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Abstract 13 

Evapotranspiration (ET) influences land-climate interactions, regulates the hydrological cycle, and contributes 14 

to the Earth’s energy balance. Due to its feedback to large-scale hydrological processes and its impact on 15 

atmospheric dynamics, ET is one of the drivers of droughts and heatwaves. Existing land surface models differ 16 

substantially, both in their estimates of current ET fluxes and in their projections of how ET will evolve in the 17 

future. Any bias in estimated ET fluxes will affect the partitioning between sensible and latent heat, and thus 18 

alter model predictions of temperature and precipitation. One potential source of bias is the so-called 19 

"aggregation bias" that arises whenever nonlinear processes, such as those that regulate ET fluxes, are 20 

modeled using averages of heterogeneous inputs. Here we demonstrate a general mathematical approach to 21 

quantifying and correcting for this aggregation bias, using the GLEAM land evaporation model as a relatively 22 

simple example. We demonstrate that this aggregation bias can lead to substantial overestimates in ET fluxes 23 

in a typical large-scale land surface model when sub-grid heterogeneities in land surface properties are 24 

averaged out. Using Switzerland as a test case, we examine the scale-dependence of this aggregation bias and 25 

show that it can lead to an average overestimation of daily ET fluxes by as much as 10% across the whole 26 

country (calculated as the median of the daily bias over the growing season). We show how our approach can 27 

be used to identify the dominant drivers of aggregation bias, and to estimate sub-grid closure relationships 28 

that can correct for aggregation biases in ET estimates, without explicitly representing sub-grid heterogeneities 29 

in large-scale land surface models.   30 

Plain Language Summary 31 

Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth’s 32 

energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and 33 

heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to 34 

substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale 35 

heterogeneity without explicitly representing it in land surface models.   36 
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 37 

1. Introduction 38 

Earth’s surface and subsurface are characterized by spatial heterogeneity spanning wide ranges of scales, 39 

including scales that cannot be explicitly resolved by large-scale Earth System Models (ESMs), which are 40 

typically run at resolutions of 10-100 kilometers. Averaging over this finer-scale heterogeneity can bias model 41 

estimates of water and energy fluxes and hence alter future temperature predictions. Earth system model 42 

estimates of global terrestrial evaporation differ substantially from atmospheric reanalyses based on in-situ 43 

and satellite remote sensing observations (Mueller et al., 2013), but it is unclear how much of these 44 

differences could be attributed to errors in capturing sub-grid heterogeneity. 45 

 46 

Several recent studies (e.g., Fan et al., 2019; Shrestha et al., 2018) have emphasized the need to account for 47 

land surface heterogeneity in large-scale ESMs. Despite recent community efforts in refining ESMs' spatial 48 

resolution (Huang et al., 2016; Rauscher et al., 2010; Ringler et al., 2008; Skamarock et al., 2012; Zarzycki et al., 49 

2014), the grid resolution of present-day ESMs is still too coarse to explicitly capture important effects of 50 

surface heterogeneity. Whether the solution lies in hyper-resolution large-scale land surface modeling remains 51 

an open question, because heterogeneities that are important to land-atmosphere fluxes will not be fully 52 

resolved even at scales of 100 m (Beven and Cloke, 2012).  53 

 54 

The effects of aggregating over spatial heterogeneity in land surface models have been assessed using several 55 

approaches. Most of these approaches compare grid-cell-averaged energy and water fluxes with flux estimates 56 

for finer-resolution grids, or for grid cells that are subdivided into mosaics of several surface types which 57 

separately exchange momentum, energy, and water vapor with the overlying atmosphere (e.g., Giorgi, 1997). 58 

Several studies have reported increases in average evapotranspiration (ET) (e.g., Kuo et al., 1999; Boone and 59 

Wetzel, 1998; Hong et al., 2009; McCabe and Wood, 2006; El Maayar and Chen, 2006), and at least one has 60 

reported decreases in grid-cell average ET (Ershadi et al., 2013), as model grids are coarsened and less spatial 61 

heterogeneity is accounted for. Shrestha et al. (2018) studied the effects of horizontal grid resolution on ET 62 

partitioning in the TerrSysMP Earth system model and found that the aggregation of topography decreases 63 

average slope gradients and obscures small-scale convergence and divergence zones, directly impacting 64 

surface and subsurface flow. They observed 5 and 8 percent decreases in the transpiration/evapotranspiration 65 

ratio for a dry and a wet year, respectively, when their model grid cells were coarsened from 120 m to 960 m. 66 

All these studies calculate the effects of land surface heterogeneity on ET fluxes using numerical experiments 67 

that refine the model’s spatial resolution, either directly or through the use of land-surface mosaics.   68 

 69 

Quantifying the effect of sub-grid scale heterogeneity on grid-cell-averaged fluxes is especially important when 70 

highly nonlinear processes are involved. Regardless of scale, the main challenge is not to explicitly represent 71 

the heterogeneity in all its details, but instead to define an appropriate scale-dependent sub-grid closure 72 

relationship that recognizes the important heterogeneities within the grid elements and the nonlinearities in 73 
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the processes (Beven, 2006). Such a sub-grid closure scheme would capture the effects of sub-grid 74 

heterogeneity in large-scale land surface models without forcing them to run at finer spatial resolutions. 75 

 76 

We have recently proposed a general theoretical framework, based on Taylor series expansions, that 77 

quantifies the "aggregation bias" that results from averaging over sub-grid heterogeneity when grid-cell-78 

averaged ET is estimated (Rouholahnejad Freund and Kirchner, 2017; Rouholahnejad Freund et al., 2019). In 79 

contrast to the numerical experiments described above, this theoretical framework does not depend on a 80 

particular evapotranspiration model or grid scale. Our previous work demonstrated this framework using 81 

Budyko curves as a see-through "toy" model, leaving open the question of how strongly ET estimates would be 82 

affected by sub-grid heterogeneity in a more typical mechanistic evapotranspiration model. Here we use the 83 

mechanistic evapotranspiration model GLEAM to quantify how aggregation biases vary across a range of 84 

scales, using Switzerland as a case study. We show how our Taylor expansion framework can be used to 85 

quantify the sensitivity of ET fluxes to heterogeneity in their individual drivers. We further demonstrate how 86 

this framework can be used to estimate correction factors (i.e., sub-grid closure relationships) that account for 87 

the effects of sub-grid heterogeneity without explicitly modeling it, and show how these correction factors can 88 

be used to improve grid-scale ET estimates. Because our framework is not model-specific, the analysis 89 

presented here could also be applied to many other evapotranspiration algorithms. 90 

 91 

2. Methods and results  92 

2.1. A common mechanistic framework for predicting evapotranspiration 93 

Most large-scale land surface models calculate ET as a function of available water and energy at daily time 94 

steps. They typically multiply an estimate of potential evapotranspiration (PET) by a conversion factor to 95 

calculate actual evapotranspiration. PET is generally understood as the maximum rate of evapotranspiration 96 

from a large area (to avoid the effect of local advection) covered completely and uniformly by actively growing 97 

vegetation with adequate moisture at all times (Brutseart, 1984). Models typically estimate PET using the 98 

Penman equation (Penman, 1948; intended for open water surfaces), the Penman-Monteith equation 99 

(Monteith, 1965, Monteith and Unsworth, 1990; intended for reference crop evapotranspiration by adding 100 

atmospheric transport processes and stomatal resistance to Penman’s open water evaporation), or the 101 

Priestley-Taylor equation (Priestley and Taylor, 1972; intended for open water and water-saturated crops and 102 

grasslands). The conversion factor that is used to estimate ET from PET typically depends on plant physiology 103 

and on the water that is available for evaporation.  104 

 105 

Here, we employ an ET algorithm that is used by several land surface models (i.e., Global Land-surface 106 

Evaporation: The Amsterdam Methodology (GLEAM); Miralles et al., 2011; Martens et al., 2017), in which 107 

actual ET is calculated as a fraction of PET. This fraction is expressed as a multiplicative factor, often called a 108 

stress factor, which ranges between 0 and 1 and thus limits ET rates. Under wet conditions, ET can equal PET 109 

(stress factor equals one) while under dry conditions, PET is multiplied by a stress factor smaller than one 110 

depending on the degree of water stress. This approach is employed by the GLEAM model, among others. 111 
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GLEAM is a diagnostic satellite-data-driven method that is used to estimate global land evaporation fluxes. 112 

GLEAM uses the Priestley-Taylor formula and remotely sensed datasets of radiation and temperature to 113 

calculate PET. In GLEAM, actual ET is calculated by constraining PET estimates by a stress factor that is based 114 

on estimates of root-zone soil moisture. The root zone soil moisture is derived from a multi-layer water 115 

balance module that describes the infiltration of precipitation through the vertical soil profile. ET estimates 116 

from GLEAM have been applied in many studies (e.g., Miralles et al., 2013; Miralles et al., 2014; Greve et al., 117 

2014; Jasechko et al., 2013). GLEAM operates on daily time steps at 0.25-degree spatial resolution. 0.25 118 

degrees is about 27.6 km in the north-south direction and 18.9 km in the east-west direction at the latitude of 119 

Switzerland. To the best of our knowledge, there are no prior studies quantifying the aggregation bias in ET 120 

estimates from GLEAM or other models with similar ET formulations.  121 

 122 

GLEAM calculates ET as an explicit function of the stress factor and potential evaporation: 123 

𝐸𝑇 = 𝑆 ∙ 𝑃𝐸𝑇 + (1 −  𝛽) 𝐼, (1) 124 

where ET is actual evapotranspiration (mm d-1), S is the evaporative stress factor (-) that accounts for 125 

environmental conditions that reduce actual ET relative to potential ET, 𝐼 is interception loss (mm d-1), and β is 126 

a constant (β= 0.07 – Gash and Stewart, 1977) that avoids double-counting of interception losses during hours 127 

with wet canopy. The stress factor (S) depends on the soil moisture conditions, and is parametrized separately 128 

for tall canopy, short vegetation, and bare soil. GLEAM uses the following soil-moisture-based 129 

parameterization to calculate the stress factor (Miralles et al., 2011; Martens et al., 2017): 130 

𝑆 = 1 − (
𝑤𝑐 − 𝑤𝑤

𝑤𝑐 − 𝑤𝑤𝑝
)

2

, (2) 131 

where S is the stress factor (-) for tall canopy, 𝑤𝑤 is soil moisture saturation the volumetric soil moisture at any 132 

given time (m3 m-3-), and 𝑤𝑐 and 𝑤𝑤𝑝 are the critical soil moisture saturation level and soil moisture at wilting 133 

point. For soil moisture saturation values below the wilting point 𝑤𝑤𝑝, the stress is maximal (stress factor 134 

equals 0), causing ET to sharply decline to zero. For values above the critical moisture level 𝑤𝑐, there is no 135 

water stress (stress factor equals 1) and ET equals PET. Between 𝑤𝑤𝑝 and 𝑤𝑐 the stress increases as soil 136 

moisture decreases following a parabolic function (Eq. 2). In the analysis presented below, we set the critical 137 

soil moisture level (𝑤𝑐) and soil moisture at wilting point (𝑤𝑤𝑝) to 0.6 and 0.1, m3 m-3 respectively. To simplify 138 

the analysis presented below, we have used the tall-canopy stress factor (Eq. 2) for all of Switzerland, even 139 

though the short-canopy or bare-soil formulations may be better suited to some locations.   140 

 141 

GLEAM uses the Priestley-Taylor approach to calculate PET (Priestley and Taylor, 1972): 142 

𝑃𝐸𝑇 =
𝛼

𝜆
 

𝛥

𝛥 + 𝛾
(𝑅𝑛 − 𝐺),         (3) 143 

where 𝑃𝐸𝑇 is potential evapotranspiration (mm d-1), 𝛼 is a dimensionless coefficient that parametrizes the 144 

resistance to evaporation and is set to 0.8 for tall canopy in GLEAM (Miralles et al., 2011), 𝜆 = 2.26 (MJ kg-1) is 145 

the latent heat of vaporization, Rn is net radiation (MJ m-2 d-1), G is the ground heat flux, approximated as 146 

G=0.05 Rn (MJ m-2 d-1) for tall canopy in GLEAM, T is temperature (°C), and Δ is the slope of the 147 
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temperature/saturated vapor pressure curve (kPa°C-1), which is functionally related to temperature (Tetens, 148 

1930; Murray, 1967; Stanghellini, 1987):  149 

𝛥 = 𝑎𝑒𝑏𝑇 ,    (4)       150 

where a= 0.04145 (kPa°C-1), b=0.06088 (°C-1), and 𝛾 is the psychrometric constant (kPa°C-1) which can be 151 

calculated as (Brunt, 1952):  152 

𝛾 =
𝐶𝑝𝑎𝑖𝑟 ∗ 𝑃

𝜆∗ 𝑀𝑊𝑟𝑎𝑡𝑖𝑜
,   (5)  153 

where 𝐶𝑝𝑎𝑖𝑟 = 0.001013 (MJ kg-1°C-1) is the specific heat of air at constant pressure, 𝑃 = 101.3 (KPa) is 154 

atmospheric pressure, and 𝑀𝑊𝑟𝑎𝑡𝑖𝑜 =0.622 (-) is the molecular weight ratio of H2O/air. Substituting the 155 

aforementioned constants in Eq. 5 yields 𝛾= 0.073 (kPa°C-1). Expanding Eq. 1 using Eqs. 2-5 yields the ET 156 

function as calculated by GLEAM: 157 

𝐸𝑇[𝑚𝑚𝑑−1] = [−4𝑤𝑤[𝑚3𝑚−3]
2 + 4.8𝑤𝑤[𝑚3𝑚−3]

− 0.44] ∗
𝛼[ ]

𝜆[MJ 𝑘𝑔−1]
∗

𝛥[kPa°𝐶−1]

𝛥[kPa°𝐶−1] + 𝛾[kPa°𝐶−1]

∗ 0.95 ∗
86400

1000000
∗ 𝑅𝑛[𝑊𝑚−2]

+ (1 −  𝛽) 𝐼[𝑚𝑚𝑑−1]

= [−4𝑤𝑤
2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗

𝑎 𝑒𝑏𝑇

𝑎 𝑒𝑏𝑇 + 0.073
𝑅𝑛  + (1 −  0.07) 𝐼[𝑚𝑚𝑑−1].                  (6)

 158 

 159 

In the analysis below, we use the GLEAM evapotranspiration algorithm to demonstrate how aggregation biases 160 

can be estimated in land surface modeling schemes. We chose GLEAM because its governing equations are 161 

amenable to the analytical solutions derived below. Here we make no particular claim for the accuracy or 162 

validity of GLEAM as an evapotranspiration model, nor is our analysis intended to test this. Likewise our 163 

analysis should not be interpreted as implying that GLEAM is any more, or less, susceptible to aggregation bias 164 

than other evapotranspiration schemes, because this question is beyond the scope of the current paper. 165 

 166 

2.2. Mathematical framework for predicting aggregation bias 167 

Nonlinear averaging using second-order Taylor expansions 168 

ET is a nonlinear function of its drivers. An intrinsic property of any nonlinear function is that the average of 169 

the function will not equal the function evaluated at the average inputs (e.g., Rastetter et al., 1992; Giorgi and 170 

Avissar, 1997; Rouholahnejad Freund and Kirchner, 2017). Thus averaging over sub-grid heterogeneity in ET 171 

drivers, as large-scale land surface models do, would be expected to lead to biased ET estimates, even if the 172 

underlying equations were exactly correct. For an ET function of three variables, namely Rn, ww, and T, the 173 

mean of the ET function, in terms of the function’s value at the mean of its inputs, can be approximated by the 174 

second-order Taylor series expansion of the ET function (Eq. 6):  175 

ET ≈ ET̂ +
1

2
[
∂2ET

𝜕𝑅𝑛
2 Var(𝑅𝑛) +

∂2ET

𝜕𝑤𝑤
2 Var(𝑤𝑤) +

∂2ET

𝜕𝑇2
Var(𝑇)]

+
∂2ET

𝜕𝑅𝑛𝜕𝑇
Cov(𝑅𝑛, 𝑇) +

∂2ET

𝜕𝑅𝑛𝜕𝑤𝑤
Cov(𝑅𝑛, 𝑤𝑤) +

∂2ET

𝜕𝑤𝑤𝜕𝑇
Cov(𝑤𝑤 , 𝑇),       (7)

 176 

where ET is the estimate of the true average of the nonlinear ET function over its variable inputs, ET̂ is the ET 177 

function evaluated at its mean inputs, and the derivatives are understood to be evaluated at the mean values 178 

of the variables ( 𝑅𝑛
̅̅̅̅ , 𝑤𝑤̅̅ ̅̅ , 𝑇̅) and multiplied by the corresponding variances and covariances among finer-179 
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resolution input data. For the specific case of the GLEAM model, the ET function is evaluated at its mean inputs 180 

(ET̂) and these derivatives are derived analytically from the ET function described by Eq. 6, directly yielding the 181 

following expressions: 182 

ET̂ = [−4𝑤̅𝑤
2 + 4.8𝑤̅𝑤 − 0.44] ∗ 0.02905 ∗ 

𝑎 𝑒𝑏𝑇̅       

𝑎 𝑒𝑏𝑇̅   + 0.073
𝑅̅𝑛, (8) 183 

∂2ET

𝜕𝑅𝑛
2 = 0,             (9) 184 

∂2ET

𝜕𝑤𝑤
2 = [−8] ∗ 0.02905 ∗ 

𝛥

𝛥 + 𝛾
𝑅𝑛          (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),         (10a) 185 

∂2𝐸𝑇

𝜕𝑤𝑤
2 = 0                (𝑤𝑤 < 𝑤𝑤𝑝,     𝑤𝑤 > 𝑤𝑐),         (10b) 186 

∂2𝐸𝑇

𝜕𝑇2
=  [−4𝑤𝑤

2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗ 𝑅𝑛 ∗ 𝑏2 ∗
𝛾2𝛥 − 𝛾𝛥2

(𝛾 + 𝛥)3
,       (11) 187 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑇
 =  [−4𝑤𝑤

2 + 4.8𝑤𝑤 − 0.44] ∗ 0.02905 ∗
𝛥

𝛥 + 𝛾
∗

𝑏𝛾

𝛥 + 𝛾
,              (12) 188 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑤𝑤
=  [−8𝑤𝑤 + 4.8] ∗ 0.02905 ∗

𝛥

𝛥 + 𝛾
        (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),             (13a) 189 

∂2𝐸𝑇

𝜕𝑅𝑛𝜕𝑤𝑤
= 0        (𝑤𝑤 < 𝑤𝑤𝑝,      𝑤𝑤 > 𝑤𝑐),             (13b) 190 

∂2𝐸𝑇

𝜕𝑤𝑤𝜕𝑇
=  [−8𝑤𝑤 + 4.8] ∗ 0.02905 ∗

𝛥

𝛥 + 𝛾
∗

𝑏𝛾

𝛥 + 𝛾
∗ 𝑅𝑛       (𝑤𝑤𝑝 ≤ 𝑤𝑤 ≤ 𝑤𝑐),   and (14a) 191 

∂2𝐸𝑇

𝜕𝑤𝑤𝜕𝑇
= 0       (𝑤𝑤 < 𝑤𝑤𝑝,     𝑤𝑤 > 𝑤𝑐), (14b) 192 

where Δ depends on temperature as described in Eq. (4). The difference between the average of the functions 193 

(𝐸𝑇) and the function of the averages (𝐸𝑇̂), or, equivalently, the sum of all the other terms in Eq. (7), 194 

represents the aggregation bias. The magnitude of this bias can be calculated by combining Eqs. 7-14 with 195 

estimates of the variances and covariances of the input variables. Note that the interception term in equation 196 

6 is dropped out from the derivatives as the interception loss in GLEAM is a linear function of amount of 197 

rainfall necessary to saturate the canopy and therefore has negligible effect when averaged. 198 

 199 

The approach outlined in Eq. (7) is general and could be extended to other land surface modeling schemes. 200 

The partial derivatives in Eqs. (8-14), of course, are specific to the GLEAM equations; for other models they 201 

would differ. More complex land surface model algorithms may not have such simple analytical derivatives; in 202 

that case, the derivatives can be evaluated numerically.  203 

 204 

2.3. Sub-grid heterogeneity and aggregation bias in ET estimates across Switzerland 205 

Drivers of ET (i.e., soil moisture, net radiation, and temperature) can be highly heterogeneous within the grid 206 

cells of typical ESMs. Soil moisture can show pronounced spatial variability, especially in areas where surface 207 

roughness, porosity, and permeability vary by orders of magnitude across a variety of length scales (Giorgi and 208 

Avissar, 1997). Temperature and incoming radiation vary significantly with season, elevation, altitude, and 209 
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albedo. Switzerland, for example, shows strong local variations in average annual temperature, soil moisture 210 

content, net radiation, and albedo (Fig. 1; albedo values in Fig. S1).  211 

 212 

We quantified how averaging over spatial (and temporal) heterogeneities of ET drivers affects estimated ET at 213 

several grid scales across Switzerland, as an example case for which high-resolution data are available. Our 214 

analysis is based on 500-m input data of temperature (interpolation of MeteoSwiss data after Viviroli et al., 215 

2009), net radiation (Viviroli et al., 2009), and soil moisture (simulations from the hydrological model PREVAH, 216 

Brunner et al., 2019; Speich et al., 2015; Orth et al., 2015; Zappa et al., 2003) at daily time steps for the 2004 217 

growing season. Although our soil moisture data are derived from model simulations whose accuracy is 218 

difficult to assess due to the scarcity of real-world soil moisture measurements, for our purposes all that is 219 

necessary is that the simulated values exhibit realistically complex spatial variability. 220 

 221 

We used the GLEAM equations, as outlined in Sect. 2, to calculate ET for each day at the 500-m resolution of 222 

these input data. We use these 500-m ET estimates as virtual "truth" for the purpose of our analysis, because 223 

our goal is not to determine whether GLEAM estimates of ET are accurate (compared to direct measurements, 224 

for example), but rather to quantify how spatial aggregation affects them.  225 

 226 

To quantify how spatial aggregation affects model estimates of ET, we calculated ET over larger spatial scales 227 

in two different ways. First, weWe First calculated the arithmetic average of averaged the 500-m ET estimates 228 

over 1/32, 1/16, 1/8, 0.25, 0.5, 0.75, 1, and 2-degree grid cells across Switzerland, to represent the "true" 229 

average ET at those grid scales. Second, we averagedNext we calculated the arithmetic average of the 500-m 230 

input data (of temperature, soil moisture, and net radiation) over the same grid cells, and then used these 231 

grid-cell-averaged input data in the GLEAM equations to calculate the modeled coarse-resolution ET at each 232 

grid scale. The deviation of the modeled coarse-resolution ET from the "true" average ET measures the 233 

aggregation bias. Because this numerical experiment uses the same model equations, based on the same 234 

underlying data, for the ET calculations at each spatial resolution, it isolates spatial aggregation as the only 235 

possible cause of the difference between the "true" average ET (ET̅̅̅̅  in Eq. 7) and the coarse-resolution 236 

modeled ET (ET̂ in Eq. 7) at each grid scale. 237 

 238 

Figure 2a shows that the ET aggregation bias varies considerably across Switzerland, and also varies 239 

considerably with grid scale. The average aggregation bias is higher at coarser grid scales, averaging 10% at 2-240 

and 1-degree grid resolution across all of Switzerland (calculated as the median of the daily aggregation biases 241 

over the growing season; Fig. 2a). Smaller grid scales typically exhibit smaller aggregation biases (averaging 4% 242 

at 1/16-degree grid resolution across all of Switzerland calculated as the median of the daily aggregation 243 

biases over the growing season) because they typically average over less spatial heterogeneity, but even at the 244 

smallest grid scales, aggregation biases can locally reach 40% as indicated by the scatter plot in Fig. 3. These 245 

figures are medians of the daily aggregation biases over the entire growing season of 2004; the aggregation 246 

biases of two randomly arbitrarily selected days (May 31st 29th and July 21st18th, 2004) at several spatial scales 247 
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lead to much larger overestimation of ET in parts of southern Switzerland (Figs. S2, S3). The two selected days 248 

are days 150 and 200 of Julian day calendar of year 2004.  249 

 250 

Using our 500-m input data, we can test how well Eq. (7) estimates the difference between the "true" average 251 

ET and the coarse-resolution modeled ET at each grid scale. We used Eqs. (8-14) to calculate the partial 252 

derivatives of the GLEAM equations for each grid cell and time step, using the grid-cell averaged values of the 253 

input data. We then multiplied these derivatives by the corresponding variances and covariances among the 254 

500-m input data to obtain bias estimates via Eq. (15) for each grid cell and time step:  255 

Bias = ET̂ − ET ≈ −
1

2
[
∂2ET

𝜕𝑅𝑛
2 Var(𝑅𝑛) +

∂2ET

𝜕𝑤𝑤
2 Var(𝑤𝑤) +

∂2ET

𝜕𝑇2
Var(𝑇)]

−
∂2ET

𝜕𝑅𝑛𝜕𝑇
Cov(𝑅𝑛, 𝑇) −

∂2ET

𝜕𝑅𝑛𝜕𝑤𝑤
Cov(𝑅𝑛, 𝑤𝑤) −

∂2ET

𝜕𝑤𝑤𝜕𝑇
Cov(𝑤𝑤 , 𝑇),       (15)

 256 

where ET is the true average ET at some grid resolution, ET̂ is the modeled coarse-resolution ET at the same 257 

spatial scale, the right-hand side is the Taylor expansion estimate of the aggregation bias. We then compared 258 

these estimated biases against the "true" aggregation biases (the difference between the "true" average ET 259 

and the coarse-resolution modeled ET) in the numerical experiment described above. The true bias, in other 260 

words, is ET̂ − ET in Eq. (15), and the estimated bias is the Taylor approximation on the right-hand side. 261 

 262 

Figure 2b shows that the aggregation bias estimated by Eq. (15) is generally similar, in both overall magnitude 263 

and spatial distribution, to the "true" aggregation biases calculated by the numerical experiment. This 264 

comparison is shown more explicitly in Fig. 3, in which the estimated aggregation bias is compared with the 265 

"true" aggregation bias for each grid cell at each grid scale. Figures 2 and 3 show that Eq. (15) is generally a 266 

good predictor of aggregation bias. Both the estimated aggregation biases (Fig. 2) and the "true" aggregation 267 

biases are markedly higher in regions of greater topographic complexity (Fig. S4). 268 

 269 

2.4. Correcting for aggregation bias 270 

2.4.1. Identifying drivers of aggregation bias 271 

The Taylor expansion in Eq. (15) not only allows one to quantify the aggregation bias; it also allows one to 272 

quantify the relative importance of the three input variables (net radiation, soil moisture, and temperature) as 273 

drivers of that bias. Each of the terms in Eq. (15) combines a variance or covariance that expresses how 274 

variable the input data are, and a second derivative that expresses how sensitive the average ET is to that 275 

variability. Each of these terms – a derivative multiplied by a variance or covariance – has the same units as ET, 276 

and thus they can be directly compared to one another. 277 

 278 

Table 1 shows each of the aggregation bias terms, calculated over all of Switzerland for the two 279 

arbitrarilyrandomly chosen days mentioned in Sect. 2.3 (May 3129thst and July 21st18th, 2004). For these two 280 

example days, the aggregation bias is clearly dominated by a single term, associated with the variance of soil 281 

moisture. The variance in net radiation (Rn) creates no aggregation bias, because GLEAM ET is a linear function 282 
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of Rn; thus positive and negative deviations from average Rn will increase and decrease ET by exactly 283 

offsetting amounts. Similarly, the variance in temperature (T) also results in little aggregation bias, because 284 

GLEAM ET increases nearly linearly with T across a wide range of temperature. The covariance terms similarly 285 

lead to little aggregation bias. By contrast, the strong curvature in the quadratic dependence of ET on soil 286 

moisture (Eq. 6) implies that positive and negative deviations from mean soil moisture will not have offsetting 287 

ET effects, and thus that spatial heterogeneity in soil moisture can significantly alter average ET. On most of 288 

the days of the year 2004, the soil moisture variance term is the dominant driver of the aggregation bias. 289 

However, there are some days in which other factors such as the T and Rn covariance term are the dominant 290 

factors. 291 

 292 

2.4.2. Correcting for aggregation bias using sub-grid closure relationships 293 

The Taylor expansion framework in Eq. (7) can be used not only to diagnose aggregation bias, but also to 294 

estimate sub-grid closure relationships that correct for the effects of small-scale heterogeneity. The variance 295 

and covariance terms in Eq. (7) express how sub-grid heterogeneity affects average ET at the grid scale, 296 

implying that these aggregation bias estimates could be used to improve grid-scale ET estimates, without 297 

explicitly modeling ET at high resolutions. This approach could be particularly useful in land surface algorithms 298 

that are part of coarser-resolution Earth system models; in such cases it may be much more efficient to 299 

evaluate Eqs. 7-14 at the coarse grid resolution than to directly evaluate the underlying ET model, Eq. 6, at 300 

high resolution. The Taylor expansion approach could also be attractive where we lack spatially explicit high-301 

resolution maps of the ET drivers, but where their variances and covariances can nonetheless be estimated 302 

from other sources (such as from the variability of topography, mapped soil units, remote sensing data, etc.).  303 

 304 

It is beyond our scope here to construct such variance and covariance estimates, but we can illustrate how 305 

they could potentially be used. The solid red symbols in Fig. 4 show the relationships between "true" average 306 

ET and modeled grid-cell-averaged ET, for each grid cell (and one example day, May 31st, 2004) at several 307 

different grid scales. For comparison, the open grey symbols in Fig. 4 show average ET estimated by the Taylor 308 

expansion approach of Eq. (7), which corrects for sub-grid heterogeneity effects using only grid-cell-averaged 309 

estimates of the ET drivers and their small-scale variances and covariances.  310 

 311 

The heterogeneity-corrected ET estimates shown by the open symbols in Fig. 4 cluster much closer to the 1:1 312 

line than the modeled grid-cell-averaged ET values shown by the solid red symbols, suggesting that the Taylor 313 

expansion approach may substantially improve estimates of grid-cell-averaged ET. Real-world results may be 314 

less clear than those shown in Fig. 4, because the heterogeneity-corrected ET estimates (the open symbols in 315 

Fig. 4) are calculated using exact values for the variances and covariances of the ET drivers within each grid 316 

cell, and in real-world cases these variances and covariances will not be known precisely. Figure 4 nonetheless 317 



 

10 
 

demonstrates the potential value of knowing, or being able to estimate, those variances and covariances. 318 

Efforts to determine those variances and covariances can be focused on the terms that matter the most, if one 319 

can identify the main drivers of aggregation bias using the methods described in Sect. 2.2 above.  320 

 321 

 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
Table 1. Relative importance of different ET drivers in aggregation bias estimates (different terms in Eq. 15). Va330 
lues are calculated for all of Switzerland for the two arbitrarilyrandomly chosen days (May 31st 29th and July 21331 
st18th, 2004). The aggregation bias is dominated by the term associated with the variance of soil moisture for t332 
hese two example days.  333 
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 336 
 337 

 338 

 339 

Figure 1. Spatial distribution of input data for the year 2004 at 500-m resolution: Annual mean (A) temperature 340 

(°C), (B) soil moisture saturation (m3 m-3-, simulated by the PREVAH hydrological model), (C) precipitation (mm 341 

yr-1), (D) net radiation (W m-2), (E) potential evapotranspiration (PET, mm yr-1) using the Priestley-Taylor 342 

equation (Eq. 3), and (F) evapotranspiration (ET, mm yr-1) using the approach used in the GLEAM model (Eq. 1). 343 

See Table. S1 for references. 344 
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 345 

   346 

 347 

Figure 2. a) “True” aggregation bias in ET, as calculated by averaging the 500-m resolution ET estimates using 348 

fine-resolution input data in Eq. 6, over 1/32, 1/16, 1/8, 0.25, 0.5, 0.75, 1, and 2-degree grid cells across 349 

Switzerland. b) Aggregation bias in ET, as estimated by Eq. 7 from grid-cell averaged temperature (°C), soil 350 

moisture (ww), net radiation (Rn), their variances at each grid scale, and the covariances of all pairs of variables 351 

using the 500-m input data. At finer grid scales, the aggregation bias is more localized, and smaller on average. 352 

Across Switzerland as a whole, average aggregation bias becomes smaller as grid scales become finer, but 353 

never disappears completely. 354 

 355 

  356 
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 357 

Figure 3. Daily estimated aggregation bias in ET estimates (%, median of daily biases in Apr.-Oct. 2004) versus 358 

daily true aggregation bias in ET estimates (%, median of daily biases in Apr.-Oct. 2004) at several spatial 359 

scales. Estimated aggregation biases are calculated using Eq. 7. True aggregation biases are calculated as 360 

differences between the finer resolution ET estimates from finer resolution input data, averaged over several 361 

spatial scales (average of functions) and ET values calculated from average inputs at each spatial scale 362 

(function of averages). The coefficients of determination (R2) between the true and estimated aggregation 363 

biases verify the reliability of the Taylor expansion method and Eq. 7 as estimates of the aggregation bias.  364 

  365 

  366 
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 367 

368 

Figure 4. Daily estimated ET rates versus “true” average ET at each grid cell at several different grid scales 369 

(example day, May 31st, 2004). The solid red symbols demonstrate the relationships between "true" average 370 

ET calculated using fine-resolution data at each grid cell and modeled grid-cell-averaged ET using grid-cell-371 

averaged inputs in Eq.8, for each grid cell at several different grid scales (overestimated). For comparison, the 372 

open symbols show true average versus average ET estimated by the Taylor expansion approach of Eq. (7), 373 

which corrects for sub-grid heterogeneity effects using only grid-cell-averaged estimates of the ET drivers and 374 

their small-scale variances and covariances (heterogeneity-corrected ET estimates, corrected).  375 

 376 

3. Discussion  377 

Averaging over spatially heterogeneous ET drivers leads to substantial aggregation biases in ET flux estimates 378 

from a typical mechanistic large-scale land surface model. This aggregation bias arises from the inherent 379 

nonlinearities in evapotranspiration processes, coupled with the inherent spatial heterogeneity in the driving 380 

factors. The joint effects of these nonlinearities and heterogeneities can be estimated using second-order 381 

Taylor expansions of the governing equations. Using Switzerland as a test case, we have shown that median 382 

aggregation biases of 10-35% are common, even at grid scales substantially smaller than those typically used in 383 

land surface models (Fig. 2). These biases can be much larger for individual days (Figs. S2 and S3) and 384 

potentially have substantial consequences for water and energy flux estimates in land surface models and 385 

consequently for temperature predictions in coupled models. The overestimated evaporative fluxes would 386 

lead to overestimated latent heat fluxes and underestimated sensible heat fluxes, and thus potentially to 387 

underestimates of expected temperature increases in a changing climate. Unrealistically high evaporation 388 

estimates lead to cooler modeled temperatures and wetter modeled climates. Correcting for the aggregation 389 
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bias in ET fluxes would lead to reduced evaporative cooling and increased atmospheric heating via sensible 390 

heat flux. 391 

 392 

In coupled Earth system models, ET fluxes influence how surface temperature, net radiation, and soil moisture 393 

evolve through time, and thus influence future values of ET. The analyses shown in Figs. 2-4 are based on static 394 

values for each day, and thus do not account for the propagation of aggregation biases forward through time. 395 

Estimating the consequences of aggregation biases for dynamic modeling would require fully coupled Earth 396 

system model simulations rather than the single ET algorithm analyzed here. In a dynamic model, the Taylor 397 

expansion approach can potentially be used to correct for aggregation biases in each time step, using 398 

statistical models for the variances and covariances of the ET drivers. Thus, estimating aggregation biases in a 399 

dynamic model would not require explicitly simulating sub-grid heterogeneity at every time step. Correcting 400 

for aggregation biases at each modeling time step would prevent them from propagating further into future 401 

time steps, or into the partitioning of future water and energy fluxes at the land surface. The present paper 402 

does not illustrate this dynamic correction for aggregation biases, but establishes the theoretical framework 403 

for it. 404 

 405 

The purpose of our analysis was to demonstrate how aggregation bias due to spatial heterogeneity can be 406 

quantified (Sects. 2.2-2.3), how its dominant drivers can be identified (Sect. 2.4.1), and how its effects can be 407 

efficiently corrected for, using sub-grid closure relationships (Sect. 2.4.2). For this demonstration, we chose 408 

GLEAM as an illustrative example, and Switzerland as a topographically complex case study where high-409 

resolution data on the ET drivers are available. Applications of this approach to more complex land surface 410 

models may require calculating the necessary derivatives (see Eq. 7) numerically rather than analytically, and 411 

applications where high-resolution data are unavailable may require statistically estimating the variances and 412 

covariances among the drivers of ET, based on their relationships with topography, soil types, land cover, etc. 413 

Using the approach outlined here, one can account for the effects of sub-grid heterogeneity without explicitly 414 

modeling ET at fine spatial resolution, which could be impractical due to computational costs, or impossible 415 

due to a lack of fine-resolution input data. 416 

 417 

In our analysis, spatial heterogeneity in soil moisture emerged as the dominant driver of aggregation bias in ET 418 

estimates. Particularly if this result can also be confirmed in other regions and climates, it points to the 419 

importance of improving our understanding of spatial patterns of soil moisture and what controls them. The 420 

lower topographic curvature of coarsely gridded landscapes can lead models to predict higher soil moisture at 421 

coarser grid scales (Kuo et al., 1999); higher soil moisture at larger grid scales would lead to even higher 422 

modeled values of ET, beyond the effects of the aggregation biases analyzed here. Soil moisture may also be 423 

substantially influenced by lateral subsurface transfers of water, which are ignored in our analysis and are also 424 
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ignored by many land surface models. Overlooking lateral transfers could potentially bias ET estimates in large-425 

scale land surface models (Fan et al., 2019), but this is beyond the scope of the present study. 426 

 427 
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Table S1. PREVAH hydrological and meteorological data. All data are in gridded format and at 500 m spatial 18 

resolution and (if relevant) daily temporal resolution  19 

Data Source 

PREVAH soil moisture 
(m3/m3) 

Simulations from PREVAH hydrological model, Brunner et al., 2019 ; 
Speich et al., 2015; Orth et al., 2015; Zappa et al., 2003 

precipitation (mm d-1) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

radiation (W m-2) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

relative humidity (-) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

sun duration (hr) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

temperature (°C) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

vapor pressure (Pa) Interpolation of MeteoSwiss data after Viviroli et al., 2009 

CH land use  BFS, Swiss Federal Statistical Office, 1995 

 20 
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 23 

Figure S1. Land cover map of Switzerland at 500-meter resolution along with the albedo values associated with 24 

each land cover type (BFS, 1995; Viviroli et al., 2009) 25 

 26 

 27 
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Figure S2. a) Spatial distribution of input data at 500 m resolution for a arbitrarilyrandomly selected day 30 

(3129.05.2004) to calculate ET. Potential evapotranspiration (PET, mmyr-1) is calculated using the Priestley-31 

Taylor equation (Eq. 3), and evapotranspiration (ET, mmyr-1) is calculated using the approach used in the 32 

GLEAM model (Miralles et al., 2011; Martens et al., 2017; Eq. 1). b) Aggregation bias estimated from 500 m 33 

temperature (°C), soil moisture (ww), net radiation (Rn), their variances at each grid scale, and the covariances 34 

of all the pairs using Eq. 7. Even at the finest resolutions (1/32 and 1/16 degrees) the aggregation bias rises to 35 

50-100 % overestimation in daily ET estimates in South Switzerland. c) Daily approximated aggregation bias in 36 

ET estimates versus daily true aggregation bias in ET estimates at several spatial scales for 3129.05.2004. 37 

Approximated aggregation bias is calculated using Eq.7. The true bias is the difference between the finer-38 

resolution ET estimates from finer-resolution input data, averaged over several spatial scales (average of 39 

functions) and average ET estimated from average inputs at each spatial scale (function of averages). The 40 

coefficient of determination (R2) between the true and approximated aggregation bias confirms the 41 

appropriateness of the proposed method and Eq. 7 for approximating the aggregation bias.   42 
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Figure S3. Same as in Fig. S2 but for another arbitrarilyrandomly selected day (2118.07.2004). 45 

 46 

  47 
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 48 

Figure S4. Standard deviation of altitude across several grid scales calculated from 500 m resolution 49 

topographic data (Bundesamt für Landestopographie, 1991). The spatial patterns of topographic variability at 50 

each grid scale are similar to spatial patterns of the median of daily aggregation biases shown in Fig 2 of the 51 

manuscript. 52 

 53 
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 54 

 55 

Figure S5. Soil moisture (m3 m-3) averaged over several grid scales calculated from 500 m resolution soil 56 

moisture data (m3 m-3) for a arbitrarilyrandomly selected day (3129.05.2004). The 500 m resolution soil 57 

moisture data are simulated by the PREVAH hydrological model (Brunner et al., 2019; Speich et al., 2015; Orth 58 

et al., 2015; Zappa et al., 2003).  59 

 60 



12 
 

 61 

 62 

Figure S6. Same as in Fig. S5 but for another arbitrarilyrandomly selected day (2118.07.2004). 63 

  64 
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Data availability 65 

We will upload the source data for this study to a FAIR repository and provide the URL with the final version of 66 
the paper. 67 
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