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Abstract 13 

Evapotranspiration (ET) influences land-climate interactions, regulates the hydrological cycle, and contributes 14 

to the Earth’s energy balance. Due to its feedback to large-scale hydrological processes and its impact on 15 

atmospheric dynamics, ET is one of the drivers of droughts and heatwaves. Existing land surface models differ 16 

substantially, both in their estimates of current ET fluxes and in their projections of how ET will evolve in the 17 

future. Any bias in estimated ET fluxes will affect the partitioning between sensible and latent heat, and thus 18 

alter model predictions of temperature and precipitation. One potential source of bias is the so-called 19 

"aggregation bias" that arises whenever nonlinear processes, such as those that regulate ET fluxes, are 20 

modeled using averages of heterogeneous inputs. Here we demonstrate a general mathematical approach to 21 

quantifying and correcting for this aggregation bias, using the GLEAM land evaporation model as a relatively 22 

simple example. We demonstrate that this aggregation bias can lead to substantial overestimates in ET fluxes 23 

in a typical large-scale land surface model when sub-grid heterogeneities in land surface properties are 24 

averaged out. Using Switzerland as a test case, we examine the scale-dependence of this aggregation bias and 25 

show that it can lead to an average overestimation of daily ET fluxes by as much as 10% across the whole 26 

country (calculated as the median of the daily bias over the growing season). We show how our approach can 27 

be used to identify the dominant drivers of aggregation bias, and to estimate sub-grid closure relationships 28 

that can correct for aggregation biases in ET estimates, without explicitly representing sub-grid heterogeneities 29 

in large-scale land surface models.   30 

Plain Language Summary 31 

Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth’s 32 

energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and 33 

heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to 34 

substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale 35 

heterogeneity without explicitly representing it in land surface models.   36 
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 37 

1. Introduction 38 

Earth’s surface and subsurface are characterized by spatial heterogeneity spanning wide ranges of scales, 39 

including scales that cannot be explicitly resolved by large-scale Earth System Models (ESMs), which are 40 

typically run at resolutions of 10-100 kilometers. Averaging over this finer-scale heterogeneity can bias model 41 

estimates of water and energy fluxes and hence alter future temperature predictions. Earth system model 42 

estimates of global terrestrial evaporation differ substantially from atmospheric reanalyses based on in-situ 43 

and satellite remote sensing observations (Mueller et al., 2013), but it is unclear how much of these 44 

differences could be attributed to errors in capturing sub-grid heterogeneity. 45 

 46 

Several recent studies (e.g., Fan et al., 2019; Shrestha et al., 2018) have emphasized the need to account for 47 

land surface heterogeneity in large-scale ESMs. Despite recent community efforts in refining ESMs' spatial 48 

resolution (Huang et al., 2016; Rauscher et al., 2010; Ringler et al., 2008; Skamarock et al., 2012; Zarzycki et al., 49 

2014), the grid resolution of present-day ESMs is still too coarse to explicitly capture important effects of 50 

surface heterogeneity. Whether the solution lies in hyper-resolution large-scale land surface modeling remains 51 

an open question, because heterogeneities that are important to land-atmosphere fluxes will not be fully 52 

resolved even at scales of 100 m (Beven and Cloke, 2012).  53 

 54 

The effects of aggregating over spatial heterogeneity in land surface models have been assessed using several 55 

approaches. Most of these approaches compare grid-cell-averaged energy and water fluxes with flux estimates 56 

for finer-resolution grids, or for grid cells that are subdivided into mosaics of several surface types which 57 

separately exchange momentum, energy, and water vapor with the overlying atmosphere (e.g., Giorgi, 1997). 58 

Several studies have reported increases in average evapotranspiration (ET) (e.g., Kuo et al., 1999; Boone and 59 

Wetzel, 1998; Hong et al., 2009; McCabe and Wood, 2006; El Maayar and Chen, 2006), and at least one has 60 

reported decreases in grid-cell average ET (Ershadi et al., 2013), as model grids are coarsened and less spatial 61 

heterogeneity is accounted for. Shrestha et al. (2018) studied the effects of horizontal grid resolution on ET 62 

partitioning in the TerrSysMP Earth system model and found that the aggregation of topography decreases 63 

average slope gradients and obscures small-scale convergence and divergence zones, directly impacting 64 

surface and subsurface flow. They observed 5 and 8 percent decreases in the transpiration/evapotranspiration 65 

ratio for a dry and a wet year, respectively, when their model grid cells were coarsened from 120 m to 960 m. 66 

All these studies calculate the effects of land surface heterogeneity on ET fluxes using numerical experiments 67 

that refine the model’s spatial resolution, either directly or through the use of land-surface mosaics.   68 

 69 

Quantifying the effect of sub-grid scale heterogeneity on grid-cell-averaged fluxes is especially important when 70 

highly nonlinear processes are involved. Regardless of scale, the main challenge is not to explicitly represent 71 

the heterogeneity in all its details, but instead to define an appropriate scale-dependent sub-grid closure 72 

relationship that recognizes the important heterogeneities within the grid elements and the nonlinearities in 73 
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the processes (Beven, 2006). Such a sub-grid closure scheme would capture the effects of sub-grid 74 

heterogeneity in large-scale land surface models without forcing them to run at finer spatial resolutions. 75 

 76 

We have recently proposed a general theoretical framework, based on Taylor series expansions, that 77 

quantifies the "aggregation bias" that results from averaging over sub-grid heterogeneity when grid-cell-78 

averaged ET is estimated (Rouholahnejad Freund and Kirchner, 2017; Rouholahnejad Freund et al., 2019). In 79 

contrast to the numerical experiments described above, this theoretical framework does not depend on a 80 

particular evapotranspiration model or grid scale. Our previous work demonstrated this framework using 81 

Budyko curves as a see-through "toy" model, leaving open the question of how strongly ET estimates would be 82 

affected by sub-grid heterogeneity in a more typical mechanistic evapotranspiration model. Here we use the 83 

mechanistic evapotranspiration model GLEAM to quantify how aggregation biases vary across a range of 84 

scales, using Switzerland as a case study. We show how our Taylor expansion framework can be used to 85 

quantify the sensitivity of ET fluxes to heterogeneity in their individual drivers. We further demonstrate how 86 

this framework can be used to estimate correction factors (i.e., sub-grid closure relationships) that account for 87 

the effects of sub-grid heterogeneity without explicitly modeling it, and show how these correction factors can 88 

be used to improve grid-scale ET estimates. Because our framework is not model-specific, the analysis 89 

presented here could also be applied to many other evapotranspiration algorithms. 90 

 91 

2. Methods and results  92 

2.1. A common mechanistic framework for predicting evapotranspiration 93 

Most large-scale land surface models calculate ET as a function of available water and energy at daily time 94 

steps. They typically multiply an estimate of potential evapotranspiration (PET) by a conversion factor to 95 

calculate actual evapotranspiration. PET is generally understood as the maximum rate of evapotranspiration 96 

from a large area (to avoid the effect of local advection) covered completely and uniformly by actively growing 97 

vegetation with adequate moisture at all times (Brutseart, 1984). Models typically estimate PET using the 98 

Penman equation (Penman, 1948; intended for open water surfaces), the Penman-Monteith equation 99 

(Monteith, 1965, Monteith and Unsworth, 1990; intended for reference crop evapotranspiration by adding 100 

atmospheric transport processes and stomatal resistance to Penman’s open water evaporation), or the 101 

Priestley-Taylor equation (Priestley and Taylor, 1972; intended for open water and water-saturated crops and 102 

grasslands). The conversion factor that is used to estimate ET from PET typically depends on plant physiology 103 

and on the water that is available for evaporation.  104 

 105 

Here, we employ an ET algorithm that is used by several land surface models (i.e., Global Land-surface 106 

Evaporation: The Amsterdam Methodology (GLEAM); Miralles et al., 2011; Martens et al., 2017), in which 107 

actual ET is calculated as a fraction of PET. This fraction is expressed as a multiplicative factor, often called a 108 

stress factor, which ranges between 0 and 1 and thus limits ET rates. Under wet conditions, ET can equal PET 109 

(stress factor equals one) while under dry conditions, PET is multiplied by a stress factor smaller than one 110 

depending on the degree of water stress. This approach is employed by the GLEAM model, among others. 111 
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GLEAM is a diagnostic satellite-data-driven method that is used to estimate global land evaporation fluxes. 112 

GLEAM uses the Priestley-Taylor formula and remotely sensed datasets of radiation and temperature to 113 

calculate PET. In GLEAM, actual ET is calculated by constraining PET estimates by a stress factor that is based 114 

on estimates of root-zone soil moisture. The root zone soil moisture is derived from a multi-layer water 115 

balance module that describes the infiltration of precipitation through the vertical soil profile. ET estimates 116 

from GLEAM have been applied in many studies (e.g., Miralles et al., 2013; Miralles et al., 2014; Greve et al., 117 

2014; Jasechko et al., 2013). GLEAM operates on daily time steps at 0.25-degree spatial resolution. To the best 118 

of our knowledge, there are no prior studies quantifying the aggregation bias in ET estimates from GLEAM or 119 

other models with similar ET formulations.  120 

 121 

GLEAM calculates ET as an explicit function of the stress factor and potential evaporation: 122 

𝐸𝑇 = 𝑆 ∙ 𝑃𝐸𝑇 + (1 −  𝛽) 𝐼, (1) 123 

where ET is actual evapotranspiration (mm d-1), S is the evaporative stress factor (-) that accounts for 124 

environmental conditions that reduce actual ET relative to potential ET, 𝐼 is interception loss (mm d-1), and β is 125 

a constant (β= 0.07 – Gash and Stewart, 1977) that avoids double-counting of interception losses during hours 126 

with wet canopy. The stress factor (S) depends on the soil moisture conditions, and is parametrized separately 127 

for tall canopy, short vegetation, and bare soil. GLEAM uses the following soil-moisture-based 128 

parameterization to calculate the stress factor (Miralles et al., 2011; Martens et al., 2017): 129 

𝑆 = 1 − (
𝑤𝑐 − 𝑤𝑤

𝑤𝑐 − 𝑤𝑤𝑝
)

2

, (2) 130 

where S is the stress factor (-) for tall canopy, 𝑤𝑤 is the volumetric soil moisture at any given time (m3 m-3), and 131 

𝑤𝑐 and 𝑤𝑤𝑝 are the critical soil moisture level and soil moisture at wilting point. For soil moisture values below 132 

the wilting point 𝑤𝑤𝑝, the stress is maximal (stress factor equals 0), causing ET to sharply decline to zero. For 133 

values above the critical moisture level 𝑤𝑐, there is no water stress (stress factor equals 1) and ET equals PET. 134 

Between 𝑤𝑤𝑝 and 𝑤𝑐 the stress increases as soil moisture decreases following a parabolic function (Eq. 2). In 135 

the analysis presented below, we set the critical soil moisture level (𝑤𝑐) and soil moisture at wilting point 136 

(𝑤𝑤𝑝) to 0.6 and 0.1 m3 m-3 respectively. To simplify the analysis presented below, we have used the tall-137 

canopy stress factor (Eq. 2) for all of Switzerland, even though the short-canopy or bare-soil formulations may 138 

be better suited to some locations.   139 

 140 

GLEAM uses the Priestley-Taylor approach to calculate PET (Priestley and Taylor, 1972): 141 

𝑃𝐸𝑇 =
𝛼

𝜆
 

𝛥

𝛥 + 𝛾
(𝑅𝑛 − 𝐺),         (3) 142 

where 𝑃𝐸𝑇 is potential evapotranspiration (mm d-1), 𝛼 is a dimensionless coefficient that parametrizes the 143 

resistance to evaporation and is set to 0.8 for tall canopy in GLEAM (Miralles et al., 2011), 𝜆 = 2.26 (MJ kg-1) is 144 

the latent heat of vaporization, Rn is net radiation (MJ m-2 d-1), G is the ground heat flux, approximated as 145 

G=0.05 Rn (MJ m-2 d-1) for tall canopy in GLEAM, T is temperature (°C), and Δ is the slope of the 146 
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temperature/saturated vapor pressure curve (kPa°C-1), which is functionally related to temperature (Tetens, 147 

1930; Murray, 1967; Stanghellini, 1987):  148 

𝛥 = 𝑎𝑒𝑏𝑇 ,    (4)       149 

where a= 0.04145 (kPa°C-1), b=0.06088 (°C-1), and 𝛾 is the psychrometric constant (kPa°C-1) which can be 150 

calculated as (Brunt, 1952):  151 

𝛾 =
𝐶𝑝𝑎𝑖𝑟 ∗ 𝑃

𝜆∗ 𝑀𝑊𝑟𝑎𝑡𝑖𝑜
,   (5)  152 

where 𝐶𝑝𝑎𝑖𝑟 = 0.001013 (MJ kg-1°C-1) is the specific heat of air at constant pressure, 𝑃 = 101.3 (KPa) is 153 

atmospheric pressure, and 𝑀𝑊𝑟𝑎𝑡𝑖𝑜 =0.622 (-) is the molecular weight ratio of H2O/air. Substituting the 154 

aforementioned constants in Eq. 5 yields 𝛾= 0.073 (kPa°C-1). Expanding Eq. 1 using Eqs. 2-5 yields the ET 155 

function as calculated by GLEAM: 156 

𝐸𝑇[𝑚𝑚𝑑−1] = [−4𝑤𝑤[𝑚3𝑚−3]
2 + 4.8𝑤𝑤[𝑚3𝑚−3]

− 0.44] ∗
𝛼[ ]

𝜆[MJ 𝑘𝑔−1]
∗

𝛥[kPa°𝐶−1]

𝛥[kPa°𝐶−1] + 𝛾[kPa°𝐶−1]

∗ 0.95 ∗
86400

1000000
∗ 𝑅𝑛[𝑊𝑚−2]

+ (1 −  𝛽) 𝐼[𝑚𝑚𝑑−1]

= [−4𝑤𝑤
2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗

𝑎 𝑒𝑏𝑇

𝑎 𝑒𝑏𝑇 + 0.073
𝑅𝑛  + (1 −  0.07) 𝐼[𝑚𝑚𝑑−1].                  (6)

 157 

 158 

In the analysis below, we use the GLEAM evapotranspiration algorithm to demonstrate how aggregation biases 159 

can be estimated in land surface modeling schemes. We chose GLEAM because its governing equations are 160 

amenable to the analytical solutions derived below. Here we make no particular claim for the accuracy or 161 

validity of GLEAM as an evapotranspiration model, nor is our analysis intended to test this. Likewise our 162 

analysis should not be interpreted as implying that GLEAM is any more, or less, susceptible to aggregation bias 163 

than other evapotranspiration schemes, because this question is beyond the scope of the current paper. 164 

 165 

2.2. Mathematical framework for predicting aggregation bias 166 

Nonlinear averaging using second-order Taylor expansions 167 

ET is a nonlinear function of its drivers. An intrinsic property of any nonlinear function is that the average of 168 

the function will not equal the function evaluated at the average inputs (e.g., Rastetter et al., 1992; Giorgi and 169 

Avissar, 1997; Rouholahnejad Freund and Kirchner, 2017). Thus averaging over sub-grid heterogeneity in ET 170 

drivers, as large-scale land surface models do, would be expected to lead to biased ET estimates, even if the 171 

underlying equations were exactly correct. For an ET function of three variables, namely Rn, ww, and T, the 172 

mean of the ET function, in terms of the function’s value at the mean of its inputs, can be approximated by the 173 

second-order Taylor series expansion of the ET function (Eq. 6):  174 

ET ≈ ET̂ +
1

2
[
∂2ET

𝜕𝑅𝑛
2 Var(𝑅𝑛) +

∂2ET

𝜕𝑤𝑤
2 Var(𝑤𝑤) +

∂2ET

𝜕𝑇2
Var(𝑇)]

+
∂2ET

𝜕𝑅𝑛𝜕𝑇
Cov(𝑅𝑛, 𝑇) +

∂2ET

𝜕𝑅𝑛𝜕𝑤𝑤
Cov(𝑅𝑛, 𝑤𝑤) +

∂2ET

𝜕𝑤𝑤𝜕𝑇
Cov(𝑤𝑤 , 𝑇),       (7)

 175 

where ET is the estimate of the true average of the nonlinear ET function over its variable inputs, ET̂ is the ET 176 

function evaluated at its mean inputs, and the derivatives are understood to be evaluated at the mean values 177 

of the variables ( 𝑅𝑛
̅̅̅̅ , 𝑤𝑤̅̅ ̅̅ , �̅�) and multiplied by the corresponding variances and covariances among finer-178 
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resolution input data. For the specific case of the GLEAM model, the ET function is evaluated at its mean inputs 179 

(ET̂) and these derivatives are derived analytically from the ET function described by Eq. 6, directly yielding the 180 

following expressions: 181 

ET̂ = [−4�̅�𝑤
2 + 4.8�̅�𝑤 − 0.44] ∗ 0.02905 ∗ 

𝑎 𝑒𝑏�̅�       

𝑎 𝑒𝑏�̅�   + 0.073
�̅�𝑛, (8) 182 

∂2ET

𝜕𝑅𝑛
2 = 0,             (9) 183 

∂2ET

𝜕𝑤𝑤
2 = [−8] ∗ 0.02905 ∗ 

𝛥

𝛥 + 𝛾
𝑅𝑛          (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),         (10a) 184 

∂2𝐸𝑇

𝜕𝑤𝑤
2 = 0                (𝑤𝑤 < 𝑤𝑤𝑝,     𝑤𝑤 > 𝑤𝑐),         (10b) 185 

∂2𝐸𝑇

𝜕𝑇2
=  [−4𝑤𝑤

2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗ 𝑅𝑛 ∗ 𝑏2 ∗
𝛾2𝛥 − 𝛾𝛥2

(𝛾 + 𝛥)3
,       (11) 186 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑇
 =  [−4𝑤𝑤

2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗
𝛥

𝛥 + 𝛾
∗

𝑏𝛾

𝛥 + 𝛾
,              (12) 187 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑤𝑤
=  [−8𝑤𝑤 + 4.8] ∗ 0.02905 ∗

𝛥

𝛥 + 𝛾
        (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),             (13a) 188 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑤𝑤
= 0        (𝑤𝑤 < 𝑤𝑤𝑝,      𝑤𝑤 > 𝑤𝑐),             (13b) 189 

∂2𝐸𝑇

𝜕𝑤𝑤𝜕𝑇
=  [−8𝑤𝑤 + 4.8] ∗ 0.02905 ∗

𝛥

𝛥 + 𝛾
∗

𝑏𝛾

𝛥 + 𝛾
∗ 𝑅𝑛       (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),   and (14a) 190 

∂2𝐸𝑇

𝜕𝑤𝑤𝜕𝑇
= 0       (𝑤𝑤 < 𝑤𝑤𝑝,     𝑤𝑤 > 𝑤𝑐), (14b) 191 

where Δ depends on temperature as described in Eq. (4). The difference between the average of the functions 192 

(𝐸𝑇) and the function of the averages (𝐸�̂�), or, equivalently, the sum of all the other terms in Eq. (7), 193 

represents the aggregation bias. The magnitude of this bias can be calculated by combining Eqs. 7-14 with 194 

estimates of the variances and covariances of the input variables. Note that the interception term in equation 195 

6 is dropped out from the derivatives as the interception loss in GLEAM is a linear function of amount of 196 

rainfall necessary to saturate the canopy and therefore has negligible effect when averaged. 197 

 198 

The approach outlined in Eq. (7) is general and could be extended to other land surface modeling schemes. 199 

The partial derivatives in Eqs. (8-14), of course, are specific to the GLEAM equations; for other models they 200 

would differ. More complex land surface model algorithms may not have such simple analytical derivatives; in 201 

that case, the derivatives can be evaluated numerically.  202 

 203 

2.3. Sub-grid heterogeneity and aggregation bias in ET estimates across Switzerland 204 

Drivers of ET (i.e., soil moisture, net radiation, and temperature) can be highly heterogeneous within the grid 205 

cells of typical ESMs. Soil moisture can show pronounced spatial variability, especially in areas where surface 206 

roughness, porosity, and permeability vary by orders of magnitude across a variety of length scales (Giorgi and 207 

Avissar, 1997). Temperature and incoming radiation vary significantly with season, elevation, altitude, and 208 
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albedo. Switzerland, for example, shows strong local variations in average annual temperature, soil moisture 209 

content, net radiation, and albedo (Fig. 1; albedo values in Fig. S1).  210 

 211 

We quantified how averaging over spatial (and temporal) heterogeneities of ET drivers affects estimated ET at 212 

several grid scales across Switzerland, as an example case for which high-resolution data are available. Our 213 

analysis is based on 500-m input data of temperature (interpolation of MeteoSwiss data after Viviroli et al., 214 

2009), net radiation (Viviroli et al., 2009), and soil moisture (simulations from the hydrological model PREVAH, 215 

Brunner et al., 2019; Speich et al., 2015; Orth et al., 2015; Zappa et al., 2003) at daily time steps for the 2004 216 

growing season. Although our soil moisture data are derived from model simulations whose accuracy is 217 

difficult to assess due to the scarcity of real-world soil moisture measurements, for our purposes all that is 218 

necessary is that the simulated values exhibit realistically complex spatial variability. 219 

 220 

We used the GLEAM equations, as outlined in Sect. 2, to calculate ET for each day at the 500-m resolution of 221 

these input data. We use these 500-m ET estimates as virtual "truth" for the purpose of our analysis, because 222 

our goal is not to determine whether GLEAM estimates of ET are accurate (compared to direct measurements, 223 

for example), but rather to quantify how spatial aggregation affects them.  224 

 225 

To quantify how spatial aggregation affects model estimates of ET, we calculated ET over larger spatial scales 226 

in two different ways. First, we averaged the 500-m ET estimates over 1/32, 1/16, 1/8, 0.25, 0.5, 0.75, 1, and 2-227 

degree grid cells across Switzerland, to represent the "true" average ET at those grid scales. Second, we 228 

averaged the 500-m input data (of temperature, soil moisture, and net radiation) over the same grid cells, and 229 

then used these grid-cell-averaged input data in the GLEAM equations to calculate the modeled coarse-230 

resolution ET at each grid scale. The deviation of the modeled coarse-resolution ET from the "true" average ET 231 

measures the aggregation bias. Because this numerical experiment uses the same model equations, based on 232 

the same underlying data, for the ET calculations at each spatial resolution, it isolates spatial aggregation as 233 

the only possible cause of the difference between the "true" average ET (ET̅̅̅̅  in Eq. 7) and the coarse-resolution 234 

modeled ET (ET̂ in Eq. 7) at each grid scale. 235 

 236 

Figure 2a shows that the ET aggregation bias varies considerably across Switzerland, and also varies 237 

considerably with grid scale. The average aggregation bias is higher at coarser grid scales, averaging 10% at 2-238 

and 1-degree grid resolution across all of Switzerland (calculated as the median of the daily aggregation biases 239 

over the growing season; Fig. 2a). Smaller grid scales typically exhibit smaller aggregation biases (averaging 4% 240 

at 1/16-degree grid resolution across all of Switzerland calculated as the median of the daily aggregation 241 

biases over the growing season) because they typically average over less spatial heterogeneity, but even at the 242 

smallest grid scales, aggregation biases can locally reach 40% as indicated by the scatter plot in Fig. 3. These 243 

figures are medians of the daily aggregation biases over the entire growing season of 2004; the aggregation 244 

biases of two randomly selected days (May 31st and July 21st, 2004) at several spatial scales lead to much larger 245 

overestimation of ET in parts of southern Switzerland (Figs. S2, S3). 246 
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 247 

Using our 500-m input data, we can test how well Eq. (7) estimates the difference between the "true" average 248 

ET and the coarse-resolution modeled ET at each grid scale. We used Eqs. (8-14) to calculate the partial 249 

derivatives of the GLEAM equations for each grid cell and time step, using the grid-cell averaged values of the 250 

input data. We then multiplied these derivatives by the corresponding variances and covariances among the 251 

500-m input data to obtain bias estimates via Eq. (15) for each grid cell and time step:  252 

Bias = ET̂ − ET ≈ −
1

2
[
∂2ET

𝜕𝑅𝑛
2 Var(𝑅𝑛) +

∂2ET

𝜕𝑤𝑤
2 Var(𝑤𝑤) +

∂2ET

𝜕𝑇2
Var(𝑇)]

−
∂2ET

𝜕𝑅𝑛𝜕𝑇
Cov(𝑅𝑛, 𝑇) −

∂2ET

𝜕𝑅𝑛𝜕𝑤𝑤
Cov(𝑅𝑛, 𝑤𝑤) −

∂2ET

𝜕𝑤𝑤𝜕𝑇
Cov(𝑤𝑤 , 𝑇),       (15)

 253 

where ET is the true average ET at some grid resolution, ET̂ is the modeled coarse-resolution ET at the same 254 

spatial scale, the right-hand side is the Taylor expansion estimate of the aggregation bias. We then compared 255 

these estimated biases against the "true" aggregation biases (the difference between the "true" average ET 256 

and the coarse-resolution modeled ET) in the numerical experiment described above. The true bias, in other 257 

words, is ET̂ − ET in Eq. (15), and the estimated bias is the Taylor approximation on the right-hand side. 258 

 259 

Figure 2b shows that the aggregation bias estimated by Eq. (15) is generally similar, in both overall magnitude 260 

and spatial distribution, to the "true" aggregation biases calculated by the numerical experiment. This 261 

comparison is shown more explicitly in Fig. 3, in which the estimated aggregation bias is compared with the 262 

"true" aggregation bias for each grid cell at each grid scale. Figures 2 and 3 show that Eq. (15) is generally a 263 

good predictor of aggregation bias. Both the estimated aggregation biases (Fig. 2) and the "true" aggregation 264 

biases are markedly higher in regions of greater topographic complexity (Fig. S4). 265 

 266 

2.4. Correcting for aggregation bias 267 

2.4.1. Identifying drivers of aggregation bias 268 

The Taylor expansion in Eq. (15) not only allows one to quantify the aggregation bias; it also allows one to 269 

quantify the relative importance of the three input variables (net radiation, soil moisture, and temperature) as 270 

drivers of that bias. Each of the terms in Eq. (15) combines a variance or covariance that expresses how 271 

variable the input data are, and a second derivative that expresses how sensitive the average ET is to that 272 

variability. Each of these terms – a derivative multiplied by a variance or covariance – has the same units as ET, 273 

and thus they can be directly compared to one another. 274 

 275 

Table 1 shows each of the aggregation bias terms, calculated over all of Switzerland for the two randomly 276 

chosen days mentioned in Sect. 2.3 (May 31st and July 21st, 2004). For these two example days, the aggregation 277 

bias is clearly dominated by a single term, associated with the variance of soil moisture. The variance in net 278 

radiation (Rn) creates no aggregation bias, because GLEAM ET is a linear function of Rn; thus positive and 279 

negative deviations from average Rn will increase and decrease ET by exactly offsetting amounts. Similarly, the 280 

variance in temperature (T) also results in little aggregation bias, because GLEAM ET increases nearly linearly 281 
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with T across a wide range of temperature. The covariance terms similarly lead to little aggregation bias. By 282 

contrast, the strong curvature in the quadratic dependence of ET on soil moisture (Eq. 6) implies that positive 283 

and negative deviations from mean soil moisture will not have offsetting ET effects, and thus that spatial 284 

heterogeneity in soil moisture can significantly alter average ET. 285 

 286 

2.4.2. Correcting for aggregation bias using sub-grid closure relationships 287 

The Taylor expansion framework in Eq. (7) can be used not only to diagnose aggregation bias, but also to 288 

estimate sub-grid closure relationships that correct for the effects of small-scale heterogeneity. The variance 289 

and covariance terms in Eq. (7) express how sub-grid heterogeneity affects average ET at the grid scale, 290 

implying that these aggregation bias estimates could be used to improve grid-scale ET estimates, without 291 

explicitly modeling ET at high resolutions. This approach could be particularly useful in land surface algorithms 292 

that are part of coarser-resolution Earth system models; in such cases it may be much more efficient to 293 

evaluate Eqs. 7-14 at the coarse grid resolution than to directly evaluate the underlying ET model, Eq. 6, at 294 

high resolution. The Taylor expansion approach could also be attractive where we lack spatially explicit high-295 

resolution maps of the ET drivers, but where their variances and covariances can nonetheless be estimated 296 

from other sources (such as from the variability of topography, mapped soil units, remote sensing data, etc.).  297 

 298 

It is beyond our scope here to construct such variance and covariance estimates, but we can illustrate how 299 

they could potentially be used. The solid red symbols in Fig. 4 show the relationships between "true" average 300 

ET and modeled grid-cell-averaged ET, for each grid cell (and one example day, May 31st, 2004) at several 301 

different grid scales. For comparison, the open grey symbols in Fig. 4 show average ET estimated by the Taylor 302 

expansion approach of Eq. (7), which corrects for sub-grid heterogeneity effects using only grid-cell-averaged 303 

estimates of the ET drivers and their small-scale variances and covariances.  304 

 305 

The heterogeneity-corrected ET estimates shown by the open symbols in Fig. 4 cluster much closer to the 1:1 306 

line than the modeled grid-cell-averaged ET values shown by the solid red symbols, suggesting that the Taylor 307 

expansion approach may substantially improve estimates of grid-cell-averaged ET. Real-world results may be 308 

less clear than those shown in Fig. 4, because the heterogeneity-corrected ET estimates (the open symbols in 309 

Fig. 4) are calculated using exact values for the variances and covariances of the ET drivers within each grid 310 

cell, and in real-world cases these variances and covariances will not be known precisely. Figure 4 nonetheless 311 

demonstrates the potential value of knowing, or being able to estimate, those variances and covariances. 312 

Efforts to determine those variances and covariances can be focused on the terms that matter the most, if one 313 

can identify the main drivers of aggregation bias using the methods described in Sect. 2.2 above.  314 

 315 

 316 
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 317 
 318 
 319 
 320 
 321 
 322 
 323 
Table 1. Relative importance of different ET drivers in aggregation bias estimates (different terms in Eq. 15). Va324 
lues are calculated for all of Switzerland for the two randomly chosen days (May 31st and July 21st, 2004). The 325 
aggregation bias is dominated by the term associated with the variance of soil moisture for these two example 326 
days.  327 
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 330 
 331 

 332 

Figure 1. Spatial distribution of input data for the year 2004 at 500-m resolution: Annual mean (A) temperature 333 

(°C), (B) soil moisture (m3 m-3, simulated by the PREVAH hydrological model), (C) precipitation (mm yr-1), (D) 334 

net radiation (W m-2), (E) potential evapotranspiration (PET, mm yr-1) using the Priestley-Taylor equation (Eq. 335 

3), and (F) evapotranspiration (ET, mm yr-1) using the approach used in the GLEAM model (Eq. 1). See Table. S1 336 

for references. 337 

 338 

   339 
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 340 

Figure 2. a) “True” aggregation bias in ET, as calculated by averaging the 500-m resolution ET estimates using 341 

fine-resolution input data in Eq. 6, over 1/32, 1/16, 1/8, 0.25, 0.5, 0.75, 1, and 2-degree grid cells across 342 

Switzerland. b) Aggregation bias in ET, as estimated by Eq. 7 from grid-cell averaged temperature (°C), soil 343 

moisture (ww), net radiation (Rn), their variances at each grid scale, and the covariances of all pairs of variables 344 

using the 500-m input data. At finer grid scales, the aggregation bias is more localized, and smaller on average. 345 

Across Switzerland as a whole, average aggregation bias becomes smaller as grid scales become finer, but 346 

never disappears completely. 347 

 348 

  349 
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 350 

Figure 3. Daily estimated aggregation bias in ET estimates (%, median of daily biases in Apr.-Oct. 2004) versus 351 

daily true aggregation bias in ET estimates (%, median of daily biases in Apr.-Oct. 2004) at several spatial 352 

scales. Estimated aggregation biases are calculated using Eq. 7. True aggregation biases are calculated as 353 

differences between the finer resolution ET estimates from finer resolution input data, averaged over several 354 

spatial scales (average of functions) and ET values calculated from average inputs at each spatial scale 355 

(function of averages). The coefficients of determination (R2) between the true and estimated aggregation 356 

biases verify the reliability of the Taylor expansion method and Eq. 7 as estimates of the aggregation bias.  357 

  358 

  359 
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 360 

361 

Figure 4. Daily estimated ET rates versus “true” average ET at each grid cell at several different grid scales 362 

(example day, May 31st, 2004). The solid red symbols demonstrate the relationships between "true" average 363 

ET calculated using fine-resolution data at each grid cell and modeled grid-cell-averaged ET using grid-cell-364 

averaged inputs in Eq.8, for each grid cell at several different grid scales (overestimated). For comparison, the 365 

open symbols show true average versus average ET estimated by the Taylor expansion approach of Eq. (7), 366 

which corrects for sub-grid heterogeneity effects using only grid-cell-averaged estimates of the ET drivers and 367 

their small-scale variances and covariances (heterogeneity-corrected ET estimates, corrected).  368 

 369 

3. Discussion  370 

Averaging over spatially heterogeneous ET drivers leads to substantial aggregation biases in ET flux estimates 371 

from a typical mechanistic large-scale land surface model. This aggregation bias arises from the inherent 372 

nonlinearities in evapotranspiration processes, coupled with the inherent spatial heterogeneity in the driving 373 

factors. The joint effects of these nonlinearities and heterogeneities can be estimated using second-order 374 

Taylor expansions of the governing equations. Using Switzerland as a test case, we have shown that median 375 

aggregation biases of 10-35% are common, even at grid scales substantially smaller than those typically used in 376 

land surface models (Fig. 2). These biases can be much larger for individual days (Figs. S2 and S3) and 377 

potentially have substantial consequences for water and energy flux estimates in land surface models and 378 

consequently for temperature predictions in coupled models. The overestimated evaporative fluxes would 379 

lead to overestimated latent heat fluxes and underestimated sensible heat fluxes, and thus potentially to 380 

underestimates of expected temperature increases in a changing climate. Unrealistically high evaporation 381 

estimates lead to cooler modeled temperatures and wetter modeled climates. Correcting for the aggregation 382 
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bias in ET fluxes would lead to reduced evaporative cooling and increased atmospheric heating via sensible 383 

heat flux. 384 

 385 

In coupled Earth system models, ET fluxes influence how surface temperature, net radiation, and soil moisture 386 

evolve through time, and thus influence future values of ET. The analyses shown in Figs. 2-4 are based on static 387 

values for each day, and thus do not account for the propagation of aggregation biases forward through time. 388 

Estimating the consequences of aggregation biases for dynamic modeling would require fully coupled Earth 389 

system model simulations rather than the single ET algorithm analyzed here. In a dynamic model, the Taylor 390 

expansion approach can potentially be used to correct for aggregation biases in each time step, using 391 

statistical models for the variances and covariances of the ET drivers. Thus, estimating aggregation biases in a 392 

dynamic model would not require explicitly simulating sub-grid heterogeneity at every time step. Correcting 393 

for aggregation biases at each modeling time step would prevent them from propagating further into future 394 

time steps, or into the partitioning of future water and energy fluxes at the land surface. The present paper 395 

does not illustrate this dynamic correction for aggregation biases, but establishes the theoretical framework 396 

for it. 397 

 398 

The purpose of our analysis was to demonstrate how aggregation bias due to spatial heterogeneity can be 399 

quantified (Sects. 2.2-2.3), how its dominant drivers can be identified (Sect. 2.4.1), and how its effects can be 400 

efficiently corrected for, using sub-grid closure relationships (Sect. 2.4.2). For this demonstration, we chose 401 

GLEAM as an illustrative example, and Switzerland as a topographically complex case study where high-402 

resolution data on the ET drivers are available. Applications of this approach to more complex land surface 403 

models may require calculating the necessary derivatives (see Eq. 7) numerically rather than analytically, and 404 

applications where high-resolution data are unavailable may require statistically estimating the variances and 405 

covariances among the drivers of ET, based on their relationships with topography, soil types, land cover, etc. 406 

Using the approach outlined here, one can account for the effects of sub-grid heterogeneity without explicitly 407 

modeling ET at fine spatial resolution, which could be impractical due to computational costs, or impossible 408 

due to a lack of fine-resolution input data. 409 

 410 

In our analysis, spatial heterogeneity in soil moisture emerged as the dominant driver of aggregation bias in ET 411 

estimates. Particularly if this result can also be confirmed in other regions and climates, it points to the 412 

importance of improving our understanding of spatial patterns of soil moisture and what controls them. The 413 

lower topographic curvature of coarsely gridded landscapes can lead models to predict higher soil moisture at 414 

coarser grid scales (Kuo et al., 1999); higher soil moisture at larger grid scales would lead to even higher 415 

modeled values of ET, beyond the effects of the aggregation biases analyzed here. Soil moisture may also be 416 

substantially influenced by lateral subsurface transfers of water, which are ignored in our analysis and are also 417 
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ignored by many land surface models. Overlooking lateral transfers could potentially bias ET estimates in large-418 

scale land surface models (Fan et al., 2019), but this is beyond the scope of the present study. 419 

 420 
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