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Abstract. Sustainable drainage systems (SuDS) are decentralized stormwater management practices that mimic the natural 

drainage processes. Their modeling is often challenged by insufficient data and unknown factors affecting the hydrological 

processes. This study uses machine learning methods to model directly the correlation between hydrological responses and 

rainfalls at fine temporal scales in two catchments of different sizes. A feature engineering method is developed to extract 

useful information from rainfall time series and is used in combination with a nested cross-validation procedure to derive high-10 

quality models and to estimate their generalization errors. The SHAP method is adopted to explain the basis of each prediction, 

which is then used for estimating catchment response time and hydrograph separation. The explanations of the predictions 

provide valuable insights into the models’ behavior and the involved hydrological processes. Thus, interpreting machine 

learning models is found as a useful way to study catchment hydrology. 

1 Introduction 15 

Sustainable drainage systems (SuDS), also known as low impact development (LID), green infrastructures (GIs), and sponge 

city, are decentralized stormwater management practices, which aim to promote onsite infiltration, storage, evapotranspiration, 

and reuse of stormwater (Fletcher et al., 2015; Jones and Macdonald, 2007). SuDS are effective in improving stormwater 

runoff quality, reducing runoff volume, and restoring natural hydrological regimes (Selbig et al., 2019; Trinh and Chui, 2013; 

Zhou, 2014). The commonly used SuDS include bioretention cells, green roofs, porous pavements, and rain barrels 20 

(Charlesworth, 2010; Gimenez-Maranges et al., 2020). It is essential to be able to predict the hydrological performance of 

SuDS and understand the involved hydrological processes to support their design optimization, planning, and policy making 

(Pappalardo and La Rosa, 2020; Yang and Chui, 2018). 

A number of numerical modeling methods of various complexities have been developed for SuDS (Elliott and Trowsdale, 

2007; Liu et al., 2014). The simplest methods are perhaps those developed based on the empirical equations for computing the 25 

drainage impact of different land uses in terms of peak flow or runoff volume. For instance, the rational method and the SCS 

runoff curve number method are modified and used in Montalto et al. (2007) and Damodaram et al. (2010) to study the 

effectiveness of SuDS at catchment scales. The empirical equation-based methods can be useful in preliminary designs to 

rapidly estimate some key performance metrics of SuDS. However, the variations in the detailed designs of SuDS can hardly 
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be reflected in these methods. For example, it is often unclear how to vary the curve number in the SCS method when the 30 

substrate depth of green roofs changes (Fassman-Beck et al., 2016). The relatively coarse temporal and spatial resolutions of 

the empirical equation-based methods also limit their applications in some cases. 

Process-based models are another type of methods for modeling SuDS, in which physically-based or empirical equations are 

used to characterize the involved hydrological processes. SuDS are typically represented in process-based models as 

hydrological functional units, whose properties are determined by a set of parameters. Commonly used models, including 35 

SWMM and MUSIC, are reviewed in Eckart et al. (2017) and Elliott and Trowsdale (2007). Ideally, a process-based model 

can be set up for a catchment using only measured values of its physical properties (Refsgaard and Storm, 1990). However, 

not all the parameters are measurable or can be measured at a reasonable cost. Model calibrations are often required and critical 

for SuDS (Platz et al., 2020). For example, in SWMM, the initial soil moisture deficit parameter of SuDS is often determined 

through calibration (Rosa et al., 2015). Model calibration, however, can be difficult and subject to considerable uncertainty 40 

(Schuol and Abbaspour, 2006).  

The application of process-based models faces several challenges. First, it can be difficult to find a suitable model 

representation for SuDS. The design of SuDS can vary greatly in their installation locations, layer compositions, and materials 

used. Models that are capable of modeling all these design variants may not exist. Modular form models, such as GIFMod, 

represent SuDS as a collection of hydrological functional components arranged in 1D- or 2D-grids, allowing different design 45 

variants to be modeled (Massoudieh et al., 2017). These models, however, are arguably more complex and do not necessarily 

produce more accurate predictions due to higher data requirements for model setup. Second, the complex hydro-environmental 

processes of SuDS and the surrounding environments are difficult to model using existing models. For instance, the macropore 

flow in the soil layer of SuDS is not accounted for in SWMM (Niazi et al., 2017), and models for assessing the performance 

of SuDS in shallow groundwater environment (Zhang and Chui, 2019) and cold climate (Johannessen et al., 2017) are limited. 50 

Third, the assumptions used in process-based models may be invalid in some cases due to unknown issues related to 

construction, maintenance, or changes in physical properties during the service life of SuDS. For instance, the permeability of 

porous pavement changes over time  (Yong et al., 2013), but it can be difficult to understand the processes that contribute to 

the clogging and the consequences. The complex environment processes or human errors, such as changes in ecological 

processes (Levin and Mehring, 2015) and inferior constructions, are often unknown to the modelers and difficult to predict. 55 

Therefore, other types of models that rely less on model assumptions are preferred under certain circumstances. 

Machine learning methods, also referred to as data-driven modeling, predictive modeling, and statistical learning, may be used 

to learn the statistical correlations between interested variables of a SuDS system, and do not require the involved processes 

to be specified (Solomatine and Ostfeld, 2008). Machine learning methods have been widely used in many subjects in 

hydrological studies (Maier and Dandy, 2000), e.g., rainfall-runoff modeling (Worland et al., 2018), evapotranspiration 60 

forecasting (Karbasi, 2018), and groundwater modeling (Jang et al., 2020).  

Only a few studies adopted machine learning methods to investigate the hydrological processes of SuDS. Eric et al. (2015) 

and Khan et al. (2013) used multiple linear regression models to predict the hydrological performance of SuDS, such as the 
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captured runoff volume. Li et al. (2019) used neural networks to model the correlation between the characteristics of rainfall 

events and the runoff volumes and peak flows. Note that most of the current studies are conducted at an event level, that the 65 

response of SuDS at each time step is not modeled. Yang and Chui (2019) showed that machine learning methods, such as 

deep learning methods and random forest methods, are useful for predicting runoff response of SuDS at fine temporal scales, 

provided that the model’s input variables are appropriate. However, a method to define these variables is not provided.  

The lack of popularity of machine learning models in SuDS-related studies may be explained by several factors. First, the 

hydrological responses of SuDS are controlled by relative long-term hydrometeorological conditions. Thus, modeling the 70 

responses of SuDS at fine temporal scales requires high-dimensional hydrometeorological time series to be used as input, 

which is difficult in machine learning (Nielsen, 2019). In addition, machine learning methods may not have clear advantages 

over the equation-based methods when applied to study the performance of SuDS at an event level. 

Second, machine learning models are often criticized for being lack of transparency, meaning that the basis for making each 

prediction is difficult to analyze  (Solomatine et al., 2008). However, such information is important for model diagnosis, 75 

understanding the involved processes, and supporting decision making. To explain the basis of model prediction in hydrology, 

previous studies have analyzed the rules used in model trees for making runoff prediction (Solomatine and Dulal, 2003), 

examined the temporal evolution of hidden values of neural networks (Kratzert et al., 2019), and referred to similar events 

occurred in the past using instance-based learning (Wani et al., 2017). The linear regression models are also explainable as the 

importance of an input feature can be measured by its weight. However, as shown in Lundberg and Lee (2017), the model 80 

explanation method, SHAP, is a unified approach for explaining individual predictions while satisfying three desirable 

properties (details are provided in Section 2.1.3), and the other explanation methods all have some drawbacks. The SHAP 

method, however, has rarely been used (if any) in hydrological studies. 

Third, it was not until recently, many observation data of SuDS and urban drainage systems became available (Eggimann et 

al., 2017), as they were relatively new technologies. The lack of data for training machine learning models naturally results in 85 

few studies applying these methods.  

This study has three objectives, corresponding to the three reasons explaining the insufficient use of the machine learning 

methods in SuDS modeling. (1) Evaluate the usefulness of machine learning methods in predicting the hydrological responses 

of SuDS at fine temporal scales. (2) Explain individual predictions using SHAP, and further analyze the representation of the 

hydrological processes learned by the models for catchment response time estimation and hydrograph separation. (3) Develop 90 

and present tools and methods for building higher quality machine learning models for SuDS-related studies and demonstrate 

the applications. 
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2 Methods and material 

2.1 Methods 

Let 𝑌! denote the hydrological response of SuDS at time 𝑡, and 𝑋!"#,! denote its hydro-environmental conditions measured 95 

between time 𝑡 − 𝑚 and 𝑡. 𝑌! can be a numerical or categorical random variable, e.g., the outflow rate or the binary observation 

of the dry/wet condition of the underdrain system of SuDS. 𝑋!"#,!  is a random vector, which can be written as 

(𝑃!"#, 𝑃!"#%&, ⋯ , 𝑃!"', 𝐸&, 𝐸(, ⋯ , 𝐸))* , where 𝑃!"+  is the rainfall depth measurement at time 𝑡 − 𝑖 , 𝐸+  is the 𝑖 th hydro-

environmental variable measured between time	𝑡 − 𝑚 and 𝑡, and 𝑇 is the transpose operator. Each element is termed as a 

feature.  100 

It is assumed that the relationship between 𝑌! and 𝑋!"#,! can be described by some unknown function 𝑓, as shown in Eq. (1), 

𝑌! = 𝑓1𝑋!"#,!2 + 𝜖 ,           (1) 

where, 𝜖 is a random error term.  

The task of machine learning is to find 𝑓5, the estimate of 𝑓, based on observed data of 𝑋!"#,! and 𝑌!, such that 𝑌!6  is an accurate 

prediction for 𝑌! (Eq. (2)), 105 

𝑌!6 = 𝑓51𝑋!"#,!2            (2) 

An 𝑓5  can be derived by fitting a machine learning method to the observed data of 𝑋!"#,!  and 𝑌! , 

71𝑥!"#,!,&, 𝑦!,&2, 1𝑥!"#,!,(, 𝑦!,(2,⋯ , 1𝑥!"#,!,), 𝑦!,)2:.  

2.1.1 Nested cross-validation for feature engineering, hyperparameter optimization, model selection, and generalization 
error estimation 110 

The runoff generation processes of SuDS are usually regulated by the antecedent soil moisture, which may be controlled by 

the hydro-environmental factors of the past few days or weeks. However, as the number of dimensions of 𝑋!"#,! increases, 

the amount of data required for model training may also increase rapidly for the fitted models to generalize properly to unseen 

data (Verleysen and François, 2005). To avoid training models directly on high-dimensional data, 𝑋!"#,! can be transformed 

to lower-dimensional features through some function 𝜑, and then 𝑔=, the function that maps the features to 𝑌!6 , is estimated (Eq. 115 

(3)). 

𝑌!6 = 𝑔=1𝜑(𝑋!"#,!)2           (3) 

The form of 𝜑 is arbitrary, and the process of defining 𝜑 is called feature engineering (Kuhn and Johnson, 2019). Summary 

statistics of the input variable, such as the mean and the standard deviation, are commonly used as its features. Other commonly 

used methods include principal component analysis and wavelet analysis. Nielsen (2019) reviewed the feature engineering 120 
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methods for time series data and showed that domain knowledge can be applied to generate useful features to solve problems 

involving financial or healthcare time series. 

In this study, 𝜑 is defined based on the knowledge of the hydrological processes of SuDS. SuDS generally have fast responses 

to rainfall due to their small sizes and the presence of overland flow and shallow interflow (DeBusk et al., 2011). Thus, 𝑌! is 

more affected by the recent hydro-environmental conditions than by that of the past, especially when 𝑌!  is a variable that is 125 

related to runoff. Therefore, it is possible to compress the high-dimensional rainfall time series (𝑃!"#, 𝑃!"#%&, ⋯ , 𝑃!"')* into 

a shorter representation by discarding information that is less relevant to predicting 𝑌!. This study assumes that the temporal 

distribution of rainfalls of the relatively distant past is of little relevance to 𝑌! while their accumulated depths are potentially 

important. The aggregated rainfall depths over different time periods, with an emphasis on compressing rainfalls of the distant 

past, are derived and used as input to machine learning models. 130 

𝐷!",,!"-, the aggregated rainfall depth between time 𝑡 − 𝑏 and 𝑡 − 𝑎, is calculated using Eq. (4), 

𝐷!",,!"- = ∑ 𝑃!"+-
+., ,           (4) 

where, 𝑎 and 𝑏 are integers, and 0 ≤ 𝑎 ≤ 𝑏. 𝑎 and 𝑏 are respectively chosen from set 𝑆, and set 𝑆-, as defined in Eq. (5) and 

Eq. (6), 

𝑆, = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 𝑙} ∪ {𝑥 ∈ ℕ|(∃𝑘 ∈ ℕ)[𝑥 = 𝑓(𝑘) + 𝑙 + 1	and	𝑥 ≤ 𝑚]},     (5) 135 

𝑆- = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 𝑙	or	𝑥 = 𝑚} ∪ {𝑥 ∈ ℕ|(∃𝑘 ∈ ℕ)[𝑥 = 𝑓(𝑘) + 𝑙	and	𝑥 ≤ 𝑚]},    (6) 

where, 𝑙,𝑚 ∈ ℕ% and 𝑙 ≤ 𝑚, and 

𝑓(𝑘) = ∑ 𝑢+/
+.' ,            (7) 

where, 𝑢' = 0, 𝑢& = 2, 𝑢+ = round(2 ∗ 𝑞+"&) for 𝑖 ≥ 2, and 𝑞 > 1.  

Computing 𝐷!",,!"- using the elements of 𝑆, and 𝑆- may be interpreted as placing a set of cut points along the time axis and 140 

computing accumulated rainfall depths between these points, as shown in Fig. 1a. The largest element in 𝑆, and the second 

largest element 𝑆- may be removed if they correspond to a cut point that is closer to 𝑡 − 𝑚 than to the other neighboring cut 

points, because the intervals form between two neighboring cut points should not become smaller when scanning the time axis 

from 𝑡 through 𝑡 − 𝑚. 

The elements of 𝑆, and 𝑆- are determined by 𝑚, 𝑙, and 𝑞. Intuitively, 𝑙 specifies a period between 𝑡 − 𝑙 and 𝑡, the rainfalls 145 

recorded during which are considered to be recent and important for predicting 𝑌!. 𝑚 specifies a lookback period, that rainfall 

time series recorded outside the period between 𝑡 − 𝑚 and 𝑡 are regarded as irrelevant to 𝑌!. 𝑞 corresponds the importance of 

a more recent rainfall record for predicting 𝑌!  when compared to a record in the proceeding interval (formed by two 

neighboring cut points, as shown in  Fig. 1a). The length of the intervals proceeding 𝑡 − 𝑙 roughly formed a geometry sequence 

with the common ratio 𝑞. 150 
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There are several options to select (𝑎, 𝑏) pairs from 𝑆, and 𝑆- for calculating the rainfall depth features. (1) 𝑎 takes each value 

in 𝑆,, and 𝑏 takes the smallest value in 𝑆- that satisfies 𝑎 ≤ 𝑏. (2) 𝑎 = 0, and 𝑏 takes each value in 𝑆-. (3) 𝑏 takes each value 

in 𝑆-, and 𝑎 = 𝑏 when 𝑏 ≤ 𝑙 and 𝑎 = 0 when 𝑏 > 𝑙. (4) Similar to (3), except 𝑎 = 𝑙 + 1 when 𝑏 > 𝑙. An example is given in  

Fig. 1a. The (𝑎, 𝑏) pairs may also be drawn randomly from 𝑆, and 𝑆-, as long as 𝑎 ≤ 𝑏 is satisfied. 

The collection of 𝐷!",,!"-  are compact representation of the original rainfall time series. The resolution and the encoded 155 

information of this representation are controlled by 𝑚, 𝑙, and 𝑞. An example is given in Fig. 1b, where the number features 

decreased rapidly when 𝑞 increases. However, 𝑚, 𝑙, and 𝑞 must be set before training machine learning models. Thus, they 

are termed as feature engineering “hyperparameters” instead of “parameters”, which can be learned during training. The term, 

“hyperparameters” also appear in many machine learning methods. They control the model complexity and learning behaviors, 

e.g., the number of neighbors in K-Nearest neighbor method and the number of trees in random forests method (Kuhn and 160 

Johnson, 2013). 

The effectiveness of a set of hyperparameters can be assessed by evaluating the prediction errors of the resulted model on test 

datasets. The 𝑘-fold cross-validation (CV) approach is often used to estimate prediction errors when observed data is limited 

(Zheng et al., 2018). In CV, the observed data are randomly split into 𝑘 folds, and for each iteration, 𝑘 − 1 folds are used for 

fitting machine learning models and the remaining fold (i.e., the validation fold) is used to assess their prediction errors, until 165 

all folds have been used for model evaluation once. The CV approach can also be used for choosing between models trained 

using different machine learning methods. However, it should be noted that prediction errors obtained for the validation folds 

should not be interpreted as the errors expected for unseen data, i.e., the generalization error (Cawley and Talbot, 2010). 

This study adopts a nested CV scheme for hyperparameter optimization and generalization error estimation, as shown in Fig. 

1c. The data is first split into multiple sets of training (outer) and test folds. At each outer CV iteration, a training (outer) fold 170 

is further split into multiple training (inner) and validation folds, which are used in the inner CV. At inner CV iterations, 

different machine learning methods with different sets of hyperparameters are trained on the training (inner) folds and tested 

on the corresponding validation folds. The machine learning method and hyperparameters that minimize the average inner CV 

errors are then selected and fitted to the training (outer) fold. The fitted model is then evaluated using the test fold of outer CV 

iteration. Thus, at each outer CV iteration, the optimal machine learning method and hyperparameters are identified, and an 175 

outer CV error and a set of inner CV errors are obtained. The outer CV error can be considered as an estimation of the 

generalization error.  

It should be noted that the optimal method and hyperparameters may vary at different outer CV iterations. The outer CV error 

reflects the effectiveness of the entire process for deriving a machine learning model using a given dataset (i.e., the outer 

training fold), which includes the selection of candidate machine learning methods and hyperparameters sets, the feature 180 

engineering methods, and the inner CV procedures for model comparison and selection. Thus, the specific optimal methods 

and hyperparameters identified at different outer CV iterations are not very important. These configurations need to be re-

estimated by treating the entire dataset as a training (inner) set and applying the aforementioned process for deriving a machine 

learning model. 
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2.1.2 Tree boosting methods and XGBoost 185 

Tree boosting methods presented in Friedman (2001) is used in this study to build machine learning models. The XGBoost 

machine learning software is employed for model training for its improved regularization methods, high computational 

efficiency, and ability to achieve state-of-the-art results on many machine learning tasks (Chen and Guestrin, 2016; Chen and 

He, 2020; Nielsen, 2016). Tree boosting methods build multiple regression trees that the final prediction of an input is the sum 

of the predictions of individual trees, as shown in Eq. (8) (Chen and Guestrin, 2016), 190 

𝑦=+ = 𝜃(𝑥+) = ∑ 𝑓/(𝑥+)0
/.& , 𝑓/ ∈ ℱ,          (8) 

where, 𝐾  is the number of regression trees, also known as the number of boosting iterations, and ℱ = 7𝑓(𝑋) =

𝑤1(3):	(𝑞:ℝ# → {1,2, … , 𝑇}, 𝑤 ∈ ℝ*) is the functional space of regression trees. 𝑇 is the number of the leaves of the tree. 𝑤+ 

is the score of the 𝑖th leaf, 𝑤+ ∈ ℝ. 𝑞 represents a tree structure that maps the 𝑚-dimensional input variable 𝑋 to a leaf index. 

∅(𝑋!"#,!) is used as the input variable in this study. 195 

The trees are built to minimize the objective function in Eq. (9), 

ℒ(𝜃) = 𝐿(𝜃) + Ω(𝜃),           (9) 

where 𝐿 is the training loss; 𝐿(𝜃) = ∑ (𝑦+−𝑦=+)()
+.& , where 𝑛 is the number of observations in the training dataset. Ω is the 

regularization term that penalizes complex models. Ω(𝜃) = ∑ 𝜔(𝑓/)0
/.& ,	 and 𝜔(𝑓/) = 𝛾𝑇 + &

(
𝜆 ∑ 𝑤5(*

5.& . 𝛾  and 𝜆  are 

hyperparameters that need to be set before training. The regression trees are built in a stage-wise manner, that one new tree is 200 

added to the ensemble of trees built in pervious steps at a time. The methods used in XGBoost to derive the tree structures can 

be found in Chen and Guestrin (2016), and Mitchell and Frank (2017). 

A number of hyperparameters, besides 𝛾 and 𝜆, are used in XGBoost to regulate the tree structure and the learning behavior. 

A complete list of the hyperparameters can be found in the documentation of the XGBoost software (Chen and He, 2020). The 

optimal set of hyperparameters can be identified by evaluating and comparing the CV errors of a number of candidate sets or 205 

by applying various optimization methods, such as Bayesian optimization (Xia et al., 2017). The XGBoost hyperparameters 

and the feature engineering hyperparameters are optimized together in this study through grid search, where the inner CV 

errors of every considered candidate set are compared. 

2.1.3 Interpreting model predictions using SHapley Additive exPlanations (SHAP) 

The SHapley Additive exPlanations (SHAP) method proposed by Lundberg and Lee (2017) is used in this study to explain the 210 

of basis of individual predictions, i.e., the contribution of each feature to each prediction 𝑓(𝑥), where 𝑓 is a machine learning 

model and 𝑥 is a sample of random variable 𝑋, which has 𝑀 features. The attributions derived for each feature of 𝑥 are termed 

as SHAP values. The SHAP value is related to the Shapley value in cooperative games in game theory, which is defined as the 

average marginal contribution of a player across all coalitions that the player is a member of (Biecek and Burzykowski, 2020; 
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Serrano, 2007). In machine learning, a feature’s SHAP value for a particular prediction describes its contribution to that 215 

prediction compared to the average prediction for the dataset (Molnar, 2020). 

The SHAP value is the only local feature attribution measurement that is locally accurate, consistent, and compliant with the 

missingness requirement, among all the measurements defined in the family of additive feature attribution methods (Lundberg 

et al., 2018). The local accuracy property refers to that the sum of the feature attributions equals 𝑓(𝑥). The consistency property 

states that the attribution of a feature does not decrease when this feature has the same or a larger impact on the prediction 220 

when the model changes. The missingness property requires the features that have no effects on 𝑓(𝑥) to receive an attribution 

of 0 (Lundberg et al., 2018). The SHAP value of feature 𝑖 for sample 𝑥 and model 𝑓, ∅+(𝑓, 𝑥), can be computed using Eq. (10), 

∅+(𝑓, 𝑥) = ∑ &
6!
[𝑓8(𝑃+9 ∪ 𝑖) − 𝑓8(𝑃+9)]9∈ℛ ,         (10) 

where 𝑓8(𝑆) = 𝐸[𝑓(𝑋)|do(𝑋< = 𝑥<)], 𝑆 is a set of features of random variable 𝑋, and 𝑥< is a vector containing the entries of 

𝑥 corresponding to the features in 𝑆(Lundberg et al., 2020). 𝑅 is a random ordering of all the features, and ℛ is the space of 225 

all possible orderings. 𝑀 is the number of features of 𝑋. 𝑃+9 is the set of all features that come before 𝑖 in ordering 𝑅.  

The SHAP values, however, can be extremely computationally expensive to calculate (Lundberg et al., 2018). The 

TreeExplainer algorithms developed in Lundberg et al. (2020) are efficient in calculating the SHAP values for tree-based 

models. TreeExplainer is designed such that the unique structures of trees are utilized to simultaneously account for all possible 

subset 𝑆, allowing the SHAP values to be computed in polynomial time. More details on TreeExplainer can be found in 230 

Lundberg et al. (2020). 

TreeExplainer is employed in this study to calculate the SHAP values for the XGBoost models to assess the contribution of 

the rainfall depth features and the other hydro-environmental features to each prediction. The SHAP values reflect the 

contributions of the rainfalls of different periods to the runoff at the current time step, which is frequently studied in rainfall-

runoff modeling (Beven, 2012). In this study, the temporal dynamics of the rainfall-runoff relationship are visualized using 235 

hydrographs that present the SHAP value composition of the predicted flow rate at each time step (thanks to the local accuracy 

property). 

The contribution of rainfall depth recorded at time 𝑡 − 𝑘 to a prediction 𝑓(𝑥), 𝜏=!"#(𝑓, 𝑥), can be calculated using Eq. (11), 

𝜏=!"#(𝑓, 𝑥) = ∑ ∅>!"$,!"&(𝑓, 𝑥)
?!"#

@!"$,!"&(+,5)∈A|+C/C5 ,        (11) 

where, 𝑆 is the set of (𝑖, 𝑗) that is used for calculating rainfall depth features 𝐷!"+,!"5 used in 𝑓, ∅>!"$,!"&(𝑓, 𝑥) is the SHAP 240 

value for 𝐷!"+,!"5. 𝑝!"/ is the observed value of 𝑃!"/. 𝑑!"+,!"5 is the observed value of 𝐷!"+,!"5. Eq. (11) essentially means that 

∅>!"$,!"&(𝑓, 𝑥) is distributed proportionally among 𝑃!"/ according to their values. 𝜏=!"#(𝑓, 𝑥) is useful for understanding the 

continuing impact of a rainfall depth record on the runoff or further attributing the runoff to rainfall of each time step. 

The feature engineering hyperparameters, such as 𝑚, 𝑙, and 𝑞, carry physical meaning (as defined in Section 2.2.1 and Table 

1), it might be useful to investigate how their values affect the inner CV error of the resulted models. Thus, an XGBoost model 245 
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is built in this study to predict the inner CV error based on the feature engineering hyperparameters. The attributions of the 

hyperparameters to the CV errors are then calculated using the SHAP method. The results can be useful for finding new sets 

of hyperparameters of higher qualities and identifying the physical factors that are related to the runoff generation processes, 

e.g., the duration of time over which a rainfall event affects the runoff generation process. 

2.1.4 Comparing with other machine learning models and process-based models 250 

The XGBoost models built in this study are compared with models that have simpler structures, i.e., linear regression models. 

This is to confirm that more sophisticated models have reasonably good performance and can outperform some “baseline” 

models (Chollet and Allaire, 2018). The linear models are built though a nested CV procedure, where the CV folds and the 

candidate hyperparameters are the same as that of the XGBoost models. 

The Storm Water Management Model (SWMM) is a widely used process-based hydrological/hydraulic model for modeling 255 

stormwater runoffs in urban catchments (Rossman, 2015). The SWMM model developed in Lee et al. (2018a) is compared to 

machine learning models built for the same catchment in this study. In SWMM, a catchment is divided into multiple 

subcatchments connected by drainage networks, and SuDS are modeled as a combination of hydrological functional layers 

(Rossman and Huber, 2016). 

2.2 Case studies 260 

Two urban catchments of different sizes, data availabilities, and types of SuDS are investigated in this study. It is challenging 

to build process-based models for either site due to the lack of information on the physical properties of the catchment. The 

same machine learning methods are applied to both sites to show their applicability. Results obtained for site 1 are analyzed 

in detail in the results sections. The results of site 2 are presented in Section 3.4, where the performances of different types of 

models are compared. 265 

2.2.1 Washington Street SuDS site (WS) 

Site 1 locates in Washington Street, Geauga County, Ohio, U.S., where multiple types of SuDS were built to treat stormwater 

runoffs generated by a commercial building and the nearby parking lot, as shown in Fig. 2a (Darner et al., 2015). Runoffs from 

approximately half of the roof of the commercial building, i.e., an impervious area of 316 m2, were drained to a rain garden 

with a surface area of 37 m2. The 762 m2 parking lot was constructed using porous pavements to permit infiltration. Site 1 is 270 

referred to as “WS” hereinafter. 

The meteorological and hydrological conditions of WS were monitored by the U.S. Geological Survey (USGS) since 2009 

(Darner et al., 2015; Darner and Dumouchelle, 2011). The outflows from the SuDS were collected by three flumes, inside 

which the water levels were measured by the attached pressure transducers. The water level measurements were then converted 

to flow rates using stage-discharge rating curves. Flumes 1, 2, and 3 respectively measured the flow rate of the surface runoff 275 
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from the parking lot, the overflow from the surface layer of the rain garden, and the underdrain flow from the parking lot (Fig. 

2a). Rainfalls were monitored using an onsite weather station. 

The hydrological performances of SuDS in WS were investigated in Darner and Dumouchelle (2011) and Darner et al. (2015). 

Building process-based models for WS can be challenging because of the uncertainties of the hydrological processes, i.e., the 

rain garden was not isolated from the gravel storage layer of the porous pavements, permitting an unknown amount of 280 

stormwater received by the rain garden to enter the porous pavements’ underdrain system. Thus, machine learning methods 

may be useful in this case. 

In WS, the rainfall depths were recorded at 10-minute intervals. The water levels were measured every minute and were 

recorded at least every 10 minutes and when the water levels changed. Figure 2b shows the availability of the rainfall-runoff 

data recorded at the regular 10-minute intervals between 2010 to 2013 for the warm season, i.e., from April to October (Darner 285 

et al., 2015). Runoffs were not detected in flume 1 throughout the entire period. The gaps in the rainfall-runoff records in Fig. 

2b correspond to missing values caused by technical issues or no record for the periods without runoffs. However, the cause 

of each missing value was unknown in this study. The rainfall-runoff data recorded before the large gap in rainfall data in July 

2013 are used for machine learning, for which the few missing rainfall depth values are filled with 0. The total runoff of WS 

is computed as the sum of the runoffs of flumes 2 and 3, where the missing runoff values of flume 2 are filled with 0 (as 290 

overflows from the rain garden occurred infrequently). The total runoff observations are considered missing if the observations 

for flume 3 were unavailable. 

In the rainfall-runoff models built for WS, the output variable 𝑌! is the flow rate of the total runoff measured at the regular 10-

minute intervals. The input variable 𝜑(𝑋!"#,!) is a vector of the rainfall depth features calculated using Eq. (4), and optionally 

the cumulative rainfall depth recorded since the beginning of the onsite monitoring and the binary vectors indicating which 295 

month the rainfall event was in (using one-hot encoding). The cumulative rainfall depth feature is associated with the long-

term runoff load of SuDS, which can be useful information for predicting their hydrological properties, as they may evolve 

over time (Yong et al., 2013). The seasonality feature is useful if the hydrological properties of SuDS varied in different 

seasons. 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛  and 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛  control whether to include the optional features or not. The feature 

engineering hyperparameters and their possible values are listed in Table 1. Note there are four options to define (𝑎, 𝑏) pairs 300 

for generating the rainfall depth features (Section 2.1.1). Thus, the model training methods presented below are applied four 

times, each corresponded to an option. 

The nested CV procedure is used to optimize the hyperparameters. The number of both the outer and inner CV folds is set to 

5. Independent rainfall events are identified using a 24-hour dry spell (Guo and Senior, 2006). The CV folds are created such 

that (1) the data of each independent rainfall event are grouped together and allocated in the same fold, and (2) the peak flows 305 

of the rainfall events in the training (inner), validation, and test folds follow roughly the same distribution (i.e., the stratified 

sampling method as presented in Zeng and Martinez (2000)). This is to ensure that there are no data leakage and the data in 

each fold are representative. 100 sets of feature engineering hyperparameters are first randomly generated. The inner CV errors 

of the models resulted from each unique combination of the feature engineering hyperparameters and the XGBoost 
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hyperparameters are then evaluated. The optimal combinations are those resulted in models with the lowest mean inner CV 310 

error, i.e., the “best models”. Alternatively, if minimizing the prediction errors on different validation folds is considered as a 

multi-objective optimization problem (Sean, 2013), an ensemble of optimal XGBoost models may be found on the Pareto front 

using the fast non-dominated sorting method (Deb et al. 2002). 

The rainfall-runoff relationships learned by the models are interpreted using SHAP in Section 3.3. The XGBoost models are 

compared to the linear regression models in Section 3.4. 315 

2.2.2 Shayler Crossing Watershed (SHC) 

The second study site is the Shayler Crossing Watershed (SHC) located east of Cincinnati, OH, U.S., as shown in Fig. 2c. SHC 

has an area of around 1 km2, and its land-use type is primarily residential. The drainage system of the SHC consists of conduits 

and channels, detention ponds, dry ponds, and wet ponds (Lee et al., 2018a). In SHC, the stormwater runoffs generated by the 

indirectly connected impervious areas (such as the sidewalks) are treated by the nearby pervious areas, which are termed as 320 

buffering pervious areas (BPA) and function as SuDS (Lee et al., 2018b). An SWMM model was built in Lee et al. (2018a), 

where SHC was divided into 191 subcatchments, and the BPA were modeled as vegetated swales. A considerable amount of 

data on the physical properties of the catchment is required to set up such a spatially refined model. The model was calibrated 

in Lee et al. (2018a) using 2 months of 10-minute runoff data recorded from July to August 2009. In this study, the 10-minute 

rainfall-runoff data recorded in July 2009 is used for training machine learning model, and the data of August 2009 is used for 325 

testing. The candidate hyperparameters are the same as that of WS, except that 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 and 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛 are 

set to 0. The nested CV scheme is not used due to the small size of the dataset. The optimal set of hyperparameters are simply 

identified by using a validation fold derived from the July 2009 data. The XGBoost models is compared with the linear models 

and SWMM model in Section 3.4. 

3 Results and discussion 330 

3.1 Hyperparameter optimization and model training 

In this study, the inner CV errors of models resulted from different combinations of feature engineering and XGBoost 

hyperparameters (Table 1) are compared to identify the optimal sets of hyperparameters at each outer CV iteration. As an 

example, the model training processes for three sets of hyperparameters in an outer CV iteration for WS are shown in Fig. 3a, 

where the feature engineering hyperparameters are fixed and the XGBoost hyperparameters vary in different sets. The solid 335 

lines correspond to the mean of the prediction errors estimated in the 5 inner CV iterations, and the width of the ribbons 

correspond to their standard deviations. The model’s prediction accuracy on both the training folds (inner) and the validation 

folds initially improved rapidly with the increased number of boosting iterations for all hyperparameter sets. However, as more 

boosting iterations were used, the model’s validation errors started to increase for hyperparameter sets 2 and 3, which is a clear 

indication of overfitting. The optimal number of boosting iterations of each set of hyperparameters was that corresponded to 340 

https://doi.org/10.5194/hess-2020-460
Preprint. Discussion started: 7 October 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

the lowest validation errors. Note that an early stopping rule was implemented, that the number of boosting iterations evaluated 

might be fewer than nrounds (see Table 1). The effectiveness of a set of hyperparameters can be measured by its validation 

errors associated with the optimal number of boosting iterations, which are termed as the inner CV errors. 

The prediction errors on different validation folds can vary considerably, as indicated by the width of the ribbons. This suggests 

that the evaluation results for different sets of hyperparameters could be affected by the randomness of the data splitting 345 

methods. Thus, it is important to train and validate the models repeatedly on various splits of the data to understand the 

uncertainties related to sampling, and to lower the risk of choosing models that simply exploit the random variation of the data. 

5-fold CV and the stratified sampling method were used in this study to estimate the model’s prediction accuracy, considering 

the computational efficiency and the stability of the estimate. Data of the same rainfall events were also grouped in the 

resampling process to avoid data leakage. Other resampling methods, such as repeated K-fold CV, bootstrapping, leave-one-350 

out CV, and leave-group-out CV may also be used, and their ability in identifying high-quality models can be compared (Kuhn 

and Johnson, 2013). Nevertheless, whether the methods used in this study can identify high-quality models is investigated in 

Section 3.2. In-depth discussions on resampling methods and model’s performance estimate can be found in Bengio and 

Grandvalet (2004) and Zhang and Yang (2015). 

The inner CV errors associated with a set of feature engineering hyperparameters when evaluated together with every set of 355 

the XGBoost hyperparameters are shown in Fig. 3b. Although the mean of CV errors (shown as dots) varied for different sets 

of XGBoost hyperparameters, the differences among them were small when compared to variations of the estimated errors in 

different inner CV iterations (shown as vertical bars). Thus, the difference in the mean of CV errors may be affected by the 

randomness of the data, besides the true effect of the hyperparameters. Kuhn and Johnson (2013) suggest the simplest model 

should be selected among a group of models with similar prediction accuracies, e.g., when the mean of CV errors of a model 360 

is within one standard deviation of the errors of the other models. Thus, in this study, in addition to selecting the model with 

smaller mean inner CV error for each set of feature engineering hyperparameters (i.e., the “best” models), the non-dominated 

models are also chosen and considered as optimal. Here, the models were ranked according to the error of each inner CV 

iteration using the fast non-dominated sorting method proposed in Deb et al. (2002). A model is non-dominated if there is no 

model that performed better in every inner CV iteration among the considered models. 365 

In this study, the values of feature engineering hyperparameters are generated randomly using hydrological knowledge, and 

those values carry physical meaning. Thus, it is reasonable to assume that if the hyperparameter values and the physical 

conditions of the site are aligned with each other, those values should result in higher-quality models. This pattern should be 

consistent for different splits of the data. Figure 4a compares the mean inner CV errors of the models resulted from different 

sets of feature engineering hyperparameters obtained in different outer CV iterations. The models of different sets of 370 

hyperparameters are sorted by their mean inner CV error obtained during the 5 outer CV iterations. An increasing trend can 

be observed between the inner CV error of each outer iteration and the overall rank of the models, despite the large variations 

in the estimated inner CV errors among different outer CV iterations. Figure 4b normalizes the differences in the inner CV 

errors by showing their ranks within each outer CV iteration. It is clear that the effectiveness of different sets of feature 
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engineering hyperparameters is consistent for different splits of data that are used for training and validation, i.e., a high-quality 375 

model built on one dataset is likely to perform well on a new dataset. Thus, it is meaningful to optimize the values of the 

feature engineering hyperparameters, rather than using random values. The consistency also suggests that the resampling 

method used in this study is appropriate and the data quality is satisfactory, albeit the noticeable variations of different folds 

related to its small size. The interpretation of the optimal feature engineering hyperparameters is further investigated in Section 

3.3. 380 

3.2 Evaluation of fitted models 

The optimal XGBoost hyperparameters for each set of feature engineering hyperparameters are found in the previous section 

through a grid search. Note that the number of models compared is considerably large, as the prediction errors of the models 

obtained at each boosting iteration are compared in order to identify the optimal number of boosting iterations. Comparing a 

large number of models on the same validation dataset is subject to overfitting the model selection criterion, which means that 385 

the model selected for having good validation performance may be selected by coincidence and may generalize poorly to 

unseen data (Cawley and Talbot, 2010; Ng, 1997). Cawley and Talbot (2010) suggest that model selection may be considered 

as an integral part of the model fitting, and it is useful to test the selected model on a holdout dataset. Therefore, this study 

adopts nested CV procedures to test the quality of the selected models on the test folds. The outer CV error may be considered 

as an estimate of the model’s generalization error.  390 

Section 3.1 reports that the hyperparameter optimization process can be compromised by the considerable variations of the 

estimated prediction errors at different inner CV iterations, which are related to the randomness involved in resampling small 

datasets. The outer CV error is also useful in this case for verifying if high-quality models are found through hyperparameter 

optimization. 

The models to be evaluated on the test folds are trained on the training folds (outer) using each set of feature engineering 395 

hyperparameters and its optimal XGBoost hyperparameters. Figure 5 compares the mean inner CV error and the mean outer 

CV error of models built with each set of hyperparameters obtained in the outer CV iterations. These two quantities are 

positively correlated, suggesting that good models identified in the inner CV iterations generalized well to unseen data. Thus, 

there is no clear overfitting in the model selection criterion and the hyperparameter optimization procedure is proved to be 

useful in finding higher quality models. Similar results were obtained for models built with different rainfall depth feature 400 

generation options. Further investigation on the topic of overfitting in the model selection criterion in hydrological modeling 

is recommended. 

The estimated inner and outer CV errors varied considerably at different outer CV iterations, as indicated by the vertical and 

the horizontal lines in Fig. 5. Although the variations do not affect the conclusion on the effectiveness of the model fitting 

methods (which is characterized by the mean errors), it is important to keep in mind that the estimated generalization error 405 

(i.e., the outer CV error) is uncertain. Smaller variations are expected if more data are available, i.e., when the distributions of 

the data in the training, validation, and test folds are similar to each other. However, data for machine learning are often limited 
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in hydrological studies (Zheng et al., 2018). The association between the volume of data and the uncertainty in generalization 

error estimation in hydrological modeling deserves further investigation. The nested CV procedures used in this study are 

recommended for evaluating the model fitting methods and understanding the uncertainty of the estimated generalization error.  410 

Two sets of models are selected at each outer CV iteration, i.e., the “best” model built with the hyperparameters that minimize 

the inner CV error, and the ensemble of non-dominated models (see Sections 2.2.1 and 3.1 for definition). The hydrographs 

predicted by these models are compared to the observed hydrographs for large runoff events in the test folds in Fig. 6, where 

the mean, minimal, and maximum predictions of the model ensembles are shown. The performance metrics indicate that both 

the results of the best models and the mean of the ensemble models fit well to the observations (Krause et al., 2005). 415 

Upon visual inspection, the rising and falling limbs of the hydrographs are well predicted, and low flows are well matched. 

The models underpredict peak flows for some events. This may be caused by lack of similar instances in the training set. For 

example, the first runoff event in the first outer CV iteration in Fig. 6 was caused by a rainfall event with a relatively small 

peak rainfall intensity compared to the other runoff events of similar magnitudes. Thus, the models underpredicted this runoff 

event. Also, note that the data is not error-free, a gap fill process was performed prior to model training (see Section 2.2.1). 420 

Training independent models for high flow predictions may relieve the problem of under-prediction. It would, however, lead 

to even smaller datasets for model training, and it is hard to determine in which case these high flow models should be used. 

Nevertheless, the quality of the models examined may be considered satisfactory. Simple model prediction post-processing 

methods, such as the k-nearest neighbor based method (Wani et al., 2017), may be useful for further improving the prediction 

accuracy. 425 

The best models and non-dominated models are similar to each other, as shown in Fig. 6. The prediction intervals that 

characterize the differences among the ensemble members are hardly visible. This indicates that the good quality models built 

on different features learned to make similar predictions. It is interesting to investigate whether the features of these models 

share similar traits. This question is studied in Section 3.3.1. The ensemble models did not seem to have advantages over the 

best models, as they did not improve the prediction accuracy or give useful prediction intervals. Thus, the findings do not 430 

support the hypothesis proposed in Section 3.1, that selecting the non-dominated models instead of the best model increases 

the chance of finding better-generalized models. Note that the conclusion is only applied to this case study. In practice, 

ensembles can be formed by different types of models, rather than different versions of XGBoost models used in this study. 

However, as previously mentioned, evaluating too many models is subject to overfitting the model selection criterion, and can 

be computationally expensive. 435 

The predicted and observed flow rates of the best models for the test folds are compared in Fig. 7a. Besides the high correlations 

between the predicted and the observed values, the variation of the temporal distribution of the data is also noticeable, 

especially for the high flows. This is because high flows triggered by large storms are rare in each year. No clear patterns can 

be detected between the prediction error and the magnitude of the runoff event or the year of occurrence, as shown in Fig. 7b. 

Thus, a bias-correction model that only looks at the predicted values may not be useful in this case. 440 
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3.3 Factors influential to prediction accuracy and representations of hydrological processes learned by the models 

3.3.1 Correlation between feature engineering hyperparameters and models’ prediction accuracy 

Different sets of feature engineering hyperparameters were used in previous sections to build rainfall-runoff models. This 

section builds XGBoost models to investigate the correlation between feature engineering hyperparameters and the quality of 

the resulting rainfall-runoff models. The models built here are termed as explanation models, the function of which is to infer 445 

the physical factors that are related to the runoff generation processes. An explanation model was trained for each outer CV 

iteration that was used for training the rainfall-runoff models in previous sections. The input variable is the feature engineering 

hyperparameters (Table 1), and the output is the estimated inner root-mean-square error (RMSE) of the “best” model. 100 

samples were available for each explanation model (corresponding to 100 sets of feature engineering hyperparameters). Each 

model was tuned using a 10-fold CV, repeated 5 times, where 90 samples were used for training and validation, and 10 samples 450 

were reserved for testing. The models generally had good fits to the data. The goodness-of-fit of the model of outer CV iteration 

#3 is shown in Fig. 8a as an example. 

The SHAP values were computed for each sample and each model. The results for the model of outer CV iteration #3 are 

shown in Fig. 8b. 𝑙 has the largest impact on prediction accuracy, as shown by the mean SHAP value on the y-axis. The other 

features had smaller impacts on the prediction accuracy, but their ranks were different for models of different outer CV 455 

iterations (not shown). Some interesting patterns can be detected in the correlation between SHAP value and are consistent for 

all the models at different outer CV iterations. For example, smaller 𝑙 is associated with lower SHAP value, corresponding to 

decreases in inner CV RMSE.  Positive SHAP values are associated with 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 = 1, suggesting that prediction 

accuracy decreased when accumulated rainfall depth since the beginning of observation was used as an input variable. The 

𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑜𝑛 feature has little impact on the model output. The dependence between the feature values and SHAP values 460 

are also depicted in Fig. 8c. The color of the dots represents the predicted inner CV RMSE which has no obvious correlations 

with the feature values. This implies that the predicted inner CV RMSE is not dominated by a single feature. Thus, building 

models involving all the features is essential for understanding their impact on the inner CV RMSE. The other patterns shown 

in Fig. 8c, except the positive correlation between 𝑙 and the inner CV RMSE, are inconsistent across models built for different 

outer CV iterations (not shown). 465 

The SHAP values and the dependence information can be used to understand the models’ behavior and optimize 

hyperparameters. For instance, new models can be built for WS with smaller 𝑙 , 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 = 0 , and 

𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛 = 0. These models are expected to deliver good prediction accuracies. However, this needs to be confirmed 

using test datasets (Kuhn and Johnson, 2013). The results also indicate that the runoff is most related to recent rainfalls (i.e., 

smaller 𝑙 ), and the model quality deteriorates when redundant variables are used in modeling. The impact of 470 

𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 and 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛 on the runoff generation process is not profound. The conclusion is, of course, 

affected by our ability to estimate the true prediction accuracy and the accuracy of the explanation models. Also, note that the 

redundant variables in XGBoost may be useful in other machine learning methods. Further confirmation of the inferred 
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correlations between features and runoff response requires an evaluation of different types of methods and reasoning with 

hydrological theories. 475 

3.3.2 Hydrolgoical processes according to the machine learning models 

The SHAP values were computed for each rainfall depth feature 𝐷!",,!"- and each prediction. The average SHAP value across 

all predictions was computed for each 𝐷!",,!"-, which was then distributed equally among the rainfall depth variables 𝑃!"+ 

recorded between time 𝑡 − 𝑎 and 𝑡 − 𝑏. Such value computed for 𝑃!"+ specifies the average contribution of 𝑃!"+ to the runoff 

at time step 𝑡, which may also be interpreted as the average contribution of 𝑃! to the runoff 𝑖 time steps into the future. The 480 

average contributions of 𝑃! for runoffs at different time steps ahead in various models are shown in Fig. 9. Each time step is 

10 minutes. Each subfigure corresponds to the results of the models obtained during a specific outer CV iteration. All the 

models find 𝑃! to have higher impacts on the runoffs of the next few time steps. The impact decreased rapidly for runoffs that 

are further into the future (note that x-axis is in pseudo-logarithm scale), suggesting that the catchment does not exhibit a 

strong “memory effect” (Kratzert et al., 2018) and the temporal scales involved in the runoff generation processes are short. 485 

The best models and the mean of ensemble models (as defined in Section 3.2) suggest that 𝑃! has the highest impact on the 

runoffs at one time step ahead. This result indicates that the average response time of the catchment is about one time step, 

i.e., 10 minutes, which is reasonable considering its small size. 

The average contributions assigned by the ensemble models varied noticeably in different outer CV iterations, which was 

caused by random sampling of feature engineering hyperparameters. Nevertheless, the variations in the SHAP values are 490 

canceled out when the mean of the ensemble models is used for prediction (note that SHAP values are additive). The 

contribution values assigned by the best model are similar to that of the mean of the ensemble models, suggesting that the best 

model found by minimizing the mean inner CV error can be regarded as an average of the plausible explanations of rainfall-

runoff processes of the catchment. The outer CV errors of the ensemble models are shown as the intensity of the color in Fig. 

9, where no clear correlations between the assigned SHAP values and the estimated generalization error can be detected, as 495 

indicated by the small variations in the intensity of color in each subfigure. 

The SHAP values allow localized explanation for each prediction. As SHAP values satisfy local accuracy property, it is 

possible to decompose a flow rate prediction into flow rates contributed by each feature. This is useful for hydrograph 

separation (Pelletier and Andréassian, 2020), examples of which for large, medium, and small runoff events are shown in Fig. 

10. The model analyzed here is the best model of outer CV iteration #3. 500 

The peak runoffs in large storm events are mostly controlled by recent rainfalls, which may be caused by the overflows from 

the rain garden and the fast stormwater infiltration through the porous pavement. The recession leaps of the hydrograph are 

affected by rainfalls of the relatively distant past. This may be explained by the slow infiltration process of the rain garden and 

soils. For the medium and smaller events, the peak runoffs are also related to recent rainfalls, but the contributions of the past 

rainfalls are substantial. This pattern may correspond to cases that runoffs are triggered by small rainfall events when the 505 
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storage capacity of the catchment is nearly saturated, such that the rainfalls in the past also play important roles in regulating 

the flow rate. It is also interesting to note that some rainfall depth records actually have negative contributions to runoff, 

suggesting a deficit in catchment wetness. This deficit is pronounced at the beginning of runoff events, which may be caused 

by extended dry periods. The deficit becomes smaller as the rainfall event proceeds. For the small runoff events, the deficits 

are also related to recent rainfalls, which may be an indication of insufficient runoffs generated through the fast runoff routes 510 

(i.e., overflows and fast infiltration through porous pavements). The bias shown in the four subfigures is a constant value 

throughout all time steps, which is the prediction made by the model when there is no information on any features. The models 

examined here only use rainfall depth features as input, i.e.,𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 = 0, and 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛 = 0. In cases that 

other features are used as input, their contributions may be considered as an enlargement or reduction factor to the contributions 

of the rainfalls. Lundberg et al. (2020) also provides methods to explicitly analyze the interactions between two features. 515 

The contribution 𝑃! has on future runoffs can be computed using Eq. (11). The continuing impact of the peak rainfall records 

on runoffs is shown in Fig. 11, where the four runoff events are the same as in Fig. 10. The contributions of all other factors 

are aggregated to highlight the contributions of the peak rainfall. The peak rainfall’s contribution decreases rapidly for runoffs 

that are further into the future. The impact of peak rainfalls lasts for about 30 to 50 time steps or 300 to 500 minutes, which is 

consistent with the patterns shown in Fig. 9. The results obtained here are useful for understanding the drainage processes, 520 

e.g., analyzing the impact of the rainfalls in certain periods on future runoffs, and computing the runoff coefficient associated 

with each rain depth record. As a method to decompose flow rate to contributions of rainfalls at each time step is provided in 

Eq. (11), it is possible to determine the “water age” of the stormwater runoff at each time step. 

It is important to note here that the explanations of the involved hydrological processes are essentially modeling results and 

may not match the physical processes. The models are affected by prediction errors, and it is currently not clear whether the 525 

truthfulness of the explanations of a model is associated with its generalization error. This study roughly compares the 

hydrograph composition of the best models obtained at different outer CV iterations (not shown) and find similar patterns 

among them. It would be meaningful to compare the hydrological processes learned by the machine learning models to the 

physical measurement or the processes inferred by the process-based models (which is also subject to model uncertainty 

involved in parameter estimation). Such tasks are not performed in this study because of the limited amount of data available 530 

for setting up a process-based model, which is also a motivation for using machine learning methods. Nevertheless, this study 

shows that XGBoost models built using nested CV and a feature engineering scheme provide plausible explanations to the 

involved hydrological processes, and each runoff prediction can be explained, offering modelers the opportunity to investigate 

the hydrological properties of the catchment and justify each runoff prediction using hydrological knowledge. 

3.4 Comparison of different models 535 

This section compares the XGBoost models trained with different rainfall depth feature generation options for WS (previous 

sections only present results of option 1 models in detail). Linear regression models, as the baseline models, are also examined 

here. The candidate feature engineering hyperparameters (Table 1) and the CV folds are the same for all the models. The inner 
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and outer CV errors of the models are shown in Table 2. Models built with different options are found to have similar prediction 

accuracies. The standard deviations of the outer CV RMSE are larger than that of the inner CV fold. This may be a result of 540 

fewer samples in the test fold for estimating the outer CV error, such that the evaluation results are more affected by the 

randomness of sampling. The results of the linear regression models are almost identical, with differences in RMSE smaller 

than 0.001. This is because the features resulted from a feature creation option can be represented as a linear combination of 

that from another option. Thus, each 𝑃! in linear regression models trained with the same hyperparameters but different rainfall 

depth feature creation options were essentially assigned with the same weight. The linear regression models generally 545 

performed worse than the XGBoost models, suggesting that it is meaningful to adopt more complex machine learning methods, 

such as XGBoost, to acquire models with higher prediction accuracies, given that the interpretability of the complex methods 

is greatly enhanced by model explanation methods, such as SHAP and LIME (Molnar, 2020). 

XGBoost models and linear regression models are built for SHC. The feature engineering and XGBoost hyperparameters are 

the same as WS, except that 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛 and 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛 are always set to be zero (see explanations in Section 550 

2.2.2). The hydrographs predicted by the XGBoost models and the SWMM model built in Lee et al. (2018a) for the test period 

are shown in Fig. 12. The hydrographs predicted by XGBoost generally match the observed hydrograph. The performance 

metrics of different models are shown in Fig. 12 and Table 3. Linear regression models are found to have worse performance 

compared to the other models. The performance of XGBoost models is satisfactory, considering that only one month of data 

were used for model training. This case study shows that the proposed model training methods can be applied in catchments 555 

of various conditions, and little adjustment is required. 

4 Conclusions 

This study uses machine learning methods to build high-temporal resolution rainfall-runoff models for two urban catchments 

with different sizes, drainage system configurations, and data availabilities. A simple and physically meaningful feature 

engineering method that extracts useful features from high-resolution rainfall time series is proposed. This method, when used 560 

in combination with XGBoost methods, hyperparameter optimization methods, and nested cross-validation procedures, are 

found to be able to generate accurate models for runoff prediction. Only rainfall-runoff data are used in the model training 

processes in this study, while other potentially important hydro-environmental factors may also be incorporated into modeling. 

The proposed model training methods are semi-automatic, requiring minimal user input. The problems of having insufficient 

information for setting up process-based models are thus addressed. The SHAP method is used to interpret the predictions 565 

made by the models, for which the predicted runoff at each time step is decomposed into the contributions of the rainfalls at 

different time steps. The results are further utilized for catchment response time estimation, hydrograph separation, and 

analysis of the continuing effect of rainfall events. The SHAP method is also used in this study to identify the factors influential 

to the rainfall-runoff relationship. 

The contribution of this study is three-fold.  570 
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(1) This study demonstrates that modern machine learning methods, when properly implemented, are useful for predicting the 

hydrological responses of SuDS in urban catchments of different conditions at fine temporal scales.  

(2) Model explanation methods are used in this study to investigate the basis on which machine learning models make 

predictions. Furthermore, a method to assign the contributions of rainfall at each time step to runoffs at different steps is 

proposed and is used in various applications, such as hydrograph separation and estimation of catchment response time. This 575 

study shows that machine learning methods can discover plausible representations of physical processes, allowing them to be 

useful for studying the hydrological processes that govern the interested input-output relationships.  

(3) This study presents a complete machine learning framework for urban hydrological studies, which includes feature 

engineering methods, hyperparameter optimization methods, generalization error estimation methods, and model explanation 

methods. The framework is particularly useful for urban catchments where the information for setting up process-based models 580 

is insufficient. 

This study presents an initial investigation into the topic of modeling and interpreting the urban hydrological processes at fine 

temporal scales using machine learning methods. A few findings emerged from the case studies. First, the feature engineering 

methods and nested cross-validation procedures are found to be useful for building higher quality models and estimating 

generalization errors. The feature engineering methods, however, can be designed arbitrarily, and evaluating the effectiveness 585 

of many feature engineering methods can be computationally expensive and subject to overfitting the model selection criterion. 

Thus, future studies can explore the application of machine learning methods that rely less on feature engineering, such as 

deep learning. Second, this study shows that randomness in resampling results in considerable uncertainty in the generalization 

estimation. Future studies are recommended to adopt the nested cross-validation procedures to explicitly investigate the 

uncertainties and to avoid overfitting. Third, the representation of the hydrological processes learned by models are found to 590 

be plausible. It is recommended to use the SHAP method in more case studies and compare the representations learned by 

different models. The representation of hydrological processes learned by machine learning models may also be compared 

with physical measurement or the representation of process-based models. The correlation between the truthfulness of model 

explanation and the generalization errors can be investigated in future research. Finally, using model explanation methods, 

such as SHAP, allows the reasons for making each prediction to be explained and the learned representations to be analyzed, 595 

which increases the transparency of machine learning, and may eventually promote the application of machine learning 

methods in hydrological studies. 

Code availability 

The source code used for the machine learning model training and interpretation methods presented in the paper is available 

at https://github.com/stsfk/explainable_ml_hydro, where an example project is provided. The XGBoost and SHAPforxgboost 600 

packages in R are used in this research, both of which are freely available. 
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 785 
Figure 1 (a) Example of the indexes for creating rainfall depth features obtained using a set of feature engineering hyperparameters 
and different index selection options. (b) The number of rainfall depth features generated when m=1440, l=9, and q varies. (c) The 
nested cross-validation procedures.  
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 790 
Figure 2 (a) Layout of the SuDS and monitoring network in Washington Street site (WS), Geauga County, Ohio, the U.S. This figure 
is adapted from Darner et al. (2015). (b) Availability of the rainfall and flow rate records taken at the regular 10-minute intervals. 
(c) Map of the Shayler Crossing Watershed (SHC). Subcatchment boundaries and the drainage system shown on the map are defined 
by Lee et al. (2018a). 
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Figure 3 (a) Model’s prediction errors on the training and the validation folds when trained using different numbers of boosting 
iterations. Solid lines correspond to mean values obtained at the inner CV iterations, and the ribbons show their standard deviations. 
Three sets of XGBoost hyperparameters and a fix set of feature engineering hyperparameters are evaluated, 𝒎 = 𝟒𝟓𝟒, 𝒒 = 𝟐. 𝟓𝟒, 
𝒍 = 𝟏𝟎,	𝒂𝒄𝒄𝒐𝒖𝒏𝒕_𝑪𝒖𝒎𝑹𝒂𝒊𝒏 = 𝟏, 𝒂𝒄𝒄𝒐𝒖𝒏𝒕_𝒔𝒆𝒂𝒔𝒐𝒏 = 𝟎, and rainfall depth feature generation option = 1. The hyperparameters 800 
values are randomly selected. (b) Comparison of the inner CV errors of the models trained with different sets of XGBoost 
hyperparameters. The points correspond to the mean values obtained in the inner CV iterations, and the vertical bars show their 
standard deviations. The feature engineering hyperparameters are fixed and are the same as the figure above. 
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 805 

 
Figure 4 (a) Comparison of the inner CV errors of different models built with 100 sets of feature engineering hyperparameters at 
different outer CV iterations. Each dot corresponds to a model. The lines are fitted using local polynomial regression. XGBoost 
hyperparameters are optimized for each model. The models are sorted by the mean inner CV error associated with each set of 
engineering hyperparameters estimated at the outer CV iterations. Rainfall depth feature generation option 1 is used. (b) The rank 810 
of the mean inner CV errors of the models built with different sets of feature engineering hyperparameters at different outer CV 
iterations. Each dot corresponds to a model, and the models of the hyperparameters are connected by a vertical line. 
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Figure 5 The mean inner CV error compared with the mean outer CV error of different models. Each dot corresponds to models 815 
built with a set of feature engineering hyperparameters and the associated optimal XGBoost hyperparameters at different outer CV 
iterations. The vertical and horizontal lines correspond to the standard deviations of the estimated errors at different outer CV 
iterations. Rainfall depth feature generation option 1 is used. 
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Figure 6 Predicted hydrographs of different models compared with observed hydrographs in the test fold at each outer CV iteration. 
Each time step is 10 minutes. For clarity, each subfigure shows the five largest runoff events, and the dry periods between the events 
are not shown. The (very small) shaded areas show the minimal and maximum predictions of the non-dominated models in the 
ensemble. The performance metrics are shown and are calculated for all the runoff events (including the smaller events that are not 
shown in this figure). Rainfall depth feature generation option 1 is used. 825 
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Figure 7 (a) Comparison between the observed flow rates and the predicted flow rates of the best models for the test fold at each 
outer CV iteration. The performance metrics of the models are shown. Lines of slope of 1 are plotted for reference. (b) Prediction 
errors of the best models plotted against observed values for each outer CV iteration. Rainfall depth feature generation option 1 is 830 
used. 
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Figure 8 (a) The inner CV RMSE predicted by the XGBoost model compared with the observed inner CV RMSE in the test fold. A 
line of slope of 1 is shown for reference. (b) SHAP summary plot. Each dot corresponds to a sample, and its x position shows the 835 
impact a feature has on the predicted inner CV RMSE. The y positions of some dots are shifted to minimize overlap and to show the 
density. The numbers on the y-axis show the average SHAP value of the feature and are used for sorting them. The color represents 
the value of each feature. (c) SHAP dependence plots for each feature. The feature values are plotted against the SHAP values. Each 
dot corresponds to a sample, and the color represents the predicted inner CV RMSE. The lines are fitted using local polynomial 
regression. Results for the model of outer CV iteration #3 is shown. Rainfall depth feature generation option 1 is used. 840 

  

https://doi.org/10.5194/hess-2020-460
Preprint. Discussion started: 7 October 2020
c© Author(s) 2020. CC BY 4.0 License.



34 
 

 
Figure 9 The average contribution of a rainfall depth recorded at a single time step to the runoffs at different time steps ahead. Each 
time step is 10 minutes. The intensity of the color of the ensemble models indicates their outer CV error (RMSE). The x-axis is in 
pseudo-logarithm scale. Each subfigure shows the results for an outer CV iteration. Rainfall depth feature generation option 1 is 845 
used. 
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Figure 10 Flow rate contributions of the rainfalls recorded in different time periods and other factors. Each time step is 10 minutes. 850 
𝑫𝒕"𝒊,𝒕"𝒋 corresponds to rainfall depth recorded between time 𝒕 − 𝒋 and 𝒕 − 𝒊. Note the flow rate prediction at each time step is the 
sum of the positive contributions minus the sum of the quantity of the negative contributions (if any). The bias is a constant value 
and is the prediction made by the model when the values of the input features are unknown. The period corresponds to peak flow is 
shown in each subfigure. The prediction basis of the best model in outer CV iteration #3 is examined here. Rainfall depth feature 
generation option 1 is used. 855 
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Figure 11 The continuing impact of peak rainfalls on the subsequent runoff events. The contributions of other factors are aggregated 
for clarity. Each time step is 10 minutes. The hyetograph is shown with the scale in the left y-axis. The period corresponds to peak 
rainfall is shown in each subfigure. The prediction basis of the best model in outer CV iteration #3 is examined here. Rainfall depth 860 
feature generation option 1 is used. 

  

https://doi.org/10.5194/hess-2020-460
Preprint. Discussion started: 7 October 2020
c© Author(s) 2020. CC BY 4.0 License.



37 
 

 
Figure 12 Hydrographs predicted by different models compared with the observed hydrograph for the test period. Options 1 through 
4 correspond to XGBoost models built with different rainfall depth feature generation options. RMSE values are listed in Table 3. 865 
The SWMM model developed in Lee et al. (2018a) is used. 
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Table 1 Feature engineering hyperparameters and XGBoost hyperparameters. 

Hyperparameters Values Explanations 
Feature engineering hyperparameters 

𝑚  A random integer between 12 
and 1440 

The value corresponds to a look back period ranging 
from the past 2 hours to the past 10 days, the 
rainfalls recorded during which are used for runoff 
prediction. 

𝑙  A random integer between 1 
and 72 

The value corresponds to a period ranging between 
10 minutes to 12 hours, the rainfalls recorded during 
which are considered to be recent and of higher 
relevance for runoff prediction. 

𝑞  A random number between 
1.1 and 5 

𝑞 is the common ratio of the sequence of the 
distances between the cut points, which form the 
time intervals for calculating rainfall depth features. 

𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝐶𝑢𝑚𝑅𝑎𝑖𝑛  0 or 1 0 means the cumulative rainfall depths recorded 
since the beginning of rainfall observation is not 
used as a feature, and 1 means it is used as a feature. 

𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑠𝑒𝑎𝑠𝑜𝑛  0 or 1 0 means the rainfall event occurring month is not 
used as a feature (using one-hot encoding), and 1 
means it is used as a feature. 

 
XGBoost hyperparameters 

eta  0.02, 0.05, 0.1, or 0.3 Learning rate. 
max_depth 2, 4, or 6 Maximum depth of the trees. 
colsample_bytree 0.7 or 1 The ratio of the features randomly selected for 

building each tree. 
subsample 0.7 or 1 The ratio of the training samples randomly selected 

building each tree. 
nrounds 2500 The maximum number of boosting iterations allowed 

in inner CV.  
early_stopping_rounds 10 Model training stops if the inner CV error is not 

improved for 10 iterations. The optimal number of 
boosting iterations is then used for training models 
on the entire training (outer) fold. 

monotone_constraints A binary vector of length of 
the number of features. Each 
element corresponds to a 
feature: 1 is used for rainfall 
depth features, and 0 is used 
for the other features. 

1 means increasing constraint, i.e., there is a 
monotonic increasing relationship between a rainfall 
depth feature and the flow rate. 0 means the there is 
no monotonic constraints. 
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Other hyperparameters, 
including min_child_weight, 
𝛾, and 𝜆 

Default values used in the 
XGBoost 

A list of the parameters and their default values can 
be found in the documentation of the XGBoost 
software (Chen and He, 2020). 
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Table 2 Comparison of the prediction accuracy of the models built for the Washington Street (WS) site. The hyperparameters 
correspond to the smallest mean inner CV error are chosen during each outer CV iteration. The models trained on the training folds 
(outer) with the optimal hyperparameters are evaluated using the corresponding test folds to obtain the outer CV RMSE. The mean 
values across different outer CV folds are shown, and the standard deviations are given in the following brackets. 875 

Model 
Inner CV RMSE (standard deviation) 
[LPS] 

Outer CV RMSE (standard deviation) 
[LPS] 

XGBoost - option 1 0.112(0.009) 0.119(0.039) 
XGBoost - option 2 0.098(0.013) 0.104(0.041) 
XGBoost - option 3 0.102(0.011) 0.108(0.039) 
XGBoost - option 4 0.110(0.010) 0.113(0.040) 
Linear regression - option 1 0.161(0.006) 0.163(0.024) 
Linear regression - option 2 0.161(0.006) 0.163(0.024) 
Linear regression - option 3 0.161(0.006) 0.163(0.024) 
Linear regression - option 4 0.161(0.006) 0.163(0.024) 
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Table 3 Comparison of the prediction accuracy for the models built for Shayler Crossing Watershed (SHC). The SWMM model 
developed in Lee et al. (2018a) is used, where it was calibrated on both the training and the test folds used in this study. The linear 
models built with different feature generation options are nearly identical, thus their performances are shown in the same row. 880 

Model RMSE of validation fold [CMS] RMSE of test fold [CMS] 

XGBoost - option 1 0.054 0.071 

XGBoost - option 2 0.066 0.055 

XGBoost - option 3 0.051 0.052 

XGBoost - option 4 0.054 0.069 

SWMM 0.101 0.056 

Linear regression 0.120 0.080 
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