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Abstract. The previous comparative studies on watersheds were mostly based on the comparison of dispersive 20 
characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin 21 
comparison based on the Bayesian network (BN), and focus on the basin-scale water-energy-food-ecology (WEFE) 22 
nexus. We applied it to the Syr Darya river basin (SDB) and the Amu Darya river basin (ADB) of which the poor 23 
water management caused the Aral Sea disaster. The causality of the nexus was effectively compared and 24 
universality of this framework was discussed. In terms of changes of the nexus, the sensitive factor for the water 25 
supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in 26 
the WEFE nexus after the disintegration. The water-energy contradiction of SDB is more severe than that of ADB 27 
partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus 28 
water downstream of SDB more controversial. Due to this, the water-food-ecology conflict between downstream 29 
countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and 30 
improving the planting structure prove beneficial to the Aral Sea ecology and this effect of SDB is more significant. 31 
The construction of reservoirs on the Panj river of the upstream ADB should be cautious to avoid an intense water-32 
energy conflict as SDB. It is also necessary to promote the water-saving drip irrigation and to strengthen the 33 
cooperation. 34 

1 Introduction 35 

The Aral Sea disaster has warned us for the terrible impact of unsustainable water use on the ecosystem. Recently, 36 
with the growing focus on the water-energy-food (WEF) nexus (Biggs et al., 2015; Cai et al., 2018; Conway et al., 37 
2015; Espinosa-Tasón et al., 2020; Sadeghi et al., 2020; Yang and Wi, 2018) in the integrated water resources’ 38 
management, we have come to realize that a harmonious and optimized water-energy-food-ecology (WEFE) nexus 39 
may be the key to an effective cross-border water management of the Aral Sea basin (Jalilov et al., 2016, 2018; Lee 40 
and Jung, 2018; Ma et al., 2020; Sun et al., 2019), with ‘ecology’ added to the WEF nexus because ecology is usually 41 
more concerned in the Aral Sea basin. The latter mainly includes the Syr Darya river basin (SDB) and the Amu Darya 42 
river basin (ADB). Due to the similarity in the natural geographical conditions and management approaches, these two 43 
basins are generally considered to be very similar. The rapid melting of glaciers, drought disasters, excessive irrigation 44 
water use, increasing food demand, contradictions on water for the energy production and irrigation between the 45 
upstream and downstream countries, soil salinization and poor water quality are the common problems the two basins 46 
are facing nowadays (Immerzeel et al., 2020; Micklin, 2010). However, there seems to be a lack of attention to the 47 
quantitative differences on the characteristics of the interactions of the WEFE nexus between the two river basins. We 48 
want to understand the differences and their levels, and think about what experience can be gained from it. The practice 49 
of an integrated watershed management often draws on the experience and lessons of other watersheds with similar 50 
natural conditions, such as management concepts, hydrological model applications and climate change risk 51 
assessments (Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer et al., 2013; Ladson and Argent, 2002; Syed et al., 52 
2005; Vetter et al., 2017; Wang et al., 2020; Zawahri, 2008). Most of these previous studies investigated the differences 53 
of dispersive or individual characteristics between the river basins but lacked attention to the systemicity and causality 54 
(Fig. 1) in the changing water systems at the basin scale which may be able to more directly provide new experience 55 
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and knowledge for practical watershed management. In SDB and ADB, this kind of comparison might be more 56 
practical and meaningful on the application level (based on a higher similarity in the natural conditions and 57 
management history). Learning from each other’s successes and failures could reduce the trial-and-error costs in the 58 
water use management. For example, the seasonal runoff pattern and its impact on the water use of SDB nowadays 59 
with a low glacier cover might be considered as a reference for the water use management of ADB, if most glaciers 60 
would melt in a warmer future (Sorg et al., 2012). Analogously, such comparisons are focusing on the detailed 61 
differences under a general similarity and might also be helpful to understand the WEFE nexus and a better assignment 62 
of the detailed responsibilities of countries regarding a transboundary watershed cooperation and management. 63 
 64 
When studying the water system and the WEFE nexus in the Aral Sea basin, we found that the first main source of 65 
uncertainty might include the fact that it is difficult for us to accurately predict the runoff amount from the mountainous 66 
areas. In the arid regions of Central Asia, most of the available water resources originate from the precipitation, melting 67 
snow and glaciers of the water towers in the alpines. But the observations of the water resources in the mountainous 68 
areas of this region have been greatly restricted (Chen et al., 2017), especially after the collapse of the Union of Soviet 69 
Socialist Republics (USSR) and some gauging stations were abandoned. It has restricted the implementation of the 70 
physics-based and statistical models for the runoff prediction, although remote sensing technology proved helpful in 71 
the estimation of the alpine precipitation and glacier melting (Guo et al., 2017; Pohl et al., 2017) as forcing data. In 72 
addition, the weak prediction capacity of incoming water might propagate the uncertainty on the downstream water 73 
use, food production, energy production, ecology and their interactions in the WEFE nexus. Facing the uncertainty of 74 
the amount of incoming water and some other exogenous sources such as climate change and population growth, some 75 
models concerning the WEF nexus that are commonly used now, may not work well. Previous studies focused more 76 
on the WEF nexus in the integrated water resources’ management (IWRM) (Cai et al., 2018) and many current WEF 77 
nexus studies applied the system analysis or integrated process-based model methods (Daher and Mohtar, 2015; Jalilov 78 
et al., 2018; Kaddoura and El Khatib, 2017; Lee et al., 2019, 2020; Payet-Burin et al., 2019; Zhang and Vesselinov, 79 
2017). However, in order to parameterize these models, we found that many empirical parameters or factors need to 80 
be set (Feng et al., 2016; Ravar et al., 2020), which could mask the shortcomings of an insufficient understanding of 81 
uncertain and complex processes. For example, empirical coefficients were used to determine the conversion 82 
coefficient of electricity demand for pumping water from different depths and energy demand coefficients of various 83 
water sectors (Ravar et al., 2020), including the  driving functions of water supply, power generation and hydro-ecology 84 
(Feng et al., 2016). The effectiveness depends on our judgements of the values of each parameter under various 85 
conditions, but we might ignore the dynamic influence of the probability distribution of some remotely related causal 86 
variables. In order to improve this, we considered a longer causal chain matching of the uncertainty propagation process 87 
and to obtain details on the possibility distributions of the parameters’ values under various combinations of multiple 88 
conditions. Therefore, we realized that the Bayesian network might prove to be an effective tool for these two problems. 89 
 90 
The Bayesian network (BN) is based on the Bayesian theory and the graph theory (Friedman et al., 1997; Pearl, 1985). 91 
It can simulate complex causal relationships and integrate expert knowledge from multiple fields and has shown its 92 
advantages in water resources research and management (Chan et al., 2010; Fienen et al., 2013; Giordano et al., 2013; 93 
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Hines and Landis, 2014; Hunter et al., 2011; Nash and Hannah, 2011; Pagano et al., 2014; Quinn et al., 2013; Taner et 94 
al., 2019; Xue et al., 2017). In our previous study, the WEFE nexus in the single SDB was simulated based on a BN 95 
(Shi et al., 2020) which also demonstrated its advantages in terms of uncertainty quantification. Based on this, we try 96 
to explore the framework significance and portability of this method when applied to other watersheds for comparing 97 
watershed systemic behaviours focusing more on the global causality, which aimed at obtaining the universal evolution 98 
law and discovering the specific differences of the basin-wide WEFE nexus. 99 
 100 
The research goals of this paper mainly include: (1) to propose a causal structure-based framework to compare basin-101 
wide WEFE nexus and apply it to SDB and ADB with the BN method, (2) to compare the differences in historical and 102 
current causality of the WEFE nexus and water use between SDB and ADB within the new framework and (3) to 103 
propose a comprehensive optimization proposal of the WEFE nexus management. 104 

2 A generalized causal structure-based framework for comparing basin-wide water-energy-food-ecology nexus 105 

We propose a new framework (Fig. 2) for comparing the basin-wide WEFE nexus and watershed management 106 
representing the causal structure based on combining the similar causal structure and data differences. Under different 107 
levels of similarity, similar causal structures generated by expert knowledge are combined with the observation and 108 
statistical datasets of different river basins. The elements of the WEFE nexus can be adjusted to water-energy, water-109 
food-ecological nexus (Fig. 2), etc. according to the dynamic research aims and similarity levels among the specifically 110 
investigated river basins.  111 
 112 
The steps of the workflow of the framework are as follows:  113 
(1) We conduct a preliminary screening of the basin. Such screening can be based on similar geographic region, 114 
landform, climate type, etc. which reflect the basic natural conditions. Based on other factors such as whether the river 115 
is transboundary, whether the country that manages the basin is economically developed, etc., we further filter the 116 
selected basins.  117 
(2) We construct a same WEFE nexus causality structure for the river basins selected in the previous step, which can 118 
be represented by a directed graph model such as the Bayesian network. In this step, we need to balance the degree of 119 
refinement of the causal relationship structure and its universality in the selected river basins. The conceptual structure 120 
constructed should be reviewed by a panel of experts and revised if necessary. This feedback can help to identify key 121 
variables or processes that have been overlooked so as to correct errors in the conceptual structure. In some cases, it 122 
may be appropriate to build a conceptual structure with stakeholder groups, especially if the model will be used as a 123 
management tool and the results will affect stakeholders (Chan et al., 2010; Chen and Pollino, 2012). At the same time, 124 
the availability of actual expert knowledge and data should also be considered to avoid constructing a causal structure 125 
that is too detailed so that the available expert knowledge and data are not enough to fill it, or too rough that the causal 126 
relationship is underfitted so as to avoid underutilization of knowledge and data (Chen and Pollino, 2012; Marcot et 127 
al., 2006). Including insignificant variables will increase the complexity of the network and reduce the sensitivity of 128 
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the model output to important variables, unnecessarily spending extra time and effort, and will not add value to the 129 
entire model (Chen and Pollino, 2012). 130 
(3) In this step, we combine the causal structure representing expert knowledge from multiple fields with actual 131 
statistics and observation data to update the initial understanding of causality (Cain, 2001; Chan et al., 2010; Chen and 132 
Pollino, 2012; Marcot et al., 2006). Expert judgment based on past observations, knowledge and experience can be 133 
used to provide an initial estimate of the probability, which can then be updated with the available observation data 134 
(Chen and Pollino, 2012). The ability to use expert opinions to parameterize the BN model is an advantage, especially 135 
for environmental systems that have little quantitative data required for statistical modeling methods (Smith et al., 136 
2007). In this way, the conditional probability table of the original causal structure is updated with actual data, and the 137 
originally scattered actual data is closely connected by the causal structure.  138 
(4) Based on the quantified new causal structure in the previous step, we can explore its value in practical applications 139 
within the new framework including: discovering the common evolutionary law of the nexus, discovering the  140 
differences in the responses of various nodes to the same management scenario by synchronizing the operations of 141 
BNs of different river basins, analyzing differences of the causality of the historical nexus changes, incorporating 142 
previous unsystematic and local studies on water resources, agriculture, ecology, etc. into the new causal framework 143 
such as incorporating the upstream multi-source causal factors into the downstream soil salinization studies, sharing 144 
experience and reflecting on the failure cases of the historical management, optimizing the current nexus, incorporating 145 
causality and uncertainty into the decision making and the future risk assessment (Chan et al., 2010).  146 

3 Application of the Framework in the Syr Darya river basin (SDB) and the Amu Darya river basin (ADB) 147 

3.1 Location of the selected SDB and ADB 148 

The Aral Sea Basin is located in Central Asia (Fig. 3) with a total area of 1,549 million km2 and is one of the largest 149 
endorheic river basins in the arid regions worldwide. The two major rivers, the Syr Darya and the Amu Darya, originate 150 
from the West Tien-Shan and Pamir Plateau as a part of the Central Asian water tower. They flow through five 151 
countries in Central Asia, which were once part of the USSR. The surface water resources of the basin mainly stem 152 
from the precipitation, snow melting and ice in the mountainous area. The lower part of the basin is very dry and most 153 
areas are deserts. The large-scale agricultural production here is highly dependent on the irrigation and large amounts 154 
of water are consumed by a high evapotranspiration and leakage during the water diversion. 155 

3.2 The priori and general mode of the water-energy-food-ecology (WEFE) nexus  of SDB and ADB 156 

Since the 1960s, the WEFE nexus in the Aral Sea Basin has been suffering from an increasing pressure (Fig. 4). In 157 
addition to the population growth, climate change, ecological degradation and other problems, the issue of the 158 
transboundary water and energy disputes in this region has intensified with the collapse of the USSR. Therefore, this 159 
basin-wide transboundary WEFE nexus has unique characteristics on spatial and chronological scales. In this study, 160 
according to the spatial characteristics of the transboundary management, the watershed is divided into an upstream 161 
and downstream area. In response to the impact of the collapse of the USSR, the water resources’ management period 162 
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was divided into four periods: namely 1970-1980, 1980-1991, 1991-2005 and 2005-2015. This is mainly based on the 163 
WEFE nexus change between the upstream and downstream areas in different periods, which are applicable to both 164 
SDB and ADB as a priori and general mode:  165 
(1) The agricultural development stage (1970-1980): During this period, a large-scale land development was carried 166 
out, mainly planting cotton with high water consumption and by means of flood irrigation. During this period, large-167 
scale reservoirs, irrigation and drainage canals and other hydraulic irrigation projects were built. With serious leakage 168 
and a low efficiency, a large amount of water resources was being consumed before going to the farmlands and the 169 
water amount entering the Aral Sea has already begun to decrease (Micklin, 1988). 170 
(2) Cultivated land development reaches the highest level and agricultural production continued to be high-load (1980-171 
1991): During this period, because the Aral Sea basin was regarded as the main agricultural production area of the 172 
USSR, the agricultural demand was extremely large. When the agricultural products were ready, they were handed 173 
over to Moscow, where they were uniformly distributed to other regions of the USSR. The scale of the agricultural 174 
development has reached its peak and was relatively stable. The water amount entering the lake from the Aral Sea has 175 
been reduced further (Micklin, 2007, 2010). In some years, even river depletion occurred. The agricultural water in the 176 
downstream area was given priority and the gap in the upstream power generation needs was compensated for by free 177 
fossil energy from the downstream area. The operation mode of the reservoir in the upstream mountain area was close 178 
to the natural mode. When the summer streamflow was large, the reservoir outflow was also high in order to ensure 179 
the agricultural water use in the lower part. 180 
(3) The stage of economic stagnation after the collapse of the USSR (1991-2005): The politic in the newly born Central 181 
Asian countries remained unstable during this period and there was a social and economic stagnation. The cotton 182 
production scale of the previous USSR period was far greater than the actual demand of the five new countries. The 183 
area of agricultural land has decreased. But due to population growth and the new countries’ own food security needs, 184 
the proportion of food crops grown has increased. The downstream area no longer supplied energy to the upstream 185 
area for free. The upstream region had an energy crisis and the demand for electricity was not met, especially in the 186 
cold winter during the peak in electricity consumption. In order to ensure the electricity supply in winter, the upstream 187 
countries increased the interception water with reservoirs in the high mountains during summer and released more 188 
water in winter so as to generate electricity. This resulted in a downstream agricultural water shortage in summer and 189 
flood risk during winter (Micklin, 2007, 2010). The long-term flood irrigation has caused serious salinization and 190 
decreased the fertility of the farmland soil downstream. Pesticides and salt in the return flow of irrigation entered the 191 
river, causing the downstream water quality to decline. The exposed Aral Sea lake bed increased the frequency of the 192 
sand and salt dust storms, threatening the health of the residents and the Aral Sea crisis developed further as a result. 193 
(4) The stage of socioeconomic recovery (2005-2015): Kazakhstan and Turkmenistan were rich in fossil energy and 194 
have a certain foundation for industrial development, have experienced a rapid economic development. Relatively 195 
wealthy, Kazakhstan built large reservoirs so as to prevent floods and to regulate the irrigation, alleviating its own 196 
disadvantages in the water resources’ competition. Turkmenistan withdraws more water, along with the economic 197 
development and population growth. The energy disputes between the upstream and downstream areas have become 198 
increasingly fierce. For example, the amount of natural gas exported from Uzbekistan to the upstream region, was 199 
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greatly reduced. The power satisfaction and living standards of the upstream countries have only improved little. The 200 
Aral Sea continued to shrink and by 2010, only 10 % of the area was left compared to the 1960s (Micklin, 2010). 201 

3.3 A general Bayesian network (BN) structure with macro spatial information within the new framework 202 
applied to SDB and ADB  203 

We separated the upstream area, downstream area and the Aral Sea as geographically discrete regions and introduced 204 
the elements in the WEFE nexus joint to these regions into the BN as different variables (Fig. 5). Each variable 205 
represents a certain element in the WEFE nexus of a certain region. The BN could be divided into six modules, 206 
including the natural water resources, upstream, downstream, Aral Sea and target variables and a causal structure has 207 
been established based on the expert experiences (Fig. 6). We established this common framework as a prerequisite 208 
for establishing a joint probability table and at the same time we tried to adapt SDB and ADB so as to keep each 209 
variable universal, although the specific meaning of the variables should be different in the two river basins. The 210 
responsibility for exploring the differences between the two river basins mainly relies on the input observation data. 211 

3.4 Compiling and Evaluation of the BN 212 

A BN describes the joint probability distribution of the set of nodes. For a BN in which nodes represent random 213 
variables (X1,.,Xn), its joint probability distribution P(X) is given as (Pearl, 1985): 214 

P(X) = P(X1, X2 , … , Xn) = ∏ P�Xi�pa(Xi)�n
i=1 (1)  215 

where pa(Xi) are the values of the parents of Xi and X1,.,Xn are variables in the WEFE nexus structure. Based on the 216 
expert knowledge, we initially gave values to the corresponding conditional probability table for each node of the BN. 217 
We discretized the value range of nodes to reduce computational requirements (Table 1). The discretized interval also 218 
has a certain extension to ensure the robustness of the later prediction function and to prevent cases from easily 219 
exceeding the boundary. According to the differences in the political and economic backgrounds at different stages, 220 
we divided the development process during the past 50 years into four stages: 1970-1980, 1980-1991, 1991-2005 and 221 
2005-2015, based on the assumption that the WEFE nexus shows a relative stability under similar political and 222 
economic backgrounds. Next, in order to integrate actual observations and statistical data, the expectation–223 
maximization (EM) algorithm (Moon, 1996) function of Netica software is used to iteratively calculate the joint 224 
probability distribution of BN. In the Netica software, the "experience" variable is used to indicate the reliability of the 225 
prior knowledge, and the "degree" variable is used to indicate the training times of the observation data. By combining 226 
these two variables, we can dynamically adjust and balance the weights of prior knowledge and the actual data in the 227 
probability distribution updation. In this study, we initially set "experience" <0.3 "degree" to ensure that the weight of 228 
the information represented by the actual data is sufficient. 229 
 230 
To assess the degree of agreement between the parameterized of BN and the actual situation, we used the sensitivity 231 
analysis of the BN (Castillo et al., 1997; Laskey, 1995; Marcot, 2012). The index variance of belief (VB) and the index 232 
mutual information (MI) based on the change of information entropy (Barton et al., 2008; Marcot, 2012) are applied 233 
to evaluate the change in strength and uncertainty of the causal relation between the nodes. They respectively represent 234 
the reduction in variance and entropy of the probability distribution of child nodes caused by the determination of the 235 
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state of the parent nodes. As the value range of the parent node is reduced, the variance or entropy of its distribution is 236 
usually reduced. The greater the variance or entropy of the distribution of child nodes that can be further caused by 237 
this reduction, the more sensitive the child node is to the parent node which also reflects the stronger causality. These 238 
two indicators are as follows: 239 

MI = H(Q)-H(Q|F)=∑ ∑ P(q, f) log2 �
P(q,f)

P(q)P(f)
�                                                                                     fq (2) 240 

VB = V(Q)-V(Q|F)=∑ Pq (q)�Xq − ∑ P(q)Xqq �
2
− ∑ Pq (q|f)�Xq −∑ P(q|f)Xqq �

2
                      (3) 241 

where H stands for the entropy, V stands for the variance, Q stands for the target node, F stands for other nodes and q 242 
and f stand for the status of Q and F. Xq is the true value of the status q.  243 

3.5 A BN-based analysis of the historical factors on the water entering the Aral Sea, the post-test probability 244 
prediction and multi criteria evaluation with the Markov chain-Monte Carlo sampling 245 

We used the index VB that is utilized in the sensitivity analysis to analyze the factors that affect the water entering the 246 
Aral Sea in the four stages during the past 50 years. It is mainly significant to form a quantified understanding that was 247 
originally only qualitative. Quantifying and updating the past knowledge can help us to better understand the impact 248 
and differences of the water resources’ development and the WEFE nexus change at different stages in SDB and ADB. 249 
Because the difference in the current status of the two rivers may have been accumulated from the historical differences 250 
in the water-land-energy development during the past 50 years. 251 
 252 
We utilized the posterior probability prediction function of BN so as to support the decision optimization. Assuming 253 
that the values of some variables have been determined, the posterior probability prediction of BN might be employed 254 
to infer the possible effect on the variables we are concerned about. The prediction function is usually used to infer 255 
and predict how one node (D) is likely to change with the distribution of its parent node (A) determined. All nodes that 256 
have dependencies between A and D should be included in the calculation. For example, suppose we have the simple 257 
Bayesian network for discrete variables with the structure A and D are connected through a dependency of D on C ,C 258 
on B and B on A, and we can use the following formula (Heckerman and Breese, 1996) to calculate the probability of 259 
D when the state of A is given. 260 

P(D|A) =  
P(A, D)

P(D) =  
∑ P(A, B, C, D)B,C

∑ P(A, B, C, D)A,B,C
=  

P(A)∑ P(B|A)∑ P(C|B)P(D|C)CB

∑ P(A)∑ P(A)P(B|A)∑ P(C|B)P(D|C)CBA
(4) 261 

Parent nodes are regarded as the independent variables, child nodes are regarded as the objectives. When the state of 262 
parent node is given, the beneficial probability distribution change of the child node can be regarded as our optimization 263 
goal. We formulated a change measure (∆P) (Robertson et al., 2009; Xue et al., 2017) to assess the impact of a 264 
management scenario compared to a base case: 265 

∆Plow = P(Xi|e)low − P(Xi)low (5)  266 
∆Phigh = P(Xi|e)high − P(Xi)high (6) 267 

where e represents the determination of the state of the parent node (management scenario) in the form of hard evidence 268 
specifying a definite finding, P(Xi|e)low is the probability of the lowest state for the management scenario, P(Xi)low is 269 
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the probability of the lowest state for the base case and ∆Plow is calculated as the change. The meanings of these 270 
variables are the same for the subscripts ‘high’.  271 
 272 
The goal of the above optimization only contains a single variable, to test whether they seemed beneficial under 273 
multiple comprehensive criteria, we selected the scenarios with a good effect (‘reducing the water inflow to the 274 
depression’ and ‘improving the planting structure’) for the multi-criteria (combination of the above single target 275 
variables) assessment. Based on the Markov chain-Monte Carlo (MCMC) (Neal, 1993) sampling of the BN, we explore 276 
its role in multi-criteria assessment and optimization based on previous studies (Farmani et al., 2009; Molina et al., 277 
2011; Shi et al., 2020; Watthayu and Peng, 2004). The point or solution set obtained from MCMC sampling matches 278 
the high-dimensional joint probability distribution of BN nodes, which encompasses the causality of the system (Neal, 279 
1993). This will be applied so as to determine the size of the uncertainty behind the optimization effect of the scenario 280 
and to verify the ability of the BN to manipulate the multi-dimensional uncertainty in the decision-making. When the 281 
states of some nodes in the BN are determined, the joint probability distribution of the posterior changes, and the 282 
distribution of the point set in the multi-criteria space also changes accordingly. The distribution of this point set is 283 
constrained by the causality constructed by BN. If the pareto solutions obtained by conventional system optimization 284 
analysis are far outside the distribution range of this point set, then these optimization solutions may actually not meet 285 
the true causality constraints as an overestimated optimized solution that does not conform to the reality. In addition, 286 
this process could be seen as a test of the robustness of the optimization solutions. The degree in dispersion of the 287 
optimization cases in the three-dimensional criterion space could visually illustrate the size of its uncertainty, which is 288 
helpful for the decision- making with intuitively displaying a high-dimensional joint probability. The three indicators 289 
the reliability (REL) (Cai et al., 2002), total benefit (TB) and degree of cooperation (DC) (Shi et al., 2020) used for 290 
multi-criteria evaluation are as follows:  291 

REL =  β HA
A

+ (1 − β) WECO
TWECO

                                               (7) 292 

where HA is the planted area, A represents the area suitable for planting, WECO determines the ecological flow 293 
calculated as the water entering the Aral Sea, TWECO is the target flow and 0 ≤ β ≤ 1 is an adjustable weight.  294 
TB = Pa × AP + Pe × EB + Ph × HP        (8) 295 

DC = HP/AP                                             (9) 296 

where HP indicates the benefits of hydroelectric power generation from upstream dams. EB is the benefit of 297 
downstream ecological flow entering the Aral Sea which is calculated as a linear function of WECO in this paper. AP 298 
indicates the agricultural production in downstream countries. Pa, Ph and Pe are the prices or weights which can be 299 
adjusted according to the actual market price in the international trade when it comes to cross-border cooperative 300 
management in which different types of benefits (such as upstream hydropower and downstream agricultural products) 301 
may need to be weighted and summed. It may be more reasonable to use the universal price of various benefits in the 302 
international market to determine the weight. The value of ecological flow can be calculated as the value of the 303 
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ecosystem services it provides. As a simplified calculation, we normalized the three indicators to 0-1 and sum them 304 
with equal weights. 305 

3.6 Data 306 

We collected data on the WEFE nexus from 1970 to 2015 in the Aral Sea basin (Table 2). They will be entered into 307 
the BN along with expert knowledge. For SDB, the upstream area includes Kyrgyzstan and the downstream area covers 308 
Kyzylorda, Shymkent in Kazakhstan and Namangan, Andijan, Fergana, Jizzakh, Syrdarya and Tashkent in Uzbekistan. 309 
Regarding ADB, the upstream region includes Tajikistan and the downstream region comprises Surxondaryo, 310 
Qashqadaryo, Samarqand, Bukhara, Navoiy, Khorezm, Karakalpakstan in Uzbekistan and the entire Turkmenistan.  311 

4 Results 312 

4.1. Model evaluation 313 

We input the collected data and expert knowledge into the BN and compiled it with the EM algorithm in the Netica. 314 
In this study, we selected four nodes as target variables for a sensitivity analysis (Fig. 7). We found that VB and MI 315 
have similar trends, and when VB is larger, MI is also larger. This indicates that the correlation and uncertainty between 316 
nodes are synchronized in response to changes in the parent node. The upstream power generation of the two basins is 317 
sensitive to the hydropower and imported energy. The downstream water use is more sensitive to agricultural water 318 
and living water use. The downstream agricultural production is very sensitive to crop production, animal husbandry 319 
production and soil salinization. The water inflow to the Aral Sea is sensitive to runoff, water use and reservoir 320 
operation. The ranking of these sensitivity factors matches our knowledge and experience about the Aral Sea basin 321 
well. Since the impact of the other variables in the BN gradually decreases as the number of intermediate variables 322 
increases, these sensitivity results match well with expert and stakeholder perspectives. A strong pseudo-causality was 323 
not found between two variables with no obvious prior causality. In general, the variables with a strong causality are 324 
directly connected in the network. This indicates that the established priori causal structure has withstood the test of 325 
the actual data.  326 

4.2 Comparing the WEFE nexus of SDB and ADB during the past 50 years 327 

We applied the sensitivity analysis to the node ‘water inflow to the Aral Sea’ of SDB and ADB at different historical 328 
stages (Fig. 8). During the period 1970 - 1980, there was no significant difference between the influencing factors of 329 
the two river basins and the related variables of the increased agricultural development contributed greatly. With the 330 
completion of the upstream reservoirs, the rising reservoir storage also had a certain contribution in both river basins. 331 
In this period, the variability of the natural runoff of the Syr Darya River was significantly larger than the Amu Darya 332 
River’s and the contribution of the natural runoff was higher. During the period 1980 - 1991, the contribution of most 333 
variables has declined, which may be related to the normalization of the maximized agricultural production, leaving 334 
only the natural runoff as the main variation contribution. During the period 1991 - 2005, for SDB, the contribution of 335 
the water inflow into the depression has risen significantly. In both river basins, the reservoir storage and summer 336 
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release contribution also augmented largely, with SDB even higher, and the support of the upstream energy import 337 
from the downstream area has also increased. During the period 2005 - 2015, for SDB, the contributions of the 338 
agricultural water and downstream crop area has rosen significantly and the output of the water inflow to the depression 339 
has been decreasing.  340 
 341 
In general, before the collapse of the USSR, the difference was mainly sourced from the runoff variability and the 342 
proportion of the upstream reservoir interception to the total natural runoff. The runoff proportion of the Naryn River 343 
tributary (about 35% of the total runoff of the Syr Darya river) intercepted by the Toktogul hydropower station, was 344 
higher than the one of the Vakhsh River tributary (about 25% of the total runoff of the Amu Darya river) intercepted 345 
by the Nurek hydropower station. It also shows that SDB's upstream major reservoir had a stronger streamflow control 346 
capability than the ADB’s. After the collapse of the USSR, the contradiction on the question “Should water be used 347 
for the summer irrigation water of the downstream country or the winter power generation in the upstream country?” 348 
in both river basins has escalated but the conflict in SDB has become more and more intense and the Toktogul reservoir 349 
operation in Kyrgyzstan has changed completely from the original natural model to a winter-release dominated mode. 350 
However, the contribution of downstream energy supplied to the upstream country has not augmented much. This 351 
might be due to the fact that the changes in the energy trade agreements are hard to match with the annual hydrological 352 
cycle change. Receiving too much winter flow, the contribution of SDB’s water entering the Aydar depression 353 
increased rapidly after the disintegration and is higher than ADB. The other part of the water entering the Aydar 354 
depression is the irrigation drainage water from collectors, which is similar to the Sarykamysh Lake in ADB. However, 355 
during the 2005-2015 period of SDB, the sensitivity to the flow of depressions has been reduced. This may be due to 356 
the increased water storage capacity of Kazakhstan’s newly built plain reservoirs such as Koksaray, which reduces the 357 
risk of dam failure of the Chardara reservoir located on the border of Uzbekistan and Kazakhstan. As there is no 358 
provision in the basin water distribution agreement for the discharge of water from the Chardara reservoir to the Aydar 359 
depression, Kazakhstan may tend to release the surplus water from the Chardara reservoir to Koksaray rather than the 360 
Aydar depression. This will threaten the volume, water salinity, stability and fishery production (Groll et al., 2016) of 361 
the Aydar depression in Uzbekistan and intensify the water conflict between Uzbekistan and Kazakhstan. In addition, 362 
the contribution of some variables (such as livestock water use) has always been very low, possibly because the 363 
livestock water consumption only accounts for a small amount of the total runoff.  364 

4.3 Scenario analysis and optimization of the WEFE nexus based on the BN 365 

Based on the Bayesian posterior probability prediction ability, we enumerated the influence of some variables on other 366 
target nodes under different scenarios. Reducing the water volume entering depressions (Table 3) may be the most 367 
positive and helpful to restore the ecological water entering the Aral Sea. This implies that the efficiency of salt 368 
leaching and irrigation should be improved. It is also effective to increase the planting ratio of grain crops and reduce 369 
cotton planting with high water consumption to ensure food security. Increasing the energy supply from upstream to 370 
downstream area and reducing the downstream irrigation quantity per ha may also indirectly increase the ecological 371 
water inflow to the Aral Sea. Increasing the upstream reservoir water storage and winter water release may increase 372 
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the inflow of salt water under high runoff condition. The high upstream reservoir water storage and winter water release 373 
may indicate high runoff conditions which may also lead to an increase in the inflow of the Aral Sea. Increasing the 374 
industrial production and animal husbandry may significantly increase GDP and livestock production. Among the 375 
damages that need prevention, drought is the first because it has a significant effect on the desertification, soil 376 
salinization and water mineralization.  377 

4.4 The multi-criteria evaluation based on the MCMC sampling of the BN 378 

The causal constraint of Bayesian network on the distribution range of the point set in the multi-criteria evaluation 379 
space makes the decision makers more intuitive about the multi-dimensional uncertainty of the system (Fig. 9). We 380 
found that the advantage of Bayesian probability theory was effectively integrated into the multi-criteria assessment. 381 
As one of the parent nodes, the prior distribution of ‘runoff’ affects the probability distribution of child nodes (such as 382 
benefit variables) through the transfer of joint probability calculations (Fig. 9). After the determination of the decision 383 
nodes, the distribution of the point set changed (shifted from the prior joint distribution to the posterior distribution). 384 
The distribution of comprehensive benefits under different runoffs is obviously more regular or clustered. Unlike the 385 
independent Monte Carlo sampling of different variables which makes the distribution of point set in the multi-criteria 386 
assessment space appear disorderly or chaotic in the previous system optimization analysis (Fig. 9), the BN-based 387 
MCMC sampling contains the causality and dependence between sampling of different variables. 388 
 389 
But this phenomenon varies on the specific axis of the two river basins. For example, for SDB, the degree of 390 
cooperation (DC), which is calculated as the ratio of the upstream hydropower profit to the downstream agricultural 391 
production, is an effective index to cluster the cases under various runoffs. In view of ADB however, the DC is not a 392 
good index for clustering and the partial distribution pattern of the cases on the DC axis is hardly controlled by various 393 
runoffs. This illustrates that in SDB and ADB, the relationship between the DC and the annual runoff is quite different. 394 
The DC in SDB driven by water-energy conflict is more affected by annual runoff. When the nodes for optimization 395 
determined (‘water inflow to the depression’ and ‘downstream grain crop area’), in the practical decision-making, the 396 
Pareto fronts can be solved as the optimal solution set, with no other solution than the cases which could be found 397 
better in all three criteria in a multi-objective optimization. The solution sets under a high, medium and low runoff 398 
could be solved separately but, in this study, we paid more attention to the uncertainty of the Pareto solutions. For 399 
example, under a high runoff, the uncertainty of the pareto fronts of ADB is higher than the one of SDB, which shows 400 
that if these two optimization measures are applied to ADB, the stability and robustness of the comprehensive benefits 401 
may be lower than SDB.  402 
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5 Discussion 403 

5.1 Effectiveness and limitations of the new framework 404 

5.1.1 When applied to a single river basin 405 

When applied to a single river basin, by measuring the involved uncertainties with joint probability, this framework 406 
can help decision makers to re-examine causal and remotely related factors that may have been overlooked before. It 407 
also helps to update their empirical knowledge of the probability distribution of some nodal variables because the 408 
previous empirical knowledge may not include the collaborative consideration of the distribution of parent nodes. 409 
Compared with process-based models, it has advantages in integrating knowledge from multi-fields and quantification 410 
of uncertainty and causality caused by data limitations and disadvantages in its ability to explain detailed processes or 411 
driving mechanisms.  412 
 413 
The main limitations of the framework may include inappropriate selection of nodes, mismatches in the temporal and 414 
spatial representation of variables, lack of consideration of detailed causal processes and feedback causality. If the 415 
selected nodes are inappropriate, it may lead to the failure of the capture of causality. For example, it may be 416 
inappropriate for us to select the average life expectancy instead of the incidence of specific diseases caused by 417 
ecological problems such as respiratory diseases caused by sand and salt storms. The BN may not be suitable in cases 418 
that require detailed spatial and/or temporal representation (Chen and Pollino, 2012). The factors that differ from the 419 
annual scale of hydrological information may not well be modeled. For example, the changes in the energy supply 420 
from downstream to upstream might not match the variation of the annual water supply from upstream to downstream, 421 
although there is an obvious causal relation between them. In addition, the variables with cumulative values may not 422 
match the annual variation of the hydrological information. As a cumulative value, the node ‘the area of the Aral Sea’ 423 
is not as good as the annual water entering the Aral Sea to adapt to the annual hydrological variation and the node ‘soil 424 
salinity’ is also not as good as the node ‘water mineralization’ in order to adapt to the annual hydrological variation. 425 
Therefore, this BN trained from the yearly data may be more suitable for modeling variables that are sensitive to the 426 
annual hydrological variation, because each hydrological year is considered to be independent in this BN. The 427 
evaluation of some long-term variables may require a further integration of the process models, such as the long-term 428 
trend of soil salinization below the root zone and the long-term melting trend of the upstream glaciers with its impacts 429 
on components and spatiotemporal processes of the runoff in these river basins (Liu et al., 2011; Wang et al., 2016). 430 
The lack of a more detailed description of causality may cause some detailed but important causality to be ignored, 431 
making it difficult for us to discover the differences between river basins. Therefore, the scale to which the structure 432 
needs to be refined and when it needs to be refined are what we need to consider carefully when promoting this 433 
framework. In addition, the causal relationship between variables in the BN is unidirectional, which may make it 434 
difficult to quantify the complex interactive feedback effects (Chen and Pollino, 2012).  435 
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5.1.2 When applied to two or multiple river basins comparatively 436 

In terms of comparing basins, this new BN-based framework performs well in SDB and ADB. Compared with previous 437 
comparison methods (Alcamo et al., 2003; Döll et al., 2003; Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer et 438 
al., 2013; Ladson and Argent, 2002; Müller Schmied et al., 2014; Syed et al., 2005; Vetter et al., 2017; Wang et al., 439 
2020; Zawahri, 2008), this framework is more systematic and pays more attention to the description of causality. Based 440 
on the similarity of detail causality, the comparison of the WEFE nexus is comprehensive and meaningful in terms of 441 
historical analysis, uncertainty comparison and future system optimization. A comparative application to multiple 442 
watersheds may provide more extensive causal knowledge than only applying to a single watershed. For example, in 443 
this study, we found that care should be taken when building large reservoirs on the Panj River in the upper Amu Darya 444 
to avoid disputes over surplus water downstream caused by the release of upstream reservoirs in winter. Without the 445 
lessons of the Syr Darya, it will make it difficult to evaluate the downstream conflicts on the possible surplus water 446 
that will be caused by the further development of the Amu Darya. This may be related to the different levels of 447 
development in different river basins. Some river basins have gone through the development stage and can therefore 448 
provide lessons for the river basins that are now being rapidly developed.  449 
 450 
Compared to process-based models, this framework quantified the actual differences between watersheds in the data-451 
driven approach rather than in the parameter adjustment and calibration approach with the same process-based model 452 
which has shown that the issue of parameter heterogeneity is important in the global multi-watershed comparison 453 
(Alcamo et al., 2003; Döll et al., 2003; Müller Schmied et al., 2014). In the comparison of the basin-wide WEFE nexus, 454 
we need to integrate multi-field knowledge, which may cause the problem of such parameter heterogeneity to be 455 
magnified, and the complexity of parameter adjustment will be higher. Because more parameters are included and 456 
accuracy testing is also no longer limited to the original single field. In addition, the flexibility and universality of 457 
comparison under this framework may be stronger due to the use of the form of conditional probability tables. A 458 
conditional probability table can be constructed for each watershed as a general representation of the relationship 459 
between variables, but the form of a certain equation or driving function in the process-based model may not be suitable 460 
for each watershed. In addition, in this framework, the relatively simple model structure and the use of expert 461 
knowledge enables data-limited watersheds located in developing countries to be simulated more effectively. Therefore, 462 
making the modeling effects of watersheds located in different countries comparable. In contrast, the demand for 463 
observational data for complex process-based models may be too high for data-limited watersheds located in some 464 
developing countries (Chen et al., 2017). Due to the under-refined local parameters and processes in the data-limited 465 
watersheds, comparisons based on the process-based model at the fine-scale level may be unconvincing with 466 
uncertainty.  467 
 468 
As far as the scalability and universality of this framework are concerned, due to the similarities between the concepts 469 
of the WEFE nexus and integrated water resources management, the past water resources management studies based 470 
on BNs in some arid regions or data limited river basins (Frank et al., 2014; Keshtkar et al., 2013; Xue et al., 2017), 471 
may be able to provide additional evidence for the effectiveness of this framework. If we use this framework to compare 472 
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more river basins, we may lose a little in the details of the structure and need to consider the trade-off of structure 473 
refinement and universality (Fig. 10). For example, comparing the Aral Sea basin with the Tarim river basin may 474 
require removing the water-energy conflict module, because there is no energy conflict between the upper and lower 475 
reaches in the non-transboundary Tarim river basin. However, this may also lead to deviations in the attribution of 476 
some specific downstream water system behaviours, because the difference in upstream water-energy conflict is 477 
ignored. In addition, the limitations of this comparison framework may include the inconsistency of network nodes 478 
and the difference in the value range of variables. For example, the defined location and attributes of 'depressions' are 479 
different, and the difference in the spatial extent represented by the defined 'upstream' and 'downstream' regions may 480 
also affect the effect of comparative research. And for the same variable of different basins, the difference in the value 481 
range and the variable status discretization operation may also bring errors to the comparison.   482 

5.2 The main differences between SDB and ADB concerning the WEFE nexus 483 

In addition to the widely recognized differences in glacier melting in high mountainous areas (Farinotti et al., 2015; 484 
Immerzeel et al., 2020; Kraaijenbrink et al., 2017; Sorg et al., 2012), differences in interception capacity of upstream 485 
reservoirs in these two river basins (account for 47% of total runoff of SDB and 13% of ADB) could affect the seasonal 486 
distribution of the downstream runoff and the upper limit of the level of water-energy conflicts between the upstream 487 
and downstream countries. In ADB, although the new Rogun dam on the Vakhsh river has been put into power in 2018, 488 
it has a modest impact on downstream irrigation if the reservoir is operated to maximize basin-wide benefits (Jalilov 489 
et al., 2016). We should warn that in the future some large reservoirs may be constructed on the upstream Panj river, 490 
which would account for more than 40% of the total runoff of the Amu Darya River. If so, the water-energy conflict 491 
between the upstream area of Tajikistan and the downstream part of Uzbekistan might escalate just like SDB. One 492 
possible solution is to re-establish the complementary water-energy mechanism of the USSR period.  493 
 494 
The water-energy conflicts between the upstream and downstream have gradually become accustomed, but new 495 
conflicts and changes have been generated in the middle and lower reaches of the two rivers. In SDB, in the face of 496 
excessive winter water discharge from Kyrgyzstan upstream, from 1991 to 2005, Kazakhstan could only release the 497 
surplus water from the Chardara reservoir to the Aydar depression in Uzbekistan in order to reduce flooding risk. 498 
However, after 2005, with the construction of more water conservancy projects in Kazakhstan, such as the Koksaray 499 
reservoir built to receive surplus water from the Chardara reservoir for irrigation, the water volume of the Aydar 500 
depression was affected. The current basin water distribution agreement does not specify the amount of water that the 501 
Aydar depression should receive from the Chardara reservoir. If this part of the water is subtracted, the Aydar 502 
depression can only be fed by irrigation drainage water with poor quality. These will lead to reduced water volume, 503 
deterioration of water quality, decreased ecological stability and fishery production of the Aydar depression. Therefore, 504 
it is necessary to pay more attention to the ecological problems of new water bodies in the water allocation of the basin, 505 
such as determining the annual release of Kazakhstan's Chardara reservoir to Uzbekistan’s Aydar depression. This is 506 
also of reference value for Turkmenistan and Uzbekistan in the lower reaches of ADB. With the increase in population 507 
and economic development, the contradictions in water use between downstream countries will gradually increase. 508 
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The water-food-ecology conflict between downstream countries may be a chronic problem compared to the water-509 
energy conflict with upstream mountainous countries.  510 

5.3 Other external measures 511 

The Bayesian network in this study was mainly based on the expert knowledge and data only within the Aral Sea basin. 512 
It did not incorporate other potential external solutions indirectly based on the framework. But some external measures 513 
derived from further consideration of the analysis of differences and optimization measures within the framework may 514 
also be useful as a complement to the solutions directly based on the framework. These external measures can be 515 
generated from the successful management experience of other river basins if more river basins are included in this 516 
framework. After the collapse of the USSR, the decline in the agricultural demand allowed more water to flow into the 517 
Aral Sea. But the downstream countries in the basin seemed to lack concern for ecological water demand of the Aral 518 
Sea. The expansion of the water volume and depression area (Fig. 11) confirms this, although part of the water flow 519 
into the depressions is necessary for the leaching of soil salt in the irrigation lands. These expanding water bodies or 520 
wetlands could provide some ecosystem services such as fish supply. Such lower water efficiency will be challenged 521 
in the future and saving water is the long-term solution. In addition to the repair of channels so as to reduce leakage, a 522 
spread and large-scale drip irrigation may reduce the total water consumption by more than 30% and provide 20 to 30 523 
km3 more ecological flow for the Aral Sea. It could also lower the high-salinity groundwater levels (Fig. 11), curb the 524 
secondary soil salinization (Zhang et al., 2014), reduce the drainage water with pesticides and salt to rivers, and reduce 525 
diseases caused by the poor water quality downstream. The promotion of drip irrigation has been considered as useful 526 
to improve the irrigation efficiency in other arid regions, such as the Tarim River Basin (Zhang et al., 2014) also 527 
located in the arid region of Central Asia, of which the downstream water use efficiency has increased during recent 528 
years after the drip irrigation promotion. Also, to reduce the water inflow to depressions may require stronger ability 529 
to regulate runoff and improving the low efficiency of surplus water management perhaps caused by the lack of water 530 
market regulation. Taking the Colorado River (Table 4) as an example, the construction of water conservancy facilities 531 
in SDB and ADB could be improved. Enhancing the ability to regulate the runoff may allow a better use of the surplus 532 
water in the high flow years but at the same time, it is necessary to avoid the upstream and downstream conflicts caused 533 
by the new large reservoirs. Building a water market as efficient as the Colorado River in the Aral Sea Basin still seems 534 
to have a long way to go. The Tarim River Basin has started to set prices for the irrigation water since 2003 but in most 535 
parts of the Aral Sea Basin, the irrigation water has not been priced yet. It might depend on the economic flexibility 536 
and a more efficient water delivery network. It is also necessary to strengthen the water-energy cooperation and to 537 
avoid zero-sum games between the upstream and downstream countries. This is a prerequisite for an optimal 538 
management of the Aral Sea Basin. In addition, strengthening the cooperation with the neighbouring countries, such 539 
as Russia and China, might be helpful in terms of the water conservancy projects, energy and agricultural trade and 540 
indirectly ease the crisis in the WEFE nexus as a result. 541 
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6 Conclusions 542 

In this paper, we applied a new causal structure-based framework to compare the WEFE nexus and applied it to SDB 543 
and ADB with the BN. The main conclusions are as follows:  544 
(1) The new causal structure-based framework (combined with the support of actual data) is proved effective when 545 

modeling and comparing the basin-wide causal WEFE nexus under uncertainty with a lower cost in data limited 546 
or poor gauged river basins. It may help decision support mainly in the quantification of the influence of complex 547 
causality and more remotely related variables. This systematic and causal comparison framework can be used to 548 
compare more basins based on the different levels of similarity of the causal structure. 549 

(2) Before the collapse of the USSR, the water flow entering the Aral Sea was sensitive to the agricultural development 550 
of the two river basins. After the collapse of the USSR, its sensitivity to the water-energy conflicts between the 551 
upstream and downstream countries increased a lot. Compared with the Syr Darya, the amount of water flowing 552 
into the Aral Sea from the Amu Darya is less sensitive to the water competition between downstream summer 553 
irrigation and upstream winter hydropower partly due to the lower percentage of total runoff intercepted by 554 
upstream reservoirs. It further made the management of the surplus water in the lower reaches of SDB in winter 555 
more difficult and controversial than ADB with a large amount of water flowing into depressions outside the river 556 
and irrigation area. 557 

(3) In the short term, reducing the water inflow to depressions and improving the planting structure prove beneficial 558 
to the Aral Sea ecology. In the long term, the construction of large reservoirs on the Panj river of the upstream 559 
ADB should be cautious so as not to get an intense water-energy conflict as SDB’s. Moreover, the water-food-560 
ecology conflict between downstream countries may escalate and turn into a long-term chronic problem such as 561 
between Kazakhstan and Uzbekistan. More attention should be paid to the reasonable ecological water 562 
consumption of new water bodies such as the Aydar-Arnasay depression in the basin-wide water allocation. It is 563 
also necessary to promote the water-saving drip irrigation and to strengthen the cooperation between internal and 564 
external countries.  565 
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 773 
Figure 1 Previous comparative studies focusing on local or individual aspects (a) and more attention should be directed to 774 
the identification and comparison of causality and systemicity between river basins (b). 775 

 776 

  777 
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 778 
Figure 2 The new generalized basin-wide water-energy-food-ecology nexus comparison framework based on combining the 779 
similar causal structure and data differences. The upper tree structure shows the priori classification of river basins and the 780 
arid/semi-arid branch is more subdivided. The lower left part illustrates the operation mode of the new basin comparison 781 
framework: combining the similar causal structure determined by experts and the multi-dimensional observation dataset 782 
containing differences. The red boxes marked with a, b, c, d, and e contain elements identified by the 1-12 serial number on 783 
the right that measure similarities at different levels. Number 8-10 show the different water-energy-food-ecology related 784 
nexus type adjusted according to box a, b, c, d, and e. River basins in the same red box can be compared by a specific 785 
structure of causality generated by the elements the box contains. The bottom part shows the significance of the application 786 
under this new framework. 787 
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 790 
Figure 3 Location of the Aral Sea basin and the water resources’ variation. (a) shows the location of the Aral Sea Basin, the 791 
two main rivers are the Syr Darya and Amu Darya. This map is made with ArcGIS and the layers come from the public 792 
layers in ESRI base map and ArcGIS online. (b) demonstrates the annual runoff variation of the Syr Darya river total runoff 793 
and the Amu Darya river main stream at the Atamyrat cross-section upstream the Karakum Canal. 794 
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 797 

Figure 4 The priori and general basin-wide WEFE nexus mode of SDB and ADB and its temporal change during the past 798 
50 years (a) shows the sources of the exogenous stress on the WEFE nexus dominated by water in the Aral Sea basin. (b) 799 
illustrates the hydrologic uncertainty spread from the alpine area to the lower part through a typical 'mountain-oasis-desert-800 
lake' system. The elements of the WEFE nexus are represented by circles in four colours and the relevant uncertainty items 801 
are tagged with these icons as a classification by respective roles in the WEFE nexus. (c) demonstrates the specific changes 802 
of the elements in the WEFE nexus during the past 50 years and the influence from the collapse of the USSR in 1991. 803 
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 806 

Figure 5 Integrate expert knowledge into Bayesian networks to simulate the WEFE nexus. The geographical area is divided 807 
into the upstream, downstream region and the surrounding area of the Aral Sea. The lower part contains the factors that 808 
can be considered in the framework, and the underlined ones are actually used in this study.  809 
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 812 

Figure 6 The Bayesian network structure shared by ADB and SDB when simulating the water-energy-food-ecology nexus. 813 
D stands for ‘downstream’ and U stands for ‘upstream’. 814 
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 817 

Figure 7 Sensitivity analysis of some variables. VB stands for variance of belief and MI stands for mutual information. D 818 
stands for ‘downstream’, correspondingly, U stands for ‘upstream’. 819 
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 822 

Figure 8 Comparison of the sensitivity analysis of ‘water inflow to the Aral Sea’ node of ADB and SDB in four historical 823 
periods from 1970 to 2015. D stands for ‘downstream’, correspondingly, U stands for ‘upstream’. VB stands for variance of 824 
belief. 825 
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 828 

Figure 9 Comparison of multi-criteria evaluation of SDB and ADB based on the BN causality constraint-based MCMC 829 
sampling. At the top is the multi-criteria evaluation based on random sampling with no joint probability included, in the 830 
middle is the multi-criteria assessment containing the BN causality constraints and at the bottom is based on the BN with 831 
nodes for optimization and decision determined.  832 
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 835 

Figure 10 The trade-off of structure refinement and universality in the new framework for comparing basin-wide water-836 
energy-food-ecology nexus based on the adjustable causal structure. 837 
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 840 

Figure 11 The long-term inefficiency and risk of the irrigation-drainage system. (a) Changes in the surface water occurrence 841 
in the Aral Sea Basin. The data and information originate from the Global Water Surface Explorer (https://global-surface-842 
water.appspot.com/) (Pekel et al., 2016). S1, A1 and A2 are examples of expanded depressions, which collected the drainage 843 
and surplus water. S1 is the Aydar Lake in the Syr Darya river basin. In the Amu Darya river basin, A1 represents the 844 
Sarykamysh Lake and A2 illustrates a drainage depression of the Bukhara irrigation district. (b) Salinity concentration in 845 
the irrigation-drainage system of the Aral Sea Basin. The upper part stands for the salt transport and concentration at the 846 
river basin scale. The lower part shows the positive effect of drip irrigation compared with flood irrigation on reducing the 847 
drainage water and lowering the groundwater level to reduce the secondary salinization. 848 
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Table 1. Discretization and description of variables 851 

Variables Status discretization Unit  Explanation  

Runoff 280~360, 360~440, 440~650 (SDB) 108 m3  

300~500, 500~700, 700~900 (ADB)  

D PDSI -8~-4, -4~0, 0~6 (SDB)   

-8~-4, -4~0, 0~4 (ADB)  

D precipitation 170~190, 190~210, 210~230 (SDB) mm  

80~100, 100~120, 120~150 (ADB)  

U reservoir storage 0~6, 6~12, 12~20 (SDB) km3 Toktogul reservoir 

(SDB) 

5~8, 8~10 10~12 (ADB) Nurek reservoir (ADB) 

Outflowe of the reservoir in 

summer 

1800~2800, 2800~3800, 3800~4800 (SDB) 106 m3  

4000~7000, 7000~12000, 12000~15000 

(ADB) 

 

Outflow of the reservoir in winter 3500~3800, 3800~4200, 4200~4500 (SDB) 106 m3  

2000~3000, 3000~4000, 4000~5000 (ADB)  

Energy import from D 0~1, 1~2, 2~3 (SDB) 109 m3 Natural gas export from 

D to U 
0~0.5, 0.5~1, 1~3 (ADB) 

U hydropower generation 0.3~0.8, 0.8~1.2, 1.2~1.5 (SDB) 1010 kW·h  

0.5~1, 1~1.4, 1.4~2 (ADB)  

D cotton production 1100~2200, 2200~3300, 3300~4400 (SDB) 103 t  

2000~2500, 2500~3000, 3000~3500 (ADB)  

D cotton cropland 700~750, 750~800, 800~850 (SDB) 103 ha  

1100~1250, 1250~1400, 1400~1600 (ADB)  

D grain crop area  1000~1100, 1100~1200, 1200~1300 (SDB) 103 ha  

1300~1500, 1500~1700, 1700~2000 (ADB)  

D grain production 1500~2500, 2500~3500, 3500~4500 (SDB) 103 t  
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Variables Status discretization Unit  Explanation  

4500~5000, 5000~5500, 5500~6500 (ADB)  

Number of D livestock 7~10, 10~13, 13~16 (SDB) 106 cattle and sheep 

10~20, 20~30, 30~40 (ADB) 

D irrigation quantity per ha  9500~10000, 10000~10500, 10500~11000 

(SDB) 

m3/ha  

11000~13000, 13000~15000, 15000~17000 

(ADB) 

 

D water use  33~35, 35~37, 37~40 (SDB) km3  

45~50, 50~55, 55~60 (ADB)  

Inflow to the Aral Sea 0~4, 4~7, 7~10 (SDB) km3  

0~7, 7~14, 14~21 (ADB)  

Volume of the Aral Sea 10~100, 100~200, 200~300 km3  

Inflow to depression 1.5~4.5, 4.5~6.5, 6.5~8.5 (SDB) km3 Water entering the 

Aydar lake (SDB) 

2.5~5, 5~7, 7~9 (ADB) Water entering the 

Sarykamysh lake 

(ADB) 

D agricultural production  2~4, 4~6, 6~8 (SDB) 109 US$  

2~4, 4~7, 7~10 (ADB)  

D GDP 10~30, 30~50, 50~70 (SDB) 109 US$  

10~40, 40~60, 60~80 (ADB)  

D population  14~16, 16~18, 18~20 (SDB) 106  

16~18, 18~20, 20~22 (ADB)  

D desertification 14~16, 16~18, 18~20 (ADB) 104 km2 Including the Aralkum 

Desert  10~20, 20~30, 30~40 (SDB) 

Sand and salt storm  0~30, 30~60, 60~100 Day per 

year 

Frequency  
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Variables Status discretization Unit  Explanation  

D water mineralization 0~0.5, 0.5~1, 1~3 g/L Kyzylorda (SDB) 

Nukus (ADB) 

Soil salinization low, medium, high  Soil salinity near 

Kyzylorda (SDB) 

Soil salinity near 

Khorezm (ADB) 

D life expectancy 64~66, 66~68, 68~70, 70~72 Age  

Note: D stands for ‘downstream’ and U stands for ‘upstream’.  852 

  853 
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Table 2. Data description and sources. 854 

  855 Data Source Description Years 
duration  

Discharge/run
off 

CA WATER info 
http://www.cawater-info.net/water_quality_in_ca/amu_e.htm, 
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm 
Global Runoff Data Centre (GRDC) 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html 

Streamflow 
gauging 
stations, daily 
and  yearly 

1970 to 2015 

Water intake 
and 
consumption 

CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login 
ICWC 
http://sic.icwc-aral.uz/reports_e.htm, http://www.icwc-
aral.uz/pdf/67-en.pdf 

Province and 
country scale, 
yearly 

1970 to 2015 
 

  Precipitation National Climate Data Centre (NCDC) 
http://www.ncdc.noaa.gov/ 

Meteorological  
station, daily 

1970 to 2000,  
2010 to 2015 

  Palmer 
Drought 
Severity Index 
(PDSI) 

Google Earth Engine 
https://developers.google.com/earth-
engine/datasets/catalog/IDAHO_EPSCOR_PDSI (Abatzoglou 
et al., 2018) 

0.04° grid, daily  1979 to 2015 

  Water budgets 
of the Aral 
Sea 

CA WATER info -  Database of the Aral Sea 
http://www.cawater-info.net/aral/data/index_e.htm 

Annual scale 1970 to 2015 

  Ecological 
and 
environmental 
indicators 

CA WATER info 
http://www.cawater-info.net/4wwf/pdf/khamraev_e.pdf,  
http://www.cawater-
info.net/water_quality_in_ca/files/analytic_report_en.pdf, 
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm 
Micklin P (Micklin, 1988, 2007, 2010) 

Sample site 
scale, annual 
scale 

1980 to 2010 

  Energy CEIC 
https://www.ceicdata.com 
IEA 
https://www.iea.org/data-and-statistics 

Country scale,  
yearly 

1991 to 2015 

Operation of 
reservoirs 

Siegfried T (Siegfried and Bernauer, 2007) 
CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login, 
http://www.cawater-info.net/projects/peer-
amudarya/pdf/report_2-2_2-5_en.pdf 
ICWC 
http://sic.icwc-aral.uz/reports_e.htm, http://www.icwc-
aral.uz/pdf/67-en.pdf 

Monthly 1974 to 2015 

    Social 
economy 
 

CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login 
Statistical data online 
https://stat.uz/uz, http://www.stat.kg, 
https://data.worldbank.org.cn, 
http://stat.gov.kz 
FAO 
http://www.fao.org/statistics, 
Soviet National Economic Statistics Yearbook, 
Commonwealth of Independent States Statistical Committee 
database 

Province scale,  
yearly 

1970 to 2015 

  

http://www.cawater-info.net/water_quality_in_ca/syr_e.htm
http://www.cawater-info.net/data_ca/?action=login
http://www.ncdc.noaa.gov/
https://www.ceicdata.com/
http://www.cawater-info.net/data_ca/?action=login
http://www.cawater-info.net/data_ca/?action=login
https://data.worldbank.org.cn/
http://stat.gov.kz/
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Table 3. Comparison of the BN-based scenario analysis of SDB and ADB 856 
Target nodes  Nodes for scenario setting 

  DR EI UR WR IQ DG DC DL UL DI WD 

U energy value (high) Syr  +5.9 -2.7 +2.6        

Amu  +4.4 -1.6 -1.2        

D water use (low) Syr   +0.2  +1.2 +1.7  -1.6  -1.8 +0.3 

Amu   -1.1  -1.9 -0.9  -0.6  -3.8 -5.3 

U water use (low) Syr   +2.5      -0.9   

Amu   +0.7      +1.4   

D GDP (high) Syr      +0.6  +0.5  +4.7  

Amu      +2.9  +1.4  +17.5  

U GDP (high) Syr  +0.3       +1.3   

Amu  -1.5       +3.7   

D grain yield (high) Syr +0.3    -0.3 +13.6      

Amu -2.7    -2.1 +19.3      

D livestock production 

(high) 

Syr        +5.1    

Amu        +10.3    

Volume of the Aral Sea 

(high) 

Syr   +0.6         

Amu   +3.1         

Inflow to the Aral Sea 

(high) 

Syr  +2.6 +3.6 +1.3 +2.3 +0.5 +2.6    +23.5 

Amu  +5.1 +3.7 +4.2 +6.1 -1.7 +3.4    +13.2 

Salinization (low) Syr +5.5           

Amu +11.3           

Desertification (low) Syr +9.6           

Amu +16.2           

Water mineralization 

(low) 

Syr +1.3           

Amu +8.7           

Sand and salt storm 

(low) 

Syr +3.7  +0.8        +1.1 

Amu +13.1  -0.4        +0.7 

D life expectancy (high) Syr +0.2           

Amu -0.2           

Note: D stands for the downstream region and U stands for the upstream region. DR represents drought index (low), EI represents 857 
energy import from D (high), UR represents U reservoir water storage (high), WR represents U winter water release (high), DG 858 
represents D grain crop area (high), IQ represents D irrigation quantity per ha (low), DC represents D cotton crop area (low), UL 859 
represents U livestock amount (high), WD represents D water inflow to depressions (low), DI represents D industry production 860 
(high) and DL represents D livestock amount (high). The ‘high’ and ‘low’ respectively indicate the highest or lowest level of each 861 
node after discretization. The values in the table show the change of the percentage probability values of the specific states of the 862 
response nodes on the left after the ‘high’ or ‘low’ states of the upper scenario variables are determined. 863 
 864 
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Table 4. Comparison of four river basins in the arid regions 865 

River basin Syr Darya Amu 
Darya 

Tarim river  Colorado River 

Runoff (km3) 41 78 39 20 
Population (106) 25 27 11 40 
Runoff / population (km3/106) 1.64 2.89 3.45 0.50 
Reservoir capacity / runoff +++ ++ ++ ++++++ 
Hydrological observation ++ ++ +++ ++++ 
Crop area (106 ha) 3.3 4.5 2.8 1.8 
Runoff / crop area (km3/106 ha) 12.4 17.3 13.9 11.1 
Drip or sprinkler irrigation + + +++ +++ 
Water market + + ++ ++++++ 
Ecological flow + + +++ +++ 

Note that the number of ‘+’ represents the values from qualitative knowledge. 866 
 867 
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