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Abstract 

The quantification of flood risk in estuarine regions relies on accurate estimation of flood probability, which is 

often challenging due to the rareness of hazardous flood events and their multi-causal (or ‘compound’) nature. 10 

Failure to consider the compounding nature of estuarine floods can lead to significant underestimation of flood 

risk in these regions. This study provides a comparative review of alternative approaches for estuarine flood 

estimation; namely, traditional univariate flood frequency analysis applied to both observed historical data and 

simulated data, and multivariate frequency analysis applied to ‘flood events’. Three specific implementations of 

the above approaches are evaluated on a case study — the estuarine portion of Swan River in Western Australia 15 

— highlighting the advantages and disadvantages of each approach. The theoretical understanding of the three 

approaches, combined with findings from the case study, enable generation of guidance on method selection for 

estuarine flood probability estimation, recognising issues such as data availability, complexity of the 

application/analysis process, location of interest within the estuarine region, computational demands and whether 

or not future conditions need to be assessed. 20 
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1 Introduction 

Estimates of the probability of future floods represent a critical information source for applications such as land 

use zoning and planning, reservoir operation, flood protection infrastructure design and dam safety assessments 

(e.g. Ball et al. (2019)). Such probability estimates form the basis for calculations of the ‘design flood’ (a 25 

hypothetical flood with a defined probability of exceedance, such as the 1% annual exceedance probability flood 

or 1 in 100 years flood), as well as for risk-based approaches that consider the integration of both probability and 

consequence. Indeed, the estimation of flood probability represents one of the core objectives of the field of 

engineering hydrology (Maidment, 1993), with methodological developments dating back to early flood 

frequency estimation approaches (Condie and Lee, 1982; Riggs, 1966; Singh, 1980; Woo, 1971) and the 30 

development of rainfall intensity-frequency-duration (IFD) curves (Koutsoyiannis et al., 1998; Niemczynowicz, 

1982; Yu and Chen, 1996).  

Although many aspects of the flood probability calculation are strongly supported by theory and embedded in 

engineering practice (e.g. Ball et al. (2019) and Robson and Reed (1999)), there are several challenges specific to 

applications in estuarine regions that make this a unique category of problem. Primary amongst these is that 35 
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estuarine floods have the potential to be caused by several separate but physically connected processes, including 

high water levels from the ocean resulting from storm surge and/or high astronomical tide, and riverine floods due 

to intense ‘flood-producing’ rainfall in the contributing catchments (Couasnon et al., 2020; IPCC, 2012; Leonard 

et al., 2014; Zscheischler et al., 2018). In addition, many estuaries around the world and their contributing 

catchments have exhibited substantial changes in land use (e.g. urbanisation, agricultural expansion), channel 40 

modification (dredging, straightening and damming), coastal engineering works and various other modifications 

(Climate Change Risks to Coastal Buildings and Infrastructure, 2011; Habete and Ferreira, 2017; Hallegatte et al., 

2013), with the implication that historical flood records may provide a poor guide to future hazard and risk (Milly 

et al., 2008; Razavi et al., 2020). Climate change adds a further layer of complexity, resulting in increasing ocean 

levels, changes to storm dynamics that in turn will lead to changes in both storm surges and rainfall patterns (Lowe 45 

and Gregory, 2005; Wasko and Sharma, 2015; Westra et al., 2014) as well as their dependence (Ganguli and Merz, 

2019; Wahl et al., 2015; Wu and Leonard, 2019). The combination of these factors means that conventional 

approaches for flood risk estimation as commonly applied to inland catchments are rarely suitable for estuarine 

situations (Couasnon et al., 2020; Zscheischler et al., 2018). 

To illustrate these challenges, consider Typhoon Rammasun, in which intense rainfall combined with storm surge 50 

produced a compound flood. As one of only two Category 5 super typhoons recorded in the South China Sea, 

Rammasun made landfall at its peak intensity over the island province of Hainan in China on 18th July 2014. It 

brought both heavy rainfall and strong surge with return periods of more than 100 years to the City of Haiko, the 

capital of Hainan province located on the estuary of Nandu River (Xu et al., 2018). Heavy rain caused widespread 

flooding in Haiko City and nearby urban areas. Storm surge over three meters was observed on the northern coast 55 

of the island, which prevented water from the Nandu River from draining into the sea, further exacerbating the 

impacts of floods in and nearby Haiko City (Wang et al., 2017). Yet flood estimation in this region proved 

problematic (Wang et al., 2017; Xu et al., 2018): historical flood records are short, the region has experienced 

rapid and extensive urbanisation including significant hydraulic changes in Nandu River leading to non-

stationarity, and climate change is already modifying key flood-generating processes such as mean sea level and 60 

heavy rainfall (IPCC, 2012). This is not an isolated example; with large human populations situated at low 

elevations in close proximity to where rivers meet the ocean, there are many cases where interacting processes 

lead to complex flood dynamics and substantial impacts (e.g. Hanson et al. (2011) and Couasnon et al. (2020)). 

On top of this, recent studies show that the joint probability of flood drivers in estuarine areas is affected by low-

frequency climate variability, such as due to the El Niño Southern Oscillation (Wu and Leonard, 2019) and may 65 

also be experiencing long-term changes (Arns et al., 2020; Bevacqua et al., 2019), making it a more challenging 

task to estimate future flood risk in these areas. 

A generalised schematic for how the flood-producing processes interact in an estuarine region is provided in 

Figure 1. Conceptually, elevated estuarine water levels are often represented as the combined effect of two 

separate mechanisms. The first mechanism arises from extensive rainfall occurring in the upstream catchments, 70 

leading to elevated riverine flows and high water levels in the lower catchment reaches. The magnitude, timing 

and duration of the ensuing flood wave driven by this mechanism depends on a combination of meteorological 

factors (e.g. intensity, duration and spatial extent of the ‘flood-producing’ rainfall event) and catchment attributes 

(e.g. size, topography, the wetness of the catchment prior to the ‘flood-producing’ rainfall event, and other factors 

influencing the rainfall-runoff relationship). The second mechanism arises through the combination of astronomic 75 
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tides and a set of meteorological processes (e.g. tropical or extra-tropical cyclones) that produce on-shore winds 

and an inverse barometric effect, which in turn leads to storm surges and strong waves. The magnitude, timing 

and duration of elevated oceanic water levels due to this mechanism depends on the dynamics (e.g. timing and 

duration) of the storm surge, its superposition on the astronomic tide (i.e. the interaction of surge and tide, with 

the greatest effects during ‘spring tides’ (Cowell and Thom, 1995)), and various bathymetric effects that influence 80 

propagation of the flood wave up the estuary (Resio and Westerink, 2008; Wu et al., 2017).  

 

 

Figure 1 Processes that commonly lead to flooding in estuarine regions with common meteorological drivers such as 
wind and the inverse barometric effect. Extreme rainfall can cause significant streamflow events in upstream or local 85 
urban regions, which may combine with elevated ocean levels at the lower estuarine boundary. The specific flood 
magnitude depends on the timing and magnitude of constituent processes. 

 

Although these two physical processes are often treated separately, the flood level within an estuary is not a simple 

addition of a fluvial hydrograph and an elevated coastal water level (Bilskie and Hagen, 2018; Ikeuchi et al., 2017; 90 

Santiago-Collazo et al., 2019). In particular, complex estuarine hydrodynamics need to be considered, and the 

potential for co-incident or offset timing of each component (in terms of the coincidence between the arrival of 

the hydrograph peak, the storm surge peak and the interaction with tidal cycles) can add considerable complexity 

to probability calculations. Furthermore, the meteorological drivers are sometimes (but not always) common 

between heavy rainfall events and storm surges, such that the catchment and oceanic processes that drive estuarine 95 

floods can exhibit a non-negligible probability of occurring simultaneously (Bevacqua et al., 2017; Leonard et al., 

2014; Wahl et al., 2015; Wu et al., 2018; Zheng et al., 2015a; Zscheischler et al., 2018). Methods have only started 

to be developed relatively recently that explicitly address this ‘compounding’ behaviour (Zscheischler et al., 2020).   

To address this complexity and provide credible estimates of flood probability in estuarine regions, it is necessary 

to make methodological decisions based on factors including: 100 

 the dominant processes that have the greatest potential to produce estuarine flooding; 
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 the extent to which key coastal, estuarine and/or catchment properties (e.g. land use change and 

hydraulic structures) have changed or are anticipated to change in the future; 

 the extent to which key meteorological and climatic drivers have changed or are anticipated to change 

in the future; 105 

 the availability of data on either historical flooding in the estuary and/or data on the dominant flood 

drivers; and 

 a range of other factors (e.g. availability of numerical models, methodological expectations articulated 

in engineering guidance documents, available budget) that ultimately will have a significant bearing on 

method selection.  110 

The purpose of this paper is to provide a detailed conceptual overview of the broad approaches for estimating the 

probability of compound floods in estuarine regions, and review a set of specific methods available from each 

approach, given availability of data, calibrated models and computational power. Advantages and disadvantages 

of a subset of these methods are then illustrated using a real-world case study of an estuarine river system in 

Australia.  115 

The rest of the paper is organised as follows. A typology of three approaches for estimating the probability of 

flood in estuarine regions is provided in section 2. A description of the case study area and data used in this study 

is provided in section 3. Details a set of specific methods selected from the three approaches and how they are 

applied to the case study are provided in section 4. The flood estimates produced by applying the selected methods 

to the case study are summarised in section 5. The discussion of main findings is included in section 6, followed 120 

by conclusions in section 7.  

2 A Typology of Approaches for Estimating the Probability of Estuarine Floods 

2.1 Background 

A typology of different approaches for estimating estuarine flood probability is given in Figure 2. Given the 

requirement for probability estimation, common to all approaches is the use of a probability distribution (often, 125 

but not always, an extreme value distribution) to convert historical and/or simulated flood records or their drivers 

into an exceedance probability. In defining the typology, three general approaches for the probability calculation 

have been identified and considered here:  

Approach 1: univariate flood frequency analysis applied directly to observed compound flood data;  

Approach 2: univariate flood frequency analysis applied to simulated compound flood data; and  130 

Approach 3: multivariate frequency analysis applied to key compound flood generating processes.  
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Figure 2 Pathways for relating process modelling and statistical modelling to determine extremal water levels in 
estuarine river reaches, where the top left panel shows typical system boundaries for identifying relevant modelling 135 
domains (atmospheric, hydrological, oceanographic and riverine hydrodynamic) as well as key variables crossing 
between model domains (R – rainfall, P – pressure, W – wind, Q – streamflow, H – ocean height). Pathway 1: First 
transform variables to water level via continuous time-stepping process models and then apply univariate frequency 
analysis. Pathway 2: First abstract the system to multivariate events represented via multivariate frequency analysis, 
then apply design event process model to derive the compound flood water levels and their corresponding probability 140 
of exceedance.  

 

These approaches are defined by two key methodological decisions. The first decision is the extent to which key 

processes need to be explicitly resolved through numerical models, or are embedded as stationary ‘boundary 

conditions’. In the first approach (i.e. univariate flood frequency analysis applied to observed flood data), all the 145 

physical processes that have led to the historical flood record are embedded in the observed flood data, and thus 

no physical modelling is required. In contrast, the remaining approaches all involve some level of numerical or 

statistical modelling of the key physical processes that lead to flooding, albeit with significant differences in the 

specific models used to implement the approaches, and the manner in which they are combined. Each of the 

modelling approaches therefore requires identification of a modelling domain and a set of ‘boundary conditions’ 150 

that delineate this domain (top left panel of Figure 2). These boundary conditions may trace back to the 

meteorological drivers (e.g. barometric pressure and wind data that would inform ocean models such as ROMS 

(Shchepetkin and McWilliams, 2005); or rainfall data that would inform hydrological models to convert rainfall 
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to flow), or to some intermediate variable(s) such as the historical ocean levels and/or historical fluvial flows that 

represent inflows to the estuary.  155 

The second decision is the point at which a probability model is applied (i.e. directly to the variable of interest, 

such as flood height at a critical location, or to the drivers of flooding some distance up a modelling chain). 

Approaches 1 and 2 both apply a univariate probability model directly to the flood data (e.g. flood level) at the 

location of interest, the difference between them being whether the probability model is applied to observed 

historical data (Approach 1) or numerically simulated flood data (Approach 2). The univariate probability 160 

calculation is illustrated in Figure 2 by moving from the bottom left panel to the bottom right panel. Approach 2 

requires the additional step of using continuous or censored continuous simulation models to move from the top 

left panel of Figure 2 (describing the physical processes to be simulated) to the bottom left panel (providing the 

continuous or censored continuous sequences of flood levels or similar flood metrics), before conducting the 

univariate probability calculation. In contrast, Approach 3 applies multivariate probability approaches further up 165 

the modelling chain to define multivariate ‘design events’ (shifting from top left to top right panel in Figure 2), 

which are then converted to flood levels by dynamically modelling the individual multivariate ‘design events’ 

(top right to bottom right in Figure 2).  

The three primary approaches are described further in the sections below. Within each approach there is significant 

variety in terms of specific methods and modelling assumptions used, and a detailed review is provided for 170 

alternative implementations for each approach.  

2.2 Approach 1: Univariate flood frequency analysis applied to observed flood data 

Arguably the simplest approach is the application of a univariate probability model to observed historical flood 

data at the location of interest. This method is well developed (Robson and Reed, 1999) and requires sufficient 

historical data (to ensure sufficient accuracy in flood estimates, with a typical rule-of-thumb being the requirement 175 

of at least 30 years to estimate flood levels corresponding to probabilities up to the 1% annual exceedance 

probability (Ball et al., 2019)). Once this data is obtained, a univariate probability model is applied, usually to 

annual maxima or block maxima time series of water levels (Bezak et al., 2014; Machado et al., 2015; Wright et 

al., 2020). As such there is no explicit physical modelling of any constituent processes; rather, all the physical 

processes are considered to be embedded in the observed historical flood data. 180 

A key assumption is that the physical ‘generating processes’ that gave rise to this historical record of flooding 

will continue into future floods (in a statistical sense), so that the probability distribution fitted to the historical 

data can be assumed to be stationary. Although there are many benefits to this approach—including its simplicity 

and transparency—there are a number of limitations: 

 Historical gauges are rarely available precisely at the location(s) of interest within an estuary, with the 185 

complexity of flood wave attenuation throughout estuarine systems making it problematic to simply 

extrapolate information from one location to the next without consideration of the hydrodynamic processes. 

The lack of gauges within estuaries are likely to be at least in part due to the fact that there has historically 

been greater interest in measuring either the sea level or the river discharge and therefore there is less interest 

to place stations at the interface between the two (Bevacqua et al., 2017).  190 
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 Frequency approaches are more commonly applied to flood volume (i.e. flow) data rather than flood water 

level data, which can be problematic in estuarine regions where flows can be bidirectional and water levels 

are influenced by both upstream and downstream processes.  

 Complex bathymetry and other physical features of estuarine flooding make it difficult to extrapolate the 

frequency curve when using observed historical records to estimate rare design events that are greater than 195 

the largest observed flood.  

 Historical and/or future changes to either the estuary itself (e.g. changes to bathymetry due to dredging, 

coastal engineering works, natural littoral drift and fluvial sediment transport processes) and/or the upstream 

catchment (e.g. urbanization, agricultural expansion, reservoir construction, channel modification) can mean 

that historical flood record may be a poor guide to future flood probabilities.  200 

 Historical and/or future changes to the atmospheric and oceanic drivers of flooding due to climate change, 

including sea level rise, storm surge and changes to rainfall patterns, can also result in the historical record 

being a poor guide to future flooding.  

As a result of these limitations, traditional univariate flood frequency analyses applied to observed historical flood 

data are rarely directly appropriate for estimates of future probabilities of estuarine flooding (Yu et al., 2019), and 205 

thus one of the alternative approaches outlined below will be required for most real-world applications. Note that 

in situations where historical records of estuarine flooding levels are available, these data are still likely to be 

highly valuable to help calibrate numerical models and/or otherwise benchmark probability calculations.  

2.3 Approach 2: Univariate flood frequency analysis applied to simulated flood data 

The second approach (tracing from top left to bottom left and then to bottom right panels in Figure 2) is often 210 

referred to as ‘continuous simulation’, and involves simulating the dynamical flood response to continuous time 

series of the modelling boundary conditions using process-based models (Boughton and Droop, 2003; Sopelana 

et al., 2018). For example, if extended continuous historical data of catchment inflows (upper boundary condition) 

and ocean levels (lower boundary condition) are available, then it becomes possible to run a hydrodynamic model 

forced by those conditions to achieve continuous water level time series at all relevant locations within the estuary. 215 

This in turn can form the basis of a univariate flood frequency analysis applied to the simulated flood level data 

at the location(s) of interest. An advantage of this approach is that flood levels can be calculated at all desired 

locations throughout the estuary, and that changes within the estuary (e.g. changes in bathymetry, engineering 

works) can be explicitly captured in the model. However, the approach assumes that the physical ‘generating 

processes’ that lead to the boundary conditions are and will continue to be stationary, which is increasingly 220 

unlikely to be valid for a range of applications.  

A possible solution for addressing boundary condition non-stationarity is to widen the modelling chain, thereby 

explicitly representing a broader range of physical processes in the model (Heavens, 2013). For example, land-

use change or the construction of a reservoir in the upstream catchment can lead to significant non-stationarity in 

streamflow time series (the upper boundary condition in the preceding example), and this could be addressed by 225 

extending the boundary condition further up to time series of historical rainfall (Hasan et al., 2019). From there it 

becomes possible to explicitly model the key flow-generation processes (including the effects of land-use change 

and/or reservoirs) before coupling this to a hydrodynamic model of the estuary. This would enable continuous 
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flood height data in the estuary to be generated based on current or future catchment conditions (which would 

need to be parameterized into the hydrological and hydraulic models), forced in this case by historical rainfall 230 

time series. Although this approach explicitly addresses some sources of non-stationarity, evidence of climate 

change shifting both rainfall patterns and storm surge patterns (Lowe and Gregory, 2005; Wasko and Sharma, 

2015; Westra et al., 2014) means that the assumption of stationary meteorological forcing is also increasingly 

questionable. Addressing this issue would lead to further widening of the boundary conditions. This is represented 

as ever larger boxes in the top left panel of Figure 2, defining the components of the system to be modelled and 235 

the boundary conditions to those models. Widening the modelling chain to explicitly represent an ever-increasing 

set of time-varying processes is certainly an attractive means to explicitly address non-stationarity of key flood 

generating processes. This is especially the case considering that some datasets from climate models already exist 

as boundary conditions for hydrodynamical modelling runs (e.g. Kanamitsu et al. (2002) and Naughton (2016)), 

which are helpful to assess climate change impact on compound flooding with Approach 2. However, it is 240 

important to recognise that widening the modelling chain can also lead to evermore complex models, with greater 

possibility of inducing biases and other forms of modelling errors into the results (Zaehle et al., 2011). This is 

particularly the case for climate model outputs, with the lack of hydrological validity of precipitation fields from 

climate models often leading to the requirement for significant bias correction or other forms of post-processing 

(e.g. Nahar et al. (2017)).  245 

Furthermore, in the context of estuarine applications, the implications of anthropogenic climate change mean that 

it may be necessary to explicitly resolve the multivariate meteorological forcing variables that drive estuarine 

floods. Yet very little research has been conducted on the generation of continuous multivariate meteorological 

forcing variables for estuarine catchments while preserving the interactions between these variables (e.g. the joint 

probability of extreme rainfall and the meteorological drivers of storm surge such as pressure and wind) and 250 

eliminating their respective biases. Although approximate approaches may be available in certain instances (e.g. 

manually scaling the rainfall or storm surge boundary conditions), the complexity of possible future changes (e.g. 

heavy rainfall events being more likely to coincide with storm surge events in the future, see Seneviratne et al. 

(2012) and Bevacqua et al. (2019)) could render simple scaling approaches invalid. Therefore, many aspects of 

how to correctly apply continuous simulation approaches to estuarine floods remains an open research question.   255 

2.4 Approach 3: Multivariate frequency analysis applied to key flood generating processes 

The third approach involves the application of multivariate probability distributions, and is often referred to as 

‘event-based’ because of the emphasis on deriving a series of multivariate ‘design events’ for further simulation 

through a modelling chain. These approaches are the multivariate analogy of applying IFD curves for delineating 

design rainfall ‘events’ with pre-defined probabilities, which are then converted into streamflow events that are 260 

assumed to have equivalent probability to the driving rainfall event.  

These methods factorise the flood estimation problem into two separate components:  

1) the estimation of a multivariate (commonly bivariate) probability distribution function based on the 

continuous boundary conditions; and 

2) the estimation of the flood magnitude (i.e. water levels) for each combination of boundary conditions, 265 

using what is often referred to as a ‘structure variable’ or ‘boundary function’. 
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A range of multivariate approaches have been applied to compound flood estimation problems, including Vine 

copula (Bevacqua et al., 2017), standard copulas (Muñoz et al., 2020), unit Fréchet transformations (Zheng et al., 

2014), regression type models (Serafin et al., 2019) and conditional exceedance models (Jane et al., 2020). The 

use of copulas or equivalent formulations (e.g. unit Fréchet transformations) enables the factorisation of 270 

multivariate distributions into a set of marginal distributions and a dependence structure (i.e. a joint probability 

distribution). This joint probability distribution captures the defining features of the variables of interest and their 

interaction. For example, in Australia, a bivariate logistic extreme value distribution has been fitted to tide 

(observed and simulated) and rainfall data throughout the Australian coastline, and the dependence parameter of 

this distribution has been made available to flood practitioners across the entire coastline to describe the 275 

dependence between storm tide levels and extreme rainfall (Wu et al., 2018; Zheng et al., 2014). To capture the 

full joint distribution (including both marginal distributions), the dependence parameter can be coupled with 

publicly available IFD curves that capture the rainfall exceedance probabilities of equivalent durations, and with 

a frequency analysis of storm tide to reflect the lower boundary condition (Ball et al., 2019). Similar approaches 

exist elsewhere (e.g. Bevacqua et al. (2017), Zellou and Rahali (2019) and Moftakhari et al. (2019)), and methods 280 

are available to estimate all the key parameters of a suitable distribution when the relevant parameters are 

unavailable. 

There are several advantages of taking an event-based approach. First, because of the emphasis on simulating a 

smaller number of significant ‘design events’, the computational loads are much lower than multi-year continuous 

simulations of hydrodynamic models. Second, because the drivers of estuarine flooding are factorised through the 285 

multivariate distribution, it becomes easier to incorporate the effects of future changes. This is particularly the 

case if one is able to assume that the dependencies between variables are either not greatly affected by climate 

change or that changes in dependencies produce second-order effects on flood probability compared to changes 

in the marginal distributions (Bevacqua et al., 2020). Under these conditions, the method can capitalise on 

published information on uplift factors to changes in the key marginal distributions (e.g. scaling factors for IDF 290 

curves, or for peak ocean levels), which are becoming increasingly commonly available as part of engineering 

flood guidance in many parts of the world (Wasko et al., in press). A further advantage is that under the assumption 

that the relative timing of different flood drivers is not considered (see discussion in the paragraph below), the 

flood surface produced using hydrodynamic models will not change under climate change; rather it is how the 

flood surface is converted into flood probability based on the dependence model that will change. Indeed, by 295 

separating the flood estimation problem into the two components indicated above (i.e. flood surface and associated 

probability), it could be possible under certain conditions to estimate the impact of future changes such as climate 

change on estuarine flooding without additional hydrodynamic simulations, simply by re-calculating the 

probabilities of the flood drivers and their dependence structure under changed future conditions. 

Despite these advantages, there are several simplifications involved in this approach when converting continuous 300 

meteorological data into a set of multivariate ‘design events’, which could lead to significant misspecification of 

flood probability if not taken into account. This is illustrated through an analogy of the application of IFD curves 

to estimate design flood hydrographs, whereby the process of calculating IFD curves involves collapsing complex 

rainfall events into average rainfall intensities for different durations, resulting in the loss of the spatial and 

temporal dynamics of individual storm events. To convert IFDs into design floods, this additional temporal and 305 

spatial information of the rainfall event is then typically re-introduced through ‘temporal patterns’ and ‘areal 
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reduction factors’, respectively. Translating this analogy to multivariate design events for estuarine conditions, 

intensity-frequency relationships for storm tides are often derived from time series of daily maximum storm tide. 

During this process information on the temporal dynamics of storm surges and astronomical tides is discarded. 

Although it may be possible to introduce this information on oceanographic temporal patterns through the use of 310 

‘basis functions’ such as applied by Wu et al. (2017) or a similar approach by the UK Environment Agency (2019), 

a significant difficulty arises when trying to align the timing of the storm surge and astronomical tide events with 

the timing of the flood-producing rainfall in the upstream catchments (Santiago-Collazo et al., 2019). Indeed, this 

problem has not been resolved, with most current methods using a stochastic method to account for the temporal 

shape of surge peaks (MacPherson et al., 2019) or taking a simplified approach such as assuming ‘static’ lower 315 

boundary conditions rather than explicitly resolving the tidal dynamics (Zheng et al., 2015a). The extent to which 

this simplification leads to mis-specified flood risk (and whether this misspecification leads to an under- or over-

estimation of probabilities) is not known. 

3 Case Study and Data 

3.1 Case study area and hydrodynamic model 320 

The case study is the Swan River system in the lower part of the Swan-Avon Basin in Western Australia, as shown 

in Figure 3. The total catchment area of the Swan-Avon River system is approximately 124,000 km2, which makes 

it one of the largest river basins in Australia. The river system runs from the town of Coolgardie 500 km east of 

Perth to its outlet to the Indian Ocean at Fremantle. The catchment covers a large proportion of the south-western 

region of Western Australia and consists of a wide range of hydrological regimes and land uses, including the 325 

relatively wet and forested areas of the Darling Scarp in the west, the Wheat belt in the middle and the semi-arid 

Goldfield region in the east. Due to its large size and hydrological complexity, there is currently no hydrological 

model available for the catchment. However, there are a few stream flow gauges near the outlet of the catchment 

but outside of the zone of tidal influence. These gauges include the Walyunga stream gauge and the Great Northern 

Highway stream gauge and are shown in Figure 3.  330 
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Figure 3 Locations of Perth, Fremantle, Great Northern Highway and Walyunga stream gauges and Swan-Avon basin. 
The yellow dots represent the locations of major urban areas and the blue dots represent the locations of the stream 
gauges. (Note: This figure is created using © Google Maps.) 335 

 

The case study area is shown in Figure 4, which covers Swan River from the Great Northern Highway Bridge to 

its outlet at Fremantle. A two-dimensional flexible mesh hydrodynamic model is available for the study area. The 

model was developed using the DHI Modelling Suite MIKE21 by URS on behalf of the Department of Water and 

Environmental Regulation in Western Australia to simulate water levels within the Swan and Canning Rivers’ 340 

estuarine region (URS, 2013). The model domain extends from Fremantle to the Great Northern Highway Bridge 

40 km north east of Perth on the Swan River, and the Pioneer Park gauge station 20 km south east of Perth on the 

Canning River. The main area of interest is the Swan River between Fremantle and Meadow Street Bridge, where 

model results are most representative of historical calibration events (URS, 2013). Therefore, 19 locations are 

marked within this region and labelled from Sw1 at Fremantle to Sw19 at Meadow Street Bridge (represented by 345 

red dots in Figure 4), where flood level results are extracted from the model. The downstream boundary of the 

MIKE21 model is an offshore arch-shaped water level boundary located 4 km from Fremantle. The upstream 

boundaries are located at the Great Norther Highway Bridge on the Swan River and Pioneer Park on the Canning 

River. The region downstream of Sw10 is mainly storm tide dominated; the region upstream Sw16 (near the Perth 

Airport) is mainly flow dominated; and the region between Sw10 and Sw16 has significant joint impact from both 350 

tail water levels at Fremantle and upstream flow, and therefore is referred to as the ‘joint probability zone’ or 

‘transition zone’. 
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Figure 4 Model extent and key locations for the case study system. The blue line represents hydrodynamic model 
extent. The red dots represent the 19 locations where flood level results are extracted, from Sw1 at Fremantle to Sw19 355 
at Meadow Street Bridge. (Note: This figure is created using © Google Maps.) 

 

3.2 Observed data available 

Water level data (i.e. not flow volume) within the estuarine regions of the Swan River is available at one gauge 

located at the end of Barrack Street in the City of Perth (near location Sw10 in Figure 4). The data is available 360 

from Department of Transport, Western Australia, between July 1990 and June 2015 at 15 minutes intervals with 

approximately 10% missing or erroneous values. This leads to about 22 years of data with no missing or erroneous 

values, and with water levels ranging from 0.06 m to 1.92 m. 

Sea level data at Fremantle are available at hourly intervals for 118 years between 1897 and 2015 from the Bureau 

of Meteorology, with about 10% missing or erroneous data. The sea level data represent the combined influence 365 

of astronomical tides, storm surge and other factors that have an impact on ocean water levels, and therefore are 

also referred to as storm tide. The recorded sea levels range between 0.1 m and 1.95 m. 

Hourly stream flow data from both the Walyunga and the Great North Highway Bridge gauge stations are obtained 

from the Department of Water and Environmental Regulation, Western Australia. Data from the Great North 

Highway Bridge gauge are available for 14 years between 1996 and 2010, which is considered to be too short for 370 

analysis of extreme events. Consequently, stream flow data from the Walyunga gauge, available between 1970 

and 2016, are used. The Walyunga gauge is about 4km upstream of the Great Northern Highway Bridge, and this 
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distance is considered to have minimal impact on model results considering the size of the catchment. After 

removing missing and erroneous data, there are in total 31 years’ data available. No stream flow data are available 

for the Canning River. This is not considered a problem, as the inflows upstream of Canning River have little 375 

impact on water levels within the study area along the Swan River (URS, 2013). Consequently, a constant small 

flow of 1 m3/s is used as the boundary condition at Pioneer Park (URS, 2013). 

4 Methodology 

As described in section 2, each of the general approaches to the estimation of estuarine flood probabilities can be 

implemented in many different ways, and one specific method is applied on the real-world case study to 380 

demonstrate the advantages and disadvantages of each approach. The details of these specific methods and how 

they are implemented over the case study are presented in this section.  

4.1 Method 1: Peak-over-threshold model based flood frequency analysis applied to observed flood data  

Univariate flood frequency analysis is the simplest approach for estimating flood probabilities when flood data 

are available, and this method has been used extensively in previous studies (Guru and Jha, 2016; Seckin et al., 385 

2014; Xu and Huang, 2011; Zhang et al., 2017). It generally involves fitting a specified distribution (e.g. Gumbel 

distribution, Log-Pearson Type III distribution or generalized extreme value distribution) to flood data so that the 

magnitude of floods can be associated with their occurrence probability (Tao and Hamed, 2000). For this study 

the peak-over-threshold representation of extremes is used. 

The peak-over-threshold representation for extreme value analysis is based on the Pickands–Balkema–de Haan 390 

Theorem, which leads to the generalized Pareto distribution (GPD) family (Coles, 2001). Let ሼXଵ, Xଶ … , X୬ሽ be a 

sequence of independent and identically-distributed random variables that follow a generalized extreme value 

(GEV) distribution: 

Gሺxሻ ൌ exp ൜െ ቂ1  ξ ቀ
୶ିஜ


ቁቃ
ିଵ/ஞ

ൠ                                         Eq. 1 

where, μ,σ  0 and ξ are the location, scale and shape parameters, respectively. Then, for a high threshold u୶, 395 

the distribution of values Y ൌ ሺX െ u୶ሻ conditional on X  u୶ converges to the GPD:  

Gሺyሻ ൌ 1 െ ቂ1 
ஞሺ୷ሻ


ቃ
ିଵ/ஞ

                                                             Eq. 2 

where y ൌ x െ u୶ and σ ൌ σ  ξሺu െ μሻ, with σ and ξ being the scale and shape parameters of the associated 

GEV. Then the maximum likelihood method can be used to fit a GPD (Coles, 2001).  

One challenge associated with a GPD-based frequency analysis is the choice of the threshold value u. If the 400 

threshold value is too low, it will violate the basic asymptotic assumption of the peak-over-threshold model and 

lead to high bias in estimation. On the other hand, if the threshold value is too high, there will be insufficient data 

for fitting the distribution, which can lead to high variance. The basic principal for threshold selection is to choose 

as low a threshold value as possible that does not invalidate the asymptotic assumption of the model. In this study, 

the commonly used mean residual life (MRL) plot method (Coles, 2001) is used for threshold value selection. At 405 
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the suitable threshold value, the MRL plot should be approximately linear as a function of threshold value u 

(Coles, 2001).  

4.2 Method 2: Peak-over-threshold model based flood frequency analysis applied to simulated flood data  

For Approach 2, univariate flood frequency analysis is applied to flood level data simulated using a 2D 

hydrodynamic model. To be consistent with the method selected for Approach 1, the GPD is also used. One 410 

advantage of using the peak-over-threshold model for Approach 2 is that censoring can be used to improve the 

efficiency of full continuous simulation using a 2D hydrodynamic model, as only values above certain high 

thresholds need to be included as part of the joint probability calculation. This assumption is also based on the 

fact that floods are relatively rare events, and therefore data from the majority of the record will not be used to 

estimate the probability of floods. Therefore, it is more efficient to only simulate water levels above an 415 

appropriately high threshold value, which will reduce simulation time significantly.  

Censored continuous simulation for generating compound flood levels resulting from high tail water level T and 

large river discharge Q is illustrated in Figure 5. By selecting all of the time periods when at least one of the 

boundary conditions is above the pre-determined threshold, this approach aims to simulate all water levels H 

above a specified high threshold value. One challenge to implementing this approach is that it is not possible to 420 

know a priori (i.e. without simulating the full time series of joint boundary conditions) the exact value of the 

boundary condition thresholds that will guarantee all water levels H above the GPD threshold are simulated. For 

example, extreme water levels H may also be driven by non-extreme conditions of either of the flood drivers. 

However, the relative rareness of the extreme conditions of each flood driver and the selection of relatively low 

threshold values for the boundary conditions can provide reasonable assurance that flood levels above a very high 425 

threshold value required for fitting a GDP are simulated (i.e. the ‘flood periods’ depicted in Figure 5 always cover 

the periods when flood levels H are above the suitable GPD threshold value). When implementing the censored 

continuous simulation method, a time buffer is also defined to separate different flood periods identified. The use 

of a time buffer accounts for the travelling time of water in the hydrodynamic model, and further ensures that the 

periods when flood level H are above the suitable GPD threshold value (e.g. generated by combination of moderate 430 

flood driver levels) will be fully simulated. The combination of the flood periods and the time buffer periods is 

referred to as the high water level periods, when flood level time series is fully simulated using the 2D 

hydrodynamic model. The time periods outside these high water level periods are referred to as the ‘low water 

level periods’ and are accounted for using a resampling approach described below.  

 435 
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Figure 5 Conceptual illustration of censored continuous simulation for simulating compound flood level H in 
estuarine regions caused by high tail water level in the ocean T and large river discharge Q. The time periods 
highlighted in dark grey are low water level periods; while the remaining time periods are high water level periods, 
which include flood periods and the time buffer.  440 

 

Since water level information below the selected threshold for fitting a GPD is censored in the frequency analysis, 

a resampling approach is used to fill in water level information during the low water level periods, which also 

addresses the challenging of not knowing a priori the exact value of the boundary condition thresholds. During 

the resampling process, a random sample of the simulation period (e.g. 1,000 hours) is selected from the original 445 

flood driver time series, subject to values of both flood drivers being below their pre-determined thresholds 

described above. In other words, only a fraction of the low water level periods is simulated and resampling with 

replacement is used to fill in flood data across the entire low water level periods. Then the corresponding flood 

levels are simulated using the hydrodynamic model. Thereafter, all river water level information that is not 

included in the high water level periods is sampled with replacement from the simulated low water level sample 450 

based on the nearest-neighbour rule applied to both the storm tide T and river flow Q values. Thus, water level 

information for the entire analysis period is obtained by combining the simulated water level information during 

the high water level periods and resampled water level information during the low water level periods.  

As part of the method selected for Approach 2, the 31 years’ concurrent historical sea level and river flow data 

are used as the basis for driving the 2D hydrodynamic model of the Swan River system. A 99th percentile threshold 455 

value is selected for both flood drivers to select flood periods for censored continuous simulation. This is 

equivalent to a sea water level of 1.32 m at Fremantle and a river flow of 150 m3/s at the Walyunga station. A 

time buffer of 12 hours is selected, as the average travel time of water from the upper boundary to the lower 

boundary of the model is under 10 hours. In addition, a low water level period sample of 1,000 hours is randomly 
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selected. Thus, this process leads to a total of 29,792 hours simulation time, which is approximately 10% of the 460 

entire 31 year period under consideration. The censored simulation runs are carried out using a Windows server 

(with 2 × Xeon E5-2698 V3 @2.6Ghx 256 GB RAM and 2 X K80 Telsa GPU).  

Once the simulated water levels are obtained, the same GPD-based frequency analysis described under Method 

1 is used to estimate flood probabilities at selected locations based on these simulated water level data.  

4.3 Method 3: Event-based design variable method considering multivariate frequency analysis over key 465 
flood generating processes  

For Approach 3, the design variable method (DVM) (Zheng et al., 2015a) is selected. The DVM was initially 

developed as a simpler and efficient alternative to the full continuous simulation method and it includes four 

distinct steps: (1) event selection; (2) dependence model development; (3) flood surface simulation; and (4) final 

probability estimation. The details of these four steps are described as follows.   470 

In the first step, compound flood events caused by different flood drivers, such as storm tide and river discharge 

(i.e. combinations of boundary conditions with different return periods) need to be selected for simulation. Flood 

levels generated from these flood events will be interpolated to form flood surfaces or response surfaces with 

different flood magnitudes. The DVM only requires the simulation of a limited number of ‘flood events’ (often 

on a regular grid, e.g. 10 by 10 flood events generated from combinations of flood drivers with different return 475 

levels) to produce a reasonable cover of the bivariate probability surface formed by two flood drivers (Zheng et 

al., 2015a; Zheng et al., 2014). In this study, both historical and synthetic flood events on an irregular grid are 

used to ensure flood events from drivers with significantly longer return period than the estimated flood required 

are included. This is recommended in order to have reasonable confidence in the estimates (Zheng et al., 2014). 

In total, 28 flood events with flood drivers (i.e. storm tide and river discharge) with return periods of up to 1 in 480 

250 years are selected based on historical record to produce a flood response surface with flood levels up to a 

return period of 1 in 100 years for the case study area. A summary of these flood events is provided in Table S1 

in the supporting material.  

In the second step, the dependence model reflecting the dependence structure between the two flood drivers and 

their marginal distributions needs to be developed using either observed or simulated data (associated with 485 

component 1 of Approach 3, see section 2.4). This study follows the approach developed by Zheng et al. (2015a; 

2014; 2013), where the bivariate logistic threshold excess model (Coles, 2001) is used to quantify the dependence 

between the two flood drivers. The model can be described using the following equation: 

PrሾX  x ⋂ Y  yሿ ൌ Gଡ଼ଢ଼ሺx, yሻ ൌ expൣെ൫xିଵ/  yିଵ/൯

൧                                Eq. 3 

for x  u୶ , y  u୷  and 0 ൏ α  1. Here, X and Y are the two stochastic variables, i.e. storm tide T and river 490 

discharge Q; x and y are realizations of X and Y; G is the bivariant distribution function of X and Y; x and y are 

the Fréchet-transformed values of x and y; u୶ and u୷ are the threshold values of x and y, above which function G 

is valid; and α  is the dependence parameter, with α ൌ 0  representing complete dependence and α ൌ 1 

representing complete independence. The maximum censored likelihood method can be used to estimate 

parameter α (Tawn, 1988). For the case study, the dependence between flood drivers are estimated using observed 495 

data of storm tide and river discharge. 
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In the third step, the hydraulic response (i.e. simulated flood levels) of the selected flood events is simulated 

(associated with component 2 of Approach 3, see section 2.4). This is often done with a 2D hydrodynamic 

model, which can simulate the interaction between the two flood drivers. For this study, the MIKE21 model for 

the Swan River is used.  500 

In the fourth and final step, the probability of different compound flood levels simulated in Step 3 can be derived 

based on the bivariate dependence model developed in Step 2 using the bivariate integration method introduced 

by Zheng (2015a). More details of this integration method can be found in Zheng et al. (2015b).  

5 Results 

The advantages and disadvantages of each approach are illustrated using the Swan River system case study. The 505 

results obtained from the specific implementation of each of the three approaches are summarised in this section.  

5.1 Method 1  

The first method based on the univariate flood frequency analysis approach is only implemented at the Barrack 

Street tide gauge in the City of Perth near location Sw10 in Figure 4, as this is the only location where relatively 

long records of observed water level data are available. The mean residual life (MRL) plot (Figure S1 in supporting 510 

material) for water levels observed at Barrack Street gauge is used for threshold selection. The mean excess 

stabilized around 1.37 m, which is selected to be the threshold value for fitting a GDP. The estimated return levels 

and their 95% confidence interval (estimated using a bootstrap method) are shown in Figure 6. The estimated 

flood levels range from 1.64 m for a return period of one year to 1.97 m for a return period of 200 years. The 

confidence intervals become increasingly wide with increasing return period, and it is important to note that return 515 

periods have been calculated based on only 22 years of historical water level data.  
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Figure 6 Results of Method 1 applied to observed flood level data at Barrack Street gauge near location Sw10. The 
black line represents estimated flood levels. The red dashed lines indicate the 95% confidence interval. 

 520 

5.2 Method 2  

For the second method adopted in this case study, hourly flood inundation data are generated using the MIKE21 

model for the entire model domain for both high water level periods and the sampled low water level periods. 

Water level estimates from the 19 marked locations (see Figure 4) are extracted from the MIKE21 model for 

analysis. Since the hourly water levels are highly correlated, the de-clustering method described in Coles (2001) 525 

is used before fitting the GPD model. In addition, the MRL plot is used to select a suitable threshold value for 

frequency analysis using the GPD. The MRL plots for de-clustered river level data at all 19 marked locations are 

provided in Figure S2 in supporting material.  

In this section, results from four representative locations are selected for detailed analysis. These locations include: 

location Sw1 from the tide dominated zone, locations Sw10 and Sw12 from the joint probability zone and location 530 

Sw19 from the flow dominated zone (see Figure 4). Location Sw10 is specifically selected as it is located near 

the Barrack Street gauge, where the only observed water level data within the river system are available (i.e. this 

is where the results of Method 1 and Method 2 can be directly compared). Based on the MRL plots, a threshold 

value of 1.3 m is selected for locations Sw1, Sw10 and Sw12; and a threshold value of 1.4 m is selected for 

location Sw19.  535 

The estimated flood levels up to a return period of 200 years and their 95% confidence intervals at these four 

locations are plotted in Figure 7. The results for the remaining 15 locations are provided in Figure S3 in the 

supporting material. The estimated return levels at Sw1, Sw10 and Sw12 are similar, with the 1 in 100 years return 

levels being 1.91 m, 1.89 m and 1.87 m at the three locations, respectively. The estimated 1 in 100 years flood 

level at location Sw19 is much higher at 3.67 m. In addition, the 95% confidence interval for location Sw19 is 540 

much wider (higher variance) compared to the other three locations. This is mainly because location Sw19 is flow 

dominated and high flood levels are dominated by relatively few flood events in the historical record, leading to 

a more highly skewed distribution with fewer data points above the threshold for flood estimation at location 

Sw19 compared to the other locations.  
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 545 

Figure 7 Results of Method 2 applied to simulated flood level data at locations Sw1, Sw10, Sw12 and Sw19. The black 
lines represent estimated flood levels. The red dashed lines indicate the 95% confidence interval. 

 

5.3 Method 3  

For the design variable method (DVM), the dependence between storm tide T and fluvial flood Q is first estimated 550 

using the bivariate logistic threshold excess model. The results are summarized in Figure S4 in the supporting 

document for a range of time lags between T and Q. The results show that the maximum dependence between 

storm tide T and fluvial flood Q occurs at a lag of three days with an α value of 0.88, indicating that the peak of 

flow often comes three days after the peak of storm tide. This lag is not surprising given that the large catchment 

size generates significant lags between rainfall events (which are more likely to co-occur with the storm surge 555 

peak) and the runoff towards the catchment outlet. Therefore, an α value of 0.88 is used for flood estimation using 

the DVM. This is because in this method the information on the temporal dynamics of storm surges and 

astronomical tides is discarded and only the peaks of flood drivers and their joint dependence are considered, as 

discussed in section 2.4.  

Flood response surfaces (i.e. flood contours) obtained for the four selected locations are presented in Figure 8. At 560 

location Sw1 where storm tide dominates the flood responses, it can be seen that as the storm tide T becomes 

more extreme, the flood contours become horizontal and river flow Q has little impact on flood levels. Similar 

phenomena can be observed for location Sw19, which is flow dominated - as river flow Q becomes more extreme 

(especially with a return period of 20 years or longer), flood contours become vertical and storm tide T has little 

impact on resulting flood levels. In contrast, within the joint probability zone (i.e. locations Sw10 and Sw12), the 565 

flood levels are influenced by both flood drivers for the majority of the bivariate probability surface. 
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It can also be observed in Figure 8 that there are some variations in estimates of flood levels with very short return 

periods (e.g. return periods of 1 in 1 year or below), with the increase in one flood driver leading to decreased 

compound flood levels. Careful inspection of the results shows that this feature does not apply to any of the 

simulated data points, in the sense that simulation points with larger values of the boundary conditions always 570 

yield larger flood levels. Rather, the ‘inflection’ only occurs in a sparsely sampled region of the plot, and is thus 

suggestive of the limitations of using a log-linear interpolation scheme in this region. This therefore highlights the 

importance of carefully considering the sampling scheme as part of the analysis.   

 

 575 

Figure 8 Flood response surfaces (i.e. flood contours) obtained at locations Sw1, Sw10, Sw12 and Sw19. The values on 
the contour lines represent water levels in meters. The black dots represent the locations of the 28 flood events on the 
flood response surface. Note: The “inflection” in the contour lines for very short return periods is due to the use of 
interpolation scheme noting the sparsity of samples in these regions.  

 580 

The flood exceedance probabilities estimated using this method are plotted in Figure 9, including flood levels 

estimated assuming the two flood drivers are completely dependent (the red dotted lines in Figure 9), completely 

independent (blue dotted lines in Figure 9) and with the dependence parameter α of 0.88 (the black lines in Figure 

9). As pointed out in the original study on the DVM (Zheng et al., 2015a), the maximum return period of each 

flood driver needs to be significantly longer than that of the response variable (i.e. flood level); therefore flood 585 

levels up to a return period of only 100 years (rather than the 200 years return period for the first two methods) 

are estimated here. 
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As shown in Figure 9, the level of dependence between the two flood drivers has little impact on the resulting 

flood levels at location Sw1, where water levels are dominated by storm tide. In contrast, there is a large difference 

in flood levels between the complete dependence and the complete independence cases in the joint probability 590 

zone (i.e. locations Sw10 and Sw12), where flood levels are determined by both tide and stream flow. Interestingly, 

at location Sw19 there is a large difference in flood levels resulting from the complete dependence and complete 

independence cases, with the largest difference of over one meter observed at a return period of 50 years. This 

indicates that although historically being labelled a flow-dominated zone due to high water levels being dominated 

by a few large riverine flood events, tidal levels also have some impact on flood levels in this area. This can also 595 

be confirmed by the results in Figure 8 that flood levels resulted from flood drivers with shorter return periods 

(e.g. 20 years or shorter) can be influenced by both flood drivers, although large floods at location Sw19 result 

predominantly from riverine flooding. These results highlight the importance of considering the dependence 

between all relevant flood drivers as part of the flood estimation methodology, as has been pointed out in previous 

studies (Moftakhari et al., 2019; Serafin et al., 2019).  600 

 

 

Figure 9 Results of Method 3 applied to locations Sw1, Sw10, Sw12 and Sw19. The complete dependent and 
independent cases are estimated using an alpha value of 0 and 1, respectively (see section 4.3).  

 605 

5.4 Results comparison  

A comparison between flood exceedance probabilities estimated using the three different methods is summarized 

in Table 1 and plotted in Figure 10. Results from Method 1 are only available at the Barrack Street gauge (near 

location Sw10), where observed flood data are available. Method 1 produces higher flood estimates at this location 
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compared to the other methods, especially for return periods of 10 years or shorter. This is very likely due to the 610 

systematic difference between the observed flood level data (with a maximum value of 1.92 m within the 22 years’ 

data) and flood levels simulated using the MIKE21 model (with a maximum level of 1.86 m within the 31 years’ 

analysis period) at this location. In addition, the (short) distance between the tide gauge and the modelling location 

Sw10 could also be a contributing factor to this difference.  

 615 

Table 1 Flood estimation results comparison 

Loc. 
Return 
period 
(yrs)  

Method 1: POTa based FFAb to 
Observed historical data (from 
Approach 1) 

Method 2: POT based FFA to  
simulated data (from 
Approach 2) 

Method 3: DVM 
considering MFA to 

key flood drivers 
(from Approach 3) 

Lower 
Bound  
(95% CIc) 

Est. 
Upper 
Bound 
(95% CI) 

Lower 
Bound 
(95% CI) 

Est. 
Upper 
Bound 
(95% CI) 

Com. 
Dep. 

Est. 
Com
. 
Ind. 

Sw1 

1 -d - - 1.59 1.62 1.64 1.59 1.59 1.59 

10 - - - 1.73 1.78 1.83 1.74 1.74 1.74 

100 - - - 1.82 1.91 1.99 1.87 1.91 1.92 

200 - - - 1.85 1.94 2.04 nae na na 

Sw10 

1 1.61 1.64 1.67 1.54 1.56 1.59 1.64 1.61 1.6 

10 1.74 1.8 1.87 1.67 1.73 1.79 1.8 1.78 1.75 

100 1.81 1.94 2.06 1.77 1.89 2.01 2.1 2 1.94 

200 1.82 1.97 2.12 1.79 1.93 2.07 na na na 

Sw12 

1 - - - 1.55 1.57 1.59 1.66 1.62 1.6 

10 - - - 1.67 1.73 1.78 1.83 1.8 1.76 

100 - - - 1.76 1.87 1.97 2.18 2.15 1.98 

200 - - - 1.78 1.91 2.03 na na na 

Sw19 

1 - - - 1.62 1.67 1.72 2.15 1.88 1.74 

10 - - - 1.99 2.29 2.6 2.75 2.48 2.01 

100 - - - 2.32 3.67 5.02 4.42 4.80 4.9 

200 - - - 2.35 4.35 6.35 na na na 

a: POT= point-over threshold. B: FFA= flood frequency analysis c: CI = confidence interval. d: “-“ indicates no 

data available. e: “na” indicates not applicable for extrapolation. 

 

 620 
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Figure 10 Comparison between the three different methods for flood estimation. The solid lines represent estimates 
using each method. The dotted lines represent the 95% confidence interval where applicable.  

 

In regions where only one of the flood drivers dominates flood response (i.e. locations Sw1 and Sw19), Method 625 

3 based on multivariate frequency analysis applied to flood events results in similar estimated flood levels to 

Method 2 based on univariate flood frequency analysis applied to simulated flood data. Estimates obtained from 

Method 3 are within the 95% confidence interval generated using Method 2 for most of the return periods 

considered. However, in the joint probability zone (e.g. locations Sw10 and Sw12) where both flood drivers have 

a significant impact on resulting flood levels, the event-based Method 3 results in significantly higher flood levels 630 

for a given return period compared to Method 2. This is especially the case for location Sw12, where flood levels 

estimated using Method 3 are above the upper bound of the 95% confidence interval generated using Method 2 

based on censored continuous simulation data. This over-estimation of flood levels for a given return period from 

Method 3 due to the use of a static tail water level and the associated assumption that the peaks of the two flood 

drivers with always concede can potentially lead to over-conservative estimation of flood risk and costly flood 635 

prevention infrastructure.  

6 Discussion 

Each of the three approaches for flood probability estimation has their advantages and disadvantages, and these 

are reviewed in Table 3 and elaborated upon in the sections below.  

 640 
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Table 2 Comparative summary of flood estimation approaches for estuarine floods 

Approach Advantages Disadvantages 
1. Univariate 
frequency analysis 
applied to observed 
historical flood data 

 Results are based directly on 
observed water level data (i.e. 
no flood modelling required). 

 The dependence of and 
interactions between different 
flood drivers are implicitly 
represented within the 
historical water level data. 

 Frequency analysis relies on 
univariate statistical theory and 
therefore comparatively easy 
to implement. 

 Compared to multivariate 
methods it is easier to 
extrapolate to provide estimate 
with longer return periods. 

 Long-term high-quality observed 
water level data is often not 
available. 

 Assumes stationarity of key 
processes (e.g. related to 
hydrodynamics in the estuary or 
hydrology/hydraulics of the 
upstream catchment), which is 
likely to be rare in practice. 

 Location specific, so 
transferability to other locations 
is difficult without modelling. 

 No obvious method to 
incorporate the effects of climate 
change to estimate future flood 
probabilities. 

2. Univariate 
frequency analysis 
applied to simulated 
flood data 

 Can be applied to entire 
estuarine regions. 

 Dependence between flood 
drivers are taken into account 
implicitly based on the 
boundary condition data. 

 Dynamic interactions between 
(i.e. the relative timing 
between and shapes of) flood 
drivers, are taken into account 
implicitly. 

 Compared to multivariate 
methods it is easier to 
extrapolate to provide estimate 
with longer return periods. 

 Can easily account for a large 
number of flood drivers (e.g. 
concurrent flows) in the 
modelling process. 

 Requires long term good quality 
simultaneous flood driver (i.e. 
boundary condition) data. 

 Relatively computational 
expensive, although this can be 
partially addressed using 
censored approaches. 

 Difficult to assess future 
conditions, for example due to 
climate change, given the need to 
capture marginal and joint 
changes of the boundary 
conditions. 

3. Multivariate 
frequency analysis 
applied to selected 
‘flood events’  
 

 Can be applied to entire 
estuarine regions. 

 Can be used to assess future 
conditions with dependence 
model reflecting future 
changes without additional 
hydrodynamic model runs. 

 Computationally more efficient 
than Approach 2, with limited 
flood events to be simulated. 

 Dependence model between 
flood drivers needs to be 
quantified explicitly and is 
location-specific. 

 Dynamic interactions between 
flood drivers are ignored when 
using static implementations 
such as the DVM, leading to 
conservative estimation of flood 
risk. 

 More difficult to extrapolate for 
longer return periods. 

 Generally more difficult to 
account for a large number of 
flood drivers. 

 

The first approach is most straight forward to apply as it does not require any additional modelling and can take 

into account all flood drivers and their dependence, which are implicitly represented in the observed water level 
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data. It is also an established approach that has been used extensively by flood researchers and practitioners. 645 

However, Approach 1 can often involve significant extrapolation, as there are often very limited observed 

historical flood level data available compared to the maximum return period that needs to be estimated. In this 

case, 22 years observed data are used to estimate flood probability up to a return period of 200 years. This leads 

to large uncertainty of the estimates—although for the case study presented here, the confidence intervals are 

similar to the results from Approach 2 (where 31 years of boundary condition data are used). In addition, the 650 

method is restricted to the locations where the observations are recorded. Furthermore, this approach is based on 

the assumption of stationarity in the estuarine characteristics and associated forcing variables, which is unlikely 

to be true for most locations. For example, the Swan River has experienced significant changes historically, with 

the majority of the low-lying areas being reclaimed land (Piesse, 2017). Moreover, the estimates obtained from 

historical data cannot reflect future changes in the estuarine regions. 655 

The second approach also uses a univariate distribution, but applied to simulated water level data in the estuary. 

A significant advantage of this approach is that, by applying univariate frequency analysis to simulated flood level 

data using a ‘continuous simulation’ approach, flood return levels at any location within the model domain can be 

estimated. This approach also enables the dependence between flood drivers to be implicitly taken into account 

by using concurrent historical boundary condition data that include the relevant dependencies between flood 660 

drivers. A further advantage is that there are often more long-term flood driver data (e.g. tide data and 

rainfall/streamflow data) than water level data in estuarine rivers, and that elements of non-stationarity (such as 

change to land use, hydraulic structures, bathymetry etc) can be explicitly incorporated into the modelling 

framework. However, depending on the nature of the models (and particularly for high-resolution hydrodynamic 

models), runtime can be a significant issue, which is only partially being addressed using censored methods such 665 

as implemented in the Swan River case study. A further challenge with this method is the inclusion of climate 

change. In particular, given the ‘continuous simulation’ nature of the method, incorporation of climate change 

would require estimation of continuous (usually sub-daily) boundary condition time series (e.g. rainfall and storm 

tide) that reflect key dependence between the boundary conditions (e.g. of rainfall and the wind/pressure data that 

drive storm surge). Although, these high-resolution and temporally consistent data are at present not widely 670 

available under future climate scenarios, they can potentially be developed in the future allowing Approach 2 to 

be used to assess compound flood probability under future changes.  

The third approach based on multivariate frequency analysis applied to key flood generating processes is an 

efficient alternative to the traditional full continuous simulation. By separating the dependence estimation 

(including marginal distribution estimation of individual flood drivers, and a dependence structure) from the flood 675 

probability estimating process, future flood probability can be estimated by updating the dependence model 

between flood drivers under these conditions without the requirement of additional flood simulation runs. 

However, by translating continuous flood time series data into a set of ‘flood events’, the information on 

coincident timing between different flood drivers is often lost, and various simplifying assumptions often need to 

be made. For example, when implementing the design variable method (DVM), the tail water level is assumed to 680 

be static (i.e. no tidal dynamics) with a value that corresponds to the specified exceedance probability. This 

simplifies the probability estimation process by assuming that the peak of tail water will always intercept with the 

peak of fluvial flood at any given location within the model domain, but it ignores the dynamic interactions of the 
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two flood drivers, including the possibility that the peak fluvial flood wave will not occur at precisely the same 

time as the peak tidal cycle. Consequently, this method will always lead to over-estimation of flood levels (Zheng 685 

et al., 2015a), as have been observed from results for the case study system. Finally, other challenges with the 

DVM include: 1) incorporating more than two dimensions (e.g. at confluence of two rivers within an estuary) will 

significantly increase the complexity of the method and therefore further simplifying assumptions may be required; 

and 2) the dependence between the two flood drivers is location specific and needs to be estimated using an 

appropriate statistical model (Zheng et al., 2015a). 690 

7 Conclusions 

In this study, we provide a comparative review of different approaches for probability estimation of compound 

floods in estuarine regions. Three commonly used approaches are considered, including two approaches based on 

univariate frequency analysis (one applied to observed historical flood data and the other applied to simulated 

flood data) and one approach based on multivariate frequency analysis applied to flood drivers of selected ‘flood 695 

events’. Three specific implementation methods, one from each approach, are selected and applied to a real-world 

estuarine system in Australia to investigate their advantages and disadvantages in the context of estimating 

estuarine flood probabilities. The theoretical underpinnings of the approaches, combined with findings from the 

case study, enable the provision of indicative guidance for selecting a suitable method for estuarine flood 

probability estimation, taking into account factors such as data availability, complexity of the application/analysis 700 

process, location of interest within the estuarine region, computational demands and whether or not future 

conditions need to be assessed. 

It should be emphasised that there is no such thing as a one-size-fits-all approach. Each approach has its own 

advantages and disadvantages. Flood frequency analysis using observed water level data is likely to be the simplest 

to apply, but will only be accurate under a range of assumptions (availability of record, stationarity of key 705 

processes, etc). If these assumptions are not valid, alternative approaches including univariate frequency analysis 

applied to simulated (censored) continuous flood data (Approach 2), or multivariate frequency analysis applied to 

the boundary conditions of simulated discrete ‘flood events’ (Approach 3) are required. Approach 2 based on 

(censored) continuous simulation can fully account for the dynamic interactions between storm tide and river flow; 

however, it requires long term good quality data for both processes and it is relatively computational demanding. 710 

It is also difficult to be applied to assess future conditions, as new simulation models may need to be developed 

and simulation runs to be repeated. Approach 3 based on simulated ‘flood events’ is computational efficient, as 

only limited ‘flood events’ need to be simulated. It can be applied relatively easily under future conditions, as 

only the dependence between the flood drivers needs to be re-calculated and no additional simulation runs are 

required. However the inability of Approach 3 to account for the full dynamic interactions between storm tide and 715 

river flow (e.g. timing, duration, shape and their variability) in event-based simulation and the resulting 

simplification by using a static storm tide value will lead to conservative estimates of flood probability.  

Although this study provides a comprehensive comparative reviews of the three general approaches used for flood 

probability estimation through the implementation of one specific method from each approach, there are a large 

number of alternative implementations of each approach available. Acknowledging this, further comparison 720 
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including different specific methods is required to provide a holistic picture of methods for compound flood 

probability estimation in estuarine regions. In addition, some of the limitations of the methods considered (e.g. 

the issue related to the relative timing of flood drivers and the resulting simplification for the event-based method) 

requires further investigation and can potentially be improved. Finally, the development of a method that can 

account for a large number of flood drivers and can be easily applied under future conditions remains a research 725 

challenge.  

Data Availability 

The data and hydrological models used for this study are provided by the Bureau of Meteorology in Australia, 

and the Department of Transport and the Department of Water and Environmental Regulation in Western Australia, 

and are restricted for research purposes only. The data may be made available upon request subject to approval 730 

from corresponding departments.  

Author Contributions 

All authors collaboratively designed the experiments. WW carried out the analysis. WW wrote the initial draft of 

the paper. All authors contributed to the subsequent editing and revision of the paper.  

Competing Interests 735 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This research is funded by Australian Research Council and Western Australian Water Corporation through 

Linkage Project LP150100359. We also thank the Bureau of Meteorology (http://www.bom.gov.au/), the 

Department of Transport (http://www.transport.wa.gov.au/) and the Department of Water and Environmental 740 

Regulation (http://www.water.wa.gov.au/) in Western Australia for providing data and models used in this study. 

We acknowledge DHI for providing a free MIKE FLOOD license for this project. 

References  

Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., and Jensen, J.: Non-
linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nature 745 
Communications, 11, 1918, 2020. 
Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retallick, M., and Testoni, I. (Eds.): Australian 
Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia, 2019. 
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of 
compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 750 
21, 2701-2723, 2017. 
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: 
Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic 
climate change, Science Advances, 5, eaaw5531, 2019. 



28 
 

Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., and 755 
Feyen, L.: More meteorological events that drive compound coastal flooding are projected under climate 
change, Communications Earth & Environment, 1, 47, 2020. 
Bezak, N., Brilly, M., and Šraj, M.: Comparison between the peaks-over-threshold method and the annual 
maximum method for flood frequency analysis, Hydrological Sciences Journal, 59, 959-977, 2014. 
Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions, 760 
Geophysical Research Letters, 45, 2761-2770, 2018. 
Boughton, W. and Droop, O.: Continuous simulation for design flood estimation—a review, Environmental 
Modelling & Software, 18, 309-318, 2003. 
Chu, H., Wu, W., Wang, Q. J., Nathan, R., and Wei, J.: An ANN-based emulation modelling framework for 
flood inundation modelling: Application, challenges and future directions, Environmental Modelling & 765 
Software, 124, 104587, 2020. 
Climate Change Risks to Coastal Buildings and Infrastructure: Climate Change Risks to Coastal Buildings and 
Infrastructure, 2011. 
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer, Great Britain, 2001. 
Condie, R. and Lee, K. A.: Flood frequency analysis with historic information, Journal of Hydrology, 58, 47-61, 770 
1982. 
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, 
P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, 
Nat. Hazards Earth Syst. Sci., 20, 489-504, 2020. 
Cowell, P. J. and Thom, B. G.: Morphodynamics of coastal evolution. In: Coastal Evolution: Late Quaternary 775 
Shoreline Morphodynamics, Woodroffe, C. D. and Carter, R. W. G. (Eds.), Cambridge University Press, 
Cambridge, 1995. 
Environment Agency: Coastal flood boundary conditions for the UK: update 2018 Technical summary report, 
Bristol, UK, 19-113 pp., 2019. 
Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014, 780 
Geophysical Research Letters, 46, 10810-10820, 2019. 
Guru, N. and Jha, R.: Flood estimation in Mahanadi river system, India using partial duration series, Georisk-
Assessment and Management of Risk for Engineered Systems and Geohazards, 10, 135-145, 2016. 
Habete, D. and Ferreira, C. M.: Potential Impacts of Sea-Level Rise and Land-Use Change on Special Flood 
Hazard Areas and Associated Risks, Natural Hazards Review, 18, 04017017, 2017. 785 
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, 
Nature Climate Change, 3, 802-806, 2013. 
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., and Chateau, J.: A global 
ranking of port cities with high exposure to climate extremes, Climatic Change, 104, 89-111, 2011. 
Hasan, H. H., Mohd Razali, S. F., Ahmad Zaki, A. Z., and Mohamad Hamzah, F.: Integrated Hydrological-790 
Hydraulic Model for Flood Simulation in Tropical Urban Catchment, Sustainability, 11, 2019. 
Heavens, N. G., Ward, D. S. & Natalie, M. M. (2013)   4(5):4: Studying and Projecting Climate Change with 
Earth System Models., Nature Education Knowledge, 4, 4, 2013. 
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius, H. C., Verlaan, M., and Kanae, 
S.: Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model 795 
development and its application to 2007 Cyclone Sidr in Bangladesh, Journal of Advances in Modeling Earth 
Systems, 9, 1847-1862, 2017. 
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special 
Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. , Intergovernmental 
Panel on Climate Change NY, USA, 582 pp. pp., 2012. 800 
Jane, R., Cadavid, L., Obeysekera, J., and Wahl, T.: Multivariate statistical modelling of the drivers of 
compound flood events in south Florida, Nat. Hazards Earth Syst. Sci., 20, 2681-2699, 2020. 
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP–
DOE AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, 83, 1631-1644, 2002. 
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework for studying rainfall intensity-805 
duration-frequency relationships, Journal of Hydrology, 206, 118-135, 1998. 
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., 
Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, Wiley 
Interdisciplinary Reviews: Climate Change, 5, 113-128, 2014. 
Lowe, J. A. and Gregory, J. M.: The effects of climate change on storm surges around the United Kingdom, 810 
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 363, 1313-1328, 2005. 
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.: Flood frequency 
analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19, 
2561-2576, 2015. 



29 
 

MacPherson, L. R., Arns, A., Dangendorf, S., Vafeidis, A. T., and Jensen, J.: A Stochastic Extreme Sea Level 815 
Model for the German Baltic Sea Coast, Journal of Geophysical Research: Oceans, 124, 2054-2071, 2019. 
Maidment, D. R. (Ed.): Handbook of hydrology, McGraw-Hill, New York, 1993. 
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and 
Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573-574, 2008. 
Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., and Sanders, B. F.: Linking statistical and 820 
hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries, Advances in 
Water Resources, 128, 28-38, 2019. 
Muñoz, D. F., Moftakhari, H., and Moradkhani, H.: Compound Effects of Flood Drivers and Wetland Elevation 
Correction on Coastal Flood Hazard Assessment, Water Resources Research, 56, e2020WR027544, 2020. 
Nahar, J., Johnson, F., and Sharma, A.: Assessing the extent of non-stationary biases in GCMs, Journal of 825 
Hydrology, 549, 148-162, 2017. 
Naughton, M.: ACCESS Numerical Weather Prediction resources for the national research community, 
OzEWEX 3rd National Workshop, Canberra, 2016. 
Niemczynowicz, J.: Areal intensity-duration-frequency curves for short-term rainfall events in Lund Nordic 
hydrology, 13, 193-204, 1982. 830 
Piesse, E.: Perth's Kwinana Freeway will be permanently flooded by 2100, oceanographer warns. In: ABC 
News, 2017. 
Razavi, S., Gober, P., Maier, H. R., Brouwer, R., and Wheater, H.: Anthropocene Flooding: Challenges for 
Science and Society, Hydrological Processes, in press, 2020. 
Resio, D. T. and Westerink, J. J.: Modeling the physics of storm surges., Phys. Today, 61, 33-38, 2008. 835 
Riggs, H. C.: Chap. 3, “Frequency Curves”. In: U.S. Geological Survey Surface Water Techniques Series, Book 
2, U.S. Geological Survey, Washington, D.C., 1966. 
Robson, A. and Reed, D.: Flood estimation handbook Volume 3: statistical procedures for flood frequency 
estimation, Institute of Hydrology: Wallingford, UK, 1999. 
Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A comprehensive review of compound inundation 840 
models in low-gradient coastal watersheds, Environmental Modelling & Software, 119, 166-181, 2019. 
Seckin, N., Yurtal, R., and Haktanir, T.: Regional flood frequency analysis for gauged and ungauged cathments 
of seyhan river basin in Turkey, Journal of Engineering Research, 2, 47-70, 2014. 
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., 
McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes 845 
and their impacts on the naturalphysical environment. In: Managing the Risks of Extreme Events and Disasters 
to Advance Climate Change Adaptation, Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. 
L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M. (Eds.), A 
Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), 
Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012. 850 
Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What's streamflow got to do with it? A probabilistic 
simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels, Nat. 
Hazards Earth Syst. Sci., 19, 1415-1431, 2019. 
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-
surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347-404, 2005. 855 
Singh, K. P.: Flood frequency-analysis by power transformation Journal of the Hydraulics Division-Asce, 106, 
462-465, 1980. 
Sopelana, J., Cea, L., and Ruano, S.: A continuous simulation approach for the estimation of extreme flood 
inundation in coastal river reaches affected by meso- and macrotides, Natural Hazards, 93, 1337-1358, 2018. 
Tao, A. R. and Hamed, K. H.: Flood Frequency Analysis, CRC Press LLC, Boca Raton, Florida, USA, 2000. 860 
Tawn, J. A.: Bivariate extreme value theory: Models and estimation, Biometrika, 75, 397-415, 1988. 
URS: Assessment of Swan and Canning River Tidal and Storm Surge Water Levels, Depart of Water, URS 
Australia Pty Ltd, Perth, Western Australia, 2013. 
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from 
storm surge and rainfall for major US cities, Nature Clim. Change, 5, 1093-1097, 2015. 865 
Wang, Y., Gao, T., Han, Z., and Liu, Q.: Impacts of wind-field correction on the numerical simulation of storm-
surge inundation during typhoon “Rammasun”, Estuarine, Coastal and Shelf Science, 196, 198-206, 2017. 
Wasko, C. and Sharma, A.: Steeper temporal distribution of rain intensity at higher temperatures within 
Australian storms, Nature Geoscience, 8, 527-529, 2015. 
Wasko, C., Westra, S., Nathan, R., G. Orr, H., Villarini, G., Villalobos Herrera, R., and Fowler, H. J.: 870 
Incorporating climate change in flood estimation guidance, Philosophical Transactions A, in press. in press. 
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and 
Roberts, N. M.: Future changes to the intensity and frequency of short-duration extreme rainfall, Reviews of 
Geophysics, 52, 522-555, 2014. 



30 
 

Woo, D. C.: Use of log-pearson type-III distribution in flood-frequency estimates Eos, Transactions American 875 
Geophysical Union, 52, 828-&, 1971. 
Wright, D. B., Yu, G., and England, J. F.: Six decades of rainfall and flood frequency analysis using stochastic 
storm transposition: Review, progress, and prospects, Journal of Hydrology, 585, 124816, 2020. 
Wu, W. and Leonard, M.: Impact of ENSO on dependence between extreme rainfall and storm surge, 
Environmental Research Letters, 14, 124043, 2019. 880 
Wu, W., McInne, K. L., O'Grady, J. G., Hoeke, R., Leonard, M., and Westra, S.: Mapping dependence between 
extreme rainfall and storm surge, Journal of Geophysical Research: Oceans, 123, 2461‐2474, 2018. 
Wu, W., Westra, S., and Leonard, M.: A basis function approach for exploring the seasonal and spatial features 
of storm surge events, Geophysical Research Letters, 44, 7356-7365, 2017. 
Xu, H., Xu, K., Bin, L., Lian, J., and Ma, C.: Joint Risk of Rainfall and Storm Surges during Typhoons in a 885 
Coastal City of Haidian Island, China, International Journal Of Environmental Research And Public Health, 15, 
2018. 
Xu, S. and Huang, W.: Estimating extreme water levels with long-term data by GEV distribution at Wusong 
station near Shanghai city in Yangtze Estuary, Ocean Engineering, 38, 468-478, 2011. 
Yu, G., Wright, D. B., Zhu, Z., Smith, C., and Holman, K. D.: Process-based flood frequency analysis in an 890 
agricultural watershed exhibiting nonstationary flood seasonality, Hydrol. Earth Syst. Sci., 23, 2225-2243, 2019. 
Yu, P. and Chen, C.: Regional analysis of rainfall intensity‐duration‐frequency relationship, Journal of the 
Chinese Institute of Engineer, 19, 523-532, 1996. 
Zaehle, S., Prentice, C., and Cornell, S.: The evaluation of Earth System Models: discussion summary, Procedia 
Environmental Sciences, 6, 216-221, 2011. 895 
Zellou, B. and Rahali, H.: Assessment of the joint impact of extreme rainfall and storm surge on the risk of 
flooding in a coastal area, Journal of Hydrology, 569, 647-665, 2019. 
Zhang, W., Cao, Y., Zhu, Y. L., Wu, Y., Ji, X. M., He, Y., Xu, Y. W., and Wang, W. G.: Flood frequency 
analysis for alterations of extreme maximum water levels in the Pearl River Delta, Ocean Engineering, 129, 
117-132, 2017. 900 
Zheng, F., Leonard, M., and Westra, S.: Application of the design variable method to estimate coastal flood risk, 
Journal of Flood Risk Management, doi: 10.1111/jfr3.12180, 2015a. 2015a. 
Zheng, F., Leonard, M., and Westra, S.: Efficient joint probability analysis of flood risk, Journal of 
Hydroinformatics, 17, 584-597, 2015b. 
Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence between extreme rainfall and storm 905 
surge to estimate coastal flooding risk, Water Resources Research, 50, 2050-2071, 2014. 
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge 
in the coastal zone, Journal of Hydrology, 505, 172-187, 2013. 
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., 
AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and 910 
Vignotto, E.: A typology of compound weather and climate events, Nature Reviews Earth & Environment, 1, 
333-347, 2020. 
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, 
A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nature 
Climate Change, 8, 469-477, 2018. 915 

 


