Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-460-RC2, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Interactive comment on "Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods" by Yang Yang and Ting Fong May Chui

Anonymous Referee #1

Received and published: 15 October 2020

Firstly, this work is innovative for explaining machine learning predictions in hydrology forecasting. With applying AI in various fields and getting excellent results, it is a hot topic to interpret the machine learning. But this manuscript still has some questions needed revised. Generally, it is a good research point, but manuscript is hard to understand. The logic of this paper is not clear that I cannot figure out what information explained by SHAP model and what relationship of hydrological response and selected hyperparameters. I think the main question is limited input variables (only Rainfall depth). I cannot agree that the design rainfall depth features (Section 2.1.1) reflect

C₁

SuDS hydrological process. Thus, the hyperparameters of m, I, q, account_CumRain and account_season have little meaning for interpreting hydrological process in SuDS. Originally, SHAP is a game theoretic approach to explain the output of machine learning model. So maybe more physical observation variables are needed to selected as input variables. Therefore, I suggest this manuscript for Major Revision and Resubmission. Point 1:Whether the constructed data feature mining algorithm corresponds to the reference standard in the folded data part? Point 2: "The framework is particularly useful for urban catchments where the information for setting up process-based models is insufficient."iijĹline580iijL'Is this statement reasonable? Do similar expressions still exist in the full text? Point 3:Adding quantitative analysis to the conclusion section should be more convincing. Point 4:Compared with the commonly used urban rainfall runoff models, what are the obvious advantages of this model?

Line 620-780: It is difficult for finding the references because of improperly format. Line 9: How do you define the "fine temporal scales"? It is an important concept in your forecasting, but it is not clear. Line 131: Why you use Dt-a,t-b for aggregating rainfall depth? In Line 84 said many observation data became available, but why only the rainfall data? Do you have other data? Line 6-14 and Line 560-595: In the section of abstract and conclusion, the quantitative results are absent and the qualitative descriptions are not enough.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-460, 2020.