Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Preprints
https://doi.org/10.5194/hess-2020-461
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2020-461
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  08 Oct 2020

08 Oct 2020

Review status
This preprint is currently under review for the journal HESS.

Modeling the integrated framework of complex water resources system considering economic development, ecological protection, and food production: A practical tool for water management

Yaogeng Tan1,2, Zengchuan Dong1, Sandra M. Guzman2, Xinkui Wang1, and Wei Yan3 Yaogeng Tan et al.
  • 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
  • 2Department of Agricultural and Biological Engineering, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States
  • 3School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China

Abstract. The rapid increase of population and urbanization is accelerating the consumption of the water resources that play an essential role in economic development, ecological protection, and food productivity (EEF). This study developed an integrated modeling framework to better identify the dynamic interaction, coevolution process, and feedback loops of the nexus across EEF systems by incorporating the multi-objective optimization and system dynamic (SD) models. The multi-objective model optimizes the water allocation decisions considering the adaptive status of both the whole system and each agent, while the SD model discloses the dynamics of the coevolution process and reciprocal feedback of the EEF system. The framework is applied to the Upper Reaches of Guijiang River Basin, China, in the context of interconnected systems considering the agents of economic development, ecological protection, and food productivity. Results show that the proposed framework enables the optimal water allocation decisions in each time step, and the SD model can adequately reveal the coevolution process and reciprocal feedback that differs in different stages in integrated, dynamic ways. The rapid economic growth intensifies the ecological awareness that cannot support such rapid development because of the conflict between environment and economic water uses. Once the economic growth rate decreased, water resources are able to support economic development because the ecological awareness is alleviated in this respect. The different water usages demonstrate the competitive mechanism, and the river ecological agent is the critical factor that affects the robustness of the model. The equal consideration of each water usage is the most beneficial to sustainable development. These results highlight the importance of water resources management considering multiple stakeholders and tradeoffs and give an insight into future dynamic changes of complex water systems.

Yaogeng Tan et al.

Interactive discussion

Status: open (until 03 Dec 2020)
Status: open (until 03 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Yaogeng Tan et al.

Yaogeng Tan et al.

Viewed

Total article views: 248 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
202 44 2 248 11 2 3
  • HTML: 202
  • PDF: 44
  • XML: 2
  • Total: 248
  • Supplement: 11
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 08 Oct 2020)
Cumulative views and downloads (calculated since 08 Oct 2020)

Viewed (geographical distribution)

Total article views: 237 (including HTML, PDF, and XML) Thereof 235 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 26 Oct 2020
Publications Copernicus
Download
Short summary
With the rapid growth of population and economy, the utilization of natural resources (especially water resources) is expanding, leading to the deterioration of ecological and environmental health, which is unsustainable for both the earth and human being. This paper proposed a methodology for sustainable development of water resources considering socio-economy development, food safety, and ecological protection. It can give references to policymakers for multiple departments.
With the rapid growth of population and economy, the utilization of natural resources...
Citation