We would like to thank Dr. Georgia A Papacharalampous (Referee #2) for providing insightful

comments for improving our paper. Our responses to her comments are as follow.

Italicized text: comments made by Dr. Georgia A Papacharalampous (Referee #2).

Blue text: Authors’ responses.

Summary: The paper focuses on the predictive modeling of sustainable drainage systems
(SuDS) at fine temporal scales using boosting (Friedman 2001). Several boosting variants are
formed and exploited in two case studies, while comparisons with the linear regression
algorithm and the Storm Water Management Model (SWMM; Rossman 2015) are also
provided. Furthermore, the SHapley Additive exPlanations (SHAP) method (Lundberg and Lee
2017) is used to explain the contribution of each variable (else referred to as “feature”) to the

issued predictions, thereby facilitating interpretability to some extent.

Thank you for providing a nice summary of our research.

General comments: In general, 1 find that the manuscript is well-formulated and -written, and
[ think that the work done so far (including the release of the R codes at GitHub) should be
appreciated. Nonetheless, I also think that there is some room for improvement before

publication.

I recommend minor revisions. My comments are given right below.

Thank you for the positive assessment. We revised the manuscripts according to your
comments. In particular, we added more discussions on the machine learning model
interpretation methods and a comparison between the explanations derived using different
interpretation methods. We also plan to improve the documentation of the source code on
GitHub when submitting the revision. Please find our responses and some of the new results

below.

In addition, in response to the comments provided by Anonymous Referee #1, we improved
the readability of the paper by making the following changes: (a) simplification of the methods,
(b) removal of non-essential findings, and (c) re-organizing the paper according to the new
research objective. The modifications did not change the overall content and the conclusion of

the paper. Detailed information can be found in Author Comment #1 (AC1).



Comments:

(1) To my view, the following clarification is required: Which are the similarities and
differences between basic variable importance measures (available in the xgboost R package)
and the SHAP methodology (available in the SHAPforxgboost R package)?

The main differences between SHAP and the basic importance measures (such as gain and

cover) are as follow.

(a) SHAP is a model-agnostic interpretation methods, and the other importance measures
provided by the “xgboost::xgb.importance” function in R package are model-specific (Chen et
al., 2020). The advantage of model-agnostic methods is that they can be applied to various
machine learning models and thereby allow comparisons between different types of models in
terms of the derived interpretations (Ribeiro et al., 2016).

(b) SHAP is a local interpretation method while the other methods provided by the
“xgboost::xgb.importance” function are global interpretation methods. The local interpretation
methods are designed for interpreting the prediction made for individual input samples, and the
global methods are independent of the input samples and often explain the structure of the
model (Lundberg and Lee, 2016). Therefore, in this study, SHAP can be used to analyse a
specific runoff prediction, and the other methods cannot be used for this task.

(c) Theoretically, SHAP is the only method that provides interpretations that satisfy a series of
desired properties, such as local accuracy, missingness, and consistency (Lundberg et al., 2020).

In the updated manuscript, we added discussions regarding the differences between various
model interpretation methods.

(2) Since interpretability is one of the main themes of the present work, 1 feel that a comparison
(direct or indirect, depending on the answer to comment #1) between basic variable
importance measures and the SHAP methodology is currently missing from the manuscript and
should be necessarily made for both case studies. New computations are needed for this
comment to be fully addressed (independently of the answer to comment #1); however, these

computations will only require the xgboost R package (which is already used in the paper).

Thank you for your suggestion. In the updated manuscript, we added a comparison between
feature importance derived using different interpretation methods. As shown in Figure 1, for
each machine learning model, the rainfall’s contribution to the runoff prediction at each time
step was computed using different methods. As we explained in the response to comment #1,
the gain, the cover, and the frequency are all global interpretation methods, it is not possible to



compute the importance of the rainfall for a specific input sample. Thus, each dashed line in
Figure 1 corresponds to the results obtained for a model for all input samples. In general, we
found that gain and SHAP offered similar explanations regarding the relative importance of
rainfall to runoff predictions. We also showed that the explanations are dependent on the
machine learning models and the interpretation methods. The implication is that if we use these
methods to investigate the involved hydrological processes, then various explanations are
plausible. Schmidt et al. (2020) suggested the many possible explanations associated with
different machine learning models are similar to the equifinality phenomenon in process-based
hydrological modelling. The new results are discussed in greater detail in the updated

manuscript.
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Figure 1. Rainfall’s contribution to runoff prediction at different time steps ahead. Each
subfigure shows the results obtained in different outer cross-validation (CV) iterations and

the mean values derived using a feature engineering method and an interpretation method.

Following the recent discussions on the “correct” methods to compute SHAP values in Chen
et al. (2020) and Janzing et al. (2019), we used both the observational and the interventional
methods to compute the SHAP values. The results obtained using the two methods, as shown
in Figure 2, are overall similar. The implications and reasons to use each method are explained
in the updated manuscript. The Python package “shap” was used in the computation, as it offers
both methods (Lundberg et al., 2017). The source code for computation will be posted on
GitHub when submitting the revision.
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Figure 2. Rainfall’s contribution to runoff prediction at different time steps ahead. Each
subfigure shows the results obtained in different outer cross-validation (CV) iterations and
the mean values derived using a feature engineering method and a SHAP computation
method.

(3) In light of comments #1 and #2, other hydrological studies using boosting or random forests
while also emphasizing on interpretability (by using variable importance measures) could be
discussed (in comparison to the present study) somewhere in the manuscript. What is the added
value of the present work with respect to such existing works?

In the updated manuscript we added a short review of the methods applying boosting and
random forests methods in hydrology.

The main contribution of this study is as follow. (a) It presents the applications of model-
agnostic local interpretation methods for interpreting individual predictions of rainfall-runoff
models, whereas existing studies mostly use model-dependent global interpretation methods.
(b) This study proposes a feature engineering and model training method to automatically find
the optimal lower-dimensional representations of high-dimensional input time series for
machine learning models. The contribution of the rainfall at each step to a runoff prediction
can be easily computed using the proposed method. (¢) This study shows that machine learning
methods can be effective for modelling the rainfall-runoff correlations of SuDS. It also shows
that the hydrological processes inferred by interpretation methods are dependent on the



machine learning models and the interpretation methods, i.e., there are many different but
likely explanations to the predictions of the same event. Relevant discussions were added in
the updated manuscript.

(4) In the “Introduction” section, it is written that “only a few studies adopted machine
learning methods to investigate the hydrological processes of SuDS”, with the studies by Eric
et al. (2015), Khan et al. (2013), Li et al. (2019), and Yang and Chui (2019) being discussed
as examples of such studies. Since such studies are quite close to the present work, more of

them could be reported (provided that they exist).

Currently, there are very few studies applying machine learning methods to study the
hydrological performances of sustainable urban drainage systems (SuDS). We explained the
reasons behind the lack of popularity, and listed all the literature we can find in the updated
manuscript, e.g., Hopkins et al. (2020) was added. More details of these studies are also
presented in the updated manuscript. Additionally, we clarified our contributions more clearly

(see our response to comment #3).

(5) In the same section, it is also written that “modeling the responses of SuDS at fine temporal
scales requires high-dimensional hydrometeorological time series to be used as input, which
is difficult in machine learning”. Could this sentence be further elaborated? I would say that
the opposite holds, i.e., that machine learning methods are ideal for handling high-dimensional

hydrometeorological time series.

Our original statement was inaccurate. There are some machine learning methods that are very
efficient in handling high dimensional data, such as deep learning methods. However, as
discussed in Nielsen (2019), high-dimensional time series data are usually converted to lower-
dimensional features before feeding to a machine learning model, unless the model is
specifically designed to model sequence data. We were also not sure if the XGBoost method
works well with high dimensional time series. Therefore, we designed a very flexible feature
engineering method, that certain hyperparameter values would generate rainfall depth features
that are very close to the original rainfall time series. The final features chosen were those
corresponded to the highest prediction accuracy, and they were generally in low dimensions.
In the updated methods, we updated this statement by saying that modelling high dimensional
data can be challenging for some machine learning methods. And in the conclusion section, we
suggested future studies to explore the usefulness of machine learning methods that are
specifically designed for high dimensional sequence data, such as LSTM networks in deep

learning.



(6) The reader could also be referred to several specialized books (e.g., Hastie et al. 2009;
James et al. 2013, Witten et al. 2007), for further information on the machine learning (or

statistical learning) methods used in the paper.

Thank you for your suggestion. In the updated manuscript, we provided a list of suggested
references for the machine learning methods and the model interpretation methods.

(7) Another concern of mine is related to the small number of real-world cases examined in
the paper. I think that the application of the proposed procedures to large real-word datasets
(comprising hundreds of cases) should be addressed at least with extensive relevant
discussions in the manuscript (e.g., future research recommendations). (Currently, it is only
suggested using “the SHAP method in more case studies”). To my view, these extensive
discussions are important, especially given that (i) there are studies in the hydro-
meteorological literature validating their models using big datasets, and (ii) the first aim of
the paper is to “evaluate the usefulness of machine learning methods in predicting the
hydrological responses of SuDS at fine temporal scales”. The necessity of evaluating machine

learning methods using big datasets is extensively discussed by Boulesteix et al. (2018).

We agree that the proposed method should be thoroughly tested on different datasets to prove
its usefulness. However, to the knowledge of the authors, there are no publicly available
regional or global datasets on the rainfall and runoff time series of SuDS.

We have the rainfall-runoff data of SuDS for a few sites in the U.S., and the proposed methods
were found to be effective for these sites. The two sites, WS and SHC, were chosen to be
reported in the manuscript for the following reasons. (a) The two sites are in very different
scales: WS is about 1,000 m?, and SHC is about 1 km?. We intended to show our methods are
useful for catchments of various scales. (b) A few years of data were available for WS, and
only two months of runoff data were available for SHC. We aimed to show our methods can
be useful even when the data is not abundant. (c) The two sites faced different difficulties in
setting up process-based models: the physical properties of the SuDS were unknown in WS,
and the drainage system of SHC was very complex and the characterization of which requires
thousands of parameters. We believe these difficulties are common in practice, and thus we
presented the proposed methods as potential solutions to the common problems. The reasons
and implications for choosing the two sites were clarified in the updated manuscript.

To address this comment, we suggest the proposed methods to be tested on more SuDS sites
in the conclusion section of the paper. We also added discussions on usefulness of the proposed
method in other fields of hydrology, where regional and global data, such as the CAMELS



dataset (Newman et al., 2015), are available. We also plan to include results of more SuDS
cases studies as the demonstration applications in the documentation of the source code on
GitHub.

(8) In the “Conclusions” section it is written that “the proposed model training methods are
semi-automatic, requiring minimal user input”. It would be useful to discuss (somewhere in
the paper) which parts of the proposed methods are not (fully) automatic, and how one could
overcome this limitation to allow large-scale (even global-scale) investigations (see also

comment #7).

In response to this comment and the comments made by Anonymous Referee #1, we used
Bayesian optimization algorithms to automatically find the optimal features and
hyperparameters for training machine learning models (Snoek et al., 2012). This eliminates the
need to select a predefined set of candidate feature engineering and XGBoost hyperparameters.
The updated methods thus only require the lower and upper bounds for each hyperparameter.
The user can also use the default values, if she/he so desires (the method then becomes fully
automatic). This change allows the method to use regional scale data, where multiple sites were
analysed. Relevant discussions are added in the updated manuscript.

The quality of the models derived using the updated method was found to be similar or better
when comparing to that derived using the old methods (some of the results are presented in our
responses to comment #1 made by Referee #1).

(9) Currently, the use of the xgboost and SHAPforxgboost R packages is reported in the
manuscript. To my view, all utilized software packages (which, of course, at the moment can
be found online at https.//github.com/stsfk/explainable _ml hydro, since the R code has been

made available) should necessarily be reported and cited in the paper.

In response to this comment, we listed all the packages used in modelling in the updated

manuscript.

In addition, we updated the source code using the “tidymodels” R packages (Kuhn and Silge,
2020), the source code is now easier to understand. We are also updating the documentation of
the source code. The code and the documentation will be posted on GitHub upon submission

of the revision.



(10) Finally, the manuscript is not typo-free at the moment. Particular attention should be
placed on the mathematical notations. For instance, the transpose operator should not be
written in italics (therefore, T should be replaced with T) and the vectors should be bolded
(therefore, Xt—m,t should be replaced with Xt—m,¢).

Thank you for catching the errors. We will thoroughly check the manuscript when submitting

the revised version and also hire a professional English editor to correct grammatical mistakes.
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