
 1 

We would like to thank the Anonymous Referee #1 for providing valuable and constructive 
suggestions regarding our manuscript. Please find our responses below.  
 
Italicized text: comments made by Referee #1. 
Blue text: Authors’ responses. 
 
1. Firstly, this work is innovative for explaining machine learning predictions in hydrology 
forecasting. With applying AI in various fields and getting excellent results, it is a hot topic to 
interpret the machine learning. But this manuscript still has some questions needed revised. 
Generally, it is a good research point, but manuscript is hard to understand.  
 
The referee commented that our manuscript is hard to understand. To improve the readability 
of the paper, we updated the manuscript in the following aspects: (a) simplification of the 
methods, (b) removal of non-essential findings, and (c) re-organizing the paper according to 
the updated research objective. The details are as follow. 
 
(a) Simplification of the methods. We updated the feature engineering method and the 
hyperparameter optimization method, both of which are used for training machine learning 
models. 
 
In the revised manuscript, the high-resolution rainfall time series is converted into rainfall 
depth features using three hyperparameters, 𝑚, 𝑙, and 𝑛. Only the rainfalls recorded between 
𝑡 − 𝑚 and 𝑡 − 0 are considered. Each rainfall depth recorded between 𝑡 − 𝑙 and 𝑡 − 0 is used 
for creating rainfall depth features. And 𝑛 intervals are created for aggregating the rainfall 
recorded between 𝑡 − 𝑙 − 1 and 𝑡 − 𝑚, and the intervals roughly form an arithmetic sequence. 
See the illustration in Figure 1. The updated method is easier to understand, and the complex 
equations (Eqs. 5-7) in the original submission can be removed. 
 

 
Figure 1. Illustration of the method to derive rainfall depth features. 𝑝!"# denotes the rainfall 

depth recorded at time 𝑡 − 𝑖. 
 
We also simplified the hyperparameter optimization method. In particular, in the revised 
manuscript, we no longer differentiate the feature engineering hyperparameters and the 
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XGBoost hyperparameters, and all the hyperparameters were optimized together through an 
automated Bayesian optimization method (Snoek et al., 2012). Figure 2 shows that the 
Bayesian optimization method can find high-quality solutions (as indicated by low inner cross-
validation (CV) errors) in a few optimization steps. 
 

 
Figure 2. (a) The model’s prediction accuracy associated with the hyperparameters evaluated 
during each optimization step. The prediction accuracy is measured by the root-mean-square 
error (RMSE) of the predictions obtained during the inner cross-validation (CV) iterations. 

(b) The expected utility of the candidate hyperparameters evaluated during each optimization 
step. 

 
We also investigated whether the optimization method resulted in overfitting the model 
selection criterion. As indicated by the positive correlation between the inner and outer CV 
errors in Figure 3 (i.e., the good models found during the optimization process also had good 
performances during testing), the optimization method did not overfit the model selection 
criterion. Readers do not need to understand the technical details regarding Bayesian 
optimization, and the method is described briefly in the revised manuscript. In this way, the 
descriptions on the resampling scheme, the choice of feature engineering and XGBoost 
hyperparameters, and the model selection method can all be removed or substantially shortened. 
The models derived using the updated and the old methods were found to have comparable 
prediction accuracies. 
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Figure 3. The model’s prediction errors estimated during the inner and the outer cross-

validation (CV) iterations for each set of candidate hyperparameters evaluated during the 
optimization. The prediction error is measured by root-mean-square error (RMSE). Each 
subfigure shows the result obtained for a rainfall depth feature aggregation method and 

during an outer CV iteration. 
 
(b) Removal of non-essential findings. In the updated manuscript, the results of XGBoost 
hyperparameters optimization (Section 3.1) were removed due to the updated method and the 
new research objective. The results on interpreting the feature engineering hyperparameters 
(Section 3.3.1) were also removed due to their indirect connections to the hydrological 
processes. The descriptions of goodness-of-fit of the trained models (Section 3.2) were 
shortened. 
 
(c) Re-organizing the paper according to the new research objective. We removed the following 
research objective from the updated manuscript, “develop and present tools and methods for 
building higher quality machine learning models for SuDS-related studies and demonstrate the 
applications”. And the overall objective became “modelling the hydrological responses of 
SuDS to rainfalls and examining the basis of predictions using interpretation methods”. 
Therefore, we removed the “demonstration” element from the original submission, and focused 
on developing methods for modelling SuDS and interpreting the model predictions. New 
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findings applying the proposed methods were also reported. The following changes were made 
in terms of the content of the paper. 
 
In the introduction section of the updated manuscript, an introduction to the interpretation 
methods and their applications in hydrology is presented. This will help readers understand the 
research objectives. 
 
In the methods section, we extended the introduction to the interpretation methods. In particular, 
the differences between the local and the global interpretation methods (such as the commonly 
used gain and cover metrics for XGBoost) were discussed, and the two methods (the 
observational and the conditional methods) to compute the SHAP values and their implications 
were introduced. We also substantially shortened the description of machine learning model 
training methods. More focus was given to the interpretation methods, as literature on this topic 
is currently lacking in the field of hydrology, and readers can get a better understanding of the 
results if more information on the interpretation methods is provided. 
 
In the results section, we removed some of the results on machine learning model training and 
the results on interpreting feature engineering hyperparameters. The comparison between 
SHAP and other global interpretation methods was added, as suggested by Referee #2. We also 
examined the differences in explanations when using different interpretation methods for 
different models. In addition, we explained the potential applications of the interpretation 
methods in greater detail. 
 
 
2. The logic of this paper is not clear that I cannot figure out what information explained by 
SHAP model and what relationship of hydrological response and selected hyperparameters. 
 
The SHAP method is a feature attribution method, i.e., it aims to explain how much each 
feature contributed to the output of a model for a particular sample (Janzing et al., 2019). For 
this particular study, the rainfall’s contribution to the subsequent runoff predictions at each 
time step is computed. In the updated manuscript, we added a formal introduction to feature 
attribution problem and their methods. We hope this can help the readers understand the results. 
 
 In response to this particular comment, we removed the content on explaining the 
hyperparameters in the updated manuscript, as we found their connections to the hydrological 
processes are indirect. The updated manuscript only explains the contribution of rainfall to 
runoff predictions at different time steps. 
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3. I think the main question is limited input variables (only Rainfall depth). I cannot agree that 
the design rainfall depth features (Section 2.1.1) reflect SuDS hydrological process. Thus, the 
hyperparameters of m, l, q, account_CumRain and account_season have little meaning for 
interpreting hydrological process in SuDS. Originally, SHAP is a game theoretic approach to 
explain the output of machine learning model. So maybe more physical observation variables 
are needed to selected as input variables. Therefore, I suggest this manuscript for Major 
Revision and Resubmission.  
 
We agree with this comment that more variables can be included in the machine learning 
models. However, for the study site, only the rainfall and the runoff time series were available. 
The lack of data (such as the physical properties of the catchment) for setting up process-based 
models was also a motivation for using machine learning methods. In addition, this study 
focuses on modelling stormwater runoffs of small-scale urban drainage infrastructures during 
the wet period (i.e., within 24 hours of rainfall events), thus rainfall is the main driver of the 
system being modelled. Studying how a runoff prediction is affected by the rainfall of each 
time step is meaningful. Moreover, we also considered additional input features to the machine 
learning models to account for potential seasonality of the performance of the SuDS. Finally, 
this study recommends future studies to include more variables in machine learning models in 
the conclusion section. 
 
In response to this comment, we removed the content on explaining the hyperparameters, as 
they are indirectly connected to the hydrological processes of SuDS. 
 
In the updated manuscript, we presented SHAP as a method to explain the basis of a prediction 
for checking whether that prediction can be trusted. That is, we do not think the hydrological 
processes inferred by machine learning models are necessarily true. We further clarified this 
point by adding studies comparing the inferred hydrological processes of different machine 
learning models derived using different methods for computing SHAP values. As an example, 
Figure 4 shows that different machine learning models considered the rainfall’s contributions 
to runoff predictions differently. Thus, there were considerable uncertainties in interpreting 
machine learning model predictions. The existence of various possible explanations was 
referred to as equifinality in Schmidt et al. (2020), which is an important concept in 
hydrological modelling (Beven and Freer, 2001). We reported this issue in the updated 
manuscript. 
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Figure 4. Rainfall’s contribution to runoff prediction at different time steps ahead. Each 

subfigure shows the results obtained in different outer cross-validation (CV) iterations and 
the mean values derived using a feature engineering method and a SHAP computation 

method. 
 
4. Point 1:Whether the constructed data feature mining algorithm corresponds to the reference 
standard in the folded data part?  
 
In the updated manuscript, we no longer discuss the specific values of feature engineering 
hyperparameters due to their indirect connections to the hydrological processes. We used a 
Bayesian optimization method to optimize the hyperparameters automatically. 
 
 
5. Point 2: “The framework is particularly useful for urban catchments where the information 
for setting up process-based models is insufficient.” Is this statement reasonable? Do similar 
expressions still exist in the full text? 
 
Thank you for raising this question. We think further clarification is needed in the updated 
manuscript. We claimed that “the framework is particularly useful when information for setting 
up process-based models is insufficient”. Here, the information refers to the knowledge about 
the physical properties and the physical processes of the system being modelled. This point is 
demonstrated using two case studies. The physical properties of the drainage systems in the 
first case study were unknown, and it was also difficult to represent the unknown leakage from 
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SuDS using process-based models. The second case study site contains a large-scale and 
complex drainage network, requiring many parameters to characterize their physical properties 
in process-based models. Machine learning models were built relatively easily in the two case 
studies and showed relatively high prediction accuracies. However, we argue that process-
based hydrological models are useful for examining the involved hydrological processes. 
 
Therefore, machine learning methods are useful for modelling the statistical correlations 
between interested random variables of the catchment when observation data of the variables 
are available, and the trained machine learning models can serve as a baseline for evaluating 
process-based models. We modified the original statement to match this conclusion in the 
updated manuscript. 
 
 
6. Point 3:Adding quantitative analysis to the conclusion section should be more convincing. 
 
In the updated manuscript, we added the performance metrics of the trained machine learning 
models in the abstract and the conclusion section. 
 
 
7. Point 4:Compared with the commonly used urban rainfall runoff models, what are the 
obvious advantages of this model?  
 
The advantage of using machine learning methods is that they only require observation data of 
the interested random variables and do not require the involved physical processes to be 
characterized. Machine learning models can generally be set up easily and can potentially 
provide high-quality predictions. Machine learning models may be used as baseline models for 
evaluation of process-based models. More explanations are provided in our response to 
comment #5. 
 
 
8. Line 620-780: It is difficult for finding the references because of improperly format.  
 
Thank you for catching the errors. We updated the citation styles throughout the manuscript to 
meet HESS requirement. 
 
 
9. Line 9: How do you define the “fine temporal scales”? It is an important concept in your 
forecasting, but it is not clear.  
 



 8 

“Fine temporal scales” refers to sub-hourly scales. In the updated manuscript, the term “sub-
hourly scales” is used as it is more specific. 
 
 
10. Line 131: Why you use Dt-a,t-b for aggregating rainfall depth?  
 
The lower-dimensional rainfall depth features 𝐷!"$,!"& were used because the dimension of 
the original rainfall time series can be very high (e.g., 1,000 time steps), and some machine 
learning methods have difficulties to learn the high-dimensional correlation between the input 
and the output random variables. Thus, we designed a feature engineering method to lower the 
dimension of the input variables of the machine learning models, and the number of features 
used is controlled by three hyperparameters. In fact, the feature engineering method allows the 
rainfall depth features to be very similar to the original time series. And the values of the 
hyperparameters are chosen according to the prediction accuracy of the resulted machine 
learning models. This point is explained in the updated manuscript. 
 
 
10. In Line 84 said many observation data became available, but why only the rainfall data? 
Do you have other data?  
 
We only have rainfall and runoff data for both study sites, as reported in our response to 
comment #3. The sentence “more observation data became available” was referring to the fact 
that the rainfall and runoff are being monitored in more SuDS sites globally. However, as 
pointed out by Schaffitel et al. (2020), monitoring data of other variables concerning urban 
hydrology are still currently lacking. Therefore, it can be useful to present a study that focuses 
only on the correlation between rainfall and runoff time series. More information on this issue 
is also presented in our response to comment #3. We commented on this issue in the updated 
manuscript. 
 
 
11. Line 6-14 and Line 560-595: In the section of abstract and conclusion, the quantitative 
results are absent and the qualitative descriptions are not enough.  
 
Quantitative results are presented in the updated manuscript. 
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