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Abstract. The previous comparative studies on watersheds were mostly based on the comparison of dispersive 20 

characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin 21 

comparison based on the Bayesian network (BN), and focus on the basin-scale water-energy-food-ecology (WEFE) 22 

nexuses. We applied it to the Syr Darya river basin (SDB) and the Amu Darya river basin (ADB) of which the poor 23 

water management caused the Aral Sea disaster. The causality of the nexuses was effectively compared and 24 

universality of this framework was discussed. In terms of changes of the nexuses, the sensitive factor for the water 25 

supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in 26 

the WEFE nexuses after the disintegration. The water-energy contradiction of SDB is more severe than that of ADB 27 

partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus 28 

water downstream of SDB more controversial. Due to this, the water-food-ecology conflict between downstream 29 

countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and 30 

improving the planting structure prove beneficial to the Aral Sea ecology and this effect of SDB is more significant. 31 

The construction of reservoirs on the Panj river of the upstream ADB should be cautious to avoid an intense water-32 

energy conflict as SDB. It is also necessary to promote the water-saving drip irrigation and to strengthen the 33 

cooperation. 34 

1 Introduction 35 

The Aral Sea disaster has warned us for the terrible impact of unsustainable water use on the ecosystem. Recently, 36 

with the growing focus on the water-energy-food (WEF) nexus (Biggs et al., 2015; Cai et al., 2018; Conway et al., 37 

2015; Espinosa-Tasón et al., 2020; Sadeghi et al., 2020; Yang and Wi, 2018) in the integrated water resources’ 38 

management, we have come to realize that a harmonious and optimized water-energy-food-ecology (WEFE) nexus 39 

may be the key to an effective cross-border water management of the Aral Sea basin (Jalilov et al., 2016, 2018; Lee 40 

and Jung, 2018; Ma et al., 2020; Sun et al., 2019), with ‘ecology’ added to the WEF nexus because ecology is usually 41 

more concerned in the Aral Sea basin. The latter mainly includes the Syr Darya river basin (SDB) and the Amu Darya 42 

river basin (ADB). Due to the similarity in the natural geographical conditions and management approaches, these two 43 

basins are generally considered to be very similar. The rapid melting of glaciers, drought disasters, excessive irrigation 44 

water use, increasing food demand, contradictions on water for the energy production and irrigation between the 45 

upstream and downstream countries, soil salinization and poor water quality are the common problems the two basins 46 

are facing nowadays (Immerzeel et al., 2020; Micklin, 2010). However, there seems to be a lack of attention to the 47 

quantitative differences on the characteristics of the interactions of the WEFE nexus between the two river basins. We 48 

want to understand the differences and their levels, and think about what experience can be gained from it. The practice 49 

of an integrated watershed management often draws on the experience and lessons of other watersheds with similar 50 

natural conditions, such as management concepts, hydrological model applications and climate change risk 51 

assessments (Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer et al., 2013; Ladson and Argent, 2002; Syed et al., 52 

2005; Vetter et al., 2017; Wang et al., 2020; Zawahri, 2008). Most of these previous studies investigated the differences 53 

of dispersive or individual characteristics between the river basins but lacked attention to the systemicity and causality 54 

(Fig. 1) in the changing water systems at the basin scale which may be able to more directly provide new experience 55 
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and knowledge for practical watershed management. In SDB and ADB, this kind of comparison might be more 56 

practical and meaningful on the application level (based on a higher similarity in the natural conditions and 57 

management history). Learning from each other’s successes and failures could reduce the trial-and-error costs in the 58 

water use management. For example, the seasonal runoff pattern and its impact on the water use of SDB nowadays 59 

with a low glacier cover might be considered as a reference for the water use management of ADB, if most glaciers 60 

would melt in a warmer future (Sorg et al., 2012). Analogously, such comparisons are focusing on the detailed 61 

differences under a general similarity and might also be helpful to understand the WEFE nexus and a better assignment 62 

of the detailed responsibilities of countries regarding a transboundary watershed cooperation and management. 63 

 64 
When studying the water system and the WEFE nexus in the Aral Sea basin, we found that the first main source of 65 

uncertainty might include the fact that it is difficult for us to accurately predict the runoff amount from the mountainous 66 

areas. In the arid regions of Central Asia, most of the available water resources originate from the precipitation, melting 67 

snow and glaciers of the water towers in the alpines. But the observations of the water resources in the mountainous 68 

areas of this region have been greatly restricted (Chen et al., 2017), especially after the collapse of the Union of Soviet 69 

Socialist Republics (USSR) and some gauging stations were abandoned. It has restricted the implementation of the 70 

physics-based and statistical models for the runoff prediction, although remote sensing technology proved helpful in 71 

the estimation of the alpine precipitation and glacier melting (Guo et al., 2017; Pohl et al., 2017) as forcing data. In 72 

addition, the weak prediction capacity of incoming water might propagate the uncertainty on the downstream water 73 

use, food production, energy production, ecology and their interactions in the WEFE nexus. Facing the uncertainty of 74 

the amount of incoming water and some other exogenous sources such as climate change and population growth, some 75 

models concerning the WEF nexus that are commonly used now, may not work well. Previous studies focused more 76 

on the WEF nexus in the integrated water resources’ management (IWRM) (Cai et al., 2018) and many current WEF 77 

nexus studies applied the system analysis or integrated process-based model methods (Daher and Mohtar, 2015; Jalilov 78 

et al., 2018; Kaddoura and El Khatib, 2017; Lee et al., 2019, 2020; Payet-Burin et al., 2019; Zhang and Vesselinov, 79 

2017). However, in order to parameterize these models, we found that many empirical parameters or factors need to 80 

be set (Feng et al., 2016; Ravar et al., 2020), which could mask the shortcomings of an insufficient understanding of 81 

uncertain and complex processes. For example, empirical coefficients were used to determine the conversion 82 

coefficient of electricity demand for pumping water from different depths and energy demand coefficients of various 83 

water sectors (Ravar et al., 2020), including the  driving functions of water supply, power generation and hydro-ecology 84 

(Feng et al., 2016). The effectiveness depends on our judgements of the values of each parameter under various 85 

conditions, but we might ignore the dynamic influence of the probability distribution of some remotely related causal 86 

variables. In order to improve this, we considered a longer causal chain matching of the uncertainty propagation process 87 

and to obtain details on the possibility distributions of the parameters’ values under various combinations of multiple 88 

conditions. Therefore, we realized that the Bayesian network might prove to be an effective tool for these two problems. 89 

 90 

The Bayesian network (BN) is based on the Bayesian theory and the graph theory (Friedman et al., 1997; Pearl, 1985). 91 

It can simulate complex causal relationships and integrate expert knowledge from multiple fields and has shown its 92 

advantages in water resources research and management (Chan et al., 2010; Fienen et al., 2013; Giordano et al., 2013; 93 
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Hines and Landis, 2014; Hunter et al., 2011; Nash and Hannah, 2011; Pagano et al., 2014; Quinn et al., 2013; Taner et 94 

al., 2019; Xue et al., 2017). In our previous study, the WEFE nexus in the single SDB was simulated based on a BN 95 

(Shi et al., 2020) which also demonstrated its advantages in terms of uncertainty quantification. Based on this, we try 96 

to explore the framework significance and portability of this method when applied to other watersheds for comparing 97 

watershed systemic behaviours focusing more on the global causality, which aimed at obtaining the universal evolution 98 

law and discovering the specific differences of the basin-wide WEFE nexus. 99 

 100 

The research goals of this paper mainly include: (1) to propose a causal structure-based framework to compare basin-101 

wide WEFE nexuses and apply it to SDB and ADB with the BN method, (2) to compare the differences in historical 102 

and current causality of the WEFE nexus and water use between SDB and ADB within the new framework and (3) to 103 

propose a comprehensive optimization proposal of the WEFE nexus management. 104 

2 A generalized causal structure-based framework for comparing basin-wide water-energy-food-ecology 105 
nexuses 106 

We propose a new framework (Fig. 2) for comparing the basin-wide WEFE nexuses and watershed management 107 

representing the causal structure based on combining the similar causal structure and data differences. Under different 108 

levels of similarity, similar causal structures generated by expert knowledge are combined with the observation and 109 

statistical datasets of different river basins. The elements of the WEFE nexus can be adjusted to water-energy, water-110 

food-ecological nexus (Fig. 2), etc. according to the dynamic research aims and similarity levels among the specifically 111 

investigated river basins.  112 

 113 

The steps of the workflow of the framework are as follows:  114 

(1) We conduct a preliminary screening of the basin. Such screening can be based on similar geographic region, 115 

landform, climate type, etc. which reflect the basic natural conditions. Based on other factors such as whether the river 116 

is transboundary, whether the country that manages the basin is economically developed, etc., we further filter the 117 

selected basins.  118 

(2) We construct a same WEFE nexus causality structure for the river basins selected in the previous step, which can 119 

be represented by a directed graph model such as the Bayesian network. In this step, we need to balance the degree of 120 

refinement of the causal relationship structure and its universality in the selected river basins. The conceptual structure 121 

constructed should be reviewed by a panel of experts and revised if necessary. This feedback can help to identify key 122 

variables or processes that have been overlooked so as to correct errors in the conceptual structure. In some cases, it 123 

may be appropriate to build a conceptual structure with stakeholder groups, especially if the model will be used as a 124 

management tool and the results will affect stakeholders (Chan et al., 2010; Chen and Pollino, 2012). At the same time, 125 

the availability of actual expert knowledge and data should also be considered to avoid constructing a causal structure 126 

that is too detailed so that the available expert knowledge and data are not enough to fill it, or too rough that the causal 127 

relationship is underfitted so as to avoid underutilization of knowledge and data (Chen and Pollino, 2012; Marcot et 128 

al., 2006). Including insignificant variables will increase the complexity of the network and reduce the sensitivity of 129 
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the model output to important variables, unnecessarily spending extra time and effort, and will not add value to the 130 

entire model (Chen and Pollino, 2012). 131 

(3) In this step, we combine the causal structure representing expert knowledge from multiple fields with actual 132 

statistics and observation data to update the initial understanding of causality (Cain, 2001; Chan et al., 2010; Chen and 133 

Pollino, 2012; Marcot et al., 2006). Expert judgment based on past observations, knowledge and experience can be 134 

used to provide an initial estimate of the probability, which can then be updated with the available observation data 135 

(Chen and Pollino, 2012). The ability to use expert opinions to parameterize the BN model is an advantage, especially 136 

for environmental systems that have little quantitative data required for statistical modeling methods (Smith et al., 137 

2007). In this way, the conditional probability table of the original causal structure is updated with actual data, and the 138 

originally scattered actual data is closely connected by the causal structure.  139 

(4) Based on the quantified new causal structure in the previous step, we can explore its value in practical applications 140 

within the new framework including: discovering the common evolutionary law of the nexuses, discovering the  141 

differences in the responses of various nodes to the same management scenario by synchronizing the operations of 142 

BNs of different river basins, analyzing differences of the causality of the historical nexuses changes, incorporating 143 

previous unsystematic and local studies on water resources, agriculture, ecology, etc. into the new causal framework 144 

such as incorporating the upstream multi-source causal factors into the downstream soil salinization studies, sharing 145 

experience and reflecting on the failure cases of the historical management, optimizing the current nexuses, 146 

incorporating causality and uncertainty into the decision making and the future risk assessment (Chan et al., 2010).  147 

3 Application of the Framework in the Syr Darya river basin (SDB) and the Amu Darya river basin (ADB) 148 

3.1 Location of the selected SDB and ADB 149 

The Aral Sea Basin is located in Central Asia (Fig. 3) with a total area of 1,549 million km2 and is one of the largest 150 

endorheic river basins in the arid regions worldwide. The two major rivers, the Syr Darya and the Amu Darya, originate 151 

from the West Tien-Shan and Pamir Plateau as a part of the Central Asian water tower. They flow through five 152 

countries in Central Asia, which were once part of the USSR. The surface water resources of the basin mainly stem 153 

from the precipitation, snow melting and ice in the mountainous area. The lower part of the basin is very dry and most 154 

areas are deserts. The large-scale agricultural production here is highly dependent on the irrigation and large amounts 155 

of water are consumed by a high evapotranspiration and leakage during the water diversion. 156 

3.2 The priori and general mode of the water-energy-food-ecology (WEFE) nexus  of SDB and ADB 157 

Since the 1960s, the WEFE nexus in the Aral Sea Basin has been suffering from an increasing pressure (Fig. 4). In 158 

addition to the population growth, climate change, ecological degradation and other problems, the issue of the 159 

transboundary water and energy disputes in this region has intensified with the collapse of the USSR. Therefore, this 160 

basin-wide transboundary WEFE nexus has unique characteristics on spatial and chronological scales. In this study, 161 

according to the spatial characteristics of the transboundary management, the watershed is divided into an upstream 162 

and downstream area. In response to the impact of the collapse of the USSR, the water resources’ management period 163 
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was divided into four periods: namely 1970-1980, 1980-1991, 1991-2005 and 2005-2015. This is mainly based on the 164 

WEFE nexus change between the upstream and downstream areas in different periods, which are applicable to both 165 

SDB and ADB as a priori and general mode:  166 

(1) The agricultural development stage (1970-1980): During this period, a large-scale land development was carried 167 

out, mainly planting cotton with high water consumption and by means of flood irrigation. During this period, large-168 

scale reservoirs, irrigation and drainage canals and other hydraulic irrigation projects were built. With serious leakage 169 

and a low efficiency, a large amount of water resources was being consumed before going to the farmlands and the 170 

water amount entering the Aral Sea has already begun to decrease (Micklin, 1988). 171 

(2) Cultivated land development reaches the highest level and agricultural production continued to be high-load (1980-172 

1991): During this period, because the Aral Sea basin was regarded as the main agricultural production area of the 173 

USSR, the agricultural demand was extremely large. When the agricultural products were ready, they were handed 174 

over to Moscow, where they were uniformly distributed to other regions of the USSR. The scale of the agricultural 175 

development has reached its peak and was relatively stable. The water amount entering the lake from the Aral Sea has 176 

been reduced further (Micklin, 2007, 2010). In some years, even river depletion occurred. The agricultural water in the 177 

downstream area was given priority and the gap in the upstream power generation needs was compensated for by free 178 

fossil energy from the downstream area. The operation mode of the reservoir in the upstream mountain area was close 179 

to the natural mode. When the summer streamflow was large, the reservoir outflow was also high in order to ensure 180 

the agricultural water use in the lower part. 181 

(3) The stage of economic stagnation after the collapse of the USSR (1991-2005): The politic in the newly born Central 182 

Asian countries remained unstable during this period and there was a social and economic stagnation. The cotton 183 

production scale of the previous USSR period was far greater than the actual demand of the five new countries. The 184 

area of agricultural land has decreased. But due to population growth and the new countries’ own food security needs, 185 

the proportion of food crops grown has increased. The downstream area no longer supplied energy to the upstream 186 

area for free. The upstream region had an energy crisis and the demand for electricity was not met, especially in the 187 

cold winter during the peak in electricity consumption. In order to ensure the electricity supply in winter, the upstream 188 

countries increased the interception water with reservoirs in the high mountains during summer and released more 189 

water in winter so as to generate electricity. This resulted in a downstream agricultural water shortage in summer and 190 

flood risk during winter (Micklin, 2007, 2010). The long-term flood irrigation has caused serious salinization and 191 

decreased the fertility of the farmland soil downstream. Pesticides and salt in the return flow of irrigation entered the 192 

river, causing the downstream water quality to decline. The exposed Aral Sea lake bed increased the frequency of the 193 

sand and salt dust storms, threatening the health of the residents and the Aral Sea crisis developed further as a result. 194 

(4) The stage of socioeconomic recovery (2005-2015): Kazakhstan and Turkmenistan were rich in fossil energy and 195 

have a certain foundation for industrial development, have experienced a rapid economic development. Relatively 196 

wealthy, Kazakhstan built large reservoirs so as to prevent floods and to regulate the irrigation, alleviating its own 197 

disadvantages in the water resources’ competition. Turkmenistan withdraws more water, along with the economic 198 

development and population growth. The energy disputes between the upstream and downstream areas have become 199 

increasingly fierce. For example, the amount of natural gas exported from Uzbekistan to the upstream region, was 200 
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greatly reduced. The power satisfaction and living standards of the upstream countries have only improved little. The 201 

Aral Sea continued to shrink and by 2010, only 10 % of the area was left compared to the 1960s (Micklin, 2010). 202 

3.3 A general Bayesian network (BN) structure with macro spatial information within the new framework 203 
applied to SDB and ADB  204 

We separated the upstream area, downstream area and the Aral Sea as geographically discrete regions and introduced 205 

the elements in the WEFE nexus joint to these regions into the BN as different variables (Fig. 5). Each variable 206 

represents a certain element in the WEFE nexus of a certain region. The BN could be divided into six modules, 207 

including the natural water resources, upstream, downstream, Aral Sea and target variables and a causal structure has 208 

been established based on the expert experiences (Fig. 6). We established this common framework as a prerequisite 209 

for establishing a joint probability table and at the same time we tried to adapt SDB and ADB so as to keep each 210 

variable universal, although the specific meaning of the variables should be different in the two river basins. The 211 

responsibility for exploring the differences between the two river basins mainly relies on the input observation data. 212 

3.4 Compiling and Evaluation of the BN 213 

A BN describes the joint probability distribution of the set of nodes. For a BN in which nodes represent random 214 

variables (X1,.,Xn), its joint probability distribution P(X) is given as (Pearl, 1985): 215 

P(X) = P(Xଵ, Xଶ , … , X୬) = ∏ P൫X୧หpa(X୧)൯୬
୧ୀଵ (1)  216 

where pa(Xi) are the values of the parents of Xi and X1,.,Xn are variables in the WEFE nexus structure. Based on the 217 

expert knowledge, we initially gave values to the corresponding conditional probability table for each node of the BN. 218 

We discretized the value range of nodes to reduce computational requirements (Table 1). The discretized interval also 219 

has a certain extension to ensure the robustness of the later prediction function and to prevent cases from easily 220 

exceeding the boundary. According to the differences in the political and economic backgrounds at different stages, 221 

we divided the development process during the past 50 years into four stages: 1970-1980, 1980-1991, 1991-2005 and 222 

2005-2015, based on the assumption that the WEFE nexus shows a relative stability under similar political and 223 

economic backgrounds. Next, in order to integrate actual observations and statistical data, the expectation–224 

maximization (EM) algorithm (Moon, 1996) function of Netica software is used to iteratively calculate the joint 225 

probability distribution of BN. In the Netica software, the "experience" variable is used to indicate the reliability of the 226 

prior knowledge, and the "degree" variable is used to indicate the training times of the observation data. By combining 227 

these two variables, we can dynamically adjust and balance the weights of prior knowledge and the actual data in the 228 

probability distribution updation. In this study, we initially set "experience" <0.3 "degree" to ensure that the weight of 229 

the information represented by the actual data is sufficient. 230 

 231 
To assess the degree of agreement between the parameterized of BN and the actual situation, we used the sensitivity 232 

analysis of the BN (Castillo et al., 1997; Laskey, 1995; Marcot, 2012). The index variance of belief (VB) and the index 233 

mutual information (MI) based on the change of information entropy (Barton et al., 2008; Marcot, 2012) are applied 234 

to evaluate the change in strength and uncertainty of the causal relation between the nodes. They respectively represent 235 

the reduction in variance and entropy of the probability distribution of child nodes caused by the determination of the 236 
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state of the parent nodes. As the value range of the parent node is reduced, the variance or entropy of its distribution is 237 

usually reduced. The greater the variance or entropy of the distribution of child nodes that can be further caused by 238 

this reduction, the more sensitive the child node is to the parent node which also reflects the stronger causality. These 239 

two indicators are as follows: 240 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log2 ቀ
P(q,f)

P(q)P(f)
ቁ                                                                                     fq (2) 241 

VB = V(Q)-V(Q|F)= ∑ Pq (q)ൣXq − ∑ P(q)Xqq ൧
2

− ∑ Pq (q|f)ൣXq − ∑ P(q|f)Xqq ൧
2
                      (3) 242 

where H stands for the entropy, V stands for the variance, Q stands for the target node, F stands for other nodes and q 243 

and f stand for the status of Q and F. Xq is the true value of the status q.  244 

3.5 A BN-based analysis of the historical factors on the water entering the Aral Sea, the post-test probability 245 
prediction and multi criteria evaluation with the Markov chain-Monte Carlo sampling 246 

We used the index VB that is utilized in the sensitivity analysis to analyze the factors that affect the water entering the 247 

Aral Sea in the four stages during the past 50 years. It is mainly significant to form a quantified understanding that was 248 

originally only qualitative. Quantifying and updating the past knowledge can help us to better understand the impact 249 

and differences of the water resources’ development and the WEFE nexus change at different stages in SDB and ADB. 250 

Because the difference in the current status of the two rivers may have been accumulated from the historical differences 251 

in the water-land-energy development during the past 50 years. 252 

 253 
We utilized the posterior probability prediction function of BN so as to support the decision optimization. Assuming 254 

that the values of some variables have been determined, the posterior probability prediction of BN might be employed 255 

to infer the possible effect on the variables we are concerned about. The prediction function is usually used to infer 256 

and predict how one node (D) is likely to change with the distribution of its parent node (A) determined. All nodes that 257 

have dependencies between A and D should be included in the calculation. For example, suppose we have the simple 258 

Bayesian network for discrete variables with the structure A and D are connected through a dependency of D on C ,C 259 

on B and B on A, and we can use the following formula (Heckerman and Breese, 1996) to calculate the probability of 260 

D when the state of A is given. 261 

P(D|A) =  
P(A, D)

P(D)
=  

∑ P(A, B, C, D),େ

∑ P(A, B, C, D),,େ

=  
P(A) ∑ P(B|A) ∑ P(C|B)P(D|C)େ

∑ P(A) ∑ P(A)P(B|A) ∑ P(C|B)P(D|C)େ

(4) 262 

Parent nodes are regarded as the independent variables, child nodes are regarded as the objectives. When the state of 263 

parent node is given, the beneficial probability distribution change of the child node can be regarded as our optimization 264 

goal. We formulated a change measure (∆P) (Robertson et al., 2009; Xue et al., 2017) to assess the impact of a 265 

management scenario compared to a base case: 266 

∆P୪୭୵ = P(X୧|e)୪୭୵ − P(X୧)୪୭୵ (5)  267 

∆P୦୧୦ = P(X୧|e)୦୧୦ − P(X୧)୦୧୦ (6) 268 

where e represents the determination of the state of the parent node (management scenario) in the form of hard evidence 269 

specifying a definite finding, P(Xi|e)low is the probability of the lowest state for the management scenario, P(Xi)low is 270 
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the probability of the lowest state for the base case and ∆Plow is calculated as the change. The meanings of these 271 

variables are the same for the subscripts ‘high’.  272 

 273 

The goal of the above optimization only contains a single variable, to test whether they seemed beneficial under 274 

multiple comprehensive criteria, we selected the scenarios with a good effect (‘reducing the water inflow to the 275 

depression’ and ‘improving the planting structure’) for the multi-criteria (combination of the above single target 276 

variables) assessment. Based on the Markov chain-Monte Carlo (MCMC) (Neal, 1993) sampling of the BN, we explore 277 

its role in multi-criteria assessment and optimization based on previous studies (Farmani et al., 2009; Molina et al., 278 

2011; Shi et al., 2020; Watthayu and Peng, 2004). The point or solution set obtained from MCMC sampling matches 279 

the high-dimensional joint probability distribution of BN nodes, which encompasses the causality of the system (Neal, 280 

1993). This will be applied so as to determine the size of the uncertainty behind the optimization effect of the scenario 281 

and to verify the ability of the BN to manipulate the multi-dimensional uncertainty in the decision-making. When the 282 

states of some nodes in the BN are determined, the joint probability distribution of the posterior changes, and the 283 

distribution of the point set in the multi-criteria space also changes accordingly. The distribution of this point set is 284 

constrained by the causality constructed by BN. If the pareto solutions obtained by conventional system optimization 285 

analysis are far outside the distribution range of this point set, then these optimization solutions may actually not meet 286 

the true causality constraints as an overestimated optimized solution that does not conform to the reality. In addition, 287 

this process could be seen as a test of the robustness of the optimization solutions. The degree in dispersion of the 288 

optimization cases in the three-dimensional criterion space could visually illustrate the size of its uncertainty, which is 289 

helpful for the decision- making with intuitively displaying a high-dimensional joint probability. The three indicators 290 

the reliability (REL) (Cai et al., 2002), total benefit (TB) and degree of cooperation (DC) (Shi et al., 2020) used for 291 

multi-criteria evaluation are as follows:  292 

REL =  β
ୌ


+ (1 − β)

େ

େ
                                               (7) 293 

where HA is the planted area, A represents the area suitable for planting, WECO determines the ecological flow 294 

calculated as the water entering the Aral Sea, TWECO is the target flow and 0 ≤ β ≤ 1 is an adjustable weight.  295 

TB = Pୟ × AP + Pୣ  × EB + P୦ × HP        (8) 296 

DC = HP/AP                                             (9) 297 

where HP indicates the benefits of hydroelectric power generation from upstream dams. EB is the benefit of 298 

downstream ecological flow entering the Aral Sea which is calculated as a linear function of WECO in this paper. AP 299 

indicates the agricultural production in downstream countries. Pୟ, P୦ and Pୣ  are the prices or weights which can be 300 

adjusted according to the actual market price in the international trade when it comes to cross-border cooperative 301 

management in which different types of benefits (such as upstream hydropower and downstream agricultural products) 302 

may need to be weighted and summed. It may be more reasonable to use the universal price of various benefits in the 303 

international market to determine the weight. The value of ecological flow can be calculated as the value of the 304 
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ecosystem services it provides. As a simplified calculation, we normalized the three indicators to 0-1 and sum them 305 

with equal weights. 306 

3.6 Data 307 

We collected data on the WEFE nexus from 1970 to 2015 in the Aral Sea basin (Table 2). They will be entered into 308 

the BN along with expert knowledge. For SDB, the upstream area includes Kyrgyzstan and the downstream area covers 309 

Kyzylorda, Shymkent in Kazakhstan and Namangan, Andijan, Fergana, Jizzakh, Syrdarya and Tashkent in Uzbekistan. 310 

Regarding ADB, the upstream region includes Tajikistan and the downstream region comprises Surxondaryo, 311 

Qashqadaryo, Samarqand, Bukhara, Navoiy, Khorezm, Karakalpakstan in Uzbekistan and the entire Turkmenistan.  312 

4 Results 313 

4.1. Model evaluation 314 

We input the collected data and expert knowledge into the BN and compiled it with the EM algorithm in the Netica. 315 

In this study, we selected four nodes as target variables for a sensitivity analysis (Fig. 7). We found that VB and MI 316 

have similar trends, and when VB is larger, MI is also larger. This indicates that the correlation and uncertainty between 317 

nodes are synchronized in response to changes in the parent node. The upstream power generation of the two basins is 318 

sensitive to the hydropower and imported energy. The downstream water use is more sensitive to agricultural water 319 

and living water use. The downstream agricultural production is very sensitive to crop production, animal husbandry 320 

production and soil salinization. The water inflow to the Aral Sea is sensitive to runoff, water use and reservoir 321 

operation. The ranking of these sensitivity factors matches our knowledge and experience about the Aral Sea basin 322 

well. Since the impact of the other variables in the BN gradually decreases as the number of intermediate variables 323 

increases, these sensitivity results match well with expert and stakeholder perspectives. A strong pseudo-causality was 324 

not found between two variables with no obvious prior causality. In general, the variables with a strong causality are 325 

directly connected in the network. This indicates that the established priori causal structure has withstood the test of 326 

the actual data.  327 

4.2 Comparing the WEFE nexus of SDB and ADB during the past 50 years 328 

We applied the sensitivity analysis to the node ‘water inflow to the Aral Sea’ of SDB and ADB at different historical 329 

stages (Fig. 8). During the period 1970 - 1980, there was no significant difference between the influencing factors of 330 

the two river basins and the related variables of the increased agricultural development contributed greatly. With the 331 

completion of the upstream reservoirs, the rising reservoir storage also had a certain contribution in both river basins. 332 

In this period, the variability of the natural runoff of the Syr Darya River was significantly larger than the Amu Darya 333 

River’s and the contribution of the natural runoff was higher. During the period 1980 - 1991, the contribution of most 334 

variables has declined, which may be related to the normalization of the maximized agricultural production, leaving 335 

only the natural runoff as the main variation contribution. During the period 1991 - 2005, for SDB, the contribution of 336 

the water inflow into the depression has risen significantly. In both river basins, the reservoir storage and summer 337 
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release contribution also augmented largely, with SDB even higher, and the support of the upstream energy import 338 

from the downstream area has also increased. During the period 2005 - 2015, for SDB, the contributions of the 339 

agricultural water and downstream crop area has rosen significantly and the output of the water inflow to the depression 340 

has been decreasing.  341 

 342 

In general, before the collapse of the USSR, the difference was mainly sourced from the runoff variability and the 343 

proportion of the upstream reservoir interception to the total natural runoff. The runoff proportion of the Naryn River 344 

tributary (about 35% of the total runoff of the Syr Darya river) intercepted by the Toktogul hydropower station, was 345 

higher than the one of the Vakhsh River tributary (about 25% of the total runoff of the Amu Darya river) intercepted 346 

by the Nurek hydropower station. It also shows that SDB's upstream major reservoir had a stronger streamflow control 347 

capability than the ADB’s. After the collapse of the USSR, the contradiction on the question “Should water be used 348 

for the summer irrigation water of the downstream country or the winter power generation in the upstream country?” 349 

in both river basins has escalated but the conflict in SDB has become more and more intense and the Toktogul reservoir 350 

operation in Kyrgyzstan has changed completely from the original natural model to a winter-release dominated mode. 351 

However, the contribution of downstream energy supplied to the upstream country has not augmented much. This 352 

might be due to the fact that the changes in the energy trade agreements are hard to match with the annual hydrological 353 

cycle change. Receiving too much winter flow, the contribution of SDB’s water entering the Aydar depression 354 

increased rapidly after the disintegration and is higher than ADB. The other part of the water entering the Aydar 355 

depression is the irrigation drainage water from collectors, which is similar to the Sarykamysh Lake in ADB. However, 356 

during the 2005-2015 period of SDB, the sensitivity to the flow of depressions has been reduced. This may be due to 357 

the increased water storage capacity of Kazakhstan’s newly built plain reservoirs such as Koksaray, which reduces the 358 

risk of dam failure of the Chardara reservoir located on the border of Uzbekistan and Kazakhstan. As there is no 359 

provision in the basin water distribution agreement for the discharge of water from the Chardara reservoir to the Aydar 360 

depression, Kazakhstan may tend to release the surplus water from the Chardara reservoir to Koksaray rather than the 361 

Aydar depression. This will threaten the volume, water salinity, stability and fishery production (Groll et al., 2016) of 362 

the Aydar depression in Uzbekistan and intensify the water conflict between Uzbekistan and Kazakhstan. In addition, 363 

the contribution of some variables (such as livestock water use) has always been very low, possibly because the 364 

livestock water consumption only accounts for a small amount of the total runoff.  365 

4.3 Scenario analysis and optimization of the WEFE nexus based on the BN 366 

Based on the Bayesian posterior probability prediction ability, we enumerated the influence of some variables on other 367 

target nodes under different scenarios. Reducing the water volume entering depressions (Table 3) may be the most 368 

positive and helpful to restore the ecological water entering the Aral Sea. This implies that the efficiency of salt 369 

leaching and irrigation should be improved. It is also effective to increase the planting ratio of grain crops and reduce 370 

cotton planting with high water consumption to ensure food security. Increasing the energy supply from upstream to 371 

downstream area and reducing the downstream irrigation quantity per ha may also indirectly increase the ecological 372 

water inflow to the Aral Sea. Increasing the upstream reservoir water storage and winter water release may increase 373 
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the inflow of salt water under high runoff condition. The high upstream reservoir water storage and winter water release 374 

may indicate high runoff conditions which may also lead to an increase in the inflow of the Aral Sea. Increasing the 375 

industrial production and animal husbandry may significantly increase GDP and livestock production. Among the 376 

damages that need prevention, drought is the first because it has a significant effect on the desertification, soil 377 

salinization and water mineralization.  378 

4.4 The multi-criteria evaluation based on the MCMC sampling of the BN 379 

The causal constraint of Bayesian network on the distribution range of the point set in the multi-criteria evaluation 380 

space makes the decision makers more intuitive about the multi-dimensional uncertainty of the system (Fig. 9). We 381 

found that the advantage of Bayesian probability theory was effectively integrated into the multi-criteria assessment. 382 

As one of the parent nodes, the prior distribution of ‘runoff’ affects the probability distribution of child nodes (such as 383 

benefit variables) through the transfer of joint probability calculations (Fig. 9). After the determination of the decision 384 

nodes, the distribution of the point set changed (shifted from the prior joint distribution to the posterior distribution). 385 

The distribution of comprehensive benefits under different runoffs is obviously more regular or clustered. Unlike the 386 

independent Monte Carlo sampling of different variables which makes the distribution of point set in the multi-criteria 387 

assessment space appear disorderly or chaotic in the previous system optimization analysis (Fig. 9), the BN-based 388 

MCMC sampling contains the causality and dependence between sampling of different variables. 389 

 390 
But this phenomenon varies on the specific axis of the two river basins. For example, for SDB, the degree of 391 

cooperation (DC), which is calculated as the ratio of the upstream hydropower profit to the downstream agricultural 392 

production, is an effective index to cluster the cases under various runoffs. In view of ADB however, the DC is not a 393 

good index for clustering and the partial distribution pattern of the cases on the DC axis is hardly controlled by various 394 

runoffs. This illustrates that in SDB and ADB, the relationship between the DC and the annual runoff is quite different. 395 

The DC in SDB driven by water-energy conflict is more affected by annual runoff. When the nodes for optimization 396 

determined (‘water inflow to the depression’ and ‘downstream grain crop area’), in the practical decision-making, the 397 

Pareto fronts can be solved as the optimal solution set, with no other solution than the cases which could be found 398 

better in all three criteria in a multi-objective optimization. The solution sets under a high, medium and low runoff 399 

could be solved separately but, in this study, we paid more attention to the uncertainty of the Pareto solutions. For 400 

example, under a high runoff, the uncertainty of the pareto fronts of ADB is higher than the one of SDB, which shows 401 

that if these two optimization measures are applied to ADB, the stability and robustness of the comprehensive benefits 402 

may be lower than SDB.  403 
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5 Discussion 404 

5.1 Effectiveness and limitations of the new framework 405 

5.1.1 When applied to a single river basin 406 

When applied to a single river basin, by measuring the involved uncertainties with joint probability, this framework 407 

can help decision makers to re-examine causal and remotely related factors that may have been overlooked before. It 408 

also helps to update their empirical knowledge of the probability distribution of some nodal variables because the 409 

previous empirical knowledge may not include the collaborative consideration of the distribution of parent nodes. 410 

Compared with process-based models, it has advantages in integrating knowledge from multi-fields and quantification 411 

of uncertainty and causality caused by data limitations and disadvantages in its ability to explain detailed processes or 412 

driving mechanisms.  413 

 414 

The main limitations of the framework may include inappropriate selection of nodes, mismatches in the temporal and 415 

spatial representation of variables, lack of consideration of detailed causal processes and feedback causality. If the 416 

selected nodes are inappropriate, it may lead to the failure of the capture of causality. For example, it may be 417 

inappropriate for us to select the average life expectancy instead of the incidence of specific diseases caused by 418 

ecological problems such as respiratory diseases caused by sand and salt storms. The BN may not be suitable in cases 419 

that require detailed spatial and/or temporal representation (Chen and Pollino, 2012). The factors that differ from the 420 

annual scale of hydrological information may not well be modeled. For example, the changes in the energy supply 421 

from downstream to upstream might not match the variation of the annual water supply from upstream to downstream, 422 

although there is an obvious causal relation between them. In addition, the variables with cumulative values may not 423 

match the annual variation of the hydrological information. As a cumulative value, the node ‘the area of the Aral Sea’ 424 

is not as good as the annual water entering the Aral Sea to adapt to the annual hydrological variation and the node ‘soil 425 

salinity’ is also not as good as the node ‘water mineralization’ in order to adapt to the annual hydrological variation. 426 

Therefore, this BN trained from the yearly data may be more suitable for modeling variables that are sensitive to the 427 

annual hydrological variation, because each hydrological year is considered to be independent in this BN. The 428 

evaluation of some long-term variables may require a further integration of the process models, such as the long-term 429 

trend of soil salinization below the root zone and the long-term melting trend of the upstream glaciers with its impacts 430 

on components and spatiotemporal processes of the runoff in these river basins (Liu et al., 2011; Wang et al., 2016). 431 

The lack of a more detailed description of causality may cause some detailed but important causality to be ignored, 432 

making it difficult for us to discover the differences between river basins. Therefore, the scale to which the structure 433 

needs to be refined and when it needs to be refined are what we need to consider carefully when promoting this 434 

framework. In addition, the causal relationship between variables in the BN is unidirectional, which may make it 435 

difficult to quantify the complex interactive feedback effects (Chen and Pollino, 2012).  436 
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5.1.2 When applied to two or multiple river basins comparatively 437 

In terms of comparing basins, this new BN-based framework performs well in SDB and ADB. Compared with previous 438 

comparison methods (Alcamo et al., 2003; Döll et al., 2003; Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer et 439 

al., 2013; Ladson and Argent, 2002; Müller Schmied et al., 2014; Syed et al., 2005; Vetter et al., 2017; Wang et al., 440 

2020; Zawahri, 2008), this framework is more systematic and pays more attention to the description of causality. Based 441 

on the similarity of detail causality, the comparison of the WEFE nexuses is comprehensive and meaningful in terms 442 

of historical analysis, uncertainty comparison and future system optimization. A comparative application to multiple 443 

watersheds may provide more extensive causal knowledge than only applying to a single watershed. For example, in 444 

this study, we found that care should be taken when building large reservoirs on the Panj River in the upper Amu Darya 445 

to avoid disputes over surplus water downstream caused by the release of upstream reservoirs in winter. Without the 446 

lessons of the Syr Darya, it will make it difficult to evaluate the downstream conflicts on the possible surplus water 447 

that will be caused by the further development of the Amu Darya. This may be related to the different levels of 448 

development in different river basins. Some river basins have gone through the development stage and can therefore 449 

provide lessons for the river basins that are now being rapidly developed.  450 

 451 

Compared to process-based models, this framework quantified the actual differences between watersheds in the data-452 

driven approach rather than in the parameter adjustment and calibration approach with the same process-based model 453 

which has shown that the issue of parameter heterogeneity is important in the global multi-watershed comparison 454 

(Alcamo et al., 2003; Döll et al., 2003; Müller Schmied et al., 2014). In the comparison of the basin-wide WEFE 455 

nexuses, we need to integrate multi-field knowledge, which may cause the problem of such parameter heterogeneity 456 

to be magnified, and the complexity of parameter adjustment will be higher. Because more parameters are included 457 

and accuracy testing is also no longer limited to the original single field. In addition, the flexibility and universality of 458 

comparison under this framework may be stronger due to the use of the form of conditional probability tables. A 459 

conditional probability table can be constructed for each watershed as a general representation of the relationship 460 

between variables, but the form of a certain equation or driving function in the process-based model may not be suitable 461 

for each watershed. In addition, in this framework, the relatively simple model structure and the use of expert 462 

knowledge enables data-limited watersheds located in developing countries to be simulated more effectively. Therefore, 463 

making the modeling effects of watersheds located in different countries comparable. In contrast, the demand for 464 

observational data for complex process-based models may be too high for data-limited watersheds located in some 465 

developing countries (Chen et al., 2017). Due to the under-refined local parameters and processes in the data-limited 466 

watersheds, comparisons based on the process-based model at the fine-scale level may be unconvincing with 467 

uncertainty.  468 

 469 

As far as the scalability and universality of this framework are concerned, due to the similarities between the concepts 470 

of the WEFE nexus and integrated water resources management, the past water resources management studies based 471 

on BNs in some arid regions or data limited river basins (Frank et al., 2014; Keshtkar et al., 2013; Xue et al., 2017), 472 

may be able to provide additional evidence for the effectiveness of this framework. If we use this framework to compare 473 
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more river basins, we may lose a little in the details of the structure and need to consider the trade-off of structure 474 

refinement and universality (Fig. 10). For example, comparing the Aral Sea basin with the Tarim river basin may 475 

require removing the water-energy conflict module, because there is no energy conflict between the upper and lower 476 

reaches in the non-transboundary Tarim river basin. However, this may also lead to deviations in the attribution of 477 

some specific downstream water system behaviours, because the difference in upstream water-energy conflict is 478 

ignored. In addition, the limitations of this comparison framework may include the inconsistency of network nodes 479 

and the difference in the value range of variables. For example, the defined location and attributes of 'depressions' are 480 

different, and the difference in the spatial extent represented by the defined 'upstream' and 'downstream' regions may 481 

also affect the effect of comparative research. And for the same variable of different basins, the difference in the value 482 

range and the variable status discretization operation may also bring errors to the comparison.   483 

5.2 The main differences between SDB and ADB concerning the WEFE nexus 484 

In addition to the widely recognized differences in glacier melting in high mountainous areas (Farinotti et al., 2015; 485 

Immerzeel et al., 2020; Kraaijenbrink et al., 2017; Sorg et al., 2012), differences in interception capacity of upstream 486 

reservoirs in these two river basins (account for 47% of total runoff of SDB and 13% of ADB) could affect the seasonal 487 

distribution of the downstream runoff and the upper limit of the level of water-energy conflicts between the upstream 488 

and downstream countries. In ADB, although the new Rogun dam on the Vakhsh river has been put into power in 2018, 489 

it has a modest impact on downstream irrigation if the reservoir is operated to maximize basin-wide benefits (Jalilov 490 

et al., 2016). We should warn that in the future some large reservoirs may be constructed on the upstream Panj river, 491 

which would account for more than 40% of the total runoff of the Amu Darya River. If so, the water-energy conflict 492 

between the upstream area of Tajikistan and the downstream part of Uzbekistan might escalate just like SDB. One 493 

possible solution is to re-establish the complementary water-energy mechanism of the USSR period.  494 

 495 
The water-energy conflicts between the upstream and downstream have gradually become accustomed, but new 496 

conflicts and changes have been generated in the middle and lower reaches of the two rivers. In SDB, in the face of 497 

excessive winter water discharge from Kyrgyzstan upstream, from 1991 to 2005, Kazakhstan could only release the 498 

surplus water from the Chardara reservoir to the Aydar depression in Uzbekistan in order to reduce flooding risk. 499 

However, after 2005, with the construction of more water conservancy projects in Kazakhstan, such as the Koksaray 500 

reservoir built to receive surplus water from the Chardara reservoir for irrigation, the water volume of the Aydar 501 

depression was affected. The current basin water distribution agreement does not specify the amount of water that the 502 

Aydar depression should receive from the Chardara reservoir. If this part of the water is subtracted, the Aydar 503 

depression can only be fed by irrigation drainage water with poor quality. These will lead to reduced water volume, 504 

deterioration of water quality, decreased ecological stability and fishery production of the Aydar depression. Therefore, 505 

it is necessary to pay more attention to the ecological problems of new water bodies in the water allocation of the basin, 506 

such as determining the annual release of Kazakhstan's Chardara reservoir to Uzbekistan’s Aydar depression. This is 507 

also of reference value for Turkmenistan and Uzbekistan in the lower reaches of ADB. With the increase in population 508 

and economic development, the contradictions in water use between downstream countries will gradually increase. 509 
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The water-food-ecology conflict between downstream countries may be a chronic problem compared to the water-510 

energy conflict with upstream mountainous countries.  511 

5.3 Other external measures 512 

The Bayesian network in this study was mainly based on the expert knowledge and data only within the Aral Sea basin. 513 

It did not incorporate other potential external solutions indirectly based on the framework. But some external measures 514 

derived from further consideration of the analysis of differences and optimization measures within the framework may 515 

also be useful as a complement to the solutions directly based on the framework. These external measures can be 516 

generated from the successful management experience of other river basins if more river basins are included in this 517 

framework. After the collapse of the USSR, the decline in the agricultural demand allowed more water to flow into the 518 

Aral Sea. But the downstream countries in the basin seemed to lack concern for ecological water demand of the Aral 519 

Sea. The expansion of the water volume and depression area (Fig. 11) confirms this, although part of the water flow 520 

into the depressions is necessary for the leaching of soil salt in the irrigation lands. These expanding water bodies or 521 

wetlands could provide some ecosystem services such as fish supply. Such lower water efficiency will be challenged 522 

in the future and saving water is the long-term solution. In addition to the repair of channels so as to reduce leakage, a 523 

spread and large-scale drip irrigation may reduce the total water consumption by more than 30% and provide 20 to 30 524 

km3 more ecological flow for the Aral Sea. It could also lower the high-salinity groundwater levels (Fig. 11), curb the 525 

secondary soil salinization (Zhang et al., 2014), reduce the drainage water with pesticides and salt to rivers, and reduce 526 

diseases caused by the poor water quality downstream. The promotion of drip irrigation has been considered as useful 527 

to improve the irrigation efficiency in other arid regions, such as the Tarim River Basin (Zhang et al., 2014) also 528 

located in the arid region of Central Asia, of which the downstream water use efficiency has increased during recent 529 

years after the drip irrigation promotion. Also, to reduce the water inflow to depressions may require stronger ability 530 

to regulate runoff and improving the low efficiency of surplus water management perhaps caused by the lack of water 531 

market regulation. Taking the Colorado River (Table 4) as an example, the construction of water conservancy facilities 532 

in SDB and ADB could be improved. Enhancing the ability to regulate the runoff may allow a better use of the surplus 533 

water in the high flow years but at the same time, it is necessary to avoid the upstream and downstream conflicts caused 534 

by the new large reservoirs. Building a water market as efficient as the Colorado River in the Aral Sea Basin still seems 535 

to have a long way to go. The Tarim River Basin has started to set prices for the irrigation water since 2003 but in most 536 

parts of the Aral Sea Basin, the irrigation water has not been priced yet. It might depend on the economic flexibility 537 

and a more efficient water delivery network. It is also necessary to strengthen the water-energy cooperation and to 538 

avoid zero-sum games between the upstream and downstream countries. This is a prerequisite for an optimal 539 

management of the Aral Sea Basin. In addition, strengthening the cooperation with the neighbouring countries, such 540 

as Russia and China, might be helpful in terms of the water conservancy projects, energy and agricultural trade and 541 

indirectly ease the crisis in the WEFE nexus as a result. 542 
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6 Conclusions 543 

In this paper, we applied a new causal structure-based framework to compare the WEFE nexuses and applied it to SDB 544 

and ADB with the BN. The main conclusions are as follows:  545 

(1) The new causal structure-based framework (combined with the support of actual data) is proved effective when 546 

modeling and comparing the basin-wide causal WEFE nexuses under uncertainty with a lower cost in data limited 547 

or poor gauged river basins. It may help decision support mainly in the quantification of the influence of complex 548 

causality and more remotely related variables. This systematic and causal comparison framework can be used to 549 

compare more basins based on the different levels of similarity of the causal structure. 550 

(2) Before the collapse of the USSR, the water flow entering the Aral Sea was sensitive to the agricultural development 551 

of the two river basins. After the collapse of the USSR, its sensitivity to the water-energy conflicts between the 552 

upstream and downstream countries increased a lot. Compared with the Syr Darya, the amount of water flowing 553 

into the Aral Sea from the Amu Darya is less sensitive to the water competition between downstream summer 554 

irrigation and upstream winter hydropower partly due to the lower percentage of total runoff intercepted by 555 

upstream reservoirs. It further made the management of the surplus water in the lower reaches of SDB in winter 556 

more difficult and controversial than ADB with a large amount of water flowing into depressions outside the river 557 

and irrigation area. 558 

(3) In the short term, reducing the water inflow to depressions and improving the planting structure prove beneficial 559 

to the Aral Sea ecology. In the long term, the construction of large reservoirs on the Panj river of the upstream 560 

ADB should be cautious so as not to get an intense water-energy conflict as SDB’s. Moreover, the water-food-561 

ecology conflict between downstream countries may escalate and turn into a long-term chronic problem such as 562 

between Kazakhstan and Uzbekistan. More attention should be paid to the reasonable ecological water 563 

consumption of new water bodies such as the Aydar-Arnasay depression in the basin-wide water allocation. It is 564 

also necessary to promote the water-saving drip irrigation and to strengthen the cooperation between internal and 565 

external countries.  566 
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 774 
Figure 1 Previous comparative studies focusing on local or individual aspects (a) and more attention should be directed to 775 
the identification and comparison of causality and systemicity between river basins (b). 776 

 777 

  778 
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 779 
Figure 2 The new generalized basin-wide water-energy-food-ecology nexus comparison framework based on combining the 780 
similar causal structure and data differences. The upper tree structure shows the priori classification of river basins and the 781 
arid/semi-arid branch is more subdivided. The lower left part illustrates the operation mode of the new basin comparison 782 
framework: combining the similar causal structure determined by experts and the multi-dimensional observation dataset 783 
containing differences. The red boxes marked with a, b, c, d, and e contain elements identified by the 1-12 serial number on 784 
the right that measure similarities at different levels. Number 8-10 show the different water-energy-food-ecology related 785 
nexus type adjusted according to box a, b, c, d, and e. River basins in the same red box can be compared by a specific 786 
structure of causality generated by the elements the box contains. The bottom part shows the significance of the application 787 
under this new framework. 788 
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 791 
Figure 3 Location of the Aral Sea basin and the water resources’ variation. (a) shows the location of the Aral Sea Basin, the 792 
two main rivers are the Syr Darya and Amu Darya. This map is made with ArcGIS and the layers come from the public 793 
layers in ESRI base map and ArcGIS online. (b) demonstrates the annual runoff variation of the Syr Darya river total runoff 794 
and the Amu Darya river main stream at the Atamyrat cross-section upstream the Karakum Canal. 795 
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 798 

Figure 4 The priori and general basin-wide WEFE nexus mode of SDB and ADB and its temporal change during the past 799 
50 years (a) shows the sources of the exogenous stress on the WEFE nexus dominated by water in the Aral Sea basin. (b) 800 
illustrates the hydrologic uncertainty spread from the alpine area to the lower part through a typical 'mountain-oasis-desert-801 
lake' system. The elements of the WEFE nexus are represented by circles in four colours and the relevant uncertainty items 802 
are tagged with these icons as a classification by respective roles in the WEFE nexus. (c) demonstrates the specific changes 803 
of the elements in the WEFE nexus during the past 50 years and the influence from the collapse of the USSR in 1991. 804 
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 807 

Figure 5 Integrate expert knowledge into Bayesian networks to simulate the WEFE nexus. The geographical area is divided 808 
into the upstream, downstream region and the surrounding area of the Aral Sea. The lower part contains the factors that 809 
can be considered in the framework, and the underlined ones are actually used in this study.  810 
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 813 

Figure 6 The Bayesian network structure shared by ADB and SDB when simulating the water-energy-food-ecology nexus. 814 
D stands for ‘downstream’ and U stands for ‘upstream’. 815 
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 818 

Figure 7 Sensitivity analysis of some variables. VB stands for variance of belief and MI stands for mutual information. D 819 
stands for ‘downstream’, correspondingly, U stands for ‘upstream’. 820 
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 823 

Figure 8 Comparison of the sensitivity analysis of ‘water inflow to the Aral Sea’ node of ADB and SDB in four historical 824 
periods from 1970 to 2015. D stands for ‘downstream’, correspondingly, U stands for ‘upstream’. VB stands for variance of 825 
belief. 826 
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 828 

Figure 9 Comparison of multi-criteria evaluation of SDB and ADB based on the BN causality constraint-based MCMC 829 
sampling. At the top is the multi-criteria evaluation based on random sampling with no joint probability included, in the 830 
middle is the multi-criteria assessment containing the BN causality constraints and at the bottom is based on the BN with 831 
nodes for optimization and decision determined.  832 
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 835 

Figure 10 The trade-off of structure refinement and universality in the new framework for comparing basin-wide water-836 
energy-food-ecology nexuses based on the adjustable causal structure. 837 
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 840 

Figure 11 The long-term inefficiency and risk of the irrigation-drainage system. (a) Changes in the surface water occurrence 841 
in the Aral Sea Basin. The data and information originate from the Global Water Surface Explorer (https://global-surface-842 
water.appspot.com/) (Pekel et al., 2016). S1, A1 and A2 are examples of expanded depressions, which collected the drainage 843 
and surplus water. S1 is the Aydar Lake in the Syr Darya river basin. In the Amu Darya river basin, A1 represents the 844 
Sarykamysh Lake and A2 illustrates a drainage depression of the Bukhara irrigation district. (b) Salinity concentration in 845 
the irrigation-drainage system of the Aral Sea Basin. The upper part stands for the salt transport and concentration at the 846 
river basin scale. The lower part shows the positive effect of drip irrigation compared with flood irrigation on reducing the 847 
drainage water and lowering the groundwater level to reduce the secondary salinization. 848 
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Table 1. Discretization and description of variables 851 

Variables Status discretization Unit  Explanation  

Runoff 280~360, 360~440, 440~650 (SDB) 108 m3  

300~500, 500~700, 700~900 (ADB)  

D PDSI -8~-4, -4~0, 0~6 (SDB)   

-8~-4, -4~0, 0~4 (ADB)  

D precipitation 170~190, 190~210, 210~230 (SDB) mm  

80~100, 100~120, 120~150 (ADB)  

U reservoir storage 0~6, 6~12, 12~20 (SDB) km3 Toktogul reservoir 

(SDB) 

5~8, 8~10 10~12 (ADB) Nurek reservoir (ADB) 

Outflowe of the reservoir in 

summer 

1800~2800, 2800~3800, 3800~4800 (SDB) 106 m3  

4000~7000, 7000~12000, 12000~15000 

(ADB) 

 

Outflow of the reservoir in winter 3500~3800, 3800~4200, 4200~4500 (SDB) 106 m3  

2000~3000, 3000~4000, 4000~5000 (ADB)  

Energy import from D 0~1, 1~2, 2~3 (SDB) 109 m3 Natural gas export from 

D to U 

0~0.5, 0.5~1, 1~3 (ADB) 

U hydropower generation 0.3~0.8, 0.8~1.2, 1.2~1.5 (SDB) 1010 kW·h  

0.5~1, 1~1.4, 1.4~2 (ADB)  

D cotton production 1100~2200, 2200~3300, 3300~4400 (SDB) 103 t  

2000~2500, 2500~3000, 3000~3500 (ADB)  

D cotton cropland 700~750, 750~800, 800~850 (SDB) 103 ha  

1100~1250, 1250~1400, 1400~1600 (ADB)  

D grain crop area  1000~1100, 1100~1200, 1200~1300 (SDB) 103 ha  

1300~1500, 1500~1700, 1700~2000 (ADB)  

D grain production 1500~2500, 2500~3500, 3500~4500 (SDB) 103 t  
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Variables Status discretization Unit  Explanation  

4500~5000, 5000~5500, 5500~6500 (ADB)  

Number of D livestock 7~10, 10~13, 13~16 (SDB) 106 cattle and sheep 

10~20, 20~30, 30~40 (ADB) 

D irrigation quantity per ha  9500~10000, 10000~10500, 10500~11000 

(SDB) 

m3/ha  

11000~13000, 13000~15000, 15000~17000 

(ADB) 

 

D water use  33~35, 35~37, 37~40 (SDB) km3  

45~50, 50~55, 55~60 (ADB)  

Inflow to the Aral Sea 0~4, 4~7, 7~10 (SDB) km3  

0~7, 7~14, 14~21 (ADB)  

Volume of the Aral Sea 10~100, 100~200, 200~300 km3  

Inflow to depression 1.5~4.5, 4.5~6.5, 6.5~8.5 (SDB) km3 Water entering the 

Aydar lake (SDB) 

2.5~5, 5~7, 7~9 (ADB) Water entering the 

Sarykamysh lake 

(ADB) 

D agricultural production  2~4, 4~6, 6~8 (SDB) 109 US$  

2~4, 4~7, 7~10 (ADB)  

D GDP 10~30, 30~50, 50~70 (SDB) 109 US$  

10~40, 40~60, 60~80 (ADB)  

D population  14~16, 16~18, 18~20 (SDB) 106  

16~18, 18~20, 20~22 (ADB)  

D desertification 14~16, 16~18, 18~20 (ADB) 104 km2 Including the Aralkum 

Desert  
10~20, 20~30, 30~40 (SDB) 

Sand and salt storm  0~30, 30~60, 60~100 Day per 

year 

Frequency  
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Variables Status discretization Unit  Explanation  

D water mineralization 0~0.5, 0.5~1, 1~3 g/L Kyzylorda (SDB) 

Nukus (ADB) 

Soil salinization low, medium, high  Soil salinity near 

Kyzylorda (SDB) 

Soil salinity near 

Khorezm (ADB) 

D life expectancy 64~66, 66~68, 68~70, 70~72 Age  

Note: D stands for ‘downstream’ and U stands for ‘upstream’.  852 

  853 
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Table 2. Data description and sources. 854 

 855 Data Source Description Years 
duration  

Discharge/run
off 

CA WATER info 
http://www.cawater-info.net/water_quality_in_ca/amu_e.htm, 
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm 
Global Runoff Data Centre (GRDC) 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html 

Streamflow 
gauging 
stations, daily 
and  yearly 

1970 to 2015 

Water intake 
and 
consumption 

CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login 
ICWC 
http://sic.icwc-aral.uz/reports_e.htm, http://www.icwc-
aral.uz/pdf/67-en.pdf 

Province and 
country scale, 
yearly 

1970 to 2015 
 

Precipitation National Climate Data Centre (NCDC) 
http://www.ncdc.noaa.gov/ 

Meteorological  
station, daily 

1970 to 2000,  
2010 to 2015 

Palmer 
Drought 
Severity Index 
(PDSI) 

Google Earth Engine 
https://developers.google.com/earth-
engine/datasets/catalog/IDAHO_EPSCOR_PDSI (Abatzoglou 
et al., 2018) 

0.04° grid, daily  1979 to 2015 

Water budgets 
of the Aral 
Sea 

CA WATER info -  Database of the Aral Sea 
http://www.cawater-info.net/aral/data/index_e.htm 

Annual scale 1970 to 2015 

  Ecological 
and 
environmental 
indicators 

CA WATER info 
http://www.cawater-info.net/4wwf/pdf/khamraev_e.pdf,  
http://www.cawater-
info.net/water_quality_in_ca/files/analytic_report_en.pdf, 
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm 
Micklin P (Micklin, 1988, 2007, 2010) 

Sample site 
scale, annual 
scale 

1980 to 2010 

Energy CEIC 
https://www.ceicdata.com 
IEA 
https://www.iea.org/data-and-statistics 

Country scale,  
yearly 

1991 to 2015 

Operation of 
reservoirs 

Siegfried T (Siegfried and Bernauer, 2007) 
CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login, 
http://www.cawater-info.net/projects/peer-
amudarya/pdf/report_2-2_2-5_en.pdf 
ICWC 
http://sic.icwc-aral.uz/reports_e.htm, http://www.icwc-
aral.uz/pdf/67-en.pdf 

Monthly 1974 to 2015 

Social 
economy 
 

CA WATER info -  Regional Information System on Water and 
Land Resources in the Aral Sea Basin (CAWater-IS) 
http://www.cawater-info.net/data_ca/?action=login 
Statistical data online 
https://stat.uz/uz, http://www.stat.kg, 
https://data.worldbank.org.cn, 
http://stat.gov.kz 
FAO 
http://www.fao.org/statistics, 
Soviet National Economic Statistics Yearbook, 
Commonwealth of Independent States Statistical Committee 
database 

Province scale,  
yearly 

1970 to 2015 
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Table 3. Comparison of the BN-based scenario analysis of SDB and ADB 856 

Target nodes  Nodes for scenario setting 

  DR EI UR WR IQ DG DC DL UL DI WD 

U energy value (high) Syr  +5.9 -2.7 +2.6        

Amu  +4.4 -1.6 -1.2        

D water use (low) Syr   +0.2  +1.2 +1.7  -1.6  -1.8 +0.3 

Amu   -1.1  -1.9 -0.9  -0.6  -3.8 -5.3 

U water use (low) Syr   +2.5      -0.9   

Amu   +0.7      +1.4   

D GDP (high) Syr      +0.6  +0.5  +4.7  

Amu      +2.9  +1.4  +17.5  

U GDP (high) Syr  +0.3       +1.3   

Amu  -1.5       +3.7   

D grain yield (high) Syr +0.3    -0.3 +13.6      

Amu -2.7    -2.1 +19.3      

D livestock production 

(high) 

Syr        +5.1    

Amu        +10.3    

Volume of the Aral Sea 

(high) 

Syr   +0.6         

Amu   +3.1         

Inflow to the Aral Sea 

(high) 

Syr  +2.6 +3.6 +1.3 +2.3 +0.5 +2.6    +23.5 

Amu  +5.1 +3.7 +4.2 +6.1 -1.7 +3.4    +13.2 

Salinization (low) Syr +5.5           

Amu +11.3           

Desertification (low) Syr +9.6           

Amu +16.2           

Water mineralization 

(low) 

Syr +1.3           

Amu +8.7           

Sand and salt storm 

(low) 

Syr +3.7  +0.8        +1.1 

Amu +13.1  -0.4        +0.7 

D life expectancy (high) Syr +0.2           

Amu -0.2           

Note: D stands for the downstream region and U stands for the upstream region. DR represents drought index (low), EI represents 857 
energy import from D (high), UR represents U reservoir water storage (high), WR represents U winter water release (high), DG 858 
represents D grain crop area (high), IQ represents D irrigation quantity per ha (low), DC represents D cotton crop area (low), UL 859 
represents U livestock amount (high), WD represents D water inflow to depressions (low), DI represents D industry production 860 
(high) and DL represents D livestock amount (high). The ‘high’ and ‘low’ respectively indicate the highest or lowest level of each 861 
node after discretization. The values in the table show the change of the percentage probability values of the specific states of the 862 
response nodes on the left after the ‘high’ or ‘low’ states of the upper scenario variables are determined. 863 
 864 
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Table 4. Comparison of four river basins in the arid regions 865 

River basin Syr Darya Amu 
Darya 

Tarim river  Colorado River 

Runoff (km3) 41 78 39 20 
Population (106) 25 27 11 40 
Runoff / population (km3/106) 1.64 2.89 3.45 0.50 
Reservoir capacity / runoff +++ ++ ++ ++++++ 
Hydrological observation ++ ++ +++ ++++ 
Crop area (106 ha) 3.3 4.5 2.8 1.8 
Runoff / crop area (km3/106 ha) 12.4 17.3 13.9 11.1 
Drip or sprinkler irrigation + + +++ +++ 
Water market + + ++ ++++++ 
Ecological flow + + +++ +++ 

Note that the number of ‘+’ represents the values from qualitative knowledge. 866 
 867 


