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Abstract. Water management in semiarid regions of the western United States requires accurate and timely knowledge of

runoff generated by snowmelt. This information is used to plan reservoir releases for downstream users and hydrologic models

play an important role in estimating the volume of snow stored in mountain watersheds that serve as source waters for down-

stream reservoirs. Physically based, integrated hydrologic models are used to develop spatiotemporally dynamic estimates of

hydrologic states and fluxes based on understanding of the underlying biophysics of hydrologic response. Yet this class of5

models are associated with many issues that give rise to significant uncertainties in key hydrologic variables of interest like

snow water storage and streamflow. Underlying sources of uncertainty include difficulties in parameterizing processes associ-

ated with nonlinearities of some processes, as well as from the large variability in the characteristic spatial and temporal scale

of atmospheric forcing and land-surface water and energy balance and groundwater processes. Scale issues, in particular, can

introduce systematic biases in integrated atmospheric and hydrologic modeling. Reconciling these discrepancies while main-10

taining computational tractability remains a fundamental challenge in integrated hydrologic modeling. Here we investigate the

hydrologic impact of discrepancies between distributed meteorological forcing data exhibiting a range of spatial scales con-

sistent with a variety of numerical weather prediction models when used to force an integrated hydrologic model associated

with a corresponding range of spatial resolutions characteristic of distributed hydrologic modeling. To achieve this, we design

and conduct a total of twelve numerical modeling experiments that seek to quantify the impact of applied resolution of atmo-15

spheric forcings on simulated hillslope-scale hydrologic state variables. The experiments are arranged in such way to assess

the impact of four different atmospheric forcing resolutions (i.e., interpolated 30 m, 1 km, 3 km and 9 km) on two hydrologic

variables, snow water equivalent and soil water storage, arranged in three hydrologic spatial resolution (i.e., 30 m, 90 m and

250 m). Results show spatial patterns in snow water equivalent driven by atmospheric forcing in hillslope-scale simulations

and patterns mostly driven by topographical characteristics (i.e., slope and aspect) on coarser simulations. Similar patterns are20

observed in soil water storage however, in addition to that, large errors are encountered primarily in riparian areas of the wa-

tershed on coarser simulations. The Weather Research Forecasting (WRF) model is used to develop the environmental forcing

variables required as input to the integrated hydrologic model. WRF is an open source, community supported coupled land-

atmosphere model capable of capturing spatial scales that permit convection. The integrated hydrologic modeling framework

used in this work coincides with the ParFlow open-source surface-subsurface hydrology model. This work has important impli-25

cations for the use of atmospheric and integrated hydrologic models in remote and ungauged areas. In particular, this work has
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potential ramifications for the design and development of observing system simulation experiments (OSSEs) in complex and

snow-dominated landscapes. OSSEs are critical in constraining the performance characteristics of Earth-observing satellites.

1 Introduction

In semi-arid mountain areas of the western United States, snow accumulation and melt are the most critical factors to generate30

sufficient water supply for human and ecological systems. Water resources management in these areas requires accurate and

timely knowledge of runoff generation by snowmelt (Dettinger, 2005; Stewart et al., 2005). Generally, those management

strategies are based on the use of lumped hydrologic models (Burnash et al., 1973; Brunner, 2010; Havnø et al., 1995; Mishra

and Singh, 2002) because of their simplicity in data needs, historically proven performance, and computational efficiency.

The parameterized nature of key watershed processes and properties in these models, however, necessitates data records of35

significant length for calibration and cannot respond to disturbances internal to the watershed such as land use change, or

changes in vegetative cover associated with climate change or other drivers. Because these models require sufficiently long

periods of observed precipitation and streamflow it is also impossible to validate predictions in ungauged basins.

Integrated hydrologic models, on the other hand (Abbott et al., 1986; Butts et al., 2004; Kollet and Maxwell, 2006; Inc, 2015),

are more sophisticated in their representation of processes and, in principle, provide predictions of observable parameters40

(e.g., snow water equivalent, soil moisture, etc.) throughout the watershed rather than only at the watershed outlet. Even

though physically based models represent most hydrologic processes with more fidelity to hydrologic processes than lumped

parameter models, they suffer from a number of other issues that has made their general use for hydrologic forecasting difficult.

First, nonlinearities and closure problems in the underlying processes ultimately necessitate empirical parameterization (e.g.,

constitutive relationships between soil water content and matric potential). Second, these models require a correspondingly45

complex and large amount of spatiotemporally varying data related to atmospheric, surface, and subsurface variables as input.

In topographically complex watersheds, observations characterizing the environmental forcings required as input to these

models (e.g., precipitation, temperature, wind speed, etc.) are sparse and often not representative. The complexity of the terrain,

moreover, leads to gaps in or unavailability of radar-retrieved precipitation. As a result, in these watersheds data input to

hydrologic models is increasingly derived from the output of numerical weather prediction (NWP) models. The key advantage50

of these models is that they provide environmental forcings that are internally and physically consistent, and spatiotemporally

continuous during the period of interest.

Challenges in the use of NWP models to derive hydrologic forcings include, however, the computational expense required

to run these models and the discrepancies in spatial scales resolved by the atmospheric, versus land surface hydrology models

(Blöschl and Sivapalan, 1995; Wu and Li, 2009). Such discrepancies lead to significant uncertainties because the character-55

istic scales of processes and errors can be many orders of magnitude different between atmospheric and hydrologic models.

Stated differently, a highly accurate weather prediction within a large region (e.g., the position of key synoptic phenomena is

captured to within a few kilometers) can nevertheless lead to highly inaccurate hillslope-scape predictions when used to force

a hydrologic model.
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A fundamental challenge within the hydrologic sciences, therefore, is to characterize the relationship between the spatial60

resolution of numerical weather predictions used as input to hillslope-scale resolving models and the corresponding errors in

predictions of quantities like SWE and soil moisture. Improving knowledge of the sensitivities of hydrologic predictions to the

spatial resolution of weather prediction used as input to hydrologic models is of particular importance in the arid regions of

the world that depend on snowmelt in upland mountain watersheds. In these regions, increasing precipitation variability and

warming temperatures associated with climate change, coupled with increasing demands on water resources necessitate more65

accurate predictions of the spatiotemporal evolution of key hydrologic variables.

Even fewer of these studies examine the influence of the spatial resolution of atmospheric forcings on the multiple distributed

and integrated variables simulated through integrated hydrologic models. Shao et al. (2001), for example, assessed the influence

of the grid scales on both land surface and atmospheric processes. They suggest that surface-energy fluxes in areas where land

surface heterogeneity is greatest exhibit the highest uncertainty. By contrast, Mölders and Raabe (1996) assessed the influence70

of aggregated land surface grid scale on atmospheric processes (e.g. evapotranspiration representing a key bottom boundary

condition to atmospheric models) and suggest that the method used in aggregating land surface scale can reduce significantly

the impact on atmospheric simulation results at coarse scale. Considering only the land surface, Maxwell (2007, as cited in

Gentine et al., 2012) found that coarse scale representation of the surface hydrological processes in land surface modeling may

have a significant effect on the area-averaged soil moisture estimates and introduce important biases because of scale. To our75

knowledge, only one study has performed a distributed spatial scale assessment that explicitly investigate the role of the forcing

data resolution on snow modeling. Winstral et al. (2014) performed several modeling experiments in Dobson Creek catchment

within Reynolds Creek Experimental Watershed by degrading 10 m forcing data, derived by geostatistically interpolating

station data, progressively to a spatial resolution of 1500 m, while maintaining a snow model grid at 10 m resolution. The study

suggests that significant effects on snow accumulation and melt occur due to the resolution of model forcing data, particularly80

when decreasing spatial forcing resolution. They postulate that topographic smoothness increases as the forcing resolution

is degraded in complex terrain leads to increased snow accumulation in high-energy zones and less snow accumulation in

low-energy zones. This correspondingly led to earlier melt and increased late-season water deficits. and also suggest that snow

simulations performed with forcing scales of 250 m and larger, the errors increase. In summary, all these studies have identified

multiple discrepancies on the estimations of hydrologic states and fluxes by applying combined scale modeling representations85

in either atmosphere and/or land surface and introduce systematic biases in integrated atmospheric and hydrologic modeling.

Reconciling these discrepancies in scale while maintaining computational tractability, remains a fundamental challenge in

surface hydrology.

In this study, we continue with the idea of the work introduced by Winstral et al. (2014) that through a series of carefully

designed numerical modeling experiments, seek to advance fundamental understanding of the spatiotemporal expressions of90

coupled land-atmosphere processes in complex, snow-dominated watersheds. In our case, we introduce a framework that also

incorporates the variability of the land surface and subsurface water storage which allow us to quantify the impact of the spatial

resolution of the atmospheric forcings on simulated hillslope-scale hydrologic states and fluxes in a more integrated way.
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The overarching goal of this study is to assess the impact of the atmospheric forcing scales on hydrologic state variables

such as snow water equivalent and soil moisture to potentially establish requirements for hydrologic modeling and observation95

system design. The paper is organized as follow: (1) a description of the methods and an overview of the atmospheric and

hydrologic modeling framework, (2) a summary of the results and interpretation, (3) Discussion and conclusion. This study

attempts to emphasize the importance of the spatial and temporal meteorological scale to be used in any hydrology forecasting

and data assimilation in compensating for coarse resolution atmospheric forcing data, that also may potentially help to reduce

the computational and instrumentation cost, and at the same time attempt to improve the accuracy of surface and subsurface100

hydrologic outputs.

2 Methods

2.1 Site

The study was conducted in Dry Creek Experimental Watershed (DCEW) which is used as a high-resolution testbed (Fig-

ure 1). DCEW is a hydrologic experimental site established in 1999. It is located 16 km northeast of the city of Boise, Idaho105

with elevation ranging from 950 m to 2130 m. It is a semi-arid mountain front watershed, facing predominantly southwest.

Precipitation is dominated by snow in the upper basin and by rain in the lower elevations. Soil in Dry Creek is composed pri-

marily by coarse, sandy soil derived from in-situ weathering of granite (Gribb et al., 2009). Vegetation communities at lower

elevations are composed primarily of sagebrush, bitterbrush, mixed grasses and riparian vegetation, while at higher elevations

vegetation is dominated by coniferous evergreen trees, including Douglas Fir and Ponderosa Pine (Anderson et al., 2014).110

2.2 Modeling Framework

The main components for the model execution within the area defined above are: (1) atmospheric processes represented by

weather research forecast model (WRF), a mesoscale numerical weather prediction model and (2) an open-source integrated

surface-subsurface hydrology model represented by ParFlow-CLM.

2.2.1 Atmospheric Model115

The weather research forecast model (WRF) (Skamarock et al., 2005) with its advanced forecasting system version ARW

(advanced research WRF) is a numerical weather prediction (NWP) and atmospheric simulation system designed for research

and operational purposes. WRF is a community model developed and supported mainly by the National Center of Atmospheric

Research (NCAR). WRF-ARW integrates the compressible, nonhydrostatic Euler equations in order to deal with atmospheric

motion on a finer spatial scale. Those equations (which involve the equations of momentum and thermodynamic equation)120

are written in flux form, in order to work either on the sphere by using geographical latitude-longitude coordinates or on a

conformal projection of the sphere by using Cartesian coordinates on a Mercator, Lambert or polar stereographic. An important

characteristic of WRF for our purposes is that it can be used in mesoscale regional atmospheric research as a Convection-
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Permitting Model (CPM) (horizontal scale < 4km) that can explicitly resolve deep convection, which is a significant source of

precipitation, in a fine orographic scale (Prein et al., 2015). Within this context WRF simulations have been performed in several125

studies as summarized in (Prein et al., 2015) for periods ranging from months to several years at horizontal scales ranging from

4 km to 0.8 km. In addition, WRF has been used with spatial domains that include complex terrain (e.g. mountain landscapes)

in a high-resolution scale such as Colorado Front Range at 1.3 km resolution (Mahoney et al., 2013), Idaho mountain ranges

spanning Owyhee mountains and Sawtooth mountains at 1 km resolution (Flores et al., 2016), and even at kilometer and sub-

kilometer scales (i.e., 333 m) on west-central Nevada (Horvath et al., 2012). All these studies have showed accurate results and130

also allowed to obtain more detailed spatial representation of simulation outputs that serve as forcing for hydrologic modeling.

2.2.2 Hydrologic Model

For hydrologic modeling purposes, we selected the ParFlow-CLM model that is able to simulate both surface and subsur-

face hydrologic processes in an integrated way. ParFlow (Maxwell, 2013; Kollet and Maxwell, 2006; Jones and Woodward,

2001; Ashby and Falgout, 1996) is an open-source high spatial resolution surface-subsurface hydrology model which solves135

simultaneously the three-dimensional Richards’ equation and the kinematic wave equation for isothermal, transient and vari-

ably saturated flow using a Newton-Krylov method coupled to a multigrid preconditioned solver (Maxwell and Miller, 2005).

ParFlow has the advantage of an advance octree data structure which facilitates the watershed topography representation using

digital elevation models and geologic modeling of the subsurface. ParFlow also, is coupled with Common Land Model (CLM)

(Dai et al., 2003) where ParFlow computes the mass balance in the subsurface and CLM computes the mass and energy balance140

at the land surface. Both models work simultaneously, by exchanging information of water fluxes between models at every time

step (Maxwell and Miller, 2005). More details of this coupled modeling system can be found in Maxwell and Miller (2005)

and (Kollet and Maxwell, 2008). ParFlow has been applied to several projects within the US as well as Europe and West Africa

ranging from local and regional watersheds applications (e.g., Gilbert et al., 2017; Fang et al., 2016; Maxwell et al., 2007) to

large scale continental (e.g., Condon and Maxwell, 2015; Keune et al., 2016), providing an excellent scalability of its solver145

in distributed systems along with computationally accurate and efficient surface and subsurface flow solutions (Maxwell and

Miller, 2005).

2.3 Experimental setup

For this study we design and conduct a total of twelve numerical modeling experiments that seek to quantify the impact of

applied resolution of atmospheric forcings on simulated hillslope-scale hydrologic state variables that include two hydrologic150

variables, Snow Water Equivalent and Soil Water Storage. The simulation experiments are arranged in such way to assess the

impact of four different atmospheric forcing resolutions (i.e., interpolated 30 m, 1 km, 3 km and 9 km) on three hydrologic

spatial resolutions commonly used for land surface modeling (i.e., 30 m, 90 m and 250 m). Table 1 illustrates the set of

simulation experiments performed in this study. In order to setup all the experiments two major phases were needed: (1) the

atmospheric forcing generation (input data to Parflow) and hydrologic model parameter adjustment and (2) Scale assessing155

framework development and implementation for the atmospheric and land surface multiscale modeling.
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2.3.1 Atmospheric forcing generation and hydrologic model parameter adjustment

Surface hydrometeorological data required as input to the hydrologic model are obtained from the WRF model. The model

produces distributed meteorological forcing data at several scales to feed the land surface-subsurface component represented

by ParFlow and CLM, incorporating consistent environmental forcing data distributed over the landscape that consider remote160

and ungauged areas. After synthesizing the hydrometerological forcings to ParFlow using WRF, we adjusted the Manning

roughness value on the study site, using the finest land surface spatial scale, in order that the model outputs match acceptably

the observed data. This process was manually performed and the outputs targeted were soil moisture and streamflow, and they

were compared with observational soil moisture and streamflow data obtained by sensors and gauges distributed within Dry

Creek Experimental Watershed. The value suggested was 0.000094 h/m1/3. Initial conditions for Parflow were obtained by165

performing a set of drainage experiments that allow us to find an initial moisture state for a particular time that matches a real

condition in the dry season.

2.3.2 Scale assessing framework development and implementation for the atmospheric and land surface multiscale

modeling

A scale assessment framework that compares the performance of model simulations against a model-derived "true" state was170

developed by using the previous atmospheric input generation and hydrologic model parameter adjustment. Figure 2 describes

the overarching process of scale assessing framework adapted to our case. This framework consists on the generation of a

reference hydrologic state focusing primarily on snow water equivalent and soil water storage for a certain period. In data

assimilation and inverse theory studies this methodology is often referred to as a Nature Run or Truth and for this study the

experimental simulation performed with highest spatial resolution (i.e., interpolated 1 km to 30 m atmospheric forcing scale175

and 30 m hydrologic scale) is considered as nature run. Then, several experiments were run, maintaining constant spatial

resolution of the land-surface and using multiple meteorological forcing resolutions decided arbitrarily (see Table 1). These

types of runs are often called perturbation runs which then are compared to the nature run. The impact of the scale resolution

was measured by estimating the mean error (ME) and the root mean square error (RMSE) between the nature (observations)

and perturbation (simulated) runs. The bias, or mean error is computed as,180

ME =
1
N

N∑

i=1

(δE ,i,j − δT ,i,j ) (1)

and the root mean squared error is computed as,

RMSE =

√√√√ 1
N

N∑

i=1

(δE ,i,j − δT ,i,j )2 (2)
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where δE,i,j is the hydrologic variable to assess for each experiment at the coordinates (i, j) in the modeling grid and δT,i,j

represent the hydrologic variable to assess for the control run, N represents the number of samples in time (time series length)185

assessed.

2.4 Hydrologic variables assessed

In this study, we assessed two hydrologic variables of importance that represent surface and subsurface processes: total soil

water storage and snow water equivalent. These processes and corresponding mass and energy fluxes within model grid cells

and external forcings are depicted in Figure 3. The total soil water storage in a soil column is represented by the sum of the190

product of saturation, porosity and the layer thickness as,

Θ =
L∑

k=1

Si,j,kφi,j,k∆z (3)

where Θ represents soil water storage, S is the water saturation in layer located at coordinates (i, j,k), φ is the porosity in

layer k and ∆z corresponds to the layer thickness. The water saturation in ParFlow model is estimated from the pressure field

(equation 3.2), using the mixed form of the Richards equation (Maxwell and Miller, 2005) as,195

∂(s(p))ρθ)
∂t

−∇
[
k(x)kr(p)ρ

µ
(∇p− ρg∇z)

]
= q (4)

the variable s(p) is the water saturation at a hydraulic pressure p while the variables θ, k(x) and kr(p) are the effective

porosity, the absolute permeability and the relative permeability of the medium, ρ and µ represent the density and dynamic

viscosity of the water. Snow water equivalent, represents the amount of water that results if snowpack is melted by unit of area

(DeWalle and Rango, 2008; Armstrong and Brun, 2008). It can be simply expressed as the measurement of snow depth hs and200

the density ratio between snow ρs and liquid water ρw as,

SWE = hs
ρs
ρw

(5)

However, in CLM model the amount of water in a snowpack is determined by the conservation of mass and energy of the

snowpack within a control volume, neglecting horizontal fluxes but considering vertical neighbors (i.e., snow layers). The mass

balance is represented in terms of mass of water wliq and mass of ice wice which the temporal variation of mass of water in205

such control volume is driven by liquid phase, ice phase water fluxes and changes in water phaseMil due to melt (melting rate)

as follows,

∂wliq,k

∂t
= (qliq,k−1− qliq,k) + (Mil∆z)k (6)
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∂wice,k

∂t
= (qice,k−1− qice,k)− (Mil∆z)k (7)

The energy balance in snowpack is represented by the conservation of energy equation which is defined as the change in210

stored energy within a control volume (snow layer) equal to the net energy flux across the volume surface as follows,

∑

m=i,l

[ρzmcmθm]k∆zk
∂Tk

∂t
=Rn,k − [LfMil∆z]k −H −LvE+

[
λ
∂T

∂t

]zh,k

zh,k−1

(8)

where t is the time, Tk is the average temperature of the layer k, ρm , cm and θm are the density, specific heat and the

partial volume of the water l and ice i. Lf and Lv latent heat of fusion for ice and latent heat of evaporation, λ is the is the

thermal conductivity of snow, and Rn,k, H and LvE are radiative, latent and sensible heat fluxes. The snow component in215

CLM is represented by up to five snow layers and the momentum, latent heat and sensitive heat fluxes between the atmosphere

at reference height (i.e., 10 m) and snow surface, are derived from Monin-Obukhov similarity theory (Monin and Obukhov,

1954).

2.5 Data requirement and model configuration

The ParFlow-CLM model requires hourly forcing inputs of precipitation, temperature, pressure, wind speed, incoming short220

and longwave radiation, and specific humidity. The forcing input data are generated by WRF models and retrieved as a data-

subset from the 30-Year, Multi-Domain High-Resolution Climate Simulation Dataset for the Interior Pacific Northwest and

Southern Idaho project (Flores et al., 2016). Data used to verify model outputs include observations of hourly and daily

average discharge, soil moisture, and snow water equivalent are located at multiple sites in DCEW. Such observation data were

retrieved from DCEW in water year 2009 at https://earth.boisestate.edu/drycreek/data/.225

To develop the computational grid for the ParFlow-CLM model the following data were needed: (1) digital elevation data

defining watershed topography, (2) the spatial distribution of soil types (e.g., surface texture), and (3) the spatial distribution

of land cover data. The digital elevation data for the domain area was retrieved from the National Elevation Dataset (Gesch

et al., 2002) data source at 1/9 arc-second spatial resolution (30 m), while other domain spatial scales (i.e., 90 m and 250 m)

were retrieved by upscaling such data sources using QGIS raster alignments tools (QGIS Development Team et al., 2014) with230

a bilinear resampling method. Soil types were retrieved from Soil Survey Geographic Database (SSURGO)(Soil Survey Staff,

2014) and the soil texture classifications were determined based on the percent of sand and clay by using NRCA’s soil texture

calculator (Natural Resources Conservation Service, 2014). Hydraulic and soil moisture characteristic parameters (i.e., Van

Genuchten parameters) were retrieved from Leij (1996) and Simmers (2005) while land cover datasets, were retrieved from

the National Land Cover Database (NLDAS) (Homer et al., 2015). Since CLM model requires the International Geosphere-235

Biosphere Programme (IGBP) land cover classification, primarily retrieved from 500 m spatial resolution MODIS data, each

NLCD classification is approximated to the corresponding IGBP classification required by CLM model. This approach takes
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advantage of using a finer resolution of NLDAS land cover dataset and the similitude existing between MODIS and NLDAS

datasets.

The computational soil grid in ParFlow uses terrain following grid formulation (Maxwell, 2013), which has the advantage240

of solving all the governing equations in a near ground complex terrain and fine spatial discretization, more efficiently. The

soil profile and layer thicknesses are selected according to the ParFlow-CLM modeling requirements. Figure 4 illustrates the

soil layers configuration as well as the thickness value for each layer and total soil depth for the modeling domain. The top soil

layer was set to 1 m depth for the entire domain followed by 19 m of bedrock. The first two top soil layers in ParFlow are set

with small values (i.e., 0.05 m each) of thickness to allow efficient flux exchange with CLM model. The subsequent soil layers245

are distributed by equal valued thicknesses (i.e., 0.1 m) up to reach 0.8 m depth. The transition between soil and bedrock are

set as 0.2 m from the soil part and 1 m from the bedrock part followed by 9 layers of 2 m each up to reach 20 m depth. The set

of hydraulic and soil moisture characteristic parameters selected for each soil texture are shown in Table 2 and are used for all

the simulation experiments.

2.5.1 Forcing data and initial condition generation250

The atmospheric forcing data generated by the WRF model, are spatially distributed (9 km, 3 km, 1 km and 30 m interpolated

from 1 km) and available at hourly resolutions during water year 2009. Since we performed different experiments at 30 m, 90

m and 250 m land surface spatial resolution, the forcing data are rescaled to the corresponding land surface model grid using a

nearest neighbor interpolation algorithm to maintain the atmospheric spatial scale of the original data output of WRF. Another

set of three experiments are rescaled from 1km WRF grid to the 30 m ParFlow grid using bilinear interpolation in order to255

provide a set of meteorological forcings that are smooth in space at the scale of the ParFlow model.

Drainage experiments are performed for all land surface scales in order to find a reasonable initial condition of water pressure

to initialize the model (Figure 5). The drainage experiment consisted of dampening the domain with a small and constant value

of recharge in order to reach groundwater equilibrium (Figure 5-A). At this stage, the lateral flows on each cell are turned off

to avoid formation of streams and ponds. Afterwards, we allowed the watershed to drain by turning on the lateral flows. This260

drainage experiment allows us to estimate continuous pressure head and saturation fields for all the cells in the domain and also

allows groundwater to converge and discharge through the valleys and form streams (Figure 5-B). During drainage, we allow

groundwater storage and streamflow to decrease until the streamflow matches a reference value of observed streamflow at the

watershed outlet in the dry season. The value to match was 0.0031m3/s which corresponds to the streamflow value obtained

at the end of September 2008 (Figure 5-C). The states of the ParFlow model, pressure head and saturation, at this discharge265

during the drainage experiment are then retained. We use these retained states as the initial conditions for the complete set of

experiments depicted in Figure 6. The top layer of head pressure for land surface domains at 30 m, 90 m and 250 m spatial

scale are shown in Figure 6 with a sample of distributed atmospheric forcing at scale of 30 m, 1 km, 3 km and 9 km.
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2.5.2 Baseline run

A baseline run (Nature Run) is obtained by performing a short-term simulation, comparing simulated streamflow, soil moisture,270

and snow water equivalent to observed values in DCEW, and a set of parameters principally in the soil component of the model,

were selected from Leij (1996) to try to match the simulated and observed values. The nature run coincided with the experiment

with the finest hydrologic resolution and the finest interpolated atmospheric forcing scale (i.e., 30 m hydrologic resolution and

30 m bilinear interpolated forcing resolution).

Once Parflow and CLM finish their simulations, the model performance is assessed where data variables are available for ver-275

ification. Figure 7 shows for example the model performance of soil moisture with respect to observed data. Simulated values

of soil moisture are either underestimated and/or overestimated in some periods during 2009 water year. These discrepencies

arise primarily due to effects of rainfall events simulated by WRF that do not coincide in time with the observations, as well as

uncalibrated hydraulics parameters in the soil component. However, calibration to improve model predictability in the baseline

run is not the main purpose of this study, but rather to use it as a reference to compare with the other experiments and determine280

the impact of applied resolution of atmospheric forcings on simulated hillslope-scale hydrologic state variables.

3 Results

Once all of the numerical modeling experiments are performed according to the modeling assessment framework developed,

all the experiments were compared to the baseline run in order to verify spatial error patterns due to variations in spatial scale.

The spatially distributed results for all the experiments are presented in terms of soil water storage integrated vertically in the285

soil column (i.e., 1 m soil column), and SWE, which allows us to assess the subsurface and surface water balance sensitivity

to changes in atmospheric forcing scales.

3.1 Spatially distributed RMSE for SWE and soil water storage

Analysis of Figure 8 shows the effects of variation in the spatial resolution of atmospheric forcing inputs on SWE across

a corresponding range of ParFlow spatial resolutions in DCEW. For all land surface resolutions, the RMSE increases with290

decreasing resolution in the atmospheric forcing. In terms of magnitude of the RMSE, correspondingly, increasing land surface

scale and atmospheric scale increases the magnitude of errors in SWE. Local effects of forcing data are particularly pronounced

in simulations at 30 m land surface spatial resolution in which high magnitudes of RMSE are located in borders and/or corners

defined by the corresponding atmospheric grid resolution. These patterns are due to the comparison of the effects of coarse

atmospheric forcing resolution and finest ones to simulated SWE. High spatial resolution modeling (i.e., nature run) produce295

of high gradients of SWE across in the modeling domain and when it is compared to effects caused for aggregated forcing (i.e.,

1 km, 3 m and 9 km) on SWE, these types of artifacts are generated concentrating less error around the middle of the coarse

grid cell and larger along the boundaries.
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On the other hand, the errors in the soil water storage shown in Figure 9, shows slightly different RMSE patterns at 30

m land surface model resolution in contrast to SWE cases. In these cases, the atmospheric patterns caused particularly in300

SWE as shown in Figure 8, are now combined to topographic effects on streamflow in which higher moisture converge to

lower elevated areas. On the other hand, comparisons of 90 m and 250 m land surface spatial resolution to the nature run show

significant topography and aspect patterns on the spatial pattern in RMSE of soil water storage. Specifically, there are significant

topographic effects on soil water storage patterns and large effects on flat areas, such as riparian areas. More general statistics

that show RMSE variability expressed above between experiments and the nature run are also illustrated in tables 2 and 3 in305

which minimum, maximum, mean and standard deviation of RMSE measurements for SWE and soil water storage variables

are shown respectively. These global statistics, particularly the mean of the spatial RMSE, indicate the drastic incremental

changes in magnitude, specially for SWE, when degrading the hydrologic scale (i.e., from H1 to H2) as well as indicate the

incremental change when degrading the atmospheric scale while maintaining the hydrologic scale.

3.2 Spatially distributed bias for SWE and soil water storage310

Analysis of bias for SWE as shown in Figure 10 reveals (similar to RMSE analysis) that the most positive biases are found

around the borders of the associated forcing grid at 30 m land surface resolution. Also, decreasing in both atmospheric and land

surface spatial resolutions, it is revealed that topography and slope aspect have significant impact on simulated SWE. Visual

inspection on simulations over 90 m land surface resolution shows that the most positive biases are associated with north

aspects and lower elevation areas (case of land surface simulated with 9 km atmospheric resolution). Conversely, negative315

biases are mostly associated with south facing aspects and higher elevations.

Visual inspection of biases for soil water storage ( 11) reveals that most positive biases are associated with the borders of

the associated forcing grid in the 30 m land surface resolution simulation. However, for atmospheric resolutions over 3 km,

both positive and negative biases are associated with valley bottoms. On the other hand, decreasing both atmospheric and land

surface spatial resolution, shows that topography has significant impact on the spatial distribution of bias in soil water storage.320

On simulations performed with 90 m land surface resolution and above, it is found that the mean of negative and positive biases

are associated with stream and riparian areas respectively. More general statistics that show ME variability expressed above

between experiments and nature run are also illustrated in tables 5 and 6 in which minimum, maximum, mean and standard

deviation of ME measurements for SWE and soil water storage variables are shown respectively. Similarly as RMSE analysis

in the previous subsection, drastic changes can be visible in the mean of the ME, specially when degrading the hydrologic scale325

(i.e., from H1 to H2).

4 Discussion

This study is meant to develop a spatial scale assessment framework that can be used to inform the discrepancies on hydrologic

modeling outputs due to the use of coarse scale atmospheric forcing data. By performing a set of synthetic experiments, this

study has revealed the importance of choosing a specific spatial scale in both atmospheric and land surface to maintain con-330
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sistency of the modeling outputs in comparison to observations as well as computational tractability. We found that modeling

at high resolution land surface scales, the processes assessed are locally driven by atmospheric forcings downscaled to the

corresponding land surface scale. However, as decreasing in land surface resolution (i.e., coarser spatial resolution) the effects

of the topography are more influential on the variables assessed.

As seen in figures 8 and 10, simulations for snow variables (i.e., SWE) at high resolution land surface scale of (i.e., 30335

m.), the variability of bias and RMSEs are particularly controlled by the atmospheric grid, revealing more local effects over

the spatially distributed variable modeled. This leads to large errors in SWE, concentrated on opposite sides or corners of

the atmospheric grid cells produced by gradients of magnitude of SWE existent on the base resolution of the nature run or

reference, where atmospheric scale is interpolated from 1 km to 30 m. The scale artifacts as depicted might demonstrate that

snow processes are not only dependent on orographic characteristics at that specific spatial scale, but also are highly dependent340

on the complex interaction between mass and energy inputs coming from the atmospheric processes and local topography

(Grünewald et al., 2014). Bias and RMSEs in simulations at coarse land surface scales (i.e., 90 m. and 250 m.) are controlled

more by the topography than the atmospheric grid and clearly reveal the effects of the topography on snow processes at these

scales in which larger errors in SWE estimation in the entire time series simulation, occur in upper areas of the watershed where

naturally snow precipitation and accumulation are considerable. Looking at slope aspects it is observed that most north-facing345

slope areas show less error compared to south-facing slope areas. This can be attributable to the fact that thermal forcings are

more significant in south-facing slopes, particularly in the snow ablation process (Pomeroy et al., 2003) which is also becoming

even more sensitive to the climate warming (López-Moreno et al., 2014).

In simulations for soil water storage at high land surface model resolutions (i.e., 30 m), the RMSEs are primarily controlled

by atmospheric grid in a similar manner to SWE. Since snow is one of the main sources of soil moisture in mountain envi-350

ronments (Marks et al., 1999), spatial patterns in soil water storage become highly dependent of inputs of water controlled by

snow melting processes (Williams et al., 2009). These are, in turn, controlled by atmospheric forcing effects and therefore, such

effects can be propagated directly to the soil moisture. On the other hand, at land surface model resolutions of 90 m and 250 m,

larger errors in soil water storage occur in riparian areas of the watershed where accumulation of moisture due to topography

and vegetation are considerable. Particularly on north facing slopes there is less error compared with south facing slopes due355

to large radiation effects on snowmelt dynamics, which are also propagated to the water inputs to the soil. Such coarse scale

atmospheric effects on soil water storage reinforce some previous studies focused in hydrologic responses performed by Wood

et al. (1988) in which a watershed domain is represented in a catchment scale or Representative Elementary Areas (REA). The

authors found that REA are strongly influenced by topography in which increases in the variability of rainfall input and soil

between sub-catchments, causing significant changes in surface runoff between sub-catchments.360

On the other hand, Molnar and Julien (2000) state that finer land surface spatial scales are important for short duration

events and coarser spatial land surface spatial scales are suitable for long precipitation events. A similar study performed by

Bormann (2006) suggests that aggregating input (atmosphere) as well as decreasing spatial scale at land surface (increasing

grid size) may cause effects in streamflow simulation results. Additionally, coarse land surface spatial scales must preserve

important information of land use classes since they are determinant in vertical processes such as evapotranspiration. His study365
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suggests that the statistics of the water balance are not significantly dependent on the land surface spatial resolution. However,

this requires high quality input data and posteriorly optimized to the best resolution. Finally, Vivoni et al. (2005) suggest that

domain resolution is a critical step for a modeling application. Decreases in terrain resolution may lead to potential increments

of uncertainty in the hydrologic response. In addition, their study suggests that saturation dynamics are better captured at high

resolutions, particularly in the vicinity of streams (riparian areas) since these areas contribute directly and significantly to runoff370

and evapotranspiration processes.

Limitations of this study lie in the type of atmospheric and hydrologic modeling platform selected as well as the climatolog-

ical and topographic characteristic study area. In addition, the selection of highly detailed physically based atmospheric and

hydrologic models is of great importance in this type of assessment. The selection of physical parameterizations in both the

atmospheric and hydrologic models must give enough confidence that coupled complex land surface and subsurface processes375

are well represented and consistent to changes in spatial scale. This study opens avenues for future research that investigate

the effects of atmospheric forcing scales by using several other coupled atmospheric-land surface and subsurface models. Po-

tential pairs of models of interest include the coupled version of WRF-hydro, ParFlow-ARPS, ParFlow-Cosmo, and others.

This study also suggests potential value in investigating scale effects in modeling systems applied to different types of climate

and/or topography380

5 Conclusions

In this study, we introduce a multi scale modeling assessment framework which was useful to investigate and quantify the

impact of the spatial resolution of the atmospheric forcings (i.e., wind speed, air temperature, relative humidity, incoming

longwave and shortwave radiation) on simulated hillslope-scale hydrologic states and fluxes such as snow water equivalent and

soil water storage of coupled land-atmosphere processes in complex, snow-dominated watersheds.385

The spatial distributions of errors (i.e., MEs and RMSEs) found in simulations for SWE at high resolution land surface scale

(i.e., 30 m) are particularly driven by the atmospheric grid, revealing local effects over the spatially distributed variable mod-

eled. Simulations performed with coarse land surface scales (i.e., 90 m and 250 m) as well as with coarse atmospheric spatial

scales, has errors that are driven more by topography than the atmospheric grid and clearly reveal the effects of topography and

slope aspect on snow processes. However, both play an important role on the effect of the spatial SWE magnitude across the390

watershed.

The spatially distributed errors found in simulations for soil water storage at the high resolution land surface scale are

driven by the atmospheric grid scale, similar to corresponding patterns in SWE errors. However, simulations performed for

land surface scales at 90 m and 250 m as well as with coarse atmospheric spatial scales, larger errors in the entire time series

simulations occur in riparian areas of the watershed, where accumulation of moisture due to flat areas in the topography is395

significant.

In this study, we have emphasized the importance of the effects caused by atmospheric forcing scales on simulated hydrologic

state variables such as snow water equivalent and soil moisture in the regions that depend on snowmelt. The study has also
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improved the knowledge of the sensitivities of hydrologic predictions to the spatial resolution of weather prediction data used

as input to hydrologic models and helped to characterize the relationship between the spatial resolution of numerical weather400

predictions used as input to hillslope-scale resolving models.

Code availability. Codes can be found in the public GitHub repository at: https://github.com/miguelaguayo/ParFlow-CLM-Scripts/

6 Figures and Tables

Figure 1. Dry Creek Experimental Watershed study area.
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Figure 2. Multiscale modeling assessment framework.
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Figure 3. Schematic cell representation of surface and subsurface layers in ParFlow-CLM. Variables qf represent downward energy fluxes

from forcings and qLH upward energy fluxes (sensible and latent) respectively, from snow and soil

Figure 4. Detailed soil layers configuration for the modeling domain used in ParFlow-CLM simulations.

16

https://doi.org/10.5194/hess-2020-451
Preprint. Discussion started: 21 October 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 5. Soil moisture initial conditions generation process.

Figure 6. Soil moisture initial conditions and an example of distributed atmospheric data generated by WRF model.
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Figure 7. Soil moisture at 2 cm observed simulated time series at lower south station in DCEW. Precipitation data is retrieved from Lower

Weather station (see Figure 1).

Figure 8. Spatially distributed RMSEs for SWE in water year 2014.
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Figure 9. Spatially distributed RMSEs for soil water storage in water year 2014.
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Figure 10. Spatially distributed bias for SWE in water year 2014.
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Figure 11. Spatially distributed ME for soil water storage in water year 2014.
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Table 1. Simulation experiments and nomenclature.

Hydrologic Resolution
Atmospheric Forcing Resolution

A1 (H m)a A2 (1 km) A3 (3 km) A4 (9 km)

H1 (30 m) A1-H1b A2-H1 A3-H1 A4-H1

H2 (90 m) A1-H2 A2-H2 A3-H2 A4-H2

H3 (250 m) A1-H3 A2-H3 A3-H3 A4-H3
a Bilinearly interpolated to hydrologic scale from 1 km.
b Simulation reference (Nature run).

Table 2. Summary of soil parameters selected from Leij (1996) and Simmers (2005) and applied to the DCEW study domain.

Soil Texture
Parameters

θr(m
3/m3) a θs(m

3/m3) b α(m−1) c n(−) d Ks(m/hr)
e

Loamy sand 0.057 0.41 12.4 2.28 0.1459

Sandy loam 0.065 0.41 7.5 1.89 0.0442

Sandy clay loam 0.100 0.39 5.9 1.48 0.0131

Loam 0.078 0.43 3.6 1.56 0.0104

Clay 0.068 0.38 0.8 1.09 0.0020
a Saturation residual.
b Saturated water content.
c Parameter inversely related to the air entry value.
d Parameter that determine the water retention curve shape.
e Saturated hydraulic conductivity.

Table 3. Summary of RMSEs for SWE (mm).

Experiment
Metrics

Min Max Mean SD

A2-H1 0.50 44.55 9.04 6.84

A3-H1 0.36 91.38 22.97 16.33

A4-H1 1.75 140.69 60.64 33.14

A1-H2 0.43 153.92 33.60 30.18

A2-H2 0.53 161.90 36.48 28.12

A3-H2 0.40 147.63 42.03 25.26

A4-H2 1.64 196.09 57.26 33.12

A1-H3 0.51 152.97 34.40 29.82

A2-H3 0.55 149.28 37.30 27.88

A3-H3 0.83 144.61 41.61 25.38

A4-H3 1.28 192.16 56.53 32.99
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Table 4. Summary of RMSEs for soil water storage (cm).

Experiment
Metrics

Min Max Mean SD

A2-H1 0.00 1.99 0.41 0.31

A3-H1 0.00 5.64 0.95 0.69

A4-H1 0.00 10.71 2.13 1.26

A1-H2 0.00 29.46 6.08 5.01

A2-H2 0.00 29.46 6.10 5.00

A3-H2 0.00 29.46 6.15 4.96

A4-H2 0.00 29.46 6.22 4.89

A1-H3 0.00 30.08 9.50 6.42

A2-H3 0.00 30.08 9.53 6.40

A3-H3 0.00 30.08 9.56 6.39

A4-H3 0.00 30.09 9.54 6.37

Table 5. Summary of ME for SWE (mm).

Experiment
Metrics

Min Max Mean SD

A2-H1 -28.84 24.08 -1.11 7.38

A3-H1 -62.19 43.10 1.38 19.10

A4-H1 -83.82 104.52 12.85 46.35

A1-H2 -75.61 10.19 -14.00 13.90

A2-H2 -85.53 21.56 -14.12 15.20

A3-H2 -77.82 43.84 -11.89 21.43

A4-H2 -125.01 103.13 -8.75 39.69

A1-H3 -75.70 12.73 -14.24 13.98

A2-H3 -72.39 23.73 -14.94 15.00

A3-H3 -75.60 38.29 -12.47 20.65

A4-H3 -121.53 101.34 -8.47 39.22
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Table 6. Summary of ME for soil water storage (cm).

Experiment
Metrics

Min Max Mean SD

A2-H1 -0.91 1.35 0.07 0.16

A3-H1 -2.84 3.64 0.06 0.41

A4-H1 -5.89 4.95 -0.39 0.77

A1-H2 -22.85 29.12 3.95 5.77

A2-H2 -22.99 29.12 3.96 5.77

A3-H2 -23.09 29.12 3.99 5.77

A4-H2 -24.31 29.12 3.89 5.82

A1-H3 -22.80 29.88 7.51 7.71

A2-H3 -22.93 29.88 7.53 7.70

A3-H3 -22.74 29.88 7.57 7.69

A4-H3 -21.84 29.88 7.45 7.76
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