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Abstract. During the last decades, the urban hydrological cycle has been strongly modified by the built environment, resulting 

in fast runoff and increasing the risk of waterlogging. Nature-Based Solutions (NBS), which apply green infrastructures, have 

been more and more widely considered as a sustainable approach for urban stormwater management. However, the assessment 

of NBS performance still requires further modelling development because of the hydrological modelling results strongly  

depend on the representation of the multiscale space variability of both the rainfall and the NBS distributions. Indeed, we 15 

initially argue this issue with the help of the multifractal intersection theorem. To illustrate the importance of this question, the 

spatial heterogeneous distributions of two series of NBS scenarios (porous pavement, rain garden, green roof, and combined) 

are quantified with the help of their fractal dimension. We point out consequences of their estimates. Then, a fully-distributed 

and physically-based hydrological model (Multi-Hydro) was applied to consider the studied catchment and these NBS 

scenarios with a spatial resolution of 10 m. Two approaches for processing the rainfall data were considered for three rainfall 20 

events: gridded and catchment-averaged. These simulations show that the impact of spatial variability of rainfall on the 

uncertainty of peak flow of NBS scenarios ranges from about 8 % to 18 %, which is more significant than those of the total 

runoff volume. In addition, the spatial variability of the rainfall intensity at the largest rainfall peak responds almost linearly 

to the uncertainty of the peak flow of NBS scenarios. However, the hydrological responses of NBS scenarios are less affected 

by the spatial distribution of NBS. Finally, the intersection of the spatial variability of rainfall and the spatial arrangement of 25 

NBS produces a somewhat significant effect on the peak flow of green roof scenarios and the total runoff volume of combined 

scenarios. 
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1 Introduction 

The increased risk of flooding from urban storms appears to be closely linked to two key factors: rapid urbanization and climate 

change (Lovejoy and Schertzer, 2013). Adapting to climate change and mitigating urban flooding constitute now significant 30 

societal challenges (Loukas et al., 2010; Miller and Hutchins, 2017). Impervious surfaces directly connected to grey 

infrastructures result in a rapid transfer of rainfall into runoff, which greatly increases the risk of flooding, especially in urban 

watersheds (Fry and Maxwell, 2017; Ercolani et al., 2018). Expanding and upgrading the capacity of existing drainage systems 

has proven to be costly and unsustainable, which is challenging to realize in highly urbanized cites (Qin et al., 2013).  

Increasing urban resilience to reduce the risk of urban flooding has been emphasized in many countries (e.g., Kelman, 2015). 35 

Nature-Based Solutions (NBS) refer to a sustainable strategy, capable to reduce the influences of human activities on the 

natural environment, especially efficient for stormwater management (European Commission, 2015; Cohen-Shacham et al., 

2016). To some extent, the NBS concept builds on and supports similar widely used concepts (Bozovic et al., 2017), like the 

Low Impact Development (LID), or Blue Green Infrastructure (BGI), as well as some more local ones, like the Water Sensitive 

Urban Design (WSUD) from Australia (Morison and Brown, 2011) or ‘Sponge city’ proposed recently in China (Chan et al., 40 

2018).  Regarding stormwater management, NBS suggests using a suite of small-scale controlled measures. This often includes 

bio-retention swale, porous pavement, green roof, rain garden, and rain barrel, because these infrastructures are able to 

conserve or recover the natural environment of a region (Newcomer et al., 2014).  

The hydrological performances of such NBS have been approached in terms of the reduction of total runoff volume and peak 

flow at the urban catchment scale (Zahmatkesh et al., 2015; Ahiablame and Shakya, 2016; Bloorchian et al., 2016). Generally, 45 

the results of a large number of studies are based on lumped or semi-distributed models (Ahiablame et al., 2013; Liu et al., 

2015; Massoudieh et al., 2017; Guo et al., 2019). Indeed, as underlined by Fry and Maxwell (2017), and Her et al. (2017), 

fully-distributed models are rarely used (Versini et al., 2016; Hu et al., 2017; Versini et al., 2018). While there is a general 

consensus that these models should better assess the hydrological performances of NBS implemented at smaller scales, the 

deployment of the fully distributed models has been stuck for some time by three main factors: (i) availability of reliable high 50 

resolution forcing, (ii) complex interactions between the processes, and (iii) reliable parameterisation process (e.g., Imhoff et 

al., 2020). As a consequence, the semi-distributed Storm Water Management Model (SWMM) remains the one that is most 

frequently used to investigate the impact of NBS on urban runoff and water quality (Sun et al., 2014; Jia et al., 2015; Palla and 

Gnecco, 2015; Cipolla et al., 2016; Kwak et al., 2016). Nevertheless, Rossman et al. (2010) demonstrated that SWMM has 

some serious limitations for reflecting the heterogeneity of urban watersheds, which in turn presents some difficulties to 55 

sustainably replicate hydrological responses to various urban land uses. In particular, the study of Burszta-Adamiak and 

Mrowiec, (2013) confirmed that SWMM is not really explicit for presenting the hydrological responses of catchments with 

only the help of the percentage of pervious and impervious land covers. These gaps imply strong limitations to the results 

obtained with the help of lumped and the semi-distributed models. Thus, to make the modelling results more accurate and 

credible, there is a strong need to use fully-distributed and physically-based models.  60 
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At the same time, due to the long-standing challenge of the availability of reliable and high-resolution spatio-temporal 

precipitation measurements in urban areas, some studies have been devoted to assess the performance of NBS under the 

simplifying assumption of an uniform rainfall, hence the impact of spatial rainfall variability in the heterogeneous urban 

context has not been considered (Holman-Dodds et al., 2003; Gilroy and McCuen, 2009; Qin et al., 2013; Versini et al., 2018; 

Zhu et al., 2019; Guo et al., 2019). A strong impact of the temporal variability of precipitation on the response of the watershed 65 

is generally well recognised (Schertzer et al., 2010; Ochoa-Rodriguez et al., 2015; Gires et al., 2015). Qin et al. (2013) also 

investigated the performance of some NBS, such as swales, porous pavements and green roofs, as a function of peak 

precipitation intensity. Whereas the temporal variability of precipitation, even intuitively, forces the dynamics of the retention 

capacity of the NBS, the impact of the spatial variability of precipitation in the heterogeneous urban context has not yet been 

studied in its full extent. However, the hydrological responses of NBS (model outputs) can largely depend on: (i) the highly 70 

spatially variable rainfall fields, (ii) the spatial distribution of the NBS, and (iii) their intersection. Indeed, the rainfall and the 

NBS represent two heterogeneous fields that do not coincide, which implies that the overall performances of NBS scenarios 

simulated with uniform rainfall or lumped/semi-distributed model may not be entirely convincing. Therefore, the mentioned 

impacts remain to be investigated, especially for higher spatial model resolutions, using spatio-temporal rainfall fields with a 

fully-distributed model, allowing heterogeneous NBS scenarios. 75 

In this respect, the main goal of this study is to investigate the uncertainty of hydrological responses in various NBS scenarios 

resulting from the spatial variability of rainfall and the heterogeneous distribution of NBS at the urban catchment scale, and 

thus not those associated to the model structure, hypothesis or parameterization for instance. A fully-distributed and physically-

based hydrological model Multi-Hydro (Giangola-Murzyn, 2013; Ichiba et al., 2018) is applied on a semi-urban catchment of 

5.2 km2 in the city of Guyancourt city (France) at the scale of 10 m. The particularity of Multi-Hydro is its scalability, which 80 

makes it possible to replace the traditional parameter calibration by the process of rapid optimization of the spatio-temporal 

resolution of the model to ensure its best performance for the case study, based on the overall scaling of available data (Ichiba 

et al., 2018). Multi-Hydro is therefore well suited to achieve the desired objective of this study. Two different rainfall 

processing approaches (gridded and catchment-averaged) from three typical rainfall events of the Paris region are used as 

meteorological inputs: (i) based on the gridded approach, the data are retrieved from the X-band polarimetric radar of École 85 

des Ponts ParisTech (ENPC), characterized by high spatial and temporal resolutions, which are called distributed rainfall data; 

and (ii) the corresponding uniform rainfall data are obtained by catchment-averaged of the distributed rainfall data at each time 

step. The spatial heterogeneity of NBS is grasped by different landuse scenarios, characterized with the help of an across-scale 

indicator, the fractal dimension. This variability and resulting uncertainties in hydrological responses of the catchment are 

quantified by considering the peak flow and the total runoff volume in the drainage conduits. It is important to mention here 90 

that a precise quantitative evaluation of NBS performances, e.g., peak discharge reduction, total runoff volume reduction, or 

both, is not the goal of the present study. The authors aim first to deepen the knowledge on the impact of spatial variability of 

the rainfall on hydrological responses of several NBS scenarios, and that in turn helps to clarify whether the Nature-Based 

Solutions could be randomly implemented in semi-urban catchments or not.  
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The organization of this paper is as follows. The next section presents the study area, the rainfall data and the Multi-Hydro 95 

model. The details of the NBS scenarios, the framework of modelling experiments and the model validation are described in 

Section 3. Then, the obtained results are discussed in Section 4. Finally, the main conclusions are summarized in Section 5. 

2 Study context, data and methods 

2.1 The choice of the case study   

This study is conducted on a semi-urban catchment, a part of the city of Guyancourt (France), located on the Saclay Plateau in 100 

the southwest suburb of Paris (Fig. 1). The available raw 25-m resolution Digital Elevation Model (DEM) obtained from the 

French National Institute of Forest and Geographic Information (IGN), which presents the whole catchment, is relatively flat 

(see the left side of Fig. 1). The altitude in the North is slightly higher than that of the South. The highest altitude in the whole 

catchment reaches 175.1 m, while the lowest one of 143.39 m corresponds to the location of the storage basin (i.e., the outlet 

of the catchment: Etang des Roussières). The most recent statistical report of Météo-France (2020) indicates that the area is 105 

characterized by an oceanic climate with an average annual temperature of about 10.7°C and total annual precipitation around 

695 mm. In this context, the Guyancourt catchment is an interesting and appropriate case study for several reasons. 

Firstly, Guyancourt is one of the sub-catchments in the upstream of the 34.6 km long Bièvre River, which flows through 

several increasingly urbanized areas and joins the Seine River in Paris. Bièvre River is well-known by its drastic contribution 

to the historical 1910 flood in Paris and still easily generates flash floods during the heavy rainfall events (e.g., two severe 110 

floods occurred in 1973 and 1982). Therefore, the case of Guyancourt has a reference significance for the Paris region.  

Secondly, the Guyancourt city is expected to become a part of the “French Silicon Valley”, which currently undergoes a rapid 

urbanization process over its total area of around 5.2 km2, with a population of about 30,000 (INSEE 2020). Based on the data 

from IGN, the current land use of the study area consists of seven main types, including road, parking, building, gully, forest, 

grass, and water. In total, these seven land use types cover 9.6 %, 10.6 %, 15.5 %, 1.9 %, 28.8 %, 32.7 %, and 0.9 % of the 115 

total area, respectively, as shown on the left side of Fig. 2. Currently, the pervious surface accounts for 62.4 % of the total area, 

and the corresponding impervious surface is 37.6%.  

The local authority, the agglomeration community of Saint-Quentin-en-Yvelines (“La communauté d’agglomération de Saint-

Quentin-en-Yveline”), manages the urban drainage system of the catchment and provided some related data (right side of Fig. 

2). The total length of the drainage system is about 76 km and consists of 4,474 nodes and 4,534 conduits. Overall, the drainage 120 

system was designed with a capacity characterized by a return period ranging from 2 to 10 years. The diameters of conduits 

range between 0.1 m to 1.6 m, 70 % of them between 0.3 to 0.5 m (marked with a yellow line on the right side of Fig. 2). The 

conduits with a diameter ranging between 0.9 to 1.6 m (marked with a purple line on the right side of Fig. 2) are the primary 

conduits, which converge the flow to the storage basin and the outlet. The rainfall amount corresponding to the mentioned 

return periods (from 2 to 10 years) depends on the considered duration (usually equal to the concentration time). So, this 125 

duration value depends on the location of pipes in the catchment and its upstream area. Here are the corresponding values for 
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different durations that can be found on the studied watershed (by using the Montana coefficients): (i) Duration 5 minutes: 187 

mm/h for T = 10 years and 125 mm/h for T = 2 years; (ii) Duration 30 minutes: 50 mm/h for T = 10 years and 31 mm/h for T 

= 2 years; (iii) Duration 1 hour: 30 mm/h for T = 10 years and 18 mm/h for T = 2 years; (iv) Duration 2 hours: 20mm/h for 

T=10 years and 13 mm/h for T=2 years.  130 

Regarding the properties of the three selected rainfall events (Table 1), the drainage system seems to have the capacity to drain 

the rainfall intensities on these durations. Nevertheless, we do not have any information about the exact duration range that 

was considered for the design (durations smaller than 30 minutes are usually not considered). 

However, due to climate change, a clear tendency towards a growing number of shorter duration, but higher intensity rainfall 

events is perceived for this region (Hoang et al., 2010), causing in recent years a large amount of fast surface runoff and higher 135 

peak flow rates. The existing stormwater drainage system may not be able to sustain the future modifications of the watershed, 

and some low-lying areas in the catchment could suffer more easily from waterlogging, even during moderate rainfalls. As 

displays Fig. 1, some vulnerable areas and buildings subject to a risk of waterlogging were defined in the Guyancourt catchment 

by using the ModelBuilder of ArcGIS software (a geoprocessing model for identifying landscape sinks 

[https://learn.arcgis.com/en/]). This geoprocessing model is based on a sequential chain of GIS analysis tools. By exploring 140 

the Digital Elevation Model (DEM) of the Guyancourt catchment with the ArcGIS Desktop hydrology tools 

(https://desktop.arcgis.com), we first identify the landscape sinks. On this figure, the blue spots represent the low-lying areas 

with a total area of 0.6 km2 that can be easily flooded by stormwater (average rainfall depth of 53 mm). Then, the locations of 

the landscape sinks can be compared with the locations of existing buildings, and the buildings that are situated inside or 

adjacent to the landscape sinks are defined as the vulnerable buildings. Correspondingly, the yellow spots indicate these 145 

vulnerable buildings on the figure.  

Thirdly, the local authority installed a gauge at the storage basin (outlet) to monitor water levels, which provided a measurement 

point of the Guyancourt catchment. 

Overall, the relative complexity of the catchment makes it a typical “case study” for analysing some of the uncertainties related 

to hydrological responses of NBS scenarios, aiming to help the local authorities to find more reasonable and ecological 150 

alternatives for future urban planning. 

2.2 Rainfall data 

In this study, one of the purposes is to assess the impact of spatial variability of rainfall on the hydrological responses of some 

NBS scenarios. Hence, two approaches for processing rainfall data were used to prepare the meteorological inputs: gridded 

(distributed) and catchment-averaged (uniform). Based on the gridded approach, the distributed rainfall data were retrieved 155 

from the polarimetric X-band radar, located in ENPC, Champs-sur-Marne (East of Paris, France). The distance between the 

X-band radar and the catchment is around 45 km (see Fig. 1). The spatial and temporal resolutions of the X-band radar are 250 

m and 3.4 min, respectively. Three relatively long rainfall events (EV1, EV2, and EV3) with different characteristics that 

occurred in 2015 were chosen for the study (see Table 1 for more details). 
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Figure 3 (top) shows the maps of rainfall intensity (per radar pixel) at the largest rainfall peak for these three events. The 160 

maximum rainfall intensity per pixel is 41.2, 29.1, and 55.6 mm h-1, respectively. To establish a link with classical approaches 

(e.g., Hamidi et al., 2018), the standard deviation (SD) was used to quantify the variability of the rainfall fields. As presented 

in Table.1, the SD of the rainfall intensity at the largest rainfall peak of the three rainfall events is 4.31, 6.11, and 5.75 mm h-

1, respectively. This illustrates that while the strongest rainfall intensity was observed during the EV3, the highest variability 

of rainfall intensity occurred in the EV2. Figure 3 (middle) presents the total (cumulative) rainfall depth (per radar pixel) for 165 

the three rainfall events. The maximum cumulative rainfall per pixel is 36.9, 14.1, and 25.4 mm, respectively. The SD of the 

total rainfall depth of the three rainfall events is 1.21, 0.82, and 1.35 mm, respectively. This demonstrates that the spatial 

distributions of cumulative rainfall are much less variable compared to those of the rainfall intensity at the peak, with the 

highest variability computed for the EV3. 

The three uniform rainfall events (EV1U, EV2U and EV3U) were constructed by spatial averaging over the whole catchment 170 

of originally distributed rainfall fields at each time step. Figure 3 (bottom) presents the time evolution of the corresponding 

rainfall rates and cumulative rainfall depths. Each of these events is sufficiently long to contain several rainfall peaks and dry 

periods. For EV1U, the highest rainfall intensity reaches 20 mm h-1, and the total rainfall accumulates (around 31.5 mm) fast 

between the first and the third rainfall periods (approximately 24 h). The maximum rainfall intensity of the EV2U and EV3U 

is 9 mm h-1 and 36.4 mm h-1, and the total rainfall amounts about 12 mm and 20 mm, respectively. Although the largest rainfall 175 

peak of the EV3U is 36.4 mm h-1, it lasted only for 3 min, just sufficient to contribute about 10 % to the total rainfall depths. 

Overall, this initial analysis suggests that in spite of some similar characteristics, the selected events cover a truly wide 

spectrum of rainfall space-time variability. However, to deepen the knowledge of intersection effects between the spatial 

variability of rainfall and spatial distribution of NBS, we also considered four synthetic rainfall events (EV4 – EV7). All these 

events are based on the EV3U, by selecting the 2 hours period with the highest rainfall peak around 35 mm h-1 (catchment-180 

averaged), as illustrated on Fig. 4a. However, during the 3 min that lasted the largest rainfall peak of the EV3U, a new space 

distribution and/or intensity of the rainfall was imposed for each synthetic rainfall event. As shown in Fig. 4b, the catchment- 

averaged maximum rainfall peak is about 37 mm h-1 for the EV4, and the corresponding catchment-averaged cumulative 

rainfall is about 4 mm. During these 3 minutes, the rainfall was binary re-distributed in space (Fig. 4c), with the maximum 

intensity around 55 mm h-1. For the remaining synthetic rain events, this binary distribution was modified as follows (see Fig. 185 

4d-f): the same maximum intensity of 55 mm h-1 and zero rainfall elsewhere (EV5), the maximum intensity of 17 mm h-1 and 

zero rainfall elsewhere (EV6), and the maximum intensity of 55 mm h-1 has been replaced by zero rainfall (EV7). 

2.3 Multi-Hydro model 

The Multi-Hydro model is a fully-distributed and physically-based hydrological model, which has been developed by 

HM&Co/ENPC (El Tabach et al., 2009; Giangola-Murzyn, 2013; Ichiba, 2016; Ichiba et al., 2018). It has been successfully 190 

implemented and validated in several catchments (e.g., Versini et al., 2016; Ichiba et al., 2017; Gires et al., 2017; Gires et al., 
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2018; Alves de Souza et al., 2018; Versini et al., 2018; Paz et al., 2019). In this study, it is used for assessing hydrological 

responses of the NBS scenarios at the urban catchment scale.  

Multi-Hydro constitutes the interactive core among the four open-source modules (rainfall, surface, groundwater, drainage) 

that represent essential elements of the hydrological cycle in urban environment. 195 

The rainfall module (MHRC) can treat different kinds of rainfall data (from radar or rain gauge). In order to adapt the rainfall 

inputs for Multi-Hydro, the intersection between the pixels of the model (with a 10 m spatial resolution in this study) and the 

pixels of the X-band radar data (with a 250 m spatial resolution) were performed by the QGIS interface using the following 

equation (Paz et al., 2018): 

௜ಾ,௝ಾ

∑ ோ೔೉,ೕ೉|஺೔ಾ,ೕಾ	∩	஺೔೉,ೕ೉	|೔೉,ೕ೉

|஺ಾ|
                                                                                                                                             (1) 200 

where ௜ಾ,௝ಾ is the rainfall rate computed on the model pixel ௜ಾ,௝ಾ of coordinates ( ெ ெ); ௜೉,௝೉ is the rainfall rate measured 

by the X-band radar on its pixel ௜೉,௝೉	 of coordinates ( ௑ ௑);  denotes the surface of any pixel S, in particular ெ  is the 

surface of the model pixel (it does not depend on the coordinates, but only by the model resolution). 

The surface module (MHSC) of Multi-Hydro uses the code of the Two-Dimensional Runoff Erosion and Export (TREX) 

model that computes the interception, storage and infiltration occurring at each pixel in terms of the properties of each land 205 

use (Velleux et al., 2008). The infiltration process of the surface module is governed by simplification of Green and Ampt 

equation (see p. 4 of the TREX user manual). The diffusive wave approximation of the Saint-Venant equations is used for 

calculating the overland flow, following the conservation of mass and momentum equations.  

The groundwater recharge and solute transport (Riva et al., 2006; Mooers et al., 2018) are the other significant aspects of the 

hydrological cycle. The groundwater module (MHGC) is based on the Variably Saturated and 2-Dimensional Transport 210 

(VS2DT) model developed by the U.S. Geological Survey. This module can be used to simulate variably saturated transient 

water flow and solute transport in one or two dimensions (Lappala et al., 1987; Healy, 1990). The drainage module (MHDC) 

in Multi-Hydro uses the code of 1D SWMM model (James et al., 2010) to simulate the sewer network. This model represents 

the flow computed by 1D Saint-Venant equations in conduits and nodes.  

In this study, we used the Multi-Hydro interaction between the surface module and the drainage module to focus on the rainfall-215 

runoff modelling of NBS scenarios. In urban areas, groundwater can produce infiltration into the drainage pipes due to cracks 

in the structure (see Lucas and Sample, 2015 for an example). The absence of long recession limb on the hydrographs indicates 

there is no such problems on the studied watershed. Groundwater can also eventually contribute to surface flooding when it is 

saturated. Such phenomenon did not occur on the studied area due to its pedology and the considered (not extreme) rainfall 

events. For these reasons, groundwater (as evapotranspiration) has not been considered in this study. That has been focused 220 

on the fast response of the watershed at the rainfall event scale. 

The high spatial resolution of Multi-Hydro allows an easy implementation of small-scale controlled measures, like the rain 

garden, green roof, bio-retention swale, porous pavement, and rainwater tank, by locally modifying the land use parameters to 

link the size and shape of the corresponding NBS infrastructures, with their infiltration and storage capacities. 
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3 Numerical investigation of the NBS scenarios  225 

3.1 Multi-Hydro implementation in the Guyancourt catchment 

Based on the fully distributed character of Multi-Hydro, users can choose a specific spatial resolution. In this study, Multi-

Hydro was implemented with a 10 m spatial resolution (the grid system creates square grids with a cell size of 10 m), and a 

temporal loop of 3 min. The 10 m resolution was performed because it sufficiently represents the heterogeneity of the 

catchment, and also for saving the computation time. 230 

In analogy with Eq. 1, the rainfall input for Multi-Hydro has been also time interpolated from the X-band radar measurements, 

as follows:  

௠
∑ ோೝ೔ ሺ௜ሻ|∆೘ሺ௝ሻ∩∆ೝሺ௜ሻ|

ఋ೘
                                                                                                                                                      (2) 

where ௠  is the rainfall rate during the j-th time interval ௠  of the model, ௥  is the rainfall rate during the i-th time 

interval ௥  of the X-band radar.  denotes the length of any interval  and ୫ ୫  is the length of any time interval of 235 

the model. Note that while the duration of the time loop to generate the model outputs is 3 min (to keep it comparable with the 

X-band radar time interval), ୫  minute for the rain input to Multi-Hydro. 

The implementation of Multi-Hydro in a new catchment starts with the conversion of the original GIS data (e.g., land use, 

topography) into the standard rasterised format with the desired resolution by using the MH-AssimTool (Richard et al., 2013), 

a supplementary GIS-based module for generating the input data for Multi-Hydro. During this process, a unique land use class 240 

was assigned to each pixel, specifying its hydrological and physical properties. In order to attribute a unique land use class to 

each pixel, the following priority order was used in this study: gully, road, parking, house, forest, grass, and water surface. For 

this study, all the standard model parameters related to the land use classification were selected from the Multi-Hydro manual 

(Giangola-Murzyn et al., 2014). The most important parameters are Manning’s coefficient (no unit), hydraulic conductivity 

(m s-1) and interception (mm), as they are shown in Table 2. As already indicated, the Multi-Hydro does not use the traditional 245 

calibration of these parameters. If their most common values are always used, the reliable heterogeneity of the watershed for 

each case study is obtained by a rapid optimization of the spatio-temporal resolution of the model, with possibly refined classes 

of the land use and their orders (Ichiba et al., 2018). 

Since the gully is actually the only land use class able to connect the surface module and the drainage module, it has the highest 

priority (i.e., if a raster pixel contains gully and the other land use classes, the whole pixel will be considered as gully). 250 

Generally, this order considers the impervious land use classes have higher priority than the permeable land use classes, which 

result in an overestimation of impervious land uses (see Ichiba et al., 2017, for an alternative approach). After the rasterization 

process, the impervious land uses occupied 54 % of the Guyancourt catchment (Fig. 5). Besides the land use, the elevation 

was also assigned to each pixel of the model. For this purpose, the interpolation method was used to downscale the raw DEM 

data from 25 m to 10 m (DEM25-10) to incorporate with the model resolution. More precisely, each pixel was first subdivided 255 
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into 25 equal sub-pixels as a proxy of the 5 m resolution, then the elevation data were up-scaled 4 by 4 pixels to produce the 

10 m interpolation of the original elevation.  

While the 25 m resolution DEM may seem too coarse to use for an urban area, it did not limit the study in any way because 

the catchment is relatively flat. To test this, we up-scaled the raw 5 m DEM data to adapt them to the model resolution (DEM5-

10). Table 3 presents the results of the statistical analysis of DEM25-10 and DEM5-10, which are so similar that the difference 260 

could not impact the results. For instance, the Root Mean Square Error is about 0.26, and the correlation coefficient is around 

0.99. Besides, the ensemble of the data actually available for the Guyancourt watershed would need to be more detailed to 

make it worth going to a higher resolution of the model. 

As the most considered NBS correspond to more specific land uses, they are characterised with different retention capacities, 

the related parameters are based on the literatures (Dussaillant et al., 2004; Kuang et al., 2011; Park et al., 2014). To be more 265 

specific, the rain gardens (RG) characterised with the depression depth of 0.3 m. Thus, the storage capacity of RG is about 300 

L m-2. For the porous pavements (PPs), the thickness of pavements is 0.21 m (i.e., pavement (0.08 m), bedding material (0.03 

m) and base material (0.1 m)). The porosity of pavement, bedding material, and base material is 5.4 %, 28.29 % and 22.66 %, 

respectively. This indicates that the storage capacity of PP is approximately 74 L m-2 in this study. For these two NBS measures, 

a simple procedure represents both infiltration and storage processes has been carried out. For each time step, if the rainfall 270 

rate lower than infiltration rate of porous pavement/rain garden, the water is stored. If not, then the ponding occurs. 

Green roof is a special NBS measure that can be simulated by a specific module in Multi-Hydro (Versini et al., 2016). 

Accordingly, five physically-based parameters are defined for the green roof. They are based on the experimental site of 

Cerema (Ile-de-France) where several green roof configurations were monitored (see Versini et al., 2016). In detail, the chosen 

configuration is the following: substrate thinness of 0.03 m and characterized by a porosity of 39.5%, an initial moisture 275 

condition of 10 %, a field capacity of 0.3, and a hydraulic conductivity of 1.2 m h-1.  

3.2 Simulation scenarios 

For achieving the purpose of the study, a series of NBS scenarios were created and simulated for both rainfall inputs (described 

in Sect. 2.2). The baseline scenario is considered as the current configuration of the Guyancourt catchment, without 

implementing any NBS (Fig. 2 left). The baseline scenario will be used later on for the model validation.  280 

The first set of NBS scenarios includes porous pavement (PP1), rain garden (RG1), green roof (GR1), and their combined 

scenario (Combined1). They are applied to assess the impacts of the spatial variability of rainfall on the hydrological responses 

of NBS scenarios. For each scenario, the corresponding NBS are implemented heterogeneously over the catchment, while 

respecting the local catchment conditions and stormwater management requirements. For instance, with the help of the detailed 

land use GIS data, we initially selected all the buildings having flat roofs, then these impervious roofs were converted into 285 

green roofs for the GR1 scenarios by adapting the land use data.  

The second set of NBS scenarios (PP2, RG2, GR2, and Combined2) was proposed with a different arrangement to assess the 

potential effects of a heterogeneous implementation of NBS at the urban catchment scale. For each pair of scenarios with a 
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given type of NBSs, their implementation occupies the same percentage of the space over the whole catchment but differs 

significantly in terms of spatial distributions of the considered asset. Considering now the roofs with certain slopes (≤ 15°), 290 

they can be also used to implement green roofs (Stanic et al., 2018). The impervious roofs that satisfied this condition were 

converted into small and light green roofs and used for the GR2 scenario. While the two scenarios (GR1 and GR2) occupy the 

same percentage of the whole catchment, their density is different, simply because of the difference of original densities of the 

buildings. The designing process for other NBS scenarios follows a somewhat similar logic. All details concerning the 

scenarios of the NBS implementations, including a detailed description of each NBS and the percentage of the space required 295 

for its implementation at 10 m resolution, are presented in Table 4, while the maps of the resulting land use are illustrated on 

Fig. 6.  

Table 4 provides also the estimates of the scale independent indicator, discussed in detail in the following sections, called the 

fractal dimension. To get it intuitively, this indicator for the two combined scenarios (Combined1 and Combined2) is close to 

2 over the range of large scales of the 2-dimensional space. This indicates that NBS are rather homogeneously implemented 300 

over the whole catchment. However, it is important to note that, in spite of initially identical percentage that has been used to 

characterise the implementation of the NBS pairs over the catchment at a 10 m scale, the resulting fractal dimension could be 

quite different. It is simply because the percentage of the space required for the NBS implementation remains a scale dependent 

quantity, i.e., it depends on the resolution of the model, while the fractal dimension quantifies the propagation of the spatial 

heterogeneity for each of NBS scenarios, from the smallest scale to the outer scale of the catchment. This propagation remains 305 

scenario dependent only and hence a subject to its optimisation. 

3.2.1 Fractal dimension of NBS scenarios 

To quantify the multi-scale space heterogeneity of NBS in each NBS scenario, we applied the concept of fractal dimension 

(DF), which was initially introduced to describe the scale invariance of some irregular geometric objects (Mandelbrot, 1983). 

Namely, a similar structure can be observed in any scale. DF has been often used in catchment hydrology (e.g., Schertzer and 310 

Lovejoy, 1984; Schertzer and Lovejoy, 1987; Schertzer and Lovejoy, 1991; Lavallée et al., 1993; Gires et al., 2013; Gires et 

al., 2016; Ichiba et al., 2017; Paz et al., 2020; Versini et al., 2020). In this study, a standard box-counting technique was applied 

to estimate the DF of each NBS scenario (Hentschel and Procaccia, 1983; Lovejoy et al., 1987). The DF of a geometrical set A 

(here represented by the non-overlapping pixels of NBS embedded in a 2-dimentional space) is obtained with the following 

power-law:                                                                                                           315 

ఒ,஺
஽ಷ                                                                                                                                                                                    (3) 

where ఒ,஺ is the number of non-empty (containing NBS) pixels to cover the set A, at the resolution  , which is defined as the 

ratio between the outer scale L and the observation scale  (
௅

௟
). The symbol  means an asymptotic relation (i.e. for large 

resolution and possibly up to a proportionality prefactor). 
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Based on Eq. (3), we count the number of pixels containing at least one NBS, by starting with the smallest pixel size (  = 10 320 

m in this study), then continuously increasing the pixel size by simply merging the 4 adjoined pixels. This procedure is repeated 

until reaching the largest pixel size (L). Thus, ఒ,஺ is counted at different resolutions, and the results are plotted in the log-log 

plot (see Fig. 7). Corresponding to Eq. (3), the fractal dimension DF of each NBS scenario is defined as follows: 

ி
௟௡ሺேഊ,ಲሻ

௟௡ ఒ
                                                                                                                                                                                  (4)                   

Here, for each scenario, a square area of 128 x 128 pixels was extracted from the catchment to make the fractal analysis (see 325 

the example of the PP1 scenario in Fig. 6). In order to avoid the “no data” areas, which would bias the fractal dimension 

estimate, the selected square area is the greatest possible size characterized by a multiple of two in the studied catchment. 

As shown in Fig. 7, all the NBS scenarios are presented with two scaling behaviour regimes, with a scale break roughly at 80 

m. For each regime, the scaling is robust, with linear regression coefficients (R2) around 0.99. For the first regime 

corresponding to the small-scale range (10 m – 80 m) that related to the asset implementation level, the dimension DF is around 330 

1 for most of NBS scenarios. It is in contrast with the second regime, the large-scale range (from 80 m to 1280 m) that exhibits 

a scaling behaviour with a DF ranging from about 1.75 to 1.98. We also applied fractal analysis on the impervious surface of 

the baseline scenario in the same selected area, and we also found the same scale break at 80 m (the DF of the baseline scenario 

in each regime are presented in Fig. 7). Therefore, it rather confirms that the spatial distribution of NBS is strongly constrained 

by the urbanisation level of the catchment. 335 

3.2.2 Multifractal intersection theorem 

We would like now to illustrate and emphasise why it is so much indispensable to take into account the multiscale space 

variability of both the rainfall and the NBS distribution. For instance, both “hot spots” (extremes) of the rainfall and NBS are 

scarce and therefore could rarely coincide, i.e., rainfall spikes may fall more often elsewhere than on NBS. Similar questions 

can occur for less extreme events. The effective NBS performance could be therefore biased with respect to their potential 340 

performance due to this problem of intersection between rainfall intensity and NBS. It reminds us of the so-called multifractal 

intersection theorem applied to the intersection of a rainfall with extreme space variability and a rain gauge network that 

provides quantitative estimates of this intersection (Tchiguirinskaia et al., 2004). Figure 8, adapted from this paper, 

schematically represents the intersection at a given time of a (multifractal) rainfall, displaying quite variable pixel intensities 

ranging from light blue to dark brown (e.g., from 1 to 100 mm h-1), with a heterogeneous rain gauge network (light brown 345 

pixels). The resulting measured rainfall field M is simply the product of the rainfall intensities R by the gauge characteristic 

function N (=1 if there is a gauge in this pixel, 0 otherwise). The intersection theorem states that for fractal objects, like for the 

usual (Euclidean) geometric ones, the codimension – i.e. the complement ெ ெ of the dimension ெ to the embedding 

space dimension  – of the measured field above a given intensity threshold is the sum of the codimensions of the network 

( ே ே) and of the “real” field ( ோ ோ) above the same intensity threshold:                                                                              350 

ெ ே ோ ெ ே ோ                                                                                                                                             (5)                   
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For instance, the intersection in a plane ( ) of two straight lines ( ே ோ ே ோ ) corresponds to a point 

( ெ , ெ ). Of particular interest is the case where the intersection is so scarce that its codimension cM is larger than 

the embedding dimension d, i.e. has a negative dimension DM (Schertzer and Lovejoy, 1987). Due to Eq. (5), the codimension 

of the network ே is thus the critical dimension of the (real) field under which the rainfall intensity is rarely measured by the 355 

network:                                                                                                           

ெ ெ ோ ே ே                                                                                                                                    (6)                   

More precisely, the smaller DR is with respect to cN , the rarer the real field R is measured. Let us mention that Paz et al., (2020) 

used this intersection theorem to determine when the adjustment of radar data by a rain gauge network becomes misleading 

instead of improving the data. 360 

The assessment of the performance of an NBS network cannot be reduced to the binary question of presence or not of an NBS, 

like done for a rain gauge of a network. However, we can immediately state they will be more and more ineffective for rainfall 

intensity whose fractal dimension is more and more below the codimension ே  of the network. This is already an important 

information that can be used to design NBS and their networks. This also explains why we estimated in the previous subsection 

the fractal (co-) dimension of the NBS network, as well as to compare in section 4.3 simulations resulting from spatially 365 

uniform rainfalls ( ோ , ோ ) and spatially heterogeneous rainfalls ( ோ , ோ ). 

3.3 Modelling experiments 

The overall target of the study is to investigate whether the spatial variability of rainfall and the spatial arrangement of NBS 

have an impact on the hydrological responses of NBS scenarios at the urban catchment scale. For this purpose, three sets of 

modelling experiments were prepared, and two indicators (PDQp, percentage difference on peak flow; PDV, percentage 370 

difference on total runoff volume) were used for quantifying the uncertainty associated to rainfall and NBS spatial distribution 

in the hydrological response of the catchment. Figure 9 presents the flow chart of the four sets of modelling experiments. In 

addition, the corresponding descriptions are presented as follows: 

The first set is used to investigate the impact of spatial variability of rainfall on the hydrological responses of NBS scenarios. 

In this first set, we employed the following scenarios: baseline, PP1, RG1, GR1, and Combined1. These five scenarios were 375 

simulated under the distributed and uniform rainfall inputs. Then, we computed the ratio of peak flow (Eq. (7)), and the PDQp 

and PDV indicators (Eq. (8) and Eq. (9)) for each scenario under two different kinds of rainfall inputs.  

The second set is used to analyse the impact of the spatial distribution of NBS on the hydrological responses of the NBS 

scenarios. In this experiment, we compared the two groups of NBS scenarios mentioned in the Section 3.2 (GR1 vs GR2 for 

instance). The eight scenarios were simulated only with the uniform rainfall in order to avoid the impact of spatial variability 380 

of rainfall and to focus on the uncertainty associated with the spatial arrangement of NBS.  

The third set is used to analyse the intersection impact of spatial variability of rainfall and the spatial distribution of NBS on 

the hydrological responses of the catchment. In this experiment, the eight mentioned NBS scenarios were simulated under the 

distributed and uniform rainfall, respectively. Then, the PDQp and PDV of each NBS scenario were computed by comparing 
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the results obtained for the two different kinds of rainfall inputs (distributed and uniform). Then, we compared the difference 385 

of PDQp and the difference of PDV between the NBS scenarios characterized by the same solutions/measures. 

The fourth set is to verify the generality of the results obtained, we extended the study of hydrological responses to the 

intersection of the distributed rainfall and NBS by applying the synthetic rainfall events of EV4 – EV7 in two green roof 

scenarios (GR1 and GR2). The reason is the difference of DF between GR1 and GR2 is larger compare to the other NBS 

scenarios. Thus, the intersection effects can be more significant for these two scenarios. Here, the GR1 scenario was taken as 390 

the reference scenario, assuming that the extremes of rainfall (hot spots) only fall on the GRs of the GR1 scenario. With this 

respect, the rainfall was binary re-distributed in space during the 3 min that lasted at the largest rainfall peak of the EV3U, as 

illustrated on Fig. 4c-f. Namely, the ‘hot spots’ of the EV4 – EV6 are strictly intersected with the distributions of GRs in GR1, 

while the GR2 scenario is not. Contrary to EV4 – EV6, EV7 corresponds to the ‘no rain’ situation on GR1 during the same 3 

min. 395 

The peak flow ratio and the two indicators are especially calculated for the sum of four highlighted conduits connected to the 

catchment outlet (the right side of Fig. 2) with the following equations:  
ொ೛భ
୕೛మ

                                                                                                                                                                                           (7) 
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                                                                                                                                                                   (8)                   
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                                                                                                                                                                         (9) 400 

where ௣భ and ௉మ refer to the peak flow of scenarios under the distributed rainfall and uniform rainfall respectively for the 

first and third modelling experiment. For the second experiment, they represent the peak flow of the first set of NBS scenarios 

and the second set of NBS scenarios, respectively. For the fourth set experiment, they represent the peak flow of the GR1 

scenario and GR2 scenario, respectively. Correspondingly, for the first and third modelling experiments, ଵ and ଶ refer to the 

total runoff volume of scenarios under the distributed rainfall and uniform rainfall respectively. For the second modelling 405 

experiment, they represent the total runoff volume of the first set of NBS scenarios and the second set of NBS scenarios, 

respectively. For the fourth set experiment, they represent the total runoff volume of the GR1 scenario and GR2 scenario, 

respectively. 

3.4 Model validation 

Before the simulation of NBS scenarios, Multi-Hydro was validated with the water levels of the storage basin by applying the 410 

baseline scenario under the three distributed rainfall events. The simulations were then repeated with the three uniform rainfall 

events, respectively. The model performance was evaluated through two indicators: Nash-Sutcliffe Efficiency (NSE) and 

percentage error (PE). The Nash-Sutcliffe Efficiency (NSE ≤1) is an indicator generally used to verify the quality of the 

hydrological model simulation results, described as follows (Nash and Sutcliffe, 1970): 
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where ௜ refers to simulated values, ௜ refers to observed values, and  represents the average of the observed values. The 

NSE closer to 1 indicates that the model is more reliable, whereas NSE closer to 0 indicates that the simulation does not better 

than that of the average observed value  , which means the simulation performance is rather poor. If NSE is far less than 0, it 

means the simulation is even less performing than . 

The percentage error (PE) represents the difference between observed values and simulation values, which reflects the 420 

reliability of the simulation values. 
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	                                                                                                                                                             (11) 

The values obtained for these two indicators are summarized in Table 5. They confirm that Multi-Hydro performs well for the 

case study area in the baseline scenario, suggesting that the model is reliable enough to study the impacts of spatial variability, 

either precipitation or/and NBS arrangements, on the hydrological responses under various NBS scenarios. 425 

4 Results and discussion 

4.1 Validation of the baseline scenario 

Regarding the observed and simulated water levels in the baseline scenario, the model indeed performs well for the studied 

area. The NSE coefficients and the PE indicators validated Multi-Hydro's performance (see Table 5).  For the three distributed 

rainfall events (Fig. 10), the NSE are larger than 0.9, and PE are lower than 5 %. For the uniform rainfall event of EV2U, the 430 

model represents the water levels with NSE equal to 0.95, and PE equal to 1.96 %: only a slight overestimation of the observed 

water levels is observed between hours 4 to 7. For the uniform rainfall of EV1U and EV3U, the temporal evolutions of 

simulated water levels slightly underestimate the observed ones, with NSE around 0.8, as well as PE around 7 %. Regarding 

the temporal evolutions of simulated water levels under the distributed rainfall of EV1 and EV3, they are more consistent with 

the observed ones. The reason is that the rainfall intensities of the distributed rainfall are generally higher than those of the 435 

uniform rainfall at the storage basin location. Namely, in the uniform rainfall events, the accumulated water levels in the 

storage basin are less than that of in distributed rainfall events. Overall, the distributed rainfall gives slightly better results, and 

the simulated water levels using uniform rainfall also match sufficiently well the observed ones to validate the Multi-Hydro 

implementation in the Guyancourt catchment. 

Regarding the validation results, the scalability of Multi-Hydro allowed us to define the optimal resolution to finely reproduce 440 

the spatial heterogeneity of the watershed. Remember that this resolution is the ratio between the external scale of the watershed 

and the scale of the grid. The heterogeneity mentioned above propagates from the smallest scale to the largest, impacting the 

simulation results in any through the hierarchy of spatial scales of the watershed. It should be understood that the selected 10 

m grid scale is not the smallest scale possible, but the optimal one to ensure a good balance between, for example, sufficient 
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heterogeneity and the required quantity of the data required, again in precision valuable and involved computing time involved. 445 

As discussed in Section 3.2, the spatial heterogeneity for each of the NBS scenarios evolves with the fractal dimension on two 

scale ranges: the asset implementation scales (10 m – 80 m) and the larger basin scales. Such an evolution remains fully 

compatible with the intrinsic scalability of Multi-Hydro, which makes it particularly suitable and sufficiently reliable to study 

the impacts of the spatial variability of hydrological responses in different NBS scenarios. 

4.2 Impacts of spatial variability of rainfall 450 

The impact of spatial variability of rainfall on the hydrological responses of each NBS scenario over the whole catchment was 

evaluated at the catchment scale in terms of the sum of flow in four conduits (highlighted on the right side of Fig. 2). These 

four conduits are chosen because they collect the runoff from the whole catchment and finally merge into the storage unit 

representing the outlet of the drainage system. To be more specific, the percentage difference on peak flow (PDQp) and 

percentage difference on total runoff volume (PDV) computed for the first set of modelling experiments (described in Sect. 3.3) 455 

are presented in the following section. 

4.2.1 Baseline scenario 

Before continuing, it is important to assess the ‘baseline’ scenario under both distributed and uniform rainfalls, by using the 

simulations already performed to validate the Multi-Hydro implementation in the Guyancourt catchment. As shown in the 

hydrographs (Fig. 11), the higher peak flow was generated by the distributed rainfall in EV1 and EV2. Hence, the peak flow 460 

ratio computed by comparing distributed rainfall and uniform rainfall is larger than 1 (see the first column of Fig. 13a), but 

this ratio is around 0.9 in EV3. The reason is that during the largest rainfall peak of EV1 and EV2, the rainfall intensity of all 

radar pixels in distributed rainfall is higher than those of uniform rainfall. While in EV3, the rainfall intensity of around 30 % 

radar pixels in uniform rainfall is about 28 mm h-1 higher than that of the distributed rainfall. 

As shown in Fig. 13b, the PDQp of baseline scenario in EV1, EV2 and EV3 is about 10 %, 17.6 %, and 11.6 %, respectively. 465 

According to the SD of the rainfall intensity at the largest rainfall peak of each event (Table 1), the spatial variability of the 

rainfall intensity of EV2 is more pronounced than that of EV1 and EV3. Accordingly, the PDQp of baseline scenario in EV2 is 

the highest. Regarding the total runoff volume (Fig. 13c), the PDV of the baseline scenario for the three rainfall events range 

from 1 % to 3.8 %. Contrary to the PDQp, the PDV of the baseline scenario is not correlated to the SD of the total rainfall depth. 

For the baseline scenario, it is noticed that the PDQp is more pronounced than PDV for all rainfall events. These results can be 470 

explained by the fact that the spatial variability of rainfall intensity at the largest rainfall peak is strong in all three rainfall 

events, while the total rainfall volume for the distributed and uniform rainfall inputs is the same. This small PDV is influenced 

by the differences on the grid scale (storage capacity, infiltration, etc.), which are differently modelled when the input is 

uniform or non-uniform. 
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4.2.2 NBS scenarios 475 

In comparison to Fig. 11, Fig. 12 presents the simulated flow of the first set of NBS scenarios under the three distributed 

rainfall and three uniform rainfall events. The results remain overall consistent with the results in the baseline scenario. Indeed, 

as shown in Fig. 13a, the peak flow ratios between distributed rainfall and uniform rainfall simulations for the four NBS 

scenarios are larger than 1 for EV1 and EV2, and around 0.8 for EV3. The reason mentioned in the previous section. 

As shown in Fig. 13b, the results of PDQp for PP1, RG1, and Combined1 scenarios are also consistent with the baseline scenario: 480 

PDQp is the lowest for EV1, and the highest for EV2. For these three NBS scenarios, PDQp range from about 8 % to 18 % for 

the three rainfall events. The relationship between the SD of the rainfall intensity at the largest rainfall peak and the PDQp of 

each NBS scenario (Fig. 14a) show that PDQp (the uncertainty related to the peak flow) computed for PP1, RG1, and 

Combined1 scenarios increase simultaneously with the increase of the SD of the rainfall intensity. The results computed for 

GR1 scenario do not depict the same tendency: PDQp computed for EV3 is higher than those computed for the two other events. 485 

The reason is related to various factors. Namely, it may be affected by the intersection effects of the spatial variability of 

rainfall and the spatial arrangement of green roofs in the catchment. The reason can be explained by the fact that, in the GR1 

scenario, the green roofs are mainly implemented on the locations with high distributed rainfall intensities. As demonstrated 

by many previous studies (Qin et al., 2013; Palla and Gnecco, 2015; Ercolani et al., 2018), GR are usually more effective for 

intense but short rainfall peaks. In the case of the GR1 scenario under the distributed rainfall of EV3, GR measures effectively 490 

stored more runoff than in the uniform rainfall during the main rainfall peak. This enlarges the variability of the hydrological 

response in terms of peak flow. 

Regarding the percentage difference on total runoff volume, it is noticed that the computed PDV are lower than 6 % for all 

NBS scenarios under the three rainfall events, especially in EV3, where they are lower than 2 % (Fig. 13c). Comparing with 

the uncertainty on the peak flow, the resulting uncertainty on the total runoff volume is little influenced by the spatial variability 495 

of the rainfall. The reason is that the spatial variability of total rainfall depth is less pronounced with respect to the spatial 

variability of the rainfall intensity at the largest rainfall peak, and also there is no highly localized storm cell in studied events. 

Figure 3 (top) displays the rainfall intensity at the largest rainfall peak (per radar pixel) over the Guyancourt catchment for the 

three studied rainfall events. It is noticed that the highest rainfall peak of the distributed rainfall is very variable in space, which 

enlarged the discrepancy with the corresponding uniform rainfall, resulting in a significant impact on the peak flow of each 500 

NBS scenario that simulated with two different rainfall inputs. However, the cumulative rainfall of the distributed rainfall input 

is not very variable in space (see Fig. 3 middle). For instance, the standard deviation (SD) of the cumulative rainfall of the 

three rainfall events is around 1 mm, which indicates that the spatial variability of the distributed rainfall is not very pronounced 

at most of the time steps. Thus, the difference between distributed rainfall and uniform rainfall is relatively small during the 

whole rainfall period. Finally, the simulated flow of NBS scenarios under two different rainfall inputs is similar in most time 505 

steps, resulting in the percentage difference on the total runoff volume of NBS scenarios (simulated by distributed rainfall and 

uniform rainfall) is not significant. 
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As illustrated in Fig. 14b, the relationship between the SD of total rainfall depth and the PDV of NBS scenarios is nonlinear. 

This can be explained by the fact that the three rainfall events are relatively long, and the hydrological performances of NBS 

are gradually changed during the event (e.g. they can efficiently infiltrate or store water at the beginning, and be saturated after 510 

a long rainfall period). Comparing the PDV of each NBS scenario for all three rainfall events (Fig. 13c), those computed for 

GR1 and Combined1 appear to be the highest for EV2. It could be also related to the intersection effects of spatial location of 

GR measures and the spatial variability of rainfall. Indeed, these GR measures (considered in the GR1 and Combined1 

scenarios) are mainly located in the north side of the catchment. In this area, the first distributed precipitation of EV2 (1-3.5 

h), is relatively weak and variable (i.e., there is no rainfall or the rainfall with very low intensity in some localization pixels). 515 

Furthermore, as the initial moisture condition of GR measures are considered as unsaturated in both distributed and uniform 

rainfall, the GR measures are more efficient at the beginning of the distributed rainfall than in the uniform rainfall, and finally 

enlarge the uncertainty associated with precipitation variability (i.e., the corresponding PDV). More discussion about the 

intersection effects is presented in Section 4.3. 

4.3 Impacts of the spatial distribution of NBS  520 

In order to analyze the impacts of the spatial distribution of NBS on the hydrological responses of NBS scenarios, the results 

of the second set of modelling experiment (described in Section 3.3) are presented as follows. As shown in Fig. 15a, the PDQp 

of all NBS scenarios are lower than 5 %, and the PDV of all NBS scenarios are lower than 8 %, which indicates that the 

hydrological responses of NBS scenarios are little affected by the spatial distribution of NBS in the catchment. This result is 

generally consistent with the observation of Versini et al., (2016), who pointed out that the impact of the spatial distribution 525 

of green roofs on the catchment response is minimal. However, comparing the PDQp of each NBS scenario, those computes 

for PP and GR scenarios range from about 2 % to 5 %, which are slightly higher than those related to other scenarios, especially 

for EV1 and EV3. The reason can be explained by two factors: (i) the infiltration or detention capacity of PP and GR measures 

are less effective for rainfall characterized by strong intensity and long duration (Qin et al., 2013; Palla and Gnecco, 2015), 

whereas the RG measures are artificial depressed green areas (simulated with a 0.3 m depression depth) with higher retention 530 

capacity (Dussaillant et al., 2004); (ii) the differences of DF (large scale; i.e., the second regime) between PP1 and PP2 

scenarios as well as between GR1 and GR2 scenarios are larger than that of the other NBS scenarios (Table 4). Figure 16a 

shows the difference of DF between the same types of NBS scenarios is proportional to the corresponding PDQp. It is found 

that the larger the difference of DF, the higher the PDQp is. Regarding the PDV of NBS scenarios for the three uniform rainfall 

events (Fig. 15b), those comparing PP1 and PP2 scenarios (which ranges from about 4 % to 8 % for the three rainfall events, 535 

especially higher for the two strong and long events) are slightly higher than those related to the other scenarios. Because 

porous pavements are infiltration-based measures that gradually discharging water into the underlying layers, their 

performances are more related to the heterogeneity of their performed location. Namely, some PP measures implemented in 

drained areas may suffer more from surface runoff, are therefore more easily saturated (see Fig. 6 for a comparison of the 

spatial arrangement of PP measures for two PP scenarios). As shown in Fig. 16b, the difference of DF between the same types 540 
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of NBS scenarios has a moderate positive correlation (r =0.61) with the corresponding PDV. Our study hypothesizes that this 

rather weak correlation is related to the complexity of rainfall with several peaks and dry periods, the retention/infiltration 

capacity of NBS changes with the rainfall intermittency. 

4.4 Intersection effects of spatial variability of rainfall and spatial arrangement of NBS  

In the following, we present the results of the third modelling experiment set described in Sect. 3.3. The aim is to analyse the 545 

potential intersection effects of spatial variability of rainfall and spatial distribution of NBS on the hydrological responses of 

NBS scenarios. 

The resulting uncertainty on the peak flow and total runoff volume (PDQp and PDV) of the third set of modelling experiments 

are shown in Fig. 17. Firstly, we found that the spatial variability of rainfall has a certain extent impact on the peak flow of 

each scenario, with the PDQp ranging from about 8 % to 18 %. With the exception of GR1, all the NBS scenarios have a similar 550 

tendency: the PDQp are the lowest for the first event, and the highest for the second one. Namely, for most of NBS scenarios, 

the PDQp (uncertainty on peak flow) increases with the increase of the spatial variability of rainfall intensity. As shown in Fig. 

17c, comparing the PDQp between scenarios of PP1 and PP2, RG1 and RG2, as well as Combined1 and Combined2 for the 

three rainfall events, the maximum difference is less than 3 %. However, comparing the PDQp between GR1 and GR2, the 

difference is larger, especially in EV3 (> 6 %). For the GR1 scenario, PDQp range from about 8.7 % to 18 % in all three rainfall 555 

events, and those of GR2 range from about 10.7 % to 16 %. Furthermore, for GR1, the largest PDQp is in EV3, but for GR2, 

the largest PDQp is computed for EV2. The difference of PDQp between GR1 and GR2 scenarios demonstrated that the spatial 

variability of rainfall and the spatial arrangement of GR measures have some intersection effects on the peak flow of GR 

scenarios. However, it is not evident for the other NBS scenarios. One of the reasons has been discussed in Sect. 4.2.2: in the 

GR1 scenario, GR measures are mainly implemented in the north part of the catchment, which coincidently received higher 560 

rainfall (distributed EV3); namely, the “hot spots” of the rainfall field were highly intersected by the GR measures due to their 

high fractal dimension. Therefore, the peak flow was effectively reduced by the GRs. On the contrary, for GR2 scenario, the 

GR measures are mainly located on the south side of the catchment, which scarcely intersected with the rainfall spikes. Thus, 

comparing with the GR1 scenario, the difference of GR2 scenario simulated under the distributed rainfall and uniform rainfall 

is less significant. Another possible reason is GR has the lowest storage capacity in the studied NBS, as well as the studied 565 

rainfall events are not intense enough to saturate the other types of NBS (see Versini et al., 2016 for a comparison of different 

properties of GR). Her et al. (2017) also indicated the hydrological performances of NBS are sensitive to their configurations. 

However, the most plausible reason is that the intersection effect is more perceptible for GRs, as they only respond to local 

precipitation, while it is often masked for other NBS measures that must also mitigate runoff received from other parts of the 

watershed. Indeed, the already mentioned integrative character of runoff should reduce the evidence for intersection effects in 570 

other NBS scenarios, whether for distributed or uniform rainfall. Similarly to Fig. 13, Fig. 17 demonstrates the percentage 

difference on peak flow which is much higher than that of the total runoff for each scenario. The reason is the same as explained 

in Sect. 4.2.2.  
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Concerning the intersection impact on total runoff volume of NBS scenarios, the variations of PDV among most of NBS 

scenarios pairs (PP1 and PP2, GR1 and GR2, as well as Combined1 and Combined2) are significantly different for the three 575 

rainfall events. The maximum discrepancy (around 5 %) is found between Combined1 and Combined2 in EV3. Indeed, the 

NBS can effectively reduce the water volume until their saturation, in particular when they largely intersect with higher rainfall. 

Lower intersect results in higher simulated flows and longer transfers. Furthermore, the cumulative distributed rainfall is more 

variable for EV3. Conversely, the difference of PDV between RG1 and RG2 is relatively small, which is less than 1 %. The 

reason can be explained by the large retention capacity of RG measures, which has been mentioned in Sect.4.3. 580 

To further investigate the intersection effects, the fourth subset of modelling experiment is used. As shown in the hydrographs 

(Fig. 18), the peak flow of GR1 scenario was expected to be less than that of GR2, and this is confirmed for EV4, EV5, and 

EV6. For EV4 and EV5, with the same maximum intensity of 55 mm/h, the hydrographs of these two events significantly 

differ, with the peak flow decreasing by a factor 2 for EV5. However, the only difference in the rainfall inputs is that there is 

zero rainfall outside of the GRs during the 3 min rainfall peak. The PDQp and PDV of GR1 and GR2 scenario under the EV4 is 585 

around 5 %, and 4.3 %, respectively (see Fig. 19). For EV5, the PDQp and PDV increase to 20.7 % and 7.8 %, respectively. 

This confirms that without the impact of runoff that generated by other land uses, the intersection effects increase considerably 

with the higher spatial variability of rainfall intensity. For the EV6, the maximum rainfall intensity during the 3 min has been 

decreased to 17 mm/h. This was sufficient to further reduce the peak flow during the principal rainfall peak. For this event, the 

PDQp and PDV values drop to 3.5 % and 1.8 %, respectively. This indicates that the intersection effects is less significant for 590 

the rainfall with the lower spatial variability of rainfall intensity. As expected in the EV7 scenario, because of zero rainfall 

intersected with the GRs in GR1 scenario, the peak flow of GR2 remains slightly lower than that of the GR1, with the PDQp 

and PDV values of only 2.1 % and 1.4 %, respectively. 

Overall, the results demonstrate that the spatial variability of rainfall and the spatial arrangement of NBS can generate 

uncertainties on peak flow and total runoff volume estimations if they are not considered properly. This suggests that the 595 

performances of NBS scenarios that evaluated by some studies with only applying uniform rainfall as input can be biased in 

terms of the intersection effects (Zahmatkesh et al., 2014; Ahiablame et al.,2016; Guo et al., 2019). In our specific case, the 

intersection effect is more significant for GR scenarios and combined scenarios in terms of peak flow and total runoff volume, 

respectively. However, the physical properties of NBS are indeed another significant factor for the overall performances of 

scenario (Gilroy et al., 2009), for example, the intersection effect is less evident for RG scenarios mainly due to their high 600 

storage capacity. Comparing to the impacts of spatial variability of rainfall on the hydrological responses of NBS, the 

intersection effects seem to be less significant. This results also further demonstrated the hydrological responses of NBS 

scenario is less influenced by the spatial distributions of NBS. As the rainfall fields are always variable in space and time, to 

make the most of the benefits of NBS for stormwater management, the results suggest implementing NBS scattered in the 

catchment, but with a higher fractal dimension DF. This will combine a lower investment with the maximum return, preventing 605 

NBS from concentrated in certain specific places.  
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5 Conclusions 

This paper studies the uncertainty of the hydrological responses of Nature-Based Solutions (NBS) scenarios resulting from the 

multi-scale spatial variability of rainfall and heterogeneous distribution of NBS at the urban catchment scale. As an application 

of the multifractal approach, we pointed out how the “multifractal intersection theorem” can quantify how often they intersect, 610 

which conditions the performance of NBS. The high-resolution distributed rainfall data from the École des Ponts ParisTech 

(ENPC) X-band radar depict the spatially variable rainfall fields. The fully-distributed and physically-based hydrological 

model (Multi-Hydro) takes into account the heterogeneity of an urban environment down to the 10 m scale, including the 

spatial arrangement of NBS and spatial distribution of rainfall. The principal findings are summarized as follows: 

1. The spatial variability of rainfall has a significant impact on the peak flow of NBS scenarios for the three studied rainfall 615 

events. For instance, it makes the maximum percentage difference on peak flow (PDQp) increase up to 18 % in GR1 

scenario. Furthermore, the spatial variability of the rainfall intensity at the largest rainfall peak is almost linearly related 

to the PDQp computed for all NBS scenarios (except for GR1): the more variable are the rainfall intensities, the higher are 

the PDQp. However, the resulting percentage difference on total runoff volume (PDV) computed for all NBS scenarios 

show that the spatial variability of rainfall has much lower impact on the uncertainty related to total runoff volume: the 620 

average PDV being of the order of 2.3 % only. 

2. The impact of spatial arrangement of NBS on hydrological responses of the catchment is less obvious. For all the NBS 

scenarios, PDQp and PDV are lower than 5 % and 8 %, respectively. However, we found that the difference of fractal 

dimension (DF) between the same types of NBS scenarios has a fairly strong positive correlation to the related PDQp. 

Therefore, we suggest implementing NBS by optimizing DF over the whole catchment to be the highest possible. 625 

Furthermore, mixing different NBS in the catchment, as presented in the two combined scenarios, can also efficiently 

reduce the uncertainty associated with the spatial arrangement of NBS. 

3. The fractal dimension DF appears as a useful tool to quantify the spatial heterogeneity of NBS across a range of scales. 

The DF of each NBS scenario is associated with the urbanization level of the catchment, which confirms that the level of 

implementation of NBS is reasonable to match the catchment conditions. The fractal dimension combined with the fully-630 

distributed model is an innovative approach that is easily transportable to other catchments. 

4. The spatial distribution of rainfall and the spatial arrangement of NBS have intersection effects on the hydrological 

responses of NBS scenarios, especially significant for the peak flow of green roof (GR) scenarios (with a maximum 

difference between the scenario of GR1 and GR2 reaching about 6 % on peak flow). The intersection effects on the total 

runoff volume of each NBS scenario is quite variable because the chosen NBS present some limitations in terms of 635 

infiltration or detention capacity during a long rainfall event with high intermittency. However, the rain garden (RG) 

scenarios appear to be less affected by the intersection effects, with a difference lower than 3 % on peak flow and lower 

than 1 % on total runoff volume, mainly due to RG measures characterised with higher retention capacity. The results of 

the synthetic experiment firstly confirm that there is a complex interplay between the spatio-temporal intensity of 

precipitation and the runoff received from other parts of the watershed. Furthermore, this experiment strengthened the 640 
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intersection effects on the GR scenarios. These intersection effects can be more significant for the rainfall events with 

higher spatial variability. 

5. The study of hydrological response in various NBS scenarios resulting from the multi-scale spatial variability of 

precipitation and the heterogeneous distribution of NBS hints towards using fully distributed hydrological models over 

semi-distributed or lumped models. Indeed, the fully distributed model has been shown to be able to take into account 645 

these small-scale heterogeneities and propagate their effects to watershed scales, while parameterizing or smoothing out 

some critical heterogeneity, as done in non-fully distributed models, may bias its predictions. 

In our specific case, the GR scenarios are more sensitive to the spatial variability of rainfall and the spatial arrangement of GR 

measures, while the performances of RG scenarios and combined scenarios are more stable under any condition. Apparently, 

these findings already give some incites to decision-makers on Why they need to prioritize given NBS within the urban planning 650 

process.  

Although the rainfall events selected for this study were not extreme events, they cover a rather broad spectrum of spatio-

temporal variability in rainfall, and they are very typical precipitations in the Paris region. The simulation results can serve as 

a reference for future urban planning in this region. For example, the results of three different impacts (i.e., the spatial 

variability of precipitation, the spatial distribution of NBS, and the intersection effects) on the performance of NBS scenarios 655 

are useful for decision-makers, targeting for an actual project. 

However, larger precipitation samples, including extreme rains, as well as NBS monitoring data will be helpful to get a better 

knowledge of somehow universal solutions and provide answers on How to prioritize these NBS. With respect to this 

perspective, the obtained results already demonstrated that new scale-independent indictors, like the fractal dimension applied 

in this study, will be essential for more profound quantitative evaluation of the diversity of combined impacts, including for 660 

other heterogeneous catchments. Therefore, this study has an important potential impact, due to its originality with respect to 

the nonlinear tools used to address such practical issues, and its relevance in interdisciplinary applications. This suggests to 

pursue the development of original tools to get new insights into the scaling complexity of flows in urban hydrology. 
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 900 

Figure 1: Location of the study site and the corresponding topography map, highlighting some vulnerable areas and buildings at 
risk of waterlogging in the Guyancourt catchment. 

 

 

Figure 2:  Left: land use map (baseline scenario); right: drainage system with four conduits (4541, 4542, 4543, and 4544) highlighted. 905 
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Figure 3: Top: The rainfall intensity at the largest rainfall peak (per radar pixel) over the Guyancourt catchment area for the three 

studied rainfall events; middle: cumulative rainfall depths (per radar pixel) over the Guyancourt catchment area for the three 

studied rainfall events; bottom: time evolution of rainfall rate (mm h-1) and cumulative rainfall (mm) of the three uniform rainfall 910 

events over the whole catchment. 
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Figure 4: (a) Time evolution of rainfall rate (mm h-1) and cumulative rainfall (mm) of the EV3U over the whole catchment (the 915 

period between the red dash lines is the selected period for creating the EV4); (b) time evolution of catchment-averaged rainfall rate 

and cumulative rainfall of the EV4 over the whole catchment; (c) the rainfall intensity at the largest rainfall peak (distributed) over 

the Guyancourt catchment for the EV4 (the red pixels are the location of GRs in GR1 scenario with the highest rainfall intensity in 

space), the rainfall of other areas are uniform; (d-f) the rainfall intensity at the largest rainfall peak (distributed) over the 

Guyancourt catchment for the EV5, EV6 and EV7, respectively. 920 
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 925 

 

Figure 5: (a) Rasterization of the original land use data into 10 m with priority order, and (b) the rasterized land use data.  

 

 

 930 

Figure 6: Two scenarios for each of NBS implementation, including porous pavement (PP1, PP2), rain garden (RG1, RG2), green 

roof (GR1, GR2), Combined1 and Combined2, the rectangular area that presented in the PP1 scenario is the example area for 

applying fractal analysis.   
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 935 

Figure 7:  The fractal dimension of impervious surface of the baseline scenario and the fractal dimension of NBS in each NBS 

scenario. 

 

Figure 8: Schematic of the (multifractal) intersection theorem applied to the measured rainfall M by a rain gauge network N. The 

measured rainfall corresponds to the product of the “real” rainfall R by the gauge characteristic function (=1 if there is a gauge in 940 

this pixel, 0 otherwise) and the corresponding codimensions ࡾ ࡺ and ࡾ  add to yield the codimension of the ࡺ

measured rainfall ࡹ  d is the embedding space dimension, DR, DN and DM are the corresponding fractal dimensions ;ࡹ

(adapted from Tchiguirinskaia et al., 2004). 

 



34 
 

 945 

Figure 9: Flow chart of the four sets of modelling experiments. 
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Figure 10: Comparison of the observed and simulated water levels (simulated with distributed rainfall and uniform rainfall) of the 950 

three rainfall events: (a) EV1, (b) EV2, (c) EV3. 
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Figure 11: Simulated flow (m3 s-1) of the baseline scenario under three distributed rainfall events and three uniform rainfall events: 955 

(a) EV1, (b) EV2, (c) EV3. 
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Figure 12. Simulated flow (m3 s-1) of the first set of NBS scenarios under three distributed rainfall events and three uniform rainfall 

events (the red hydrographs represent the NBS scenarios simulated with distributed rainfall, and the blue hydrographs represent 960 

the NBS scenarios simulated with uniform rainfall): (a) EV1, (b) EV2, (c) EV3. 
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Figure 13. (a) The ratio of peak flow between the scenarios under the distributed rainfall and the scenarios under the uniform 

rainfall; (b) percentage difference on peak flow of the baseline scenario and the first set of NBS scenarios under the three distributed 965 

rainfall events and the three uniform rainfall events; (c) percentage difference on total runoff volume of the baseline scenario and 

the first set of NBS scenarios under the three distributed rainfall events and the three uniform rainfall events.  
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Figure 14. (a) Relationship between the SD of rainfall intensity at the largest rainfall peak and PDQp of NBS scenarios; (b) 

relationship between the SD of total rainfall depth and PDV of NBS scenarios. 

 

PP RG GR Combine
0%

5%

10%

15%

20%

25%

30%

(a)

Percentage difference on peak flow

 EV1
 EV2
 EV3

PP RG GR Combine
0%

5%

10%

15%

20%

25%

30%

(b)

Percentage difference on total runoff volume

 EV1
 EV2
 EV3

 975 

Figure 15. (a) Percentage difference on peak flow between the same types of NBS scenarios under the three uniform rainfall events; 

(b) percentage difference on total runoff volume between the same types of NBS scenarios under the three uniform rainfall events. 
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Figure 16. (a) Relationship between the difference of DF of the same types of NBS scenarios and PDQp of the same types of NBS 980 

scenarios; (b) relationship between the difference of DF of the same types of NBS scenarios and PDV of the same types of NBS 

scenarios. 



39 
 

PP1
PP2

RG1
RG2

GR1
GR2

Combined1

Combined2
0%

5%

10%

15%

20%

25%

30%

(a)

Percentage difference on peak flow

 EV1
 EV2
 EV3

PP1
PP2

RG1
RG2

GR1
GR2

Combined1

Combined2
0%

5%

10%

15%

20%

25%

30%

(b)

Percentage difference on total runoff volume

 EV1
 EV2
 EV3

PP RG GR Combine
0%

5%

10%

15%

20%

25%

30%

(c)

Difference of PDQp between NBS scenarios

 EV1
 EV2
 EV3

PP RG GR Combine
0%

5%

10%

15%

20%

25%

30%

(d)

Difference of PDV between NBS scenarios

 EV1
 EV2
 EV3

 

Figure 17. (a) Percentage difference on peak flow of all NBS scenarios under the three distributed rainfall events and the three 985 

uniform rainfall events; (b) percentage difference on total runoff volume of all NBS scenarios under the three distributed rainfall 

events and the three uniform rainfall events; (c) difference of PDQp between the same types of NBS scenario. (d) Difference of PDV 

between the same types of NBS scenario. 
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Figure 18.  Simulated flow (m3 s-1) of GR1 and GR2 scenarios under the four syntactic rainfall events. 
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Figure 19.  (a) Percentage difference on peak flow of GR scenarios under the four syntactic rainfall events; (b) percentage difference 

on total runoff volume of GR scenarios under the four syntactic rainfall events. 
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Table 1. Main characteristics of selected rainfall events and standard deviation (SD) of the rainfall intensity at the largest rainfall 

peak and the total rainfall depth of the three rainfall events. 

Event ID EV1 EV2 EV3 

Data 12-13/09/2015 16/09/2015 05-06/10/2015 

Duration (h) 44 8.4 31 

Total depth (mm) (areal average/pixel min/pixel 

max) 
31.5/27.4/36.9 12/10.43/14.1 20/17.6/25.4 

Max intensity (mm h-1) over 1 min (areal 

average/individual pixel) 
20.5/41.2 9/29.1 36.4/55.6 

SD of rainfall intensity at the largest rainfall peak 

(mm h-1) 
4.31 6.11 5.75 

SD of total rainfall depth (mm) 1.21 0.82 1.35 
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Table 2. Hydrological parameters for each land use class. 

Land use 
Manning’s 

coefficient (no units) 

Hydraulic conductivity 

(m s-1) 
Interception (mm) 

Impervious surfaces (road, 

house, parking …) 
0.012 1.0e-10 1.9 

Gullies 0.9 1.0e-0 0 

Grass 0.15 1.9e-6 3.81 

Forest 0.8 1.9e-6 7.62 

Water 0.9 1.0e-0 100 

Porous pavement 0.014 1.0e-4 2.14 

Rain garden 0.2 1.9e-5 7.62 

Green roof 0.14 3.3e-4 3.81 
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Table 3. The statistical comparison of DEM5-10 and DEM25-10.  

Statistic metrics DEM25-10 DEM5-10 

Median 143.3 143.4 

Mean 160.1 160.1 

Maximum 175.4 175.9 

Minimum 143.0 143.3 

Standard deviation 80.2 80.2 

Root Mean Square Error 0.26 

Correlation coefficient 0.99 

Maximum difference 5.3 

Mean difference 0.01 
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Table 4. The details of simulation: NBS scenarios. 

NBS 

measure 
Scenario 

Proportion of 

implementation in whole 

catchment / selected area 

(after rasterization) 

DF of NBS in small 

scale/ large scale 

(after rasterization) 

Description of scenario 

Porous 

pavement 

(PP) 

PP1 8.0 %/13.8 % 1.14/1.92 

Porous pavements were implemented on the 

non-driveways (width equal and less than 2.5 

m) and some parking lots. 

PP2 8.0 %/10.1 % 1.21/1.79 

Porous pavements were implemented on 

secondary driveways (width between 2.5 m to 

5 m). 

Rain garden 

(RG) 

RG1 8.2 %/6 % 0.93/1.77 

The low elevation greenbelts around houses 

were implemented by rain gardens, which can 

collect and store up the surface runoff from 

surrounding impermeable areas before 

infiltration on site. When rain garden saturated, 

the redundant surface runoff will drain into the 

drainage system. 

RG2 8.2 %/7 % 1.04/1.78 
The low elevation greenbelts around public 

buildings and parking lots. 

Green roof 

(GR) 

GR1 8.6 %/13.5 % 1.18/1.87 

Small and light green roofs consisting of a soil 

layer and a storage layer are implemented on 

all flat roofs. 

GR2 8.6 %/6 % 1.05/1.75 

Impervious roofs with slightly slope (≤ 15°) 

were converted to small and light green roofs 

(Stanic et al., 2018). 

NBS 

combinations 

Combined1 24.8 %/38.5 % 1.59/1.95 A combination of PP1, RG1, GR1 

Combined2 24.8 %/30.4 % 1.45/1.98 A combination of PP2, RG2, GR2 
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Table 5. NSE coefficients and PE values of baseline scenario under the three distributed rainfall events and three uniform rainfall 1025 

events. 

Event ID Distributed rainfall  Uniform rainfall  

 NSE PE (%) NSE PE (%) 

EV1 0.926 4.6 0.824 7.9 

EV2 0.929 2.2 0.948 1.96 

EV3 0.954 3.9 0.865 6.9 

 

 


