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Abstract. Creating spatially coherent rainfall patterns with high temporal resolution from data with lower temporal resolution

is necessary in many geoscientific applications. From a statistical perspective, this presents a high- dimensional, highly under-

determined problem. Recent advances in machine learning provide methods for learning such probability distributions. We test

the usage of Generative Adversarial Networks (GANs) for estimating the full probability distribution of spatial rainfall patterns

with high temporal resolution, conditioned on a field of lower temporal resolution. The GAN is trained on rainfall radar data5

with hourly resolution. Given a new field of daily precipitation sums, it can sample scenarios of spatiotemporal patterns with

sub-daily resolution. While the generated patterns do not perfectly reproduce the statistics of observations, they are visually

hardly distinguishable from real patterns. Limitations that we found are that providing additional input (such as geographical

information) to the GAN surprisingly lead to worse results, showing that it is not trivial to increase the amount of used input

information. Additionally, while in principle the GAN should learn the probability distribution in itself, we still needed expert10

judgment to determine at which point the training should stop, because longer training leads to worse results.

1 Introduction

Precipitation timeseries in sub-daily temporal resolution are required for numerous applications in environmental modeling.

Especially in hydrology, with small to medium catchments whose rainfall-runoff response strongly depends on the temporal15

rainfall distribution, sub-daily precipitation data is necessary to simulate flood peaks accurately. However, in many settings,

precipitation sums only over timescales longer than the needed ones exist. Past sub-daily precipitation records are often only

available at short record-lengths (e.g., Breinl and Di Baldassarre, 2019; Lewis et al., 2019; Di Baldassarre et al., 2006) and many

future climate projections (GCM-RCM outputs) provide 6-hourly or daily precipitation sums (Müller-Thomy and Sikorska-

Senoner, 2019; Verfaillie et al., 2017). To deal with this wide absence of sub-daily precipitation data, several procedures to20

disaggregate precipitation were proposed in recent years. These include multiplicative cascade models (e.g., Förster et al.,

2016; Raut et al., 2018; Müller and Haberlandt, 2018), the method of fragments (e.g., Westra et al., 2012; Sharma and Srikan-
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than, 2006) and complex stochastic methods based on e.g. the randomized Bartlett–Lewis model (e.g., Koutsoyiannis and

Onof, 2001). Burian et al. (2001, 2000) and Kumar et al. (2012) used artificial neural networks (ANNs) to perform rainfall

disaggregation. Pui et al. (2012) provide a comparison of different univariate precipitation disaggregation approaches and an25

overview of the historical development of precipitation disaggregation frameworks can be found in Koutsoyiannis et al. (2003).

Many of these methods are carried out on a station-by-station basis (Müller-Thomy and Sikorska-Senoner, 2019), while others

also deal with the more challenging problem of temporal disaggregation of whole spatial fields (e.g., Raut et al., 2018).

In this study, we consider the latter, and we deal with the problem as a purely statistical one. For a given 2D (nlat×nlon)

field c, representing the daily sum of precipitation, we want to generate a corresponding 3D field of sub-daily precipitation30

(tres×nlat×nlon) yabs. Since this is a highly under-determined problem, it is our goal to model the probability distribution

P (yabs|c) (1)

The sum of yabs over the tres dimension must equal to c, therefore we can introduce the 3D-vector of fractions of the daily

sum yfrac , defined via

yfrac,tij = yabs,tij/cij (2)35

with t, i, j the indices of the tres/lat/lon dimension, and reformulate the problem as

P (yfrac|c) (3)

with the constraint that

∑

t

yfrac,tij = 1 (4)

Thus we want to model the probability distribution of fractions of the daily precipitation sum, given the daily precipitation40

sum. The data-dimensionality of this problem increases drastically with increasing size of nlat and nlon, as the condition

c has a dimensionality of nlat×nlon, and the target yfrac the even higher dimensionality nlat×nlon× tres. Here we use

nlat = nlon = 16 and tres = 24 (corresponding to hourly resolution), thus dimensionalities of 256 and 6144, respectively. This

makes statistically inferring the probability distribution P in principle very challenging, even given large amounts of training

data. One approach to circumvent this would be building statistical models with information about the underlying problems,45

and then fitting the parameter of these models to the available observations. However, recent advances in machine-learning have

made it possible to directly infer high dimensional probability distributions. The most widely used are Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014). GANs are a special class of artificial neural networks that have originally been

developed for estimating the probability distribution of images, with the goal of sampling (or “generating”) images from this
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distributions (widely known as “deep fakes”). Especially in their conditional formulation (Mirza and Osindero, 2014) they are50

potentially very useful for physics-related problems, such as the one considered in this study. GANs are a very active research

field in the machine-learning community and their architectures and training methods are constantly improved (e.g., Arjovsky

et al., 2017; Gulrajani et al., 2017; Karras et al., 2018). Given the probabilistic nature of many physical problems, and the high-

dimensionality of problems especially in Earth-science related fields, they provide an interesting pathway for new applications.

For example, Leinonen et al. (2019) have used a GAN to infer the 2-D vertical structure of clouds, given 1-D observations of55

lower resolution satellite observations. GANs have also been used in the modeling of complex chaotic systems (e.g., Wu et al.,

2020; King et al., 2018) and have been proposed for stochastic parameterization in geophysical models (Gagne II et al., 2019)

and weather forecasting (Bihlo, 2020).

In this study we use measurements of precipitation from weather radars. We train the network on the daily sum of the

measurements and the corresponding 1-hourly patterns of precipitation. To our best knowledge, GANs have not yet been used60

in the context of precipitation disaggregation. With this study we want assess whether GANs can be a useful tool in temporal

precipitation disaggregation. Additionally, we want to provide our developed tool (RainDisaggGAN) as a ready-to-use tool to

researchers and practitioners who are interested in creating sub-daily data from spatially distributed daily time series. All the

software used for this study, as well as the trained GAN are openly available in the accompanying repository.

Note on terminology: In this study, we use the word “distribution” solely for probability distributions. In the hydrological65

literature, “distribution” is often also used for spatial and temporal patterns of rainfall. To avoid confusion, here we refer to

these strictly as “patterns”.

2 Methods

2.1 Data

We use openly available precipitation radar data from the Swedish meteorological service (SMHI). The data is available from70

2009 to present. Here we use measurements from 2009 to 2018. The data covers Sweden and parts of the surrounding area

(Fig. 1), and has a temporal resolution of 5 minutes.

The radar reflectivities Z (units dBZ) are converted to rainfall R in mm h−1 via

R=
(

10Z/10

200

)1/1.5

(5)

We then compute the daily sums and use them as condition, and the 24 corresponding 1-hourly fractions as target. The75

spatial resolution is ~2×2 km. We use all available 16×16 (~32×32 km) pixel samples (shifted by 16 pixels, so not including

overlapping boxes) from the data that have no missing data in any of the pixels at any time of the day, and that satisfy the

following condition: at least 20 pixels must exceed 5 mm day−1. This is done to exclude days with very little precipitation from

the training. The exact thresholds were chosen without specific physical reasons. We repeated our analysis with 3 mm day−1

and 7 mm day−1, and the results were similar (not shown). For the training period 2009-2016 this results in 177909 samples,80
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Figure 1. Domain of the used SMHI radar data covering most parts of Sweden.

and for the test period 2017-2018 in 59122 samples. We do not differentiate between different precipitation types (e.g. snow,

hail) and for readability use “rainfall” and “precipitation” as synonyms. We have to note that excluding all days below the

mentioned threshold changes the base sample. Therefore all results on precipitation statistics have to be interpreted in the way

that they represent only the statistics for all days above the threshold. This is the case both for the observations shown and

for the samples generated by our GAN-method. The latter is evaluated only on days with rainfall sums above the threshold,85

therefore they are directly comparable to the observed statistics of all days above threshold. When using our method in practice,

one would have to decide whether one also uses the GAN for predicting the patterns for days below the threshold (even though

such days have not been included in the training) or not.

2.2 GAN

We use the GAN type called Wasserstein-GAN (WGAN) (Arjovsky et al., 2017). A WGAN consists - such as all GANs -90

of two neural network. The generator, which generates “fake” samples, and a discriminator (called “critic” in WGANs) that

judges whether a sample is real or not. In our conditional GAN, the generator takes as input a 16× 16 field of daily sums as

condition and a vector of random numbers, and generates a 24×16×16 field of precipitation fractions. The critic takes as input

the 16×16 condition and a 24×16×16 sample of fractions, and judges whether it is a fake example or not. The generator and

the critic are trained alternately. The critic is trained with a combination of real and fake examples, and “taught” to differentiate95
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Figure 2. (a) principle of a conditional GAN. (b) Sketch of the method.

between them. The generator is then trained to “fool” the critic. The trained generator can then be used to generate fraction

scenarios ŷfrac from daily sum fields. These can then be converted to precipitation scenarios ŷabs via

ŷabs,tij = ŷfrac,tij · cij (6)

A sketch of the principle of a conditional GAN is show in Fig. 2 (a), and our specific approach for generating rainfall

scenarios is is sketched in Fig. 2 (b).100

We use a WGAN with gradient penalty (Gulrajani et al., 2017) and pixel normalization (Karras et al., 2018). For details of the

training process and to GANs in general we refer to the original papers. Our architecture is based on deep convolutional GANs

(DCGAN, Radford et al. (2016)). The input of the generator is a vector of length 100 for the random numbers, and a vector of

the flattened 16×16 condition. This is followed by a fully connected layer of size 256×2×2×3, three 3D upsampling and 3D

convolution layers with increasing dimension and decreasing filter size, each followed by a pixel normalization, and finally a 3D105

convolution output layer. All layers except the output layer have rectified linear unit (ReLu) activation functions. The output

layer uses a softmax layer that does a logistic regression over the nres dimension. With this, the generator automatically

satisfies Eq. (4). The critic has a corresponding mirrored architecture, with 4 strided 3D convolution layers, following the

philosophy of using striding instead of downsampling from Gulrajani et al. (2017). Both networks are optimized with the

Adam optimizer (Kingma and Ba, 2017) over 50 epochs. After 20 epochs the quality of the generator started to decrease (by110

visual inspection of samples generated from the train set), therefore we used the saved generator after 20 epochs. Training 20

epochs took 8 hours on a single NVIDIA Tesla V100 GPU. The architecture resulted after some experimentation with different

architectures and training methods. The networks were developed with the Keras (Chollet et al., 2015) and Tensorflow (Martín

Abadi et al., 2015) framework. For the details of the architectures, we refer to the Appendix A and the code published together

with this paper.115

2.2.1 Validation

Validation of a trained GAN is a complex and difficult topic. The high-dimensional probability distribution we want to infer is

per definition not known (otherwise we would not need the GAN), therefore we cannot directly validate it. This is an inherent

problem in generative modelling. We therefore will compare certain statistical properties of the generated samples with the
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same statistical properties of the real data. We also want to point out that while our method is conditional, it should not be120

confused with a standard supervised learning method. In the latter, one would assume that there is one "correct" target and

train the predictions on this target. In our problem we also have one observed target sub-daily precipitation pattern, but we

assume that there are infinitely many possible target patterns for each condition. Our approach is thus much closer to purely

generative modelling (learning only the general distribution of rainfall patterns, not conditioned on anything) than to supervised

learning (including probabilistic methods in supervised learning). As a consequence, verification methods frequently used in125

probabilistic forecasting (for example ROC-scores) are not appropriate for our problem.

2.3 Additional Inputs

In our main architecture, we use only fields of daily rainfall sums as input. This is the minimum possible architecture, and

therefore also the most generic one for different applications. As extension, we also use two alternative architectures that

provide additional inputs to the network. In the first alternate architecture, we input the day-of-the-year for each sample as130

additional input. Since the day-of-the-year doy is a circular variable (1 is as close to 2 as it is to 365), it is converted to 2

variables d1,d2 via

d1 = sin

(
2π
doy

365

)
,d2 = cos

(
2π
doy

365

)
(7)

and these two variables are expanded (repeated) to have the same size as the precipitation input field,and added as additional

channels to the input condition. Leap-days are treated as 1st of January.135

In the second alternate architecture we use the longitude of the sample as additional input (normalized to [0,1]). While Swe-

den has a much larger North-South than East-West extent, the typical precipitation patterns are more dependent on longitude

than latitude, because of the large contrast in orography (mountains in the West, flat in the middle, coast in the East).

3 Results

Figures 3 and 3 show examples of generated rainfall distributions for two randomly chosen daily sum conditions from a140

randomly chosen location. For each case, 15 hourly patterns are generated with the same daily sum condition from the test

dataset. The figure shows the real daily pattern in the first row, and the generated ones thereafter. Shown are both the daily

fractions yfrac (Fig. 3 and 4, panels a and the corresponding precipitation yabs (Fig. 3 and 4, panels b). The figure is to be read

as follows: the first row in panel (a) shows the per-gridpoint fraction of observed precipitation per hour. Precipitation occurred

only in the first 5 hours of the day. The distribution across these 5 hours is not the same for every grid point. For example145

towards the right hand side of the domain, most precipitation is at hours 2 and 4, whereas at the left hand side it is slightly more

concentrated at hours 1 and 3. Each of the following rows now shows one scenario generated by the GAN. As expected, due to

the many possible patterns that can be associated with a single daily sum, there is a lot of variation in these patterns. In rows 3

and 4, for example, precipitation is concentrated more towards the end of the day, whereas in the last row, it is concentrated at
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a)

b)

Figure 3. Real and generated examples of the fraction of hourly precipitation patterns for one daily precipitation sum, and the hourly

precipitation itself. (a) shows the generated fractions, and (b) the corresponding hourly precipitation patterns. The leftmost column of each

panel shows the daily sum precipitation field used as condition. The remaining 24 columns show the values for each hour. The first row

shows the observed distribution over the day. The remaining rows show examples generated bye the GAN.

the beginning of the day, similar to the observed realization. Panel b shows the same information, but then scaled by the daily150

precipitation sum at each gridpoint.
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a)

b)

Figure 4. As fig. 3, but for a different daily precipitation sum.

More examples are included in the Appendix (Fig. B1,B2) and the accompanying data and code repository. Except from

boundary problems at the outermost pixels, the patterns seem to be indistinguishable by eye. In applications were the boundary

problem would be an issue, one could use a larger domain and then remove the boundary.

Figure 5 shows area means of precipitation per hour. Each panel shows the real pattern for one condition (in black), and155

100 patterns generated from the same condition (in green). While it is important that individual samples look reasonable, it is
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also crucial that the generated sample follow the same distributions as the real pattern. Albeit it is impossible to check whether

the GAN recreates the full inter-dependent probability distribution (as we use the GAN to solve this problem in lack of a

better method), we can at least check whether the typical sub-daily distribution is captured by the GAN. In the real data, the

fractions are not equally distributed over the day, meaning that some times of the day often have higher fractions of the daily160

sum than others. For this, we randomly select 10000 samples from the test data, and generate a single generator example for

each. Then we analyze the daily cycle of the 10000 real patterns and the 10000 generated ones. The result is shown in Fig.

6 (a) (Appendix, Fig. C1 (a) including outliers). When looking at the generated fractions, the generated distribution seems

in general to reasonably follow the real distribution. There are, however, some deviations, mainly an underestimation of the

daily cycle. When it comes to the daily cycle of precipitation corresponding to these fractions, the generator does a worse job.165

Here the daily cycle is even more under-estimated, thus the generator has too little dependency of precipitation on the hour of

day. As additional validation, panel (b) in Fig. 6 shows cumulative distribution functions of the observed and generated hourly

precipitation patterns, for the same data as the daily-cycle analysis. Shown are both the distribution of the area means, and of

point-observations. The plots are capped to exclude very low precipitation amounts. The full plots are shown in the Appendix

Fig. C1 (b). In general the distribution of the generated patterns follows the distribution of the observations well. However,170

they generate to many hourly events with precipitation amounts around 1 mm h−1, and on gridpoint level, the GAN extents

to higher maximum precipitation amounts. At very low precipitation amounts (Appendix, Fig. C1 (b)) the distributions seem

to be very different. Here, however, one has to consider that such extremely small precipitation amounts are usually of no

importance. Additionally, due to the way the data is stored, the radar data cannot go down to zero, but has a minimum slightly

above 10−4 mm h−1.175

Next, we check whether the GAN actually learns to use the condition input. It could be that the GAN only learns the general

distribution of precipitation patterns, without connecting it to the daily sum at all. This could in principle partly be answered by

the green lines in Fig. 5, however this is difficult to do by eye, and it would also be hard to differentiate between the influence

of the condition, and the influence of the randomness of the noise used as input for the generator. Therefore, we also generated

10 examples for each real one, using the same noise for all 4 panels. Thus generated sample 1 uses the same noise for all180

conditions, and sample 2 uses the same (different from sample 1) noise for all conditions and so on. The result is shown in the

10 colored lines in Fig. 5. The patterns generated for different conditions are similar, but not identical. For example, the blue

line has a distinct peak between 15 and 20 h only in panel (a), and the peak of the yellow line between 1-5 h is slightly different

in all panels. This means that dependent on the condition, different daily fractions are produced.

Finally, as additional test on the influence of the condition, we randomly select two conditions, sample 1000 patterns from185

each condition (using the same 1000 noise vectors for each condition), and then compute the distribution for each hour of

the day, similarly to Fig. 6. The result for two distinctly different conditions is shown in Fig. 7 (Fig. D1 with outliers). As

can be seen, the distributions are not the same for both conditions. At 10 of the 24 hours of the day, the distributions are

significantly different (p<0.05 with 2-sample Kolmogorov-Smirnov test). For conditions that are very similar, there is no

significant difference at any hour of the day (not shown). This confirms the result from above that the GAN has at least to190

some extent learned to use the condition. Verifying the conditional relationships is difficult to impossible: the high dimension
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Figure 5. Examples of area averaged precipitation scenarios over a single day. The black line shows the observed precipitation, the green

lines show 100 generated ones. The colored lines show 10 generated ones, were each color uses exactly the same noise in all 4 plots.

of the condition would make any type of binning or grouping either in very low sample size for each group, or in groups whose

conditions are different only in some of the dimensions, and therefore a verification is not attempted here.

3.1 Architectures with additional inputs

When training our first alternative architecture with day-of-year as additional input, the training did not succeed, and only195

resulted in very unrealistic generated patterns (not shown). The second alternative architecture - with longitude as additional

input - was slightly more successful. The results for the longitude architecture are shown in the Appendix (Fig. E1). Shown is

the daily cycle of 10000 randomly selected observations, and scenarios generated from these. The results are presented for all

samples in the Eastern and in the Western half of the domain separately. The daily cycle of the generated samples is not very

realistic, in neither of the domains. In general, even though less dramatic than the day-of-year input, the additional longitude200

input seems to have disturbed the training of the network, and in fact made it worse than the base architecture without any

additional inputs.

4 Discussion and conclusion

In this study we used a Generative Adversarial Network (GAN) to generate possible scenarios of hourly precipitation fields,

conditioned on a field of daily precipitation sums. The network was trained on several years of hourly observations of Swedish205

precipitation radar data and the corresponding fields of daily precipitation sum. The trained network can generate reasonable
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Figure 6. (a) Daily cycle of 10000 randomly selected real observations, and scenarios generated by conditioning on exactly the same 10000

daily sums. (b) cumulative distribution functions of generated and observed hourly area mean precipitation (upper panel) and hourly point-

level precipitation (lower panel), same data as in (a).

Figure 7. Example of daily area mean distributions generated from 2 different daily sum conditions. For each conditions, 1000 scenarios

were generated. In all barplots outliers are not shown. The same plots with outliers are shown in the Appendix (D1).
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looking hourly scenarios, and thus seems to be able to approximate the probability distribution of the spatiotemporal rainfall

patterns. By eye, the generated patterns are nearly indistinguishable from the real patterns. We showed that the network does

not simply learn a general distribution of precipitation patterns, but it also is able to use the conditional daily sum field to

some extent. It thus learns a dependency of the probability distribution of rainfall patterns on the daily sum. We were, however,210

not able to find a reasonable way to verify this inferred dependency, and its quality hence remains unverified for now. Close

inspection of the statistics of many generated samples showed partial agreement but also some deviation from the real statistics,

pointing to potential limitations of the method, at least in its current implementation. Adding additional information (longitude

and day-of-the-year) to our GAN-architecture was not successful. Not only was the GAN unable to learn the influence of the

additional parameters on the probability distribution of the patterns, it also did worse on the general probability distribution.215

This shows that it is not possible to simply add additional information to an architecture that works without additional inputs.

The “black-box” nature of GANs makes it hard to even speculate about a possible reason for this. Finally, expert judgment was

still necessary in deciding when to stop the training of the GAN, since after some time the quality of the generated patterns

deteriorated. This can potentially be a sever limitation in practice. Detailed study and development will therefore be necessary

to further improve the method, and also to make it less dependent on expert judgment. We conclude that with our current220

knowledge, it is in principle possible to use GANs in the context of spatial precipitation disaggregation, however only with

care and in addition with expert judgement. We hope that this study serves as a starting ground for the hydrological community

to work further on assessing the potential of GANs for precipitation disaggregation.

This study was mainly intended as a proof of concept, in order to assess whether it is principally possible to use GANs

for temporarily disaggregating spatial rainfall patterns. Whether the method also proofs useful in rainfall-runoff modeling will225

be assessed in a follow-up study. This runoff modeling could include future climate scenarios. In such a setting it has to be

noted that our method – as most other methods – makes a stationarity assumption, meaning that it assumes that the probability

distribution of rainfall patterns is always the same (except for the dependency on the daily rainfall sum). In a future (warmer)

climate, however, the typical patterns might be different.

When the problem with additional inputs that we encountered are eventually solved, it would be interesting to also test230

inputting other meteorological variables such as temperature, windspeed or air pressure. These might contain information on

the current weather pattern, which itself can have an impact on the possible sub-daily precipitation patterns. This might also be

a way to – at least partly – deal with the problem of non-stationarity in future climate scenarios mentioned above. Additionally,

our method could be combined with other machine-learning methods. For example, an unsupervised classification scheme

could be used prior to training the GAN. With this the events could be categorized into a number of different classes, and then235

an individual GAN could be trained for each class. Alternatively, the class-label could be added as input to the GAN. The latter

would take the burden of implicitly classifying the events from the GAN.

It would also be of interest to modify the loss-function used for the training of the networks and include constraints on the

statistics of the data (for example the reproduction of the daily cycle), following the ideas of Wu et al. (2020). This might

eliminate the problems of deviation from the real statistics mentioned earlier. Another option would be to step back from the240

purely data-driven approach, and try to include physical constraints directly in the GAN.
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Variational autoencoders (Kingma and Welling, 2014), which are another type of neural network that can be used to infer

high-dimensional (potentially conditional) probability distributions, might also be an attractive alternative to the GAN pre-

sented here.

Finally, from a scientific point of view it would be a very appealing attempt using techniques from the emerging field of245

explainable AI (Samek et al., 2017; Adadi and Berrada, 2018) for the challenging task of using the trained GAN for inferring

knowledge about the underlying physical processes.

Code and data availability. The SMHI radar data can be freely obtained from http://opendata-download-radar.smhi.se/. The software devel-

oped for this study, as well as the trained generator, are available in SSs github repository at https://github.com/sipposip/pr-disagg-radar-gan.

Additionally, on final publication, the repository will be archived at Zenodo under the reserved doi 10.5281/zenodo.3733065.250
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Appendix A

The generator consists of the following layers: dense layer with size 3072, upsampling3D, convolution3D (256 channels,

kernelsize 2x2x2), pixelnormalization, upsampling3D, convolution3D (128 channels, kernelsize 2x2x2),pixelnormalization,

upsampling3D, convolution3D (64 channels, kernelsize 2x2x2), pixelnormalization, convolution3D (1 channel, kernelsize

3x3x3), softmax (along the first dimension).255

The critic consists of the following layers:

convolution3D (64 channels), convolution3D (128 channels), convolution3D (256 channels), dense (1 node).

The critic uses dropout regularization (dropout probability 0.25) after each convolution layer. All convolution layers (except

the last one in the generator) use a leaky ReLu activation function with α= 0.2.

Both the critic and the generator are trained with the the Adam optimizer with parameters lr = 0.0001, β1 = 0, β2 = 0.9.260
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Appendix B

a)

b)

Figure B1. Examples of generated precipitation patterns for two different daily sums.
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a)

b)

Figure B2. Examples of generated precipitation patterns for two different daily sums.
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Appendix C

Figure C1. (a) Daily cycle of 10000 randomly selected real observations, and scenarios generated by conditioning on exactly the same 10000

daily sums. Same as Fig. 6 (a) but with outliers shown. (b) cumulative distribution functions of generated and observed hourly area mean

precipitation (upper panel) and hourly point-level precipitation (lower panel), same data as in (a). Same as Fig. 6 (b), but full range on x-asis.
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Appendix D

Figure D1. Example of daily area mean distributions generated from 2 different daily sum conditions. For each conditions, 1000 scenarios

were generated. In all barplots outliers are not shown. The same plots as Fig 7 but with outliers.
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Appendix E

Figure E1. Results from the network with longitude as additional input. Daily cycle of 10000 randomly selected real observations, and

scenarios generated by conditioning on exactly the same 10000 daily sums, split up into Western and Eastern half of the domain.

19

https://doi.org/10.5194/hess-2020-464
Preprint. Discussion started: 30 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Author contributions. SP initiated the study. SS developed and implemented the GAN, analyzed the data and drafted the manuscript. Both265

authors interpreted the results and helped in improving the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Lea Beusch for interesting discussions. The computations were done on resources provided by the Swedish

National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and National Supercomputer Cen-

tre (NSC). The authors acknowledge the Swedish Meteorological and Hydrological Institute (SMHI) for making the radar data freely avail-270

able. SP has been funded by the Austrian Climate Research Programme (ACRP, 9th call; project RunSed-CC ,grant number KR16AC0K13305).

20

https://doi.org/10.5194/hess-2020-464
Preprint. Discussion started: 30 September 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Adadi, A. and Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access, 6, 52 138–

52 160, https://doi.org/10.1109/ACCESS.2018.2870052, conference Name: IEEE Access, 2018.

Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein GAN, arXiv:1701.07875 [cs, stat], 2017.275

Bihlo, A.: A generative adversarial network approach to (ensemble) weather prediction, 2020.

Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation and temperature across different climates and spatial scales,

Journal of Hydrology: Regional Studies, 21, 126–146, https://doi.org/10.1016/j.ejrh.2018.12.002, http://www.sciencedirect.com/science/

article/pii/S2214581818302283, 2019.

Burian, S. J., Durrans, S. R., Tomic̆, S., Pimmel, R. L., and Chung Wai, N.: Rainfall Disaggregation Using Artificial Neural Networks,280

Journal of Hydrologic Engineering, 5, 299–307, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(299), https://ascelibrary.org/doi/10.

1061/%28ASCE%291084-0699%282000%295%3A3%28299%29, publisher: American Society of Civil Engineers, 2000.

Burian, S. J., Durrans, S. R., Nix, S. J., and Pitt, R. E.: Training Artificial Neural Networks to Perform Rainfall Disaggregation, Journal of Hy-

drologic Engineering, 6, 43–51, https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291084-0699%282001%296%3A1%2843%29, li-

brary Catalog: ascelibrary.org, 2001.285

Chollet, F. et al.: Keras, GitHub, 2015.

Di Baldassarre, G., Castellarin, A., and Brath, A.: Relationships between statistics of rainfall extremes and mean annual precip-

itation: an application for design-storm estimation in northern central Italy, Hydrology and Earth System Sciences, 10, 589–

601, https://doi.org/https://doi.org/10.5194/hess-10-589-2006, https://www.hydrol-earth-syst-sci.net/10/589/2006/, publisher: Copernicus

GmbH, 2006.290

Förster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An Open-Source MEteoroLOgical Observation Time Series DISaggregation

Tool (MELODIST v0.1.1), Geoscientific Model Development, 9, 2315–2333, https://doi.org/https://doi.org/10.5194/gmd-9-2315-2016,

2016.

Gagne II, D. J., Christensen, H. M., Subramanian, A. C., and Monahan, A. H.: Machine Learning for Stochastic Parameterization: Generative

Adversarial Networks in the Lorenz ’96 Model, arXiv:1909.04711 [nlin, physics:physics, stat], 2019.295

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative Adversarial

Nets, in: Advances in Neural Information Processing Systems 27, edited by Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D.,

and Weinberger, K. Q., pp. 2672–2680, Curran Associates, Inc., 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A.: Improved Training of Wasserstein GANs, arXiv:1704.00028 [cs,

stat], 2017.300

Karras, T., Aila, T., Laine, S., and Lehtinen, J.: Progressive Growing of GANs for Improved Quality, Stability, and Variation,

arXiv:1710.10196 [cs, stat], 2018.

King, R., Hennigh, O., Mohan, A., and Chertkov, M.: From Deep to Physics-Informed Learning of Turbulence: Diagnostics,

arXiv:1810.07785 [nlin, physics:physics, stat], 2018.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [cs], 2017.305

Kingma, D. P. and Welling, M.: Auto-Encoding Variational Bayes, arXiv:1312.6114 [cs, stat], 2014.

Koutsoyiannis, D. and Onof, C.: Rainfall Disaggregation Using Adjusting Procedures on a Poisson Cluster Model, Journal of Hydrology,

246, 109–122, https://doi.org/10.1016/S0022-1694(01)00363-8, 2001.

21

https://doi.org/10.5194/hess-2020-464
Preprint. Discussion started: 30 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Koutsoyiannis, D., Onof, C., and Wheater, H. S.: Multivariate Rainfall Disaggregation at a Fine Timescale, Water Resources Research, 39,

https://doi.org/10.1029/2002WR001600, 2003.310

Kumar, J., Brooks, B.-G. J., Thornton, P. E., and Dietze, M. C.: Sub-daily Statistical Downscaling of Meteorological Variables Using Neural

Networks, Procedia Computer Science, 9, 887–896, https://doi.org/10.1016/j.procs.2012.04.095, http://www.sciencedirect.com/science/

article/pii/S1877050912002165, 2012.

Leinonen, J., Guillaume, A., and Yuan, T.: Reconstruction of Cloud Vertical Structure With a Generative Adversarial Network, Geophysical

Research Letters, 46, 7035–7044, https://doi.org/10.1029/2019GL082532, 2019.315

Lewis, E., Fowler, H., Alexander, L., Dunn, R., McClean, F., Barbero, R., Guerreiro, S., Li, X.-F., and Blenkinsop, S.: GSDR: A Global

Sub-Daily Rainfall Dataset, Journal of Climate, 32, 4715–4729, https://doi.org/10.1175/JCLI-D-18-0143.1, https://journals.ametsoc.org/

doi/full/10.1175/JCLI-D-18-0143.1, publisher: American Meteorological Society, 2019.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal Jozefowicz, Lukasz320

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng: TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems, 2015.

Mirza, M. and Osindero, S.: Conditional Generative Adversarial Nets, arXiv:1411.1784 [cs, stat], 2014.325

Müller, H. and Haberlandt, U.: Temporal Rainfall Disaggregation Using a Multiplicative Cascade Model for Spatial Application in Urban

Hydrology, Journal of Hydrology, 556, 847–864, https://doi.org/10.1016/j.jhydrol.2016.01.031, 2018.

Müller-Thomy, H. and Sikorska-Senoner, A. E.: Does the complexity in temporal precipitation disaggregation matter for a lumped hydrolog-

ical model?, Hydrological Sciences Journal, 64, 1453–1471, https://doi.org/10.1080/02626667.2019.1638926, https://www.tandfonline.

com/doi/full/10.1080/02626667.2019.1638926, 2019.330

Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., and Jeremiah, E.: A Comparison of Alternatives for Daily to Sub-Daily Rainfall Disaggre-

gation, Journal of Hydrology, 470-471, 138–157, https://doi.org/10.1016/j.jhydrol.2012.08.041, 2012.

Radford, A., Metz, L., and Chintala, S.: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,

arXiv:1511.06434 [cs], 2016.

Raut, B. A., Seed, A. W., Reeder, M. J., and Jakob, C.: A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of335

Rainfall, Journal of Geophysical Research: Atmospheres, 123, 2050–2067, https://doi.org/10.1002/2017JD027148, 2018.

Samek, W., Wiegand, T., and Müller, K.-R.: Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning

Models, arXiv:1708.08296 [cs, stat], 2017.

Sharma, A. and Srikanthan, S.: Continuous Rainfall Simulation: A Nonparametric Alternative, 30th Hydrology & Water Resources Sympo-

sium: Past, Present & Future, p. 86, 2006.340

Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applica-

ble to energy balance land surface models, Geoscientific Model Development, 10, 4257–4283, https://doi.org/https://doi.org/10.5194/gmd-

10-4257-2017, publisher: Copernicus GmbH, 2017.

Westra, S., Mehrotra, R., Sharma, A., and Srikanthan, R.: Continuous Rainfall Simulation: 1. A Regionalized Subdaily Disaggregation

Approach, Water Resources Research, 48, https://doi.org/10.1029/2011WR010489, 2012.345

22

https://doi.org/10.5194/hess-2020-464
Preprint. Discussion started: 30 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Wu, J.-L., Kashinath, K., Albert, A., Chirila, D., Prabhat, and Xiao, H.: Enforcing Statistical Constraints in Generative Adversarial Networks

for Modeling Chaotic Dynamical Systems, Journal of Computational Physics, 406, 109 209, https://doi.org/10.1016/j.jcp.2019.109209,

2020.

23

https://doi.org/10.5194/hess-2020-464
Preprint. Discussion started: 30 September 2020
c© Author(s) 2020. CC BY 4.0 License.


