil moisture products into the 375 

operational Australian Water Resources Assessment modelling system. The method involves the sequential (daily) updating 376 

of the model's surface soil water storage with satellite soil moisture observations using weights determined through triple 377 

collocation (DA-TC). Furthermore, we proposed an additional component to the data assimilation whereby the analysis 378 

increment of the upper layer soil water storage is propagated into relevant model states and fluxes as a way of maintaining 379 

mass balance (DA-TCAIR). Evaluation against in-situ measurements showed that simulations of surface soil moisture 380 

dynamics is improved significantly after TC data assimilation with an average increase of 0.23 correlation units compared with 381 

open-loop simulations. An evaluation of the root-zone soil moisture, evapotranspiration and streamflow estimates showed that 382 

the TC-AIR appeared to provide marginal, yet positive, improvement over the TC data assimilation method alone. However, 383 

in an indirect verification of modelled root-zone soil moisture against satellite-derived EVI, DA-TCAIR was seen to provide 384 

significant improvement over the TC method alone. This demonstrates that by enforcing mass balances as part of the SSM 385 

data assimilation each time step, AWRA-L can better represent soil water dynamics such that it has greater consistency with 386 

observed vegetation response. 387 

 388 

The assimilation of satellite soil moisture estimates together with the mass redistribution reduces the uncertainties in model 389 

estimates resulting mainly from uncertain forcing and model physics, and provides temporally and spatially varying constraints 390 

on model water balance estimates. For example, the assimilation resolves the gaps in rainfall forcing over Western Australia 391 

and central Australia. We demonstrate that the impacts of data assimilation can persist in the model system for more than a 392 

week for surface soil water storage and more than a month for root-zone soil water storage. This highlights the importance of 393 

accurate initial hydrological states for improving forecast skill over longer lead times. Hence, an operational water balance 394 

modelling system, with satellite data assimilation, has strong potential to add value for assessing and predicting water 395 

availability for a range of decision makers across industries and sectors. 396 

 397 

 398 
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Appendix A 399 

For a complete understanding and description of the AWRA-L model equations, please refer to Frost et al (2016).  Here we 400 

only present those parts of the model equation related to S0.  401 

 402 

The analysis increments after the data assimilation can be calculated as: 403 

∆𝑆" = 𝑆"= − 𝑆"
>,  404 

where 𝑆"= denotes the analysed upper-layer soil water storage and 𝑆"
>denotes the forecast, or initial estimate. The change in 𝑆" 405 

affects the drainage to the lower-layer soil water storage (𝐷") and interflow draining laterally from the top soil layer (𝑄f"). The 406 

corresponding change in drainage to lower-layer soil water storage from the increment ∆𝑆" is calculated as: 407 

∆𝐷" = (1 − 𝛽")𝑘"#=<[j
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], 409 

where the 𝑘"qML and 𝑆0𝑚𝑎𝑥 are model parameters representing the saturated hydraulic conductivity and maximum storage of 410 

the upper soil layer, respectively. The proportion of overall top layer drainage that is lateral drainage (𝛽") given as:  411 

𝛽" = tanh	(𝑘x𝛽
kl
m

k"n=)
)tanh	(𝑘y(

zl{mU
z{{mU

− 1) kl
m

k"n=)
), 412 

where 𝛽  and 𝑘x are the slope radians and scaling factor, and 𝑘y is a scaling factor for the ratio of saturated hydraulic 413 

conductivity. The revised lower-layer soil water storage 𝑆#= is then determined as: 414 

𝑆#= = 𝑆#
> + ∆𝐷". 415 

The change in 𝑆# will lead to the change in the shallow soil water storage (𝐷#) and lateral interflow (𝑄f#). The soil water storage 416 

at lower layer is thus updated as: 417 

𝑆$= = 𝑆#= + ∆𝐷#. 418 

Similarly, the groundwater storage 𝑆| will be adjusted with the increment of deep soil layer drainage.  419 

The total runoff (𝑄<%<= ) should be updated as: 420 

𝑄<%<= = (1 − 𝑒~z�)(𝑆�
> + 𝑄<%<

> + ∆𝑄f# + ∆𝑄f"),  421 

where 𝑘� is a routing delay factor.  422 

The surface water storage 𝑆� should be updated accordingly as: 423 

𝑆�= = 𝑆�
> + ∆𝑄f# + ∆𝑄f" − ∆𝑄<%<. 424 

The total evapotranspiration change (∆𝐸<%<) caused by the changes in 𝑆" and 𝑆# can be updated as follow: 425 

∆𝐸<%< = 	𝛿𝐸# ∗ ∆𝑆" + 𝛿𝐸< ∗ ∆𝑆#,  426 

where the 𝐸# is the evaporation flux from the surface soil store (𝑆") and 𝐸< is the total actual plant transpiration. The term 𝛿𝐸# 427 

is given as 428 
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𝛿𝐸# = (1 − 𝑓#=<)𝐸<_��n𝛿𝑓#%�Z�,  429 

where 𝑓#%�Z� is relative soil evaporation and 𝑓#=< is the fraction of the grid cell that is saturated, and 430 

𝐸<_��n = 𝐸" − (𝐸< − 𝛿𝐸<) , 431 

The term 𝛿𝐸< is from the changes in root-water uptake from shallow and deep soil layers as 432 

𝛿𝐸< = 𝛿𝑈# + 𝛿𝑈$,  433 

with 434 

𝛿𝑈# = 𝛿𝑈#n=)
max	(𝑎𝑏𝑠(𝛿𝑈#n=), 𝛿𝑈$n=)))

𝛿𝑈#n=) + 𝛿𝑈$n=)
 435 

𝛿𝑈$ = 𝛿𝑈$n=)
max	(𝑎𝑏𝑠(𝛿𝑈#n=), 𝛿𝑈$n=)))

𝛿𝑈#n=) + 𝛿𝑈$n=)
 436 

𝛿𝑈#n=) =
�{l
�{���
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��l
�����

𝛿𝑤$, where 𝑈#n=) and 𝑈$n=) are the maximum root water uptake from the shallow soil 437 

store and from deep soil store. 𝑤#Z�n and 𝑤$Z�nis the water-limiting relative water content from the shallow and deep soil 438 

layer. 439 

Finally,  440 

𝛿𝑓#%�Z� = 	
>{����m0
�l���

𝛿𝑤",	where  𝑓#%�Zn=) is the scaling factor corresponding to unlimited soil water supply, with 441 

𝛿𝑤" = 	
�

kl�m0
, 𝛿𝑤# = 	

�
k{�m0

,	and 𝛿𝑤$ =
�

k��m0
, 442 

where the 𝑤6 is the relative soil wetness of layer z, i.e.  either 0, s or d. 443 

 444 
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 648 

Figure 1: Satellite soil moisture retrievals in model unit (mm) for (a) SMAP and (b) SMOS compared to (c) AWRA-L estimates of 649 
surface soil water storage for 1 Jan 2019. (d) Locations of in-situ soil moisture monitoring networks (CosmOz, OzNet and OzFlux), 650 
catchments for streamflow validation and grid cells classified as cropland. The rectangular inset map provides a zoomed view into 651 
the OzNet network region in south eastern Australia.  652 
  653 
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 654 
Figure 2: Gain weights for sequential data assimilation derived from Triple Collocation (TC) showing the relative contribution of 655 
the respective estimate in (a) AWRA-simulated surface soil water storage 𝑺𝟎, (b) SMOS soil moisture, and (c) SMAP soil moisture. 656 
 657 

 658 
Figure 3: Time series of AWRA-L surface soil water storage estimates from open-loop (OL) compared to estimates after data 659 
assimilation (DA-TC) of SMAP and SMOS soil moisture retrievals at CosmOz monitoring site: Bennets (35.826°E, 143.004°S). Note 660 
that the in-situ soil moisture values are in volumetric unit.  661 
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 662 
 663 
 664 
Figure 4: Comparison of daily average surface soil water storage estimates (𝑺𝟎) for December 2019 from (a) model open-loop (OL), 665 
(b) joint assimilation of SMAP and SMOS with Triple Collocation (DA-TC) and (c) difference between estimates DA-TC and OL.   666 
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 667 
Figure 5: Analysis increments of AWRA-L surface soil water storage (𝒙𝑺𝟎𝒂 -𝒙𝑺𝟎

𝒇 ) in comparison with difference between in-situ rainfall 668 

observations and rainfall forcing from AWAP used in AWRA-L modelling (𝑷𝑶𝒛𝑭𝒍𝒖𝒙 − 𝑷𝑨𝑾𝑨𝑷 ) for (a) Yanco site (34.989°E, 669 

146.291°S) and (b) Wombat Forest (37.422°E, 144.094°S).  670 
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 671 
Figure 6: Averaged estimates of (a) shallow layer (10-100cm) soil water storage (𝑺𝒔), (b) evapotranspiration (𝑬𝒕𝒐𝒕), and (c) total 672 
streamflow (𝑸𝒕𝒐𝒕 ) for December 2019 from model open-loop, data assimilation (DA-TC), and after the analysis increments 673 
redistribution (DA-TCAIR). 674 
 675 
  676 
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 677 
Figure 7: Distribution of correlation statistics of AWRA-L water balance estimates against in-situ measurements of (a) surface soil 678 
moisture, (b) root-zone soil moisture, (c) evapotranspiration and (d) streamflow. 679 
 680 
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 689 
 690 
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 691 
Figure 8: Changes in streamflow 𝑸𝒕𝒐𝒕 estimates after the analysis increments redistribution (DA-TCAIR) for a catchment in south-692 
eastern Australia (centre coordinates: 36.63°E, 147.43°S) compared to in-situ streamflow observations (𝑸𝒕𝒐𝒕 obs) and model open-693 
loop.  694 
 695 

 696 
Figure 9: Comparison of vegetation index, EVI, with modelled root-zone soil moisture over cropland: (a) changes in correlations 697 
after data assimilation (DA-TCAIR,	𝒓𝒂𝒊𝒓) compared to model OL (𝒓𝒐); (b) changes in correlations between DA-TCAIR and DA-TC. 698 

 699 
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 700 
Figure 10: Quantified impacts of data assimilation on forecasting AWRA-L state variables using the initial condition from DA-701 
TCAIR: average time period that the impact of data assimilation can persist in autumn (2018.03-2018.05), Winter (2018.06-2018.08), 702 
Spring (2018.09-2018.11) and Summer (2018.12-2019.02) on (a) upper-layer soil water storage 𝑺𝟎, (b) lower-layer soil water storage 703 
𝑺𝒔, (c) total evapotranspiration 𝑬𝒕𝒐𝒕	and (d) total runoff 𝑸𝒕𝒐𝒕. 704 


