
1 
 

Modeling and interpreting hydrological responses of sustainable 
urban drainage systems with explainable machine learning methods 
Yang Yang1, Ting Fong May Chui1 
1Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China 

Correspondence to: Ting Fong May Chui (maychui@hku.hk) 5 

Abstract. Sustainable urban drainage systems (SuDS) are decentralized stormwater management practices that mimic natural 

drainage processes. The hydrological processes of SuDS are often modeled using process-based models. However, it can 

require considerable effort to set up these models. This study thus proposes a machine learning (ML) method to directly learn 

the statistical correlations between the hydrological responses of SuDS and the forcing variables at sub-hourly time scales 

from observation data. The proposed methods are applied to two SuDS catchments with different sizes, SuDS practice types, 10 

and data availabilities in the U.S. for discharge prediction. The resulting models have high prediction accuracies (NSE > 0.70). 

ML explanation methods are then employed to derive the basis of each ML prediction, based on which the hydrological 

processes being modeled are then inferred. The physical realism of the inferred hydrological processes is then compared to 

that would be expected based on the domain-specific knowledge of the system being modeled. The inferred processes of some 

models, however, are found to be physically implausible. For instance, negative contributions of rainfalls to runoffs have been 15 

identified in some models. This study further empirically shows that an ML model’s ability to provide accurate predictions 

can be uncorrelated with its ability to offer plausible explanations to the physical processes being modeled. Finally, this study 

provides a high-level overview of the practices of inferring physical processes from the ML modeling results and shows both 

conceptually and empirically that large uncertainty exists in every step of the inference processes. In summary, this study 

shows that ML methods are a useful tool for predicting the hydrological responses of SuDS catchments and the hydrological 20 

processes inferred from modeling results should be interpreted cautiously due to the existence of large uncertainty in the 

inference processes. 

1 Introduction 

Sustainable urban drainage systems (SuDS), also known as low impact development practices, green infrastructure, and sponge 

city, are decentralized stormwater management practices that aim to promote onsite infiltration, storage, evapotranspiration, 25 

and stormwater reuse (Fletcher et al., 2015; Jones and Macdonald, 2007). SuDS can effectively improve stormwater runoff 

quality, reduce runoff volume, and restore natural hydrological regimes (Selbig et al., 2019; Trinh and Chui, 2013; Zhou, 

2014). Commonly used SuDS include bioretention cells, green roofs, porous pavement, and rain barrels (Gimenez-Maranges 

et al., 2020; Charlesworth, 2010). 
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A number of numerical modeling methods have been adopted or developed to predict the hydrological performance of 30 

SuDS and understand the involved hydrological processes (Liu et al., 2014; Elliott and Trowsdale, 2007). The simplest 

methods are perhaps those developed based on empirical equations for assessing the drainage impact of different land-use 

types. For instance, the rational method and SCS runoff curve number method are modified and used in Montalto et al. (2007) 

and Damodaram et al. (2010) to study the effectiveness of SuDS at catchment scales. Empirical equation-based methods can 

be useful in preliminary designs to rapidly estimate some key performance metrics of SuDS. However, these methods may 35 

poorly reflect detailed SuDS design variations (Fassman-Beck et al., 2016). 

Process-based models are another approach to modeling SuDS, in which physically-based or empirical equations are used 

to characterize the involved hydrological processes. SuDS are typically represented in process-based models as hydrological 

functional units, whose properties are defined using a set of parameters. Commonly used models, including SWMM and 

MUSIC, are reviewed in Eckart et al. (2017) and Elliott and Trowsdale (2007).  40 

The application of process-based models, however, faces several challenges. First, it may require considerable effort to set 

up a process-based model for SuDS, as not all the required parameters are measurable or can be measured at a reasonable cost. 

For example, in SWMM, the initial soil moisture deficit parameter of SuDS is often determined through calibration (Rosa et 

al., 2015). Second, some complex hydro-environmental processes of SuDS and surrounding environments are difficult to 

model using existing models. For instance, SWMM does not account for macropore flow in the SuDS soil layer (Niazi et al., 45 

2017), and models that assess the performance of SuDS in shallow groundwater environments (Zhang and Chui, 2019) and 

cold climates (Johannessen et al., 2017) are limited. Third, the assumptions used in process-based models may be invalid in 

some cases due to unknown issues related to construction, maintenance, or physical property changes during a SuDS’ service 

life (Yong et al., 2013). 

It may be useful to model directly the statistical correlations between the random variables that describe the states of SuDS 50 

catchments. The resulting statistical models may be adopted for solving various prediction tasks and used as references to 

assess the prediction accuracy of process-based models.  These models may be derived using machine learning (ML) methods, 

which aim to learn the statistical correlations between random variables from observation data (Solomatine and Ostfeld, 2008). 

Terms that are closely related to ML include data-driven modeling, predictive modeling, and statistical learning.  

ML methods have been widely used in various fields in hydrology (Maier and Dandy, 2000). However, they have only been 55 

used in a few SuDS-related studies. For instance, linear regression methods were used in Eric et al. (2015), Hopkins et al. 

(2020), and Khan et al. (2013) to predict the hydrological effectiveness of SuDS, such as runoff volume reduction, based on 

factors such as inflow volume, antecedent soil moisture content, and SuDS implementation levels. Li et al. (2019) used neural 

networks models to predict the peak flow and runoff volume of runoff events of a SuDS site based on rainfall event 

characteristics. The studies mentioned above focused on predicting the long-term or rainfall event-level hydrological 60 

performance of SuDS. However, there is currently insufficient literature on the application of ML methods to model the 

temporal evolution of the hydrological responses of SuDS at regular time steps, e.g., daily, hourly, or sub-hourly. Yang and 

Chui (2019) showed that ML methods, such as deep learning methods and random forest methods, are useful for predicting 
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the runoff response of SuDS at sub-hourly time scales, provided that the model’s input variables are appropriate. However, a 

method to derive these input variables was not described in their study. 65 

The lack of popularity of ML methods in SuDS-related studies may be explained by several factors. First, ML methods are 

not applicable when observation data of the variables of interest are unavailable. Second, modeling the hydrological responses 

of SuDS at fine temporal scales requires a high-dimensional hydrometeorological time series to be used as input, which can 

be challenging for ML methods that are not specifically designed for modeling sequence data (Nielsen, 2019). Additionally, 

ML methods may also not offer clear advantages over equation-based methods when applied to study the performance of SuDS 70 

at the rainfall event level. Third, ML models are usually trained to capture the statistical correlations between random variables 

without or with little consideration of the involved physical processes, thus they may be considered less useful for 

understanding the physical processes compared to process-based models. 

Therefore, to promote the application of ML methods in SuDS related studies, one must show that ML methods can provide 

accurate predictions for various tasks and that the involved hydrological processes can be interpreted. While it is 75 

straightforward to apply specific ML methods to solve prediction tasks, there is currently insufficient research into interpreting 

the hydrological processes learned by ML models. 

Several studies in hydrology explained ML models using methods adopted from explainable artificial intelligence (XAI), 

which is an emerging field of ML that aims to make ML modeling results more understandable to humans (Bojanowski et al., 

2018). Commonly used XAI methods for understanding the functioning of ML models include transparent ML models and 80 

post-hoc explainability techniques (Barredo Arrieta et al., 2020). Transparent ML models refer to those with structures that 

are directly understandable to humans, which include linear regression models, decision trees, and K-nearest neighbors. These 

models have been frequently adopted in hydrology for understanding the correlations between random variables or the basis 

of specific predictions (Solomatine and Dulal, 2003; Wani et al., 2017). Post-hoc explainability techniques aim to explain ML 

models that are not transparent. For instance, in hydrology, the integrated gradients method (Sundararajan et al., 2017) has 85 

been used in Kratzert et al. (2019) to understand the contribution of meteorological input at different time steps to streamflow 

discharge prediction in neural networks, the permutation feature importance method has been used in Schmidt et al. (2020) to 

assess the importance of the predictors for flood magnitude prediction in various ML models, and the SHAP method (Lundberg 

and Lee, 2017) has been used in Starn et al. (2021) to identify the factors affecting groundwater residence time distribution 

predictions in XGBoost models (Chen and Guestrin, 2016). 90 

Most of the current hydrology literature uses post-hoc explainability techniques to test whether an ML model makes right 

predictions for the right reasons, where a model is generally considered more trustworthy if it can generate predictions in a 

way that is consistent with our knowledge of the system being modeled. Here, the term trustworthy is defined broadly as the 

quality of a model to provide predictions that can be trusted (Morton, 1993). The current applications essentially test the 

patterns learned by ML models against that would be expected from the domain-specific knowledge of the system being 95 

modeled (Yang and Chui, 2021), and the test results are then used as an indicator of a model’s trustworthiness. This approach, 

however, may be challenged by the fact that ML models can uncover hidden patterns in data that make no intuitive sense to 



4 
 

humans (Ilyas et al., 2019). Thus, the quality of a model to provide accurate predictions and plausible explanations to the 

physical processes may be uncorrelated. Rudin (2019) further suggests that the post-hoc explainability techniques themselves 

are uncertain and approximated because inaccurate representations of the original model may be adopted in deriving the 100 

explanations, and similar views on the uncertainties in explanation are also reported in Chen et al. (2020) and Sundararajan 

and Najmi (2020). 

Therefore, in hydrological studies, it is meaningful to ask whether post-hoc explainability techniques and ML models can 

provide physically plausible explanations to the processes of the system being modeled and whether a model’s abilities to 

provide accurate predictions and plausible explanations are correlated. This study aims to investigate these questions by 105 

examining the ML models that are trained to predict hydrological responses of SuDS catchments at sub-hourly time scales, 

and through which the applicability of ML methods to modeling SuDS catchments is also assessed. 

2 Methods and materials 

2.1 Training and testing machine learning models 

2.1.1 Modeling hydrological responses of SuDS using machine learning methods  110 

Let random variable 𝑌! denote the hydrological response of a SuDS catchment at time step 𝑡 and random vector 𝐗𝒕 denote the 

time series of the hydrometeorological conditions and other factors measured on and before time step 𝑡. 

𝐗𝒕 ≔ [𝑃! , 𝑃!#$, 𝑃!#%, … , 𝐸$, 𝐸%, … , 𝐸&],         (1) 

where 𝑃!#' is the rainfall depth recorded at time step 𝑡 − 𝑖, and 𝐸$ through 𝐸& represent 𝑘 measurements of the other variables. 

𝑃!#( is written as 𝑃! for convenience. 115 

It is assumed that 𝑌! can be written as an unknown function of 𝐗𝒕, which can be approximated by functions learned by ML 

algorithms from observation data of 𝐗𝒕 and 𝑌!. A feature engineering process is commonly involved in the learning process, 

in which 𝐗𝒕 is converted to lower-dimensional representations using a function 𝑔 such that the mapping between 𝑔(𝐗𝒕) and 

𝑌!  can be learned more easily by ML algorithms (Kuhn and Johnson, 2019). 𝑌!  can then be estimated using 𝑌!1 , which is 

computed following  120 

𝑌!1 = 𝑓) 4𝑔*(𝐗𝒕)5,            (2) 

where 𝑓 is a function learned by an ML algorithm, and 𝜑 and 𝜃 are parameters of 𝑔 and 𝑓. Figure 1 illustrates the processes 

for deriving the prediction for an input sample 𝐱𝒕. 
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Figure 1 Illustration of the prediction generation process for an input sample 𝐱𝒕. 125 

The goal of ML is then to identify the optimal parameter values 𝜃∗ and 𝜑∗ that minimize the expected loss ℓ over the data 

distribution 𝑝,(𝐗𝒕, 𝑌!), as shown in 

(𝜃∗, 𝜑∗) = argmin
),*

𝐸(𝐗𝒕,0")~3#(𝐗𝒕,0")ℓ 4𝑓) 4𝑔*(𝐗𝒕)5 , 𝑌!5        (3) 

As 𝑝,(𝐗𝒕, 𝑌!) are unknown, the expectation is often approximated by averaging the losses computed for a set of observed 

samples (𝐱𝒕, 𝑦!). 130 

2.1.2 Feature engineering methods 

Gauch et al. (2021) showed that the hydrometeorological time series recorded in the long-term past can be represented using 

a coarser temporal resolution in ML models built for rainfall-runoff modeling without deteriorating their prediction accuracy. 

This study adopts a similar approach to represent a rainfall time series by aggregated rainfall depths recorded during different 

intervals, in which rainfall time series recorded between time steps 𝑡 − 𝑎 and 𝑡 − 𝑏 is represented by a rainfall depth feature 135 

𝐷!#4,!#5, 

𝐷!#4,!#5 = ∑ 𝑃!#'5
'64 ,           (4) 

However, an approach to optimally define the set of (𝑎, 𝑏) pairs to create rainfall depth features is not known a priori.  
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This study proposes a simple method to systematically select cut points along the time axis, which form a series of intervals 

for defining (𝑎, 𝑏) pairs. As shown in Figure 2, the selection of cut points is controlled by three hyperparameters, 𝑚, 𝑙, and 𝑛. 140 

(1) 𝑚: a cut point is placed between time steps 𝑡 − 𝑚 and 𝑡 − 𝑚 − 1 such that the rainfall data recorded prior to time step 𝑡 −

𝑚 are considered irrelevant for predicting 𝑌!. (2) 𝑙: the rainfall data recorded between time steps 𝑡 − 𝑙 and 𝑡 − 0 are considered 

to be most relevant for predicting 𝑌!, so that cut points are placed around each time step within this interval. (3) 𝑛: 𝑛 − 1 cut 

points are placed between time steps 𝑡 − 𝑙 − 1 and 𝑡 − 𝑚, such that the neighboring cut points correspond to 𝑛 intervals whose 

lengths roughly form an arithmetic sequence. After the (𝑎, 𝑏) pairs having been defined, a rainfall depth feature 𝐷!#4,!#5 is 145 

then created for every interval formed by two neighboring cut points. 

 
Figure 2 Illustration of the method to place cut points along the time axis. 

Representing a rainfall time series using a set of 𝐷!#4,!#5  can reduce the dimensionality of data at the cost of losing 

information regarding the temporal distribution of rainfall. In this method, fewer cut points are selected for rainfalls in the 150 

long-term past (e.g., a few days ago), which is based on the assumption that they are less important for predicting 𝑌!. This is 

reasonable considering the relatively fast response time of SuDS (DeBusk et al., 2011). Similarly, some of the environmental 

variables [𝐸$, 𝐸%, … , 𝐸&] may be less important for predicting 𝑌! , which can be filtered out during the feature engineering 

process. In this study, whether or not to include 𝐸' is controlled by a Boolean variable, and 𝑘 such variables are used. 

In this study, the optimal values of the feature engineering hyperparameters, 𝑚, 𝑙, 𝑛, and the 𝑘 Boolean variables, are 155 

determined using resampling and Bayesian optimization methods as described below. 

2.1.3 XGBoost algorithm 

This study adopts the gradient-boosted trees algorithm (Friedman, 2001) to train ML models. In particular, the XGBoost (Chen 

and He, 2020) software library is used. XGBoost is selected for its improved regularization methods, high computational 

efficiency, and ability to achieve state-of-the-art results on various ML tasks (Nielsen, 2016; Chen and He, 2020; Chen and 160 

Guestrin, 2016). A detailed introduction to XGBoost can be found in Chen and Guestrin (2016) and Mitchell and Frank (2017). 
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A gradient boosted trees model 𝐺 is an ensemble of decision trees, in which 𝑦L', the prediction for an input sample 𝐱', is the 

sum of the predictions of individual trees (Chen and Guestrin, 2016), given as 

𝑦L' = 𝐺(𝐱') = ∑ 𝑓&(𝐱')7
&6$ , 𝑓& ∈ ℱ,          (5) 

where 𝑓& is a decision tree that maps input samples to the values stored at the tree leaves, 𝐾 is the number of decision trees 165 

(also known as the number of boosting iterations), and ℱ is the functional space of all possible regression trees. For a given 

dataset, the structure of the trees, including the splitting criteria and the values stored at the leaves, is learned automatically 

using XGBoost. 

There are a number of hyperparameters used in XGBoost for controlling model structure and the learning behaviors during 

training, e.g., the number of boosting iterations and maximum tree depth. A complete list of the XGBoost hyperparameters 170 

can be found in the software documentation (Chen and He, 2020). In this study, the XGBoost hyperparameters are optimized 

together with feature engineering hyperparameters using resampling and Bayesian optimization methods as described below. 

2.1.4 Resampling methods and Bayesian optimization for training and testing machine learning models 

In this study, the effectiveness of the feature engineering and XGBoost algorithm are evaluated on different datasets of 

observed (𝐱𝒕, 𝑦!) samples collected at different SuDS sites. For each dataset, the evaluation is performed by randomly splitting 175 

the dataset into a series of training and test subsets. For each such split, during the hyperparameter optimization phase, the 

training set is further split into a series of smaller training and validation datasets. Then, multiple models with different feature 

engineering and XGBoost hyperparameters are trained on the smaller training datasets, and the quality of a set of 

hyperparameters is measured by the prediction accuracy of the resulting model on the validation datasets, and the optimal 

hyperparameters are then identified. During the model evaluation phase, the optimal hyperparameters are then used to fit a 180 

model on the training dataset (which includes both the smaller training and validation datasets), and the resulting model is 

evaluated using the test dataset. Apparently, the assessment results are affected by how the dataset is split, thus the 

hyperparameter optimization and model evaluation processes are repeated for various splits in this study for some numerical 

experiments. More information on resampling methods can be found in Kuhn and Johnson (2013) and Hastie et al. (2009). 

During the hyperparameter optimization phase, the candidate hyperparameters to be assessed are proposed by Bayesian 185 

optimization methods, which are sample-efficient algorithms for solving black-box optimization problems (Shahriari et al., 

2016). Bayesian optimization methods are commonly used in ML for hyperparameter optimization (Snoek et al., 2012). The 

decision variables in the optimization problems are the hyperparameters, and the quantity to be optimized is the prediction 

accuracy on the validation datasets. An introduction to Bayesian optimization can be found in Frazier (2018). 
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2.2 Interpreting model structures and inferring hydrological processes learned by machine learning models 190 

2.2.1 Interpreting the basis of each prediction 

Understanding why a specific prediction is made by an ML model can be useful for understanding the relationships between 

various variables captured by the model. In this study, XGBoost uses decision trees as its base learner. Although each decision 

tree can be considered as a transparent ML model (as the rules used for making predictions can be understood easily by 

humans), it can be challenging to directly interpret the prediction generation process of an XGBoost model as many trees can 195 

be used in it. Therefore, post-hoc explainability techniques, such as the gain, cover, and frequency metrics, are commonly used 

for understanding the structure of XGBoost models. 

The gain of a feature is its relative contribution to the model as measured by the total gain of the feature’s splits. It can be 

roughly regarded as a feature’s contribution to prediction accuracy improvement (Chen and He, 2020). The cover of a feature 

is the relative number of training samples related to the feature’s splits (Chen and He, 2020). The frequency of a feature is the 200 

relative number of times that this feature has been used in tree splits (Chen and He, 2020). The three metrics are global feature 

importance measures, as they reflect the overall contribution of a feature to an XGBoost model for making various predictions 

(Guidotti et al., 2019; Ahmad et al., 2018). However, these metrics can be irrelevant for understanding the basis of a specific 

prediction, which is a task that requires local explanation methods. 

This study adopts a local feature attribution method to quantify the contribution of each feature to the prediction made for 205 

a specific input sample (Janzing et al., 2019). The SHAP (SHapley Additive exPlanations) method proposed by Lundberg and 

Lee (2017) is used in this study. The SHAP value of a feature for a specific input sample can be considered as the marginal 

contribution of this feature to the predicted value compared to the mean predictions for all samples. SHAP values satisfy a 

series of desired properties. For instance, the sum of the SHAP value assigned to each feature equals the difference between 

the predicted value and the mean prediction for all samples, and the features that do not change the expected prediction are 210 

assigned with a SHAP value of 0 (Lundberg et al., 2020). The SHAP values can be computed using the following steps. 

Let the real-valued function 𝑓  of 𝑁 -dimensional random variable 𝑿  be the ML model to be explained and 𝐱 ≔

(𝑥$, 𝑥%, … , 𝑥8) be an observed sample of 𝑿. ∅', the SHAP value of 𝑥', is computed as 

∅' =
$
8!
∑ [𝑣(𝑆: ∪ 𝑖) − 𝑣(𝑆:)]:∈ℛ ,          (6) 

where, 𝑅 is a random permutation of the 𝑁 features, ℛ is the space of all feature permutations, 𝑆: is the set of features that are 215 

located before feature 𝑖 in permutation 𝑅, and 𝑣: 𝑆 ∈ 𝒫(𝑁) → ℝ is a set function that maps every subset of the 𝑁 features (i.e., 

each member of the power set 𝒫 of all 𝑁 features) to a real number, and 𝑣 is known as the value function. 

Therefore, ∅'  can be interpreted as the expected marginal contribution to 𝑣  of feature 𝑖  (i.e., 𝑣(𝑆: ∪ 𝑖) − 𝑣(𝑆:)) in a 

random permutation of the 𝑁 features. Equation 6 is developed based on the Shapley value used in game theory, more 

information on which can be found in Shapley (1953) and Osborne and Rubinstein (1994).  220 
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In the SHAP method, 𝑣 is the expected prediction of 𝑓 when some features are “missing”. 𝑣 may be defined in various 

ways. Lundberg and Lee (2017) define 𝑣 using the observational conditional expectation, which is the expected value of 𝑓(𝑿) 

when the feature values of 𝑿 for a set of features 𝑆 are known, as in  

𝑣(𝑆) = 𝐸[𝑓(𝑿)|𝑿= = 𝐱=] ,          (7) 

Janzing et al. (2019) and Lundberg et al. (2020) defined 𝑣 using the interventional conditional expectation, as in  225 

𝑣(𝑆) = 𝐸[𝑓(𝑿)|𝑑𝑜(𝑆)] ,            (8) 

where 𝑑𝑜(𝑆) represents an intervention that sets the feature values of 𝑿 in 𝑆 to 𝐱=. The SHAP values derived using Equations 

7 and 8 are respectively termed observational SHAP values and interventional SHAP values. The observational SHAP value 

of 𝑥' generally measures the value of knowing 𝑥' to predict the outcome, and the interventional SHAP value of 𝑥' corresponds 

to the expected changes in the model prediction when the feature 𝑋' is set to the 𝑥'. 230 

Chen et al. (2020) suggested that both observational and interventional SHAP values are useful. They claimed that the 

observational SHAP values are “true to the data” because they are effective in identifying the true correlations between the 

features and the outcome of interest, whereas the interventional SHAP values are “true to the model” because they do not 

credit the features that are unused by the model. The observational SHAP values are used in most places of this paper as they 

are less computationally expensive than the interventional SHAP values. The TreeSHAP methods proposed in Lundberg et al. 235 

(2020) are used in this study to compute both SHAP values. 

For a given input sample 𝐱𝒕, the SHAP value assigned to a rainfall depth feature 𝑑!#4,!#5 can be further distributed among 

the rainfall recorded at each time step between time steps 𝑡 − 𝑎 and 𝑡 − 𝑏. The SHAP value ∅>"$%,"$'(𝐱𝒕) can be assigned to 

the rainfall recorded at time step 𝑡 − 𝑘  proportional to its depth 𝑝!#& , where 𝑎 ≤ 𝑘 ≤ 𝑏. Thus, 𝜏&(𝐱𝒕), the SHAP value 

assigned to 𝑝!#&  if the rainfall depth recorded between time steps 𝑡 − 𝑎 and 𝑡 − 𝑏 (denoted by 𝑑!#4,!#5 ) is not 0 can be 240 

computed using  

𝜏&(𝐱𝒕) =
3"$(

,"$%,"$'
∅>"$%,"$'(𝐱𝒕) ,          (9) 

The processes for quantifying the contribution of each feature of an input sample 𝐱𝒕 to model prediction and distributing the 

contributions to the rainfall of each time step are illustrated in Figure 3a. 
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 245 
Figure 3 (a) Illustration of the processes for quantifying the contribution of each feature of an input sample 𝐱𝒕 and distributing the 
contribution to the rainfall of each time step. (b) Examples of inferring the hydrological processes being modeled based on the basis 
of each prediction. (c) Examples of comparing the inferred hydrological processes to the expected patterns of the processes derived 
from domain-specific knowledge of the system being modeled. 

2.2.2 Inferring hydrological processes from machine learning modeling results 250 

The process of inferring the hydrological processes being modeled involves mapping from the explanations on the model 

structure to some imaginary catchments that are likely to possess the characteristics that are consistent with the explanations. 

For instance, if the explanations indicate that the discharge predictions are strongly controlled by the rainfalls in the long-term 

past, then the processes being modeled are likely to correspond to the processes of catchments with long-term memory effects. 

However, the mapping processes are inherently subjective and incomplete, discussions of these characteristics are presented 255 

in Section 3.6. This section introduces the methods to map the explanations to imaginary catchments, and more discussions on 

the limitations are given when the case study results are presented. 
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In this study, for each 𝐱𝒕, 𝜏&(𝐱𝒕) is computed for 𝑝!#& of each time step (Equation 9). These 𝜏&(𝐱𝒕) values quantitively 

describe the associations between rainfall and the hydrological response across various time steps, which is useful for inferring 

the catchment’s hydrological processes. For instance, if the predictions are found to be mostly controlled by recent rainfalls, 260 

then the processes being modeled can correspond to that from a small catchment with a fast response to rainfalls. The 𝜏&(𝐱𝒕) 

values can be useful for hydrograph separation. That is, a predicted hydrograph can be decomposed to sub-hydrographs 

associated with rainfalls that occurred in different periods based on their contribution to the predicted discharge, which is 

different from the current practices that mostly decompose a hydrograph based on the origin of the runoffs, such as baseflow 

and overland flow (Pelletier and Andréassian, 2020). The implications of using this method are discussed in Section 3.2. 265 

The SHAP values of multiple samples can be analyzed collectively to obtain a global understanding of the model structure 

and the system being modeled (Lundberg et al., 2020). This study thus computes the expected 𝜏&(𝐱𝒕) values for multiple 𝐱𝒕 in 

a set 𝑆 when 𝑘 is fixed to understand the average association between 𝑝!#& and 𝑓(𝐱𝒕) using  

𝐸𝐱𝒕∈=c𝜏&(𝐱𝒕)d =
∑ A((𝐱𝒕)𝐱𝒕∈+

|=|
 ,          (10) 

where |𝑆|  is the number of elements of 𝑆 . When 𝑆  contains all the 𝐱𝒕  samples, the expectation 𝐸𝐱𝒕∈=c𝜏&(𝐱𝒕)d  then 270 

approximately describes the overall association between 𝑝!#& and 𝑓(𝐱𝒕) learned by the model. 

SHAP values can be negative, which will result in negative 𝜏&(𝐱𝒕) values. To avoid canceling out positive and negative 

𝜏&(𝐱𝒕) values when computing the expectations, the absolute value of 𝜏&(𝐱𝒕) may be used. The quantity of |𝜏&(𝐱𝒕)| can be 

interpreted as the importance of 𝑝!#& for computing 𝑓(𝐱𝒕). The expected value of |𝜏&(𝐱𝒕)| for the 𝐱𝒕 samples in a set 𝑆 be 

computed using  275 

𝐸𝐱𝒕∈=(|𝜏&(𝐱𝒕)|) =
∑ |A((𝐱𝒕)|𝐱𝒕∈+

|=|
 ,          (11) 

Similarly, for a given 𝐱𝒕, the contribution of rainfalls recorded between time steps 𝑡 − 𝑎 and 𝑡 − 𝑏, 𝛵4,5(𝐱𝒕), can be simply 

computed as  

𝛵4,5(𝐱𝒕) = ∑ 𝜏'(𝐱𝒕)5
'64             (12)  

Figure 3b gives two examples of inferring hydrological processes from ML modeling results. 280 

2.2.3 Assessing the physical realism of the inferred processes using knowledge 

The inferred hydrological processes may be tested in terms of their physical realism. The premise of this test is that if an ML 

model can provide physically plausible explanations to the processes it models, then its predictions can generally be considered 

more trustworthy. That is, this test concerns whether the right predictions are made for the right reasons (Kirchner, 2006). The 

justification of this method is examined in Section 3.6. 285 

In the proposed assessment method, the inferred hydrological processes are compared to the hydrological processes that 

would be expected based on the domain-specific knowledge of the system being modeled. In another word, whether the 

inferred hydrological processes are physically plausible are evaluated. In an assessment, the qualitative or quantitative 
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descriptions of the inferred processes and that derived from domain-specific knowledge are used in the comparison. For 

instance, a small urban catchment is modeled, and it is expected to have a fast response to rainfalls. If the inferred hydrological 290 

processes correspond to that from a catchment with a long-term memory effect, then the ML model can be considered 

unreliable. Generally, three possible outcomes are expected in such an assessment. 

1. Consistent. These are cases when the inferred hydrological processes are physically plausible according to the domain-

specific knowledge of the system being modeled. The term “consistent” is used, rather than “correct” or “valid”, is to reflect 

that the assessment process involves a comparison to some basis derived from our knowledge of the system being modeled, 295 

which might be subjective and incomplete. The term is used following Yang and Chui (2021). 

2. Inconsistent. These are cases when the inferred hydrological processes are physically implausible according to the 

domain-specific knowledge of the system being modeled. 

3. Insufficient evidence to draw conclusions. These are cases when definitive conclusions cannot be drawn, which may be 

caused by that the requirements for the inferred processes to be considered consistent are too specific or too general. For 300 

example, assume that the inferred hydrological processes indicate that the catchment has a small surface area (i.e., a qualitative 

description), and the time of concentration of the catchment being modeled is known from previous studies and is used as the 

assessment criterion (i.e., a quantitative description). In this context, it is impossible to determine the consistency between the 

two descriptions unless more evidence regarding the conversion between catchment scale and time of concentration is 

collected. The inability to draw a definitive conclusion can also be caused by the lack of knowledge of the processes being 305 

modeled. For instance, it is difficult to identify the expected hydrological behaviors for ungauged natural catchments.  

Figure 3c illustrates the processes for assessing the physical realism of the inferred hydrological processes. 

2.3 Case studies 

2.3.1 Study sites 

Two SuDS sites with different drainage areas, SuDS practice types, and data availabilities are examined in this study. Study 310 

site 1 is located on Washington Street, Geauga County, Ohio, U.S. (hereinafter referred to as “WS”). Multiple types of SuDS 

were built in WS to treat stormwater runoffs generated by a nearby commercial building and parking lot, as shown in Figure 

4a (Darner et al., 2015). Runoffs from approximately half of the commercial building roof (i.e., an impervious area of 316 m2) 

drain into a rain garden with a surface area of 37 m2. The 762 m2 parking lot was constructed using porous pavements to allow 

infiltration. 315 
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Figure 4 (a) Layout of the SuDS and monitoring network on the Washington Street site (WS), Geauga County, Ohio, U.S. This figure 
is adapted from Darner et al. (2015). (b) Map of the Shayler Crossing Watershed (SHC). The subcatchment boundaries and drainage 
system shown on the map are defined by Lee et al. (2018a). 

Study site 2 is the Shayler Crossing Watershed (SHC) in Clermont County, Ohio, U.S., as shown in Figure 4b. SHC is a 320 

sub-watershed of the East Fork Little Miami River Watershed. The drainage area of SHC is approximately 0.92 km2 

(Hoghooghi et al., 2018) and the land use type is primarily residential. The drainage system of SHC consists of conduits, 

channels, detention ponds, dry ponds, and wet ponds (Lee et al., 2018a). In SHC, stormwater runoff generated by indirectly 

connected impervious areas (e.g., sidewalks) is treated by the nearby pervious areas, which are termed buffering pervious areas 

and have similar functions to grass filter strips (Lee et al., 2018b). SHC represents a typical residential area in the U.S. and is 325 

thus selected to test the applicability of the proposed ML methods in modeling small urban catchments. 

In WS, a 10-min-resolution rainfall-discharge time series is available from on-site monitoring between 2009 and 2013. The 

outflow from WS was collected and measured by three flumes. Flumes 1, 2, and 3 respectively collect the surface runoffs from 

the parking lot, overflow from the surface layer of the rain garden, and underdrain flows from the parking lot. The onsite 

monitoring was conducted by the United States Geological Survey (USGS), and more details of the monitoring work can be 330 

found in Darner and Dumouchelle (2011) and Darner et al. (2015). In SHC, 10-min-resolution rainfall time series from 2009–

2010 is available, in addition to a 10-min-resolution discharge time series measured at the outlet between July and August 

2009 by the U.S. Environmental Protection Agency. The dataset used in this study is the same as in Lee et al. (2018a) and Lee 

et al. (2018b), in which more details on the dataset can be found. 
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It can be challenging to set up process-based models for both sites. In WS, the physical properties and exact design of the 335 

different drainage system elements are not precisely known (Darner et al., 2015). For instance, the rain garden is not isolated 

from the gravel storage layer of the porous pavements, however, the exact flow conditions in the storage layer are unknown. 

In SHC, the main challenge lies in the heavy workload and uncertainties in estimating the model parameters that characterize 

the complex drainage system. For example, to accurately represent the drainage processes, SHC should be divided into multiple 

subcatchments connected by a drainage network, and each subcatchment should be further subdivided into multiple subareas, 340 

such as directly and indirectly connected impervious subareas (Lee et al., 2018a). The task of the sub-area division, however, 

requires substantial effort, considering the relatively large number of subcatchments that are involved. 

2.3.2 Numerical experiments 

Rainfall-runoff models are built for both SHC and WS using ML methods. In WS, the output variable is the flow rate of the 

total runoff collected by the three flumes recorded at regular 10-min intervals during the warm season (i.e., April to October) 345 

(Darner et al., 2015). The input variables include the 10-min-resolution rainfall time series recorded prior to runoff, the month 

in which the runoff occurs (optional), and the accumulative rainfall depth recorded since the beginning of monitoring 

(optional). The optional features are considered to account for the possible time-varying performance of the SuDS during its 

service life (Yong et al., 2013) and the potential seasonality of the SuDS hydrological properties (Muthanna et al., 2008). 

Whether the two sets of optional features should be included is controlled by two binary feature engineering hyperparameters, 350 

and the other three feature engineering hyperparameters are 𝑚, 𝑙, and 𝑛, as described in Section 2.1.2. The ranges of the 

hyperparameter values are listed in Table 1, and their optimal values are determined using Bayesian optimization methods. 

The rainfall-discharge data collected between 2010 and 2013 by USGS are used in this study. A total of 142 independent 

rainfall events are identified using a 24-h dry spell threshold (Guo and Senior, 2006). A nested cross-validation (CV) 

resampling procedure is implemented, in which 5-fold CV is used for both the inner and outer CV iterations. The folds are 355 

created using a rainfall event-grouped stratified sampling method (Zeng and Martinez, 2000), i.e., data associated with the 

same rainfall event are grouped into the same fold, and the peak discharge of the rainfall events in each fold roughly follows 

the same distribution. This is to prevent data leakage and ensure that the data in each fold are representative (Kuhn and Johnson, 

2013). In general, each outer CV iteration can be considered as an experiment to assess the effectiveness of an ML method 

using a specific split of the dataset, and its associated inner CV iterations are considered as procedures to derive the model to 360 

be evaluated on the test dataset. 
Table 1 Hyperparameter values considered for the two study sites. 

 Study site #1 WS Study site #2 SHC 

Candidate 
feature 
engineering 

𝑚 is a random integer between 144 and 
1440, 𝑙 is a random integer between 1 and 
36, and 𝑛 is a random integer between 2 and 
36. The first term of the arithmetic sequence 
of the interval lengths between time steps 

𝑚, 𝑙, and 𝑛 are integers and their ranges are 
the same as that for study site #1.  
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hyperparameter 
values 

𝑡 − 𝑙 − 1 and 𝑡 − 𝑚 is 2. The inclusion or 
exclusion of the accumulative rainfall depth 
and the occurring month of the runoff event 
is controlled by two binary variables. 

Candidate 
XGBoost 
hyperparameter 
values 

𝑒𝑡𝑎 is a real number between 0.005 and 0.1, 
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ is an integer between 2 and 10, 
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 is an integer between 1 
and 10, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 is a real number 
between 0.20 and 1, 𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 is a 
real number between 0.2 and 1, and 𝑔𝑎𝑚𝑚𝑎 
is a real number between 0 and 10. The 
maximum value of 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 is 5000, and its 
optimal value is determined using an early 
stopping criterion that the training stops if 
there is no improvement in validation 
accuracy for 20 consecutive rounds. 

Same as study site #1. 

 

In SHC, the output variable is the watershed outlet discharge measured at 10-min intervals, and the input variable is the 

rainfall time series recorded before the discharge measurement. Only two months of runoff data are available in this study. 365 

The nested CV procedure is not used due to the small dataset size; instead, the dataset is split into training, validation, and test 

datasets that each contains at least one large runoff event. The Bayesian optimization methods are then used to identify the 

optimal hyperparameters (as shown in Table 1) that minimize the prediction error on the validation dataset when the model is 

trained on the training dataset. The training and validation datasets are then combined, and the ML methods with the optimal 

hyperparameters are applied. The resulting models are then tested on the test dataset. 370 

For each site, the resampling and hyperparameter optimization methods are also applied to train linear regression models, 

which are used as a baseline for evaluating XGBoost models. The only difference in the training processes between the two 

model types is that only the feature engineering hyperparameters are used when fitting linear regression models to the data. 

For SHC, the process-based model developed by Lee et al. (2018a) is also compared with the ML models built in this study. 

Their model is built using SWMM software, in which SHC is divided into 191 subcatchments and the drainage processes in 375 

each subcatchment are characterized using various parameters. The prediction accuracies of different types of models are then 

compared for each site. 

The proposed method is then applied to explain the basis of each prediction for the two sites, i.e., for each discharge 

prediction, the contribution of rainfall of each time step (i.e., 𝜏&(𝐱𝒕)) is computed. Both the observational and interventional 

SHAP values are used in the derivation, which results in two versions of the 𝜏&(𝐱𝒕) values. The following experiments on 380 

inferring hydrological processes from ML modeling results are conducted based on the 𝜏&(𝐱𝒕) values. 

1. The predicted hydrographs are decomposed into multiple hydrographs associated with the rainfalls recorded between 

the past 0–1 h, 1–2 h, and so on using Equation 12. Whether the hydrograph separation method can generate physically 

plausible results is examined using a few simple hydrological principles, which include (a) rainfalls have positive 



16 
 

contributions to runoffs and (b) runoffs in small urban catchments are mostly contributed by rainfalls that occurred in 385 

the recent past.  

2. The overall importance of rainfall of each time step to discharge prediction (Equation 11) is computed for each site 

using all the samples. These importance scores are then used to infer the hydrological processes of the system being 

modeled. The physical realism of the inferred processes is evaluated using principles derived from hydrological 

knowledge of the system being modeled, which includes (a) smaller catchments commonly have faster responses to 390 

rainfalls compared to larger catchments and (b) the importance scores of rainfalls change smoothly across time steps. 

Principle (b) is derived from hydrological knowledge that rainfalls of similar magnitudes in adjacent time steps are 

expected to have similar impacts on the runoff generation processes. 

3. This experiment aims to investigate whether different ML explanation methods lead to similar inferred hydrological 

processes. The gain, cover, and frequency metrics are computed for each XGBoost model of WS. These scores are then 395 

distributed among rainfall of each time step proportionally to its associated rainfall depth of all the samples, and the 

resulting quantities are compared to the normalized importance scores derived in experiment #2. The SHAP-related 

importance scores are normalized such that the resulting scores associated with all predictors sum to 1. 

4. This experiment aims to investigate whether more accurate models are more likely to provide physically plausible 

explanations to the physical processes being modeled. The XGBoost models trained using 10%, 20%, 40%, and 60% 400 

of the observed samples of WS are evaluated in terms of their prediction accuracy and ability to provide consistent 

explanations to the modeled processes. The models’ optimal hyperparameters are estimated using a resampling method 

(i.e., a training-validation split) and Bayesian optimization methods. The test dataset used in prediction accuracy 

estimation contains 40% of the samples and is the same for all models (that are trained on datasets of various sizes). 

The remaining 60% of the samples are then used for creating training datasets that contain 10%, 20%, 40%, and 60% 405 

of the samples. Note that the training dataset that contains 60% of the samples is created using all the remaining samples 

(that are not contained in the test dataset). For each training dataset, a further training-validation split is defined, and 

10 models are then trained by repeatedly applying the Bayesian optimization methods (which are stochastic). For each 

sample size, the training dataset creation and training-validation splitting procedures are repeated 10 times that each 

produces 10 models (by applying Bayesian optimization methods repeatedly). That is, 100 versions of models are 410 

derived for each sample size. The importance score of rainfall of each time step is then derived following the methods 

in experiment #2, which is then used to infer the hydrological processes being modeled. The consistency of the inferred 

processes is then evaluated based on whether the importance scores of rainfalls change smoothly across time steps 

using the test dataset, where a threshold of 5e-5 L/s is used to account for numerical error. 
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3 Results and discussion 415 

3.1 Prediction accuracy of machine learning models 

The prediction accuracies of the various WS and SHC models are compared in Figure 5. The root-mean-square error (RMSE), 

coefficient of determination (R2), and Nash-Sutcliffe coefficient of efficiency (NSE; Nash and Sutcliffe, 1970) of the 

predictions on the test datasets are compared, except for the SWMM model developed by Lee et al. (2018a), which was tested 

on a part of its training dataset due to small dataset size. The prediction accuracies of the XGBoost models, i.e., NSE > 0.7 420 

and 𝑅% > 0.7, can be considered satisfactory, considering that they were relatively easy to set up and that it was impossible or 

very difficult to build process-based models for either site. The XGBoost models for both sites consistently outperform the 

linear regression (LM) models, suggesting that more sophisticated ML algorithms such as XGBoost are able to better capture 

the complex rainfall-runoff correlations than simple LM methods. The SHC XGBoost models have comparable prediction 

accuracies to SWMM, although the former were built with considerably less efforts. Thus, in future SuDS studies, it can be 425 

useful to quickly train some ML models based on available data and used them as a reference to evaluate the prediction 

accuracies of process-based models. The proposed ML model training methods can be potentially extended to study other 

small-scale urban catchments that have similar configurations to SHC. 
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Figure 5 Prediction accuracies of the various models built for the Washington Street SuDS site (WS) and Shayler Crossing 430 
Watershed (SHC). The prediction accuracies are evaluated in terms of the root-mean-square error (RMSE), coefficient of 
determination (R2), and Nash-Sutcliffe coefficient of efficiency (NSE). The RMSE units are L/s for WS and m3/s for SHC. Each data 
point in the figure shows the prediction accuracy evaluated using a specific split of the dataset. The prediction accuracies derived 
using the same test dataset are connected by lines. The SWMM model for SHC was built by Lee et al. (2018a). 

Each data point in Figure 5 shows the results obtained for a specific split of a dataset (i.e., the division of data into training, 435 

validation, and test datasets), and the points that correspond to the same split are connected by lines. The prediction accuracies 

of XGBoost and LM models varied considerably for different splits of a dataset. The variations indicate that the sample 

distributions in the different versions of training and test datasets appreciably differ, even though a stratified sampling method 

was used to balance the sample distribution in the different folds. The imbalanced sample distribution is associated with the 

limited number of samples used for the model training and evaluation, which implies that the four years of rainfall-runoff data 440 

of WS still contained an insufficient number of samples for the ML methods examined in this study. For instance, only a few 

high-flow events were observed each year in WS, which may be insufficient for training ML models that provide accurate 
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high-flow predictions. Even fewer samples were available for training and testing the SHC models; thus, the uncertainties of 

the prediction accuracies may be even larger. 

3.2 Physical realism of the decomposed hydrographs 445 

The results obtained for numerical experiment #1 are presented in this section. As an example, Figure 6 shows the predicted 

decomposed hydrographs of WS associated with rainfalls of different periods for a large, medium, and small runoff event. As 

shown in Figure 6, runoff is mostly contributed by the rainfall that occurred within the past 1 h regardless of the runoff event 

magnitude, especially for the peak discharge. These patterns are generally expected from small catchments, where runoffs are 

mostly contributed by recent rainfalls. As WS is a small-scale catchment, the inferred fast runoff responses are consistent with 450 

our hydrological knowledge. 

 
Figure 6 (a) Rainfall time series and (b) decomposed hydrographs of a large, medium, and small runoff event from the Washington 
Street SuDS site (WS). The model used to derive the hydrographs was obtained in the outer cross-validation iteration 1. 
Observational SHAP values were used in the computation. 455 

Although it is not exactly clear how to quantitatively assess the physical realism of the contribution values assigned to 

rainfall of each hour, they express some patterns that are obviously inconsistent with our hydrological knowledge. First, Figure 
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6 shows that rainfalls can have negative contributions to runoffs, which are physically impossible. Although rainfall is the only 

forcing variable that is used by the model, the negative contributions may also be explained by the other “implicit” variables 

that can be predicted by rainfall, e.g., evapotranspiration is correlated with rainfall and can cause water losses from the 460 

catchment. However, it is nontrivial to exclude the contributions of the implicit variables such that rainfalls’ contributions to 

runoffs are strictly nonnegative. Second, there is a constant bias term in the decomposed hydrographs that are independent of 

the rainfalls. This term is the average prediction for all samples and accounts for the differences between the predicted values 

and the contributions assigned to all variables in the SHAP method. However, this constant term does not clearly correspond 

to any processes in hydrology. Additionally, a model might use features that are not derived from rainfall (e.g., the age of the 465 

SuDS practice) as a predictor, which will also be assigned with contributions to runoffs when the SHAP method is used to 

examine the basis of predictions. However, it is unclear how to use these contributions in hydrograph separation. 

The results of this experiment show that the inferred hydrological processes can be only partially consistent with the 

knowledge of the system being modeled. Some ML explanation methods, such as SHAP, can generate explanations that are 

inherently inconsistent with hydrological principles, such as the rainfalls’ negative contributions to runoffs and the constant 470 

contributions to runoffs that are not associated with any variable. Nevertheless, it would be meaningful to compare the 

decomposed hydrographs to those derived using approaches in process-based modeling and tracer and isotope hydrology to 

further evaluate the validity of the explanations derived using ML methods. 

3.3 Physical realism of the importance of rainfalls of different time steps to discharge prediction 

The results of numerical experiment #2 are shown in Figure 7. In both WS and SHC, rainfalls recorded prior to 100 time steps 475 

in the past (i.e., 16.7 h) have almost no impact on discharge prediction, which is reasonable considering their small catchment 

sizes. The rainfalls that occurred in 1 and 4 time steps (i.e., 10 and 40 min) in the past are found to have the highest impact on 

discharge prediction for WS and SHC, respectively. This pattern is expected as SHC is considerably (which is around 800 

times) larger than WS, and thereby the time required for stormwater to travel through the catchment is also longer in SHC. 

Although the exact response time of both catchments is unknown, it is possible to use the knowledge regarding the relations 480 

between the response time of the two catchments to conduct an assessment. Utilizing relational patterns in assessing the 

consistency of multiple entities has been demonstrated in Yang and Chui (2021). 
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Figure 7 Average importance of the rainfalls at different time steps in the past for discharge predictions in the XGBoost models of 
the Washington Street SuDS site (WS) and the Shayler Crossing Watershed (SHC). Each line corresponds to an XGBoost model 485 
trained on a specific training dataset. Each time step is 10 min. The x-axis is on a pseudo-logarithmic scale. Observational SHAP 
values were used in the computation. 

It is also worth noting that the importance scores assigned to rainfalls fluctuate across time steps for SHC, which indicates 

that the models find rainfalls in some specific time steps are more important for discharge prediction when compared to the 

others, which is inconsistent with our hydrological knowledge. In WS, these inconsistent patterns are not observed, where the 490 

importance scores of rainfalls generally change monotonically from the past 1 time step to the current time step and the time 

steps in the more distant past. The inconsistent patterns might be caused by the insufficient data used in model training and 

evaluation, which is discussed further in Section 3.5. 

In WS, the rainfall of a specific time step can be assigned with notably different importance scores when the models trained 

using different training datasets are used, which is an indication of considerably different model structures. The structural 495 

differences in ML models are also reported in Schmidt et al. (2020), where the existence of multiple possible model structures 

is referred to as equifinality (Beven and Freer, 2001). The different importance scores will naturally result in different 

explanations of the processes being modeled, and apparently, these explanations cannot be simultaneously close to reality 

(Bouaziz et al., 2021). However, in this case, it is not possible to quantitively assess the explanations provided by different 

models due to the lack of knowledge. Experiment #4 investigate whether models with higher prediction accuracies can generate 500 

more trustworthy explanations to the process being modeled, and the results are presented in Section 3.5. 

3.4 Comparison of multiple methods for explaining machine learning modeling results 

The results of experiment #3 are shown in Figure 8, where various feature importance scores of rainfalls of different time steps 

are compared. All the importance scores derived using different methods suggest that the rainfalls of more recent time steps 
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have a higher impact on discharge prediction. However, different methods can derive considerably different importance scores 505 

for the rainfall of a specific time step, and the relations between the importance scores assigned to the rainfalls of different 

time steps also vary among different methods. Some methods, such as interventional SHAP and frequency, are more sensitive 

to model structural differences than the others. The differences in various importance scores indicate that the selection of the 

explanation method is another source of uncertainty in inferring the processes being modeled. 

 510 
Figure 8 The importance of rainfall from each time step for making discharge predictions assessed by different feature importance 
measures in the Washington Street SuDS site (WS) XGBoost models. Each line shows the results of model trained during an outer 
cross-validation (CV) iteration. The x-axis is on a pseudo-logarithmic scale. For interventional SHAP, all the training samples are 
used as background dataset. 

The importance scores derived from the observational and interventional SHAP values varied significantly due to the 515 

different methods used for computing the expected prediction, i.e., Equations 7 to 8. It is, however, currently unclear how to 

evaluate an explanation method’s effectiveness in inferring the processes being modeled. Nevertheless, it is recommended that 

future study to always report the configurations of the explanation methods being used and evaluate the uncertainties associated 

with explanation method selection. 

3.5 Correlation between the physical realism of inferred processes and model prediction accuracy 520 

The results of experiment #4 are discussed in this section. As shown in Figure 9, a models’ prediction accuracy, as measured 

by NSE, generally increases as more samples are used to train the model, despite its large uncertainties associated with the 

random sampling of the dataset. However, the number of models that correspond to consistent explanations (i.e., the single-

peaked patterns of rainfall importance scores), also shown by the numbers in Figure 9, did not increase as more samples are 
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used in training. In fact, consistent results are not often observed for all training sample sizes. These results suggest that more 525 

accurate models do not necessarily offer more physically realistic explanations to the processes being modeled and using more 

data samples in model training does not guarantee more physically realistic explanations. For the models trained with the same 

amount of data, selecting a more accurate model does not guarantee that the inferences made based on the selected model are 

more consistent with our knowledge. However, it is also possible that our knowledge used in the assessment is biased, as the 

test dataset may not represent the true data distribution that would be observed on an infinite time scale. 530 

 
Figure 9  Boxplot of the prediction accuracy, as measured by Nash-Sutcliffe coefficient of efficiency (NSE), of the Washington Street 
SuDS site (WS) XGBoost models when samples of different sizes are used in model training. For each sample size, the models that 
offer consistent or inconsistent explanations are grouped together, and the numbers of consistent and inconsistent models (the n 
values) are shown. Observational SHAP values were used in the computation. 535 

Ilyas et al. (2019) argued that ML models can make predictions based on features that humans cannot comprehend. The 

implication of this argument is that ML models can make right predictions for the “wrong” reasons (Ross et al., 2017) or 

reasons that are inconsistent with our knowledge, and therefore the prediction accuracy of a model is not a trustworthy 

measurement of the physical realism of the explanations it provides. Regularizing ML models using physical principles, as 

suggested in Nearing et al. (2021), can potentially increase the physical realism of the explanations and the inferred physical 540 

processes. 

3.6 Inferring hydrological processes using machine learning methods and analyzing ingredients of cake samples 

This section uses a metaphor to explain the processes of inferring hydrological processes using ML methods, as shown in 

Figure 10. An ML model is similar to a cake (baked by others) in that they both are consumed by humans, and the exact 

mechanisms that generate the outcomes (i.e., the predictions or the tastes) are often unknown due to complexity. Here, the 545 
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mechanisms refer to the numerical operations that generate the predictions or the ingredients and procedures that give the 

flavor. Normally, the predictions or the tastes are of main interest. However, it can be useful to inspect the mechanisms that 

lead to the outcomes such that more confidence regarding future outcomes can be gained, where future outcomes refer to the 

predictions under new conditions or more cakes acquired through similar means. ML explanation methods and chemical 

composition analysis methods can provide information regarding the elements that contribute to the prediction or flavor. 550 

However, in many cases, such information can only be treated as circumstantial evidence of certain physical principles being 

learned by a model or the presence of certain ingredients. This is because ML models usually do not have structures that 

directly resemble the physical processes and chemical composition analysis usually does not directly test the presence of a 

food ingredient. The raw information is then further processed by referring to domain-specific knowledge, such as hydrological 

knowledge or nutritional facts of foods. For instance, a high degree of association between the predicted discharge and recent 555 

rainfall is an indication of a catchment’s fast runoff response, which is commonly seen in small urban catchments, and a high 

carotene content may indicate that carrots are used in the cake. The inferred physical processes or ingredients and procedures 

are then evaluated against that would be expected based on domain-specific knowledge of the system being modeled or baking 

a specific type of cake. Finally, whether the ML model learns the expected physical processes or whether the cake is baked 

following the expected recipe is evaluated. 560 

 
Figure 10 Illustration of the processes of (a) testing whether a cake is made following the desired recipe and (b) testing whether a 
model captures the physical processes of the system being modeled. 

It is important to note that uncertainties are presented in every step of the assessment. First, different ML explanation 

methods or chemical composition analysis methods can lead to significantly different outcomes, which are used as the basis 565 

for inference. An example is provided in Section 3.4. Second, the inference process can be biased and subjective due to our 
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incomplete knowledge. For example, a chemical component could correspond to an ingredient that we do not know, and a 

rainfall’s negative contribution to runoff could be caused by an unknown stormwater harvesting activity in the catchment. Bias 

and subjectivity, however, cannot be avoided in an open system, as there may be infinitely many physically plausible 

explanations to the same outcome (Oreskes et al., 1994). Third, the knowledge applied in the final assessment processes to 570 

define assessment criteria can be incomplete. 

Are the practices of inferring the physical processes using ML methods any good? This study considers the consistency 

evaluation results of the inferences as circumstantial evidence to support a model’s trustworthiness. Although an ML model 

does not have to learn the physical principles to make good predictions, we might prefer that the desired principles are captured 

by the models. This is similar to suggest that we prefer delicious cakes are made with ingredients we considered safe. Models 575 

that are associated with inferences that are consistent with our knowledge may be proven more reliable under new 

circumstances, such as extreme event predictions and predictions under data distribution drifts (Lu et al., 2019). More research 

on testing ML models’ reliability is recommended. 

It is also important to note that the inferred processes should be interpreted cautiously due to the large uncertainties involved 

in every step of the assessment. The detailed configurations of the entire inference process should be reported when presenting 580 

the inferred processes. In particular, large uncertainty resides in the process of making inferences according to the raw 

explanations derived from ML explanation methods, as many physical processes can give rise to the same raw explanations. 

It is therefore important to consider a larger search space for drawing inferences, which may be considered as an attempt to 

mitigate the streetlight effect, i.e., limiting the search space to be only under a streetlight in the dark or a specific set of plausible 

explanations (Demirdjian et al., 2005). 585 

4 Conclusions 

The following conclusions can be drawn. 

1. This study shows that ML methods can be useful for modeling the hydrological responses of SuDS catchments at 

sub-hourly time scales. In this study, models with high prediction accuracies (NSE > 0.7) are obtained for two SuDS 

catchments of different sizes, SuDS practice types, and data availabilities. ML models can be set up relatively easily 590 

provided that observation data of the variables of interest are available and thus are recommended to be used as a 

reference to evaluate process-based models. 

2. The physical process being modeled can be inferred based on the results of ML explanation methods. However, the 

inferred processes might be inconsistent with the patterns that would be expected based on domain-specific 

knowledge of the system being modeled. An ML model’s ability to provide accurate predictions can be uncorrelated 595 

with its ability to offer plausible explanations to the physical processes being modeled. 

3. This study provides a high-level overview of the processes of inferring the physical processes being modeled using 

ML explanation methods. It shows that large uncertainties are presented in the processes of explaining model 
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structures using ML explanation methods, making inferences according to the raw explanations, and assessing the 

physical realism of the inferred physical processes. The inferred hydrological processes normally should only be 600 

considered as circumstantial evidence to support a model’s trustworthiness due to their indirect connection to the raw 

explanations. Due to the existence of the large uncertainties in the inference processes, the inferred physical processes 

should be interpreted cautiously, and more physically plausible explanations that correspond to the same raw 

explanations can be potentially investigated. 

Code availability 605 

The source code used in this study is available at https://github.com/stsfk/ExplainableML_SuDS, which contains functions for 

data pre-processing, modeling, modeling result analysis, and plotting. The following R packages are used for modeling and 

analysis in this research: xgboost (Chen and He, 2020), tidymodels (Kuhn and Wickham, 2020), lubridate (Grolemund and 

Wickham, 2011), RcppRoll (Ushey, 2018), zeallot (Teetor, 2018), mlrMBO (Bischl et al., 2017), and hydroGOF (Zambrano-

Bigiarini, 2020). The following Python packages are used: shap (Lundberg and Lee, 2017), NumPy (Harris et al., 2020), and 610 

xgboost (Chen and Guestrin, 2016). All the R and Python packages used in this research are freely available online. 

Data availability 

The data of the two study sites examined in this study is obtained from the United States Geological Survey (USGS), Clermont 

County, Ohio, U.S., and the United States Environmental Protection Agency (U.S. EPA). The identification numbers of the 

USGS monitoring sites for the Washington Street SuDS site (WS) are 412533081221500, 412535081221400, and 615 

412535081221402. The data of the Shayler Crossing Watershed can be downloaded at https://doi.org/10.23719/1378947. The 

SWMM model used in this research is developed in Lee et al. (2018a). 
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